@article{14999, author = {Gabriel Balaban and Henrik Finsberg and Simon Funke and Trine H{\r a}land and Einar Hopp and Joakim Sundnes and Samuel Wall and Marie Rognes}, title = {In vivo estimation of elastic heterogeneity in an infarcted human heart}, abstract = {In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variation in scarring, material properties can be expected to vary throughout the tissue of a heart after an infarction. In this study we propose a data assimilation technique that can efficiently estimate heterogeneous elastic material properties in a personalized model of cardiac mechanics. The proposed data assimilation is tested on a clinical dataset consisting of regional left ventricular strains and in vivo pressures during atrial systole from a human with a myocardial infarction. Good matches to regional strains are obtained, and simulated equi-biaxial tests are carried out to demonstrate regional heterogeneities in stress{\textendash}strain relationships. A synthetic data test shows a good match of estimated versus ground truth material parameter fields in the presence of no to low levels of noise. This study is the first to apply adjoint-based data assimilation to the important problem of estimating cardiac elastic heterogeneities in 3-D from medical images.}, year = {2018}, journal = {Biomechanics and Modeling in Mechanobiology}, volume = {17}, pages = {1317{\textendash}1329}, month = {May-05-2019}, publisher = {Springer}, address = {Berlin Heidelberg}, issn = {1617-7959}, url = {http://link.springer.com/10.1007/s10237-018-1028-5}, doi = {10.1007/s10237-018-1028-5}, }