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a b s t r a c t

Voxel-based soft robots (VSRs) are a type of modular robots composed by interconnected soft and
deformable blocks, i.e., voxels. Thanks to the softness of their bodies, VSRs may exhibit rich dynamic
behaviors. One open question is what type of neural controller is most suitable for a given morphology
and sensory apparatus in a given environment. One observation is that artificial neural networks
with state may be able to cope with the dynamical nature of VSR bodies and their morphological
computation. In this work, we consider four types of controllers, i.e., multilayer perceptrons (MLPs,
stateless), recurrent neural networks (RNNs), spiking neural networks (SNNs) without homeostasis,
and SNNs with homeostasis. We consider three robot morphologies tested for locomotion, where each
morphology is investigated in simulation with three different types and number of sensors. Neural
network controllers are optimized with neuroevolution, and the experimental results are compared
in terms of effectiveness, efficiency, and generalization ability. In addition, we analyze the resulting
behavior of the robots systematically. Our results show that RNNs are typically more effective while
MLPs are often the weakest controllers, particularly for robots with few sensors. However, SNNs are
more capable in terms of generalization and the mechanism of homeostasis is often beneficial. Finally,
we show that RNNs and SNNs with homeostasis produce a more wide variety of behaviors.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Artificial neural networks (ANNs) have been broadly and suc-
essfully used for a wide variety of computations ranging from
anguage conversation [1] to playing diplomatic board games [2],
ncluding as controllers that generate robot commands on the
ly [3].

Of particular interest for problems where the temporal dy-
amics are important, recurrent neural networks (RNNs) are one
f the most interesting class of ANNs with state. Possessing a state
ncompasses a memory capacity or, in other words, the possi-
ility of having cycles allowing outputs from a neuron to affect
ubsequent computations of the same node. Therefore RNNs can
e considered as dynamical systems, making them a potential
ood fit as controllers for embodied agents acting in real time in
esponse to their environment and the agent’s previous actions.
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nc-nd/4.0/).
However, in the domain of modular robotics, there is a lack
of understanding of whether it is beneficial to implement recur-
rent neural controllers or spiking neural controllers for different
morphologies and tasks.

In order to reduce such research gap, in this work, we consider
four ANN variants, of which three of them with a state, and
perform an extensive comparison when used as controllers for
a type of simulated embodied agents: voxel-based soft robots
(VSRs) [4]. VSRs are robots of particular interest in this context,
since their body is composed of a collection of interconnected soft
modules, hence capable of exhibiting a rich variety of dynamic
behaviors [5].

Such dynamic processes conducted and enabled by the robot
bodies are typically known as morphological computations [6]. In
order to match the dynamics of the body and exploit them at their
full potential, we investigate different types of evolved neural
network models—that is, different ANN models for which we rely
on evolution for the optimization of the parameters. In particular,
we consider simple and stateless multilayer perceptrons (MLPs),
recurrent neural networks, spiking neural networks (SNNs), the
latter with and without homeostasis. The four named variants
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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iffer in both their parameter size and state size; the former may
e seen as a proxy for information processing expressiveness,
.e., how diverse may the processing doable by the ANN be; while
he latter may be seen as a proxy for memory size. Homeostasis
s a biological mechanism that restores a balance in a system
ehavior when abrupt changes in the input stimuli arise. In case
f SNNs, such homeostatic plasticity acts as a regulator of a
euron firing rate by adjusting the threshold of the membrane
otential.
Based on the hypothesis that recurrent and spiking neural

odels may be beneficial in the domain of VSRs, we conduct
large experimental campaign (in simulation) by considering
ine robots differing in shape (biped, worm, and ‘‘comb’’, a form
f multiped) and sensory equipment (few or many, different
ypes such as sight and touch) optimized by neuroevolution. The
volved neural networks are compared on the robots for the task
f locomotion, i.e., the ability to move as far as possible from the
nitial position. The metrics used for comparison encompass the
earch effectiveness measured in term of velocity of the evolved
obots, search efficiency in terms of the evolutionary time needed
o obtain the best robot, and generalization ability tested as
he evolved robot velocity in unknown conditions. Additionally,
e perform a systematic investigation of the obtained robot
ehaviors using a variety of metrics further visualized using a
rincipal component analysis for dimensionality reduction. Our
xperimental results show that indeed neural networks with
tate are particularly well suited for the control of voxel-based
oft robots.
The main contributions and findings are the following: (1)

NNs are the most effective models while MLPs are on average
he weakest network controllers for robots with few sensors. (2)
NNs appear to be more capable of generalization than other
ypes of controllers. One interesting observation is that the mech-
nism of homeostasis is beneficial across a wide variety of sce-
arios, indeed providing and additional level of fast adaptation
uring the lifetime of the robotic agents. (3) ANNs with state
uch as RNNs and SNNs with homeostasis are able to produce
wide repertoire of diverse behaviors, which may be argued to
e a beneficial property for robots to be deployed in unknown or
hanging environments [7].
The remainder of the paper is organized as follows. In Sec-

ion 2, we survey the previous works that are relevant to our
tudy. In Section 3, we present the three kinds of ANNs that
e considered in our comparison under the same theoretical

ramework. In Section 4, we give an overview on VSRs, defining
heir morphology, sensory apparatus, and controller, the latter
n an abstract way. In Section 5, we show how to use ANNs as
ontrollers of a VSR. In Section 7, we describe our experimental
omparison in detail and discuss the results under several points
f view. Finally, in Section 9, we draw the conclusions.

. Related work

Controlling a robot to achieve a certain task is a non-trivial
roblem, which can be tackled in different ways, ranging from
lassical control theory to more innovative methods based on
rtificial intelligence. A commonly used strategy involves equip-
ing the robot with a brain, often in the form of an ANN [8,9],
hich is deputy to performing computation to drive the actions of
he agent. A rather contrasting paradigm is that of morphological
omputation, according to which the body is itself responsible for
erforming computation, with the brain becoming secondary if
ot useless at all [6]. The embodied cognition paradigm [10] tries
o bridge these antipodal views by localizing intelligence, i.e., the
2

source of computation, in the body–brain entanglement, for both
real- and artificial-life agents.

Clearly, this paradigm does not apply equally well through-
out the entire robotics domain, as some robot morphologies are
naturally more suited for hosting computation than others. Intu-
itively, a richer body dynamics, as in soft robots [11], relates to a
larger share of computational power residing in the body of the
agent [12]. VSRs, the modular soft robots we employ in this work,
naturally fit this scheme, and hence constitute a relevant test
bed for assessing the body–brain interplay in a controlled sim-
ulated environment. Moreover, they are particularly well-suited
for studying how real-world phenomena can be ported in the
artificial domain, as, e.g., development [13,14] or morphological
regeneration [15].

A similar argument can be made about the robotic controller:
a given type of brain, i.e., ANN, may or may not be appropriate
for a certain robot and/or task. In fact, in the variety of existing
ANN models, one of the prime discerning factors is the struc-
tural support they offer for achieving computation in synergy
with the body dynamics. In other words, the ANN choice is
often driven by features such as having a state, i.e., a form of
memory [16], being able to achieve self-regulation and/or un-
supervised learning [17,18], or be tailored to specific kinds of
inputs (e.g., high-dimensional visual description of the environ-
ment). While a controller with memory may be more suitable
to cope with complex tasks that require a deeper cognition of
the environment by the robot, the complex dynamics induced by
a controller with state may interfere with the dynamics of the
robot body—this being a key motivation behind our study. On the
other hand, learning (or similar forms of adaptation) are often
desirable, in particular when the controller is not the only part
of the robot being subjected to optimization [19]; however, the
overhead of complexity needed to allow for auto-adaptation may
sometimes hinder the robot effectiveness. The choice of a given
neural model is hence not straightforward, and the need arises for
comparing different options. Jin et al. [20] surveyed the topic for
a robot manipulation task, encompassing a wide range of ANNs,
including most of the ones we experiment with in our study, but
also Echo State Networks, Dual Networks, and Central Pattern
Generators. Similarly to said study, here we aim at comparing
different ANN models for a single task, yet, differently from the
cited work we consider (simulated) modular robots tackling the
task of locomotion and we conduct an experimental evaluation
rather than a survey.

The most commonly used model of ANN is the multilayer per-
ceptron [21,22], which is the usual go-to regardless of the robot
type and the application domain. Such ANNs have already been
successfully used for VSRs both as centralized controllers and as
distributed ones to take advantage of the robot modularity [7]. To
achieve higher biological resemblance and to increase the com-
putational efficiency, Nadizar et al. [23] introduced the practice
of pruning to MLPs in VSRs, whereas Ferigo et al. [24] introduced
unsupervised Hebbian learning to MLPs in VSRs with the aim of
improving their performance and generalization ability.

Recurrent neural networks are another often used ANN model
in robot control [25,26]. These ANNs share the simplicity of MLPs,
yet possess a state which makes them ideal for tasks requiring
a form of memory, as, e.g., navigation [27,28]. These ANNs have
never been applied to VSRs per se, although the distributed
controller proposed by Pigozzi et al. [7] exploits recurrence in the
information processing within the robot.

Unlike MLPs and RNNs, spiking neural networks have only
recently started gaining popularity in the robotics domain, even
though the first pioneering work involving them for controlling
modular robots dates back to 2003 [29]. Despite SNNs were
primarily introduced aiming at biological resemblance [30,31],
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owadays they do not only attract interest from the biologi-
al/neuroscientific perspective. In fact, these ANNs possess unique
eatures also from the computational perspective, as they al-
ow for homeostasis [32]—a form of aparametric unsupervised
earning—and are highly energy efficient in combination with
euromorphic hardware [33]. Bing et al. [34] provide an overview
f the applications of SNNs in robotics. The ones that are most rel-
vant for this study are the works by Spaeth et al. [33,35], which
nvolve a form of modular soft robots analogous to VSRs and the
ocomotion task. Such works use an SNN as a central pattern
enerator [36,37] that controls the contraction and expansion
f simulated robot muscles similarly to the voxels in the VSRs.
owever, the network of a central pattern generator is manually
esigned and consists of inhibitory cycles between groups of
eurons for creating a rhythmic activation of the muscles [38]. In
ddition, Nadizar et al. [39] applied SNNs to VSRs in a distributed
anner, then each voxel is controlled by a single network that
an communicate with its neighboring voxels network. The goal
f this method is the achievement of a form of collective in-
elligence among the single voxels. SNNs can create cognitive
aps in space or time dimensions that can work as a form of
patial memory, hence tackling tasks different than locomotion,
s, e.g., robot path planning and state predictions [40–42]. SNNs
an also be used to make robots to learn associations, for example
etween objects and actions. This is called associative learning
43–45].

For each of these ANNs to become effective robot controllers, a
raining, i.e., an optimization, phase is needed. Given the diverse
odels involved, we rely on neuroevolution for the optimization,
s it can be applied equally well to all the considered ANNs.
n particular, unlike reinforcement learning, neuroevolution does
ot require specific domain-knowledge in crafting the reward
as in [46]) and can thus easily be applied to a broad range of
asks. We refer the reader to [47] for an overview of different
euroevolution-based methodologies for optimizing ANN-based
ontrollers for the navigation task.

. Background: neural models

ANNs are computational models that take inspiration from
iological neural networks. ANNs are composed of artificial neu-
ons interconnected by weighted connections that resemble the
ifferent intensities of synaptic contact. Neurons are modeled as
lectrically excitable nerve cells which pass electric signals along
he synapses [48].

ANNs attempt to mimic biological neural circuits in order to
eflect their behavior and adaptive features. Therefore, they are
ften used for solving difficult problems, e.g., modeling complex
elationships between inputs and outputs [49]. In this study, we
xploit ANNs as robotic controllers, so we aim at inferring a
elationship between the state and the perceptions of the robot,
nd its actions.
Notably, since we deploy ANNs to control agents that ‘‘live’’

n time, we are implicitly introducing the notion of time within
he ANNs. Namely, we simulate the ANN evolution over time
n a discrete manner, with a time resolution ∆th. Remarkably,
th does not necessarily need to match the time resolution of

he physics simulation of the robot body, hence the ANN can be
pdated at different instants with respect to the robot simulation.
ue to the stateful nature of some neural models employed, the
NNs can be considered here as dynamical systems, for which
he outputs depend not only on the current inputs but also on
he previous history of the system, reflected by the ANN state.
e can hence describe an ANN using a notation borrowed from
ynamical systems:

s(h) = g
(
x(h), s(h−1)

)
, (1)
3

y(h)
= f

(
x(h), s(h)

)
, (2)

s(0) = s0, (3)

where s(h) ∈ R|s| is the state of the ANN at time step h, x(h) ∈ Rm

is the input at h, y(h)
∈ Rn is the output at h, g : Rm

×R|s| → R|s|
is the function determining the state update given an input, f :
Rm
×R|s| → Rn is the function determining the output given the

current state and input, and s0 is the initial state.
Since the very first computational model proposed by McCul-

loch and Pitts [21] in 1943 – the perceptron – a large variety
of ANN models have originated, differing along various axes,
e.g., how neurons are modeled or which architectures are em-
ployed, and covering a vast set of features, such as simplicity,
computational efficiency, or biological resemblance. Here, we
take into consideration a subset of models, aimed at covering
different aspects, as we shall see in the following sections.

In detail, we consider MLPs, RNNs, and SNNs. While the two
first neural models have been extensively used for robot control
in the last decades [8], SNNs have started being used more re-
cently. We focus on these three models, among the many that
are applicable to the task of robot control [20], because we believe
they exhibit different trade-offs between their parameter size and
state size. We see the former as a proxy for information process-
ing expressiveness, i.e., how diverse may the processing doable by
the ANN be, and the latter as a proxy for memory size. Moreover,
the parameter size directly influences the search space of the
(evolutionary) optimization process: in principle, the greater the
number of parameter describing an ANN, the longer the search for
suitable parameter values. Finally, we remark that more complex
ANN models that have been used for controlling robotic agents,
such as long short-term memory ANNs [50], are often deployed
in a controller with a large input space, e.g., resulting from vision
sensors. In contrast, the robots considered in our scenario are
equipped with simple sensors that only generate low-dimension
inputs (see Section 4).

3.1. Multilayer perceptrons

The first model we consider is the multilayer perceptron, that
is a fully connected feed forward ANN, where each neuron is a
perceptron [21,22] and neurons are organized in layers. The MLP
has no state, which means that, in terms of Eqs. (1)–(3), |s| = 0,
g and s0 are undefined, and f takes only x(h) as argument.

The processing of y(h)
= f

(
x(h)

)
in an MLP is based on the

processing occurring in a single neuron:

v
(h)
l,i = ϕ

P

⎛⎝⎛⎝j=ml−1∑
j=1

wl,i,jv
(h)
l−1,j

⎞⎠− bl,i

⎞⎠ , (4)

where ϕP
: R → R is the activation function of the perceptron,

vl,i is the activation level of the ith neuron in the lth layer, wl,i,j is
the synaptic weight associated with the synapse connecting the
ith neuron in the lth layer with the jth neuron in the l−1th layer,
bl,i is the bias of the ith neuron in the lth layer, and ml is the
size, i.e., the number of neurons in the lth layer. Since MLPs are
organized into layers, respectively one input layer, zero or more
hidden layers, and one output layer, the computation described
by Eq. (4) is performed layer by layer, meaning that the outputs
of the previous layer become the inputs of the following one,
for each time step h. Eq. (4) can be written more concisely by
eplacing the summation with vector product:

(h)
l,i = ϕ

P
(
w⊺

l,iv
(h)
l−1 − bl,i

)
. (5)
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ence, for the lth layer:

v(h)
l =

⎡⎢⎢⎢⎣
ϕP

(
w⊺

l,1v
(h)
l−1 − bl,1

)
...

ϕP
(
w⊺

l,iv
(h)
l−1 − bl,ml

)
⎤⎥⎥⎥⎦

⊺

= ϕLP
θl

(
v(h)
l−1

)
, (6)

where θl ∈ R(ml−1+1)ml is a numerical vector containing all the
synaptic weights and biases and parameterizing the function
ϕLP
θl
: Rml−1 → Rml that describe the processing for one layer

of neurons. Finally, the entire MLP processing can be completely
described in terms of Eq. (2) by:

y(h)
= v(h)

l∗+1 = ϕ
LP
θl∗+1

(
ϕLP
θl∗

(
. . .

(
ϕLP
θ1

(
v(h)
0

))))
= f MLP

θ

(
v(h)
0

)
= f MLP

θ

(
x(h)

)
, (7)

where v(h)
0 ≜ x(h), l∗ is the number of hidden layers in the MLP,

with l = 0 corresponding to the input layer (for which m0 = m)
and l = l∗ + 1 corresponding to the output layer (for which
ml∗+1 = n, and θ ∈ Rp is a numerical vector containing all the
parameters of fMLP, with p =

∑l=l∗+1
l=1 |θl| =

∑l=l∗+1
l=1 (ml−1 + 1)ml.

Summarizing, an MLP with l∗ hidden layers has a state of size
|s| = 0 and can be described with a parameter vector of size
|θ| =

∑l=l∗+1
l=1 (ml−1+1)ml. Moreover, the MLP processing depends

on one single network-wise parameter, the activation function ϕP.

.2. Recurrent neural networks

To include memory, we consider another neural model: recur-
ent neural networks, with perceptrons as elementary units. In
his case, the output of each unit is computed with ϕP, neurons
re organized in layers, as for MLPs, but the way neurons are
onnected is different. In particular, the topology we opt for
onsists of an input, an output layer, which are built similarly to
hose of MLPs, and l∗ recurrent layers in between them. The input
ynapses fully connect neurons of the input layer with those of
he first recurrent layer, while the output synapses fully connect
he last recurrent layer with the output layer. In each recurrent
ayer, every neuron is connected with every other neuron in the
ame layer (also considering auto-synapses) and every neuron in
he previous layer. In this case, to avoid infinite recursion, the
nputs of the recurrent neurons at time h are the outputs of the
ame layer at the previous time step h − 1, together with those
omputed by the input layer at time h.
In mathematical terms this becomes, for the single neuron in

he lth recurrent layer:

(h)
l,i = ϕ

P
(
w⊺

l,iv
(h)
l−1 +w ′,⊺l,i v

(h−1)
l − bl,i

)
, (8)

here w ′l,i ∈ Rm2
l is the vector of the synaptic weights for

he recurrent synapses, i.e., those connecting the recurrent layer
eurons with each other. More concisely, for the entire recurrent
th layer:

(h)
l =

⎡⎢⎢⎢⎣
ϕP

(
w⊺

l,1v
(h)
l−1 +w ′,⊺l,1v

(h−1)
l − bl,1

)
...

ϕP
(
w⊺

l,ml
v(h)
l−1 +w ′,⊺l,ml

v(h−1)
l − bl,ml

)
⎤⎥⎥⎥⎦

⊺

= ϕRP
θl

(
v(h)
l−1, v

(h−1)
l

)
, (9)

(ml−1+1)ml+m2
l RP ml−1 ml ml
with θl ∈ R and ϕθl : R × R → R .

4

In terms of Eqs. (1) and (2), and by associating the state s =[
v(h)
1 . . . v(h)

l∗

]
∈ R

∑
l ml with the activation level of the recurrent

layers, we can write:

s(h) = gRNN
θ

(
v(h)
0 , s

(h−1)
)
= gRNN

θ

(
x(h), s(h−1)

)
, (10)

y(h)
= ϕLP

θl∗+1

(
v(h)
l∗

)
= f RNNθ

(
s(h)

)
, (11)

with v(h)
0 ≜ x(h).

From these equations the statefulness of RNNs becomes glar-
ing, as opposed to the stateless MLPs. In fact, here the computa-
tion at time step h directly and explicitly depends from the results
obtained at h−1. This is a form of memory of the ANN, which can
keep track of previous events and neural activity, and eventually
re-use the information stored for future computations.

Summarizing, an RNN has a state with size |s| =
∑l=l∗

l=1 ml
and can be described with a parameter vector with size |θ| =∑l=l∗+1

l=1 |θl| = (ml∗ + 1)ml∗+1+
∑l=l∗

l=1 (ml−1+ 1)ml+m2
l (the first

part is different because the output layer, i.e., the l∗ + 1th one,
is not recurrent). Moreover, like for the MLP, the RNN processing
depends only on the single network-wise parameter ϕP.

3.3. Spiking neural networks

The two aforementioned neural models, MLPs and RNNs, are
both simple and fairly computationally efficient, yet they lack in
terms of biological plausibility. Hence, we move towards spiking
neural networks for our third model, for which biological resem-
blance plays a fundamental role [30]. The key element of SNNs
is the modeling of the evolution over time of the membrane po-
tential of neurons, which can be modified by incoming excitatory
or inhibitory neural stimuli, occurring in the form of spikes that
propagate along synapses. The generation of said spikes is called
firing, and arises whenever the membrane potential of a neuron
exceeds a given threshold. Despite the binary nature of spikes,
the intensity of any stimulus received by a neuron is modulated
by the strength of the synapse connecting the firing neuron
(pre-synaptic neuron) and the neuron receiving the spike (post-
synaptic neuron), similarly to what we have seen in Sections 3.1
and 3.2.

The core difference between SNNs and MLPs or RNNs hence
lies in the way information is encoded: in SNNs information is
embedded in the distribution of spikes over time, whereas MLPs
and RNNs encode information as real values at every instant.
Therefore, to allow the use of SNNs in a framework designed to be
coupled with canonical ANNs, we require additional procedures
deputy to converting the spike trains to real values and vice
versa, i.e., to making the SNN consistent with Eqs. (1) and (2),
where the input is a numerical vector x(h) ∈ Rm and the output
is a numerical vector y(h)

∈ Rn. We describe those conversion
procedures in Section 5.2.

Within the SNNs paradigm, several neuron models exist [31],
which all share the main concepts derived from neuroscience.
Among them, we employ the computationally efficient leaky
integrate and fire (LIF) model, simulated in discrete time. The LIF
model represents the neural membrane as a capacitor, the poten-
tial of which can be increased or decreased by inputs (excitatory
or inhibitory), and exponentially decays with time.

Concerning the architecture of the SNN, we keep a fully con-
nected feed forward layered topology, similarly to an MLP, with
each neuron being an LIF neuron instead of a perceptron. Hence,

at each neural simulation time step h, the membrane potential
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(h)
l,i of the ith LIF neuron of the lth layer is:

(h)
l,i = v

(h−1)
l,i −∆thλvv

(h−1)
l,i +

j=ml−1∑
j=1

wl,i,jν
(h)
l−1,j

= v
(h−1)
l,i (1−∆thλv)+wl,iν

(h)
l−1

= ϕM
wl,i

(
ν
(h)
l−1, v

(h−1)
l,i

)
, (12)

ith ν(h)j ∈ {0, 1} carrying the pre-synaptic neuron spike. After
he update, if the membrane potential v(h)l,i exceeds a threshold
(h)
l,i , the neuron outputs a spike, i.e., ν(h)l,i = 1, and the membrane
otential is reset to its resting value vrest, otherwise ν(h)l,i = 0.

Formally:

v
(h)
l,i =

{
ϕM
wl,i

(
ν
(h)
l−1, v

(h−1)
l,i

)
if ϕM

wl,i

(
ν
(h)
l−1, v

(h−1)
l,i

)
≤ ϑ

(h)
l,i

vrest otherwise

= ϕvLIFwl,i

(
ν
(h)
l−1, ϑ

(h)
l,i , v

(h−1)
l,i

)
, (13)

ν
(h)
l,i =

{
0 if ϕM

wl,i

(
ν
(h)
l−1, v

(h−1)
l,i

)
≤ ϑ

(h)
l,i

1 otherwise

= ϕνLIFwl,i

(
ν
(h)
l−1, ϑ

(h)
l,i , v

(h−1)
l,i

)
, (14)

which can be ported to the corresponding layer-wise form, where
ϕvLIFθl
: {0, 1}ml−1 ×Rml ×Rml → Rml and ϕνLIFθl

: {0, 1}ml−1 ×Rml ×

Rml → {0, 1}ml , where θl =
[
wl,1 . . . wl,ml

]
∈ Rml−1ml is, similarly

to the MLP, a numerical vector containing all the synaptic weights
(with no biases, though) for the lth layer.

We enhance the LIF model introducing the biological concept
of homeostatic plasticity. Homeostasis is a self regulatory mech-
anism present at various sites of living organisms, which aims
at re-establishing equilibrium in contrast to strong stimuli that
could unbalance a system [32]. In our case, homeostasis operates
as a firing rate regulator, acting on the threshold ϑ (h)

l,i of neurons,
to prevent excessive or too scarce activity:

ϑ
(h)
l,i = min

⎛⎝ϑ (h−1)
l,i ,

j=ml∑
j=1

wl,i,j

⎞⎠+ ψ (h)
l,i

= ϕϑLIFwl,i

(
ψ

(h)
l,i , ϑ

(h−1)
l,i

)
, (15)

with ψ (h)
l,i being a parameter updated as:

ψ
(h)
i =

{
ψ

(h−1)
l,i + ψinc if ν(h−1)l,i = 1

ψ
(h−1)
l,i − ψ

(h−1)
l,i λψ∆th otherwise.

= ϕψLIF
(
ν
(h−1)
l,i , ψ

(h−1)
l,i

)
. (16)

Both the equations describing homeostasis can be ported to the
corresponding layer-wise form, where ϕϑLIFθl

: Rml × Rml → Rml

and ϕψLIF
: {0, 1}ml × Rml → Rml .

Overall, the processing of the lth layer of an SNN is described
by:

ψ
(h)
l = ϕ

ψLIF
(
ν
(h−1)
l ,ψ

(h−1)
l

)
, (17)

ϑ
(h)
l = ϕ

ϑLIF
θl

(
ψ

(h)
l ,ϑ

(h−1)
l

)
, (18)

v(h)
l = ϕ

vLIF
θl

(
ν
(h)
l−1,ϑ

(h)
l , v

(h−1)
l

)
, (19)

ν
(h)
l = ϕ

νLIF
θl

(
ν
(h)
l−1,ϑ

(h)
l , v

(h−1)
l

)
. (20)
5

It can be seen that the state, for the l-layer, is given by sl =[
vl ϑl ψl

]
∈ R3ml , for which we can write:

s(h)l =

⎡⎢⎢⎢⎣
ϕvLIFθl

(
ν
(h)
l−1,ϑ

(h)
l , v

(h−1)
l

)
ϕϑLIFθl

(
ψ

(h)
l ,ϑ

(h−1)
l

)
ϕψLIF

(
ν
(h−1)
l ,ψ

(h−1)
l

)
⎤⎥⎥⎥⎦

⊺

= ϕsLIF
θl

(
ν
(h)
l−1, s

(h−1)
)
. (21)

The processing of the entire SNN with l∗ hidden layers may be
described, in terms of Eqs. (1) and (2), as:

s(h) = gSNN
θ

(
ν
(h)
−1, s

(h−1)
)

= gSNN
θ

(
x(h), s(h−1)

)
, (22)

y(h)
= ν

(h)
l∗+1 = f SNNθ

(
s(h)

)
, (23)

with ν(h)
−1 ≜ x(h).

Note that, differently than MLPs and the RNNs, the inputs
and outputs of SNNs are spikes, rather than real values, i.e., they
are defined in {0, 1}m and {0, 1}n respectively. We describe in
Section 5.2 how we transform (sequences of) spikes to real values.

Summarizing, an SNN with l∗ hidden layers and homeosta-
sis, that we denote with SNN-H in the following, has a state
with size |s| =

∑l=l∗+1
l=0 |sl| = 3

∑l=l∗+1
l=0 ml and can be de-

scribed with a parameter vector with size |θ| =
∑l=l∗+1

l=1 |θl| =∑l=l∗+1
l=1 ml−1ml. Moreover, the SNN-H processing depends on the

following network-wise parameters: ∆th, λv , vrest, λψ , and ψinc.
We also employ an SNN without homeostasis, that we denote

with just SNN in the following. For this neural model, each ϑ (h)
l,i

is the same and remains constant, i.e., ϑ (h)
l,i = ϑ0,∀l, i, h; hence,

the state of the SNN for each lth layer does not include ϑl and
ψl. As a consequence, an SNN with l∗ hidden layers and without
homeostasis has a state with size |s| =

∑l=l∗+1
l=0 |sl| =

∑l=l∗+1
l=0 ml

and can be described with a parameter vector with the same
size of the SNN-H, i.e., |θ| =

∑l=l∗+1
l=1 ml−1ml. Finally, the SNN

processing depends on the following network-wise parameters:
∆th, λv , vrest, and ϑ0.

4. Background: voxel-based soft robots

Voxel-based soft robots are a kind of modular robots, com-
posed of several soft elastic cubes, which are rigidly linked to-
gether in a predefined shape [4]. Each voxel changes its volume
over time as a consequence of the joint effect of external and
internal forces acting on it. Among the first ones we list gravity
and the forces exerted by other bodies in contact with it, whereas
the latter forces are those dictated by a control signal, determining
the active contraction/expansion of the voxel. The movement of
the robot is a consequence of the rhythmical and synergic action
of voxels, together with their interaction with the environment.
This gives rise to the robot behavior, which, if properly tuned, can
lead to the accomplishment of several tasks: Fig. 1 shows four
examples of a VSR doing locomotion, i.e., attempting to move the
fastest possible along the positive x direction on a flat terrain.
In this scenario, the success of the robot is determined by the
combination of its morphology and its controller, which can both
be tailored and optimized in a goal-specific manner. In this study,
we handcraft morphologies, while we employ optimization in the
form of neuroevolution for the controller fine-tuning.

We perform our experimental evaluation on a 2D simulated
variant of VSRs [51], simulated in continuous space and discrete
time, with a time resolution for the physics simulation of ∆ts =
1 s (f = 60Hz). Hence, in this case VSRs become compounds
60 s
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Fig. 1. Time-lapses showing four behaviors of a biped VSR doing locomotion—namely, the shown behaviors correspond to named markers of the biped panel of
Fig. 8. Frames are taken at 1 s intervals (simulated time); in each frame, the blue shades show the position of the robots at earlier 0.5 s intervals. The color of each
oxel represents the current area ratio with respect to the rest area (red for contracted, i.e., < 1, green for expanded, i.e., > 1, yellow otherwise, i.e., ≈ 1).
c

f elastic squares, whose area changes over time to ignite move-
ent, instead of cubes with changing volume. However, we deem
ur results to be conceptually portable to the 3D case, and,
ventually, to the real-world.

.1. VSR morphology: shape and sensory apparatus

The morphology of a VSR describes the shape of its body and
ts sensory apparatus. The shape of a VSR is defined as a two-
imensional grid of voxels. This definition descends from the fact
hat all voxels are modeled as ideal squares, which can be easily
rranged in a grid.
From the physical point of view, we model each voxel as a

ompound of many spring–damper systems linking four masses
t the corners, as originally proposed by Medvet et al. [51].
he spring–damper systems endow the voxel with softness and
6

elasticity. The masses are the key for allowing the assembly of
VSRs, as they can be welded to rigidly link together adjacent
voxels at their corners. Without loss of generality, we model all
voxels alike in terms of mechanical model parameters, meaning
that all voxels share the same mechanical properties. We remark,
though, that it is possible to easily change the body properties of
VSRs by tweaking the parameters of the mechanical model [12].

Moving on to the sensory apparatus of VSR, we define it as the
compound of sensors available to the VSR and their placement
along the VSR body. Sensors can be used by the VSR for pro-
prioception and to perceive various aspects of the surrounding
environment. At each time step k, each jth sensor outputs a
reading r (k)j ∈ [0, 1]. Here, we employ four types of sensors, which
an be used to gather different kinds of information.

1. Area sensors sense the ratio between the current area of

the voxel they are placed in and its rest area.
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2. Touch sensors perceive if a voxel is in contact with the
ground, r (k)j = 1, or not, r (k)j = 0.

3. Velocity sensors sense the velocity of the voxel center of
mass along the voxel x- or y-axes.

4. Proximity sensors perceive the distance towards objects
along a predefined direction α. The sensed value corre-
sponds to the distance between the voxel center of mass
and the closest object. In case no object is detected below
a distance threshold d, the corresponding reading is set to
d.

For area, velocity, and proximity sensors we employ a soft nor-
malization of the outputs using the tanh function and rescaling,
to ensure each output lies in [0, 1].

To achieve movement, the voxels behave similarly to biologi-
cal muscles, rhythmically contracting and expanding, as dictated
by a control signal. Said signal is defined, for each ith voxel
at each time step k, as a(k)i ∈ [−1, 1]: −1 corresponding to
aximum requested contraction, and 1 corresponding to maxi-
um requested expansion. Both expansion and contraction are
odeled as instantaneous and linear variations of the springs
ithin the simulated voxels. Concerning the computation of the
ontrol signal, we delve into the matter in the next section.

.2. VSR controller: a neural controller

The controller of a VSR is responsible for computing, at each
ime step, the control signal which guides the voxels movement.
ven though it is in principle possible to rely on a simple periodic
unction as a controller, constituting a trivial form of open-loop
ontroller, here we resort to a more sophisticated closed-loop
ontroller. In particular, we apply ANNs to process sensor read-
ngs, in order to compute the voxels control signals. Given the
pplication of ANNs for the control task, we call this a neural
ontroller.
Formally speaking, any closed-loop controller for a VSR can be

onsidered as a dynamical system described by the two functions
: Rm
× R|s| → R|s| and f : Rm

× R|s| → Rn and by the initial
state s0 (see Eqs. (1) to (3)), where m is the overall number of
sensors deployed on the VSR, n is the number of voxels in the
VSR, and |s| is the controller state dimension. In this work, we
use as controllers the ANNs described in Section 5, that are all
parameterized by a numerical vector θ ∈ Rp. The way the neural
ontroller works can be hence described by:

s(k) = gθ
(
r (k), s(k−1)

)
, (24)

(k)
= fθ

(
r (k), s(k)

)
, (25)

s(0) = s0, (26)

here r (k) is the vector of the m sensor readings at time step k
nd a(k) is the vector of the n control values at k.
It logically follows that as θ varies, the functions fθ and gθ can

also change a lot, inducing extremely different behaviors in the
VSR. Therefore, we aim at optimizing the parameters θ to achieve
the desired behavior, as we shall see in Section 6.

An additional degree of freedom within the VSR controller
is imposed by the control frequency, fc , which regulates how
often the controller is queried to compute new control signals for
the voxels. The maximum control frequency corresponds to the
simulation frequency fs = 60Hz, meaning that the controller is
queried at every simulation time step. However, lower frequen-
cies fc < 60Hz are also allowed: in those cases the controller
is queried every

⌊
fs
fc

⌋
simulation time steps, while the control

ignal stays unchanged in between two subsequent queries. Here
e experiment both with f = 60Hz and f = 4Hz.
c c f

7

In the next section, we describe how we embed an instance
of an ANN of one of the three considered models (MLP, RNN,
and SNN) within a VSR, focusing in particular on the mapping
between the ANN and the VSR working frequencies. We remark
that, while the coupling of each of the three considered models to
VSRs is not, per se, novel, this study is the first to provide a unified
framework that describes in common terms these neural models
as dynamical systems and shows how their evolution over time
relates to the evolution of the embedding system, i.e., the robot.

5. Embedding different neural models in a VSR neural con-
troller

Given the differences between the considered neural models,
highlighted in Section 3, it logically follows that not all ANNs
can be embedded in a VSR neural controller alike. In particular, a
key role is played by the different ways in which information is
stored and processed: MLPs and RNNs rely on real values at each
neural simulation time step h, whereas SNNs encode information
in spike trains and in their distribution over time. Therefore, we
distinguish between the former and the latter models when used
as VSR controllers.

5.1. MLPs and RNNs as VSR neural controllers

Using these ANNs as controllers is straightforward, as they
process real values just like the VSR control system, which takes
the sensor readings r (k) as inputs and outputs the control values
for the voxels a(k). Therefore, it is sufficient to query those ANNs
at each control time step k to compute the desired values. Hence,
in this case, the neural simulation frequency coincides with the
chosen control frequency fc .

5.2. SNNs as VSR neural controllers

Conversely from canonical ANNs, SNNs do not process real
values: at each neural time step h, there is a binary value, i.e., ei-
ther there is a spike or not, which does not contain meaningful
information itself. Instead, information is stored within the dis-
tribution of spikes over time, hence we need to convert real
values to a spike distribution, i.e., to a spike train, and vice
versa, in order to embed SNNs in a VSR controller. Here, we take
inspiration from the most common conversion method, that is
rate coding [52], where real values are mapped to frequencies,
which are then used to generate spike trains [53], and vice versa.
Moreover, it is interesting to note that rate coding contributes
substantially to the homeostatic mechanism, which operates as a
firing frequency regulator. We remark, though, that other types
of coding exist, which naturally couple with other types of reg-
ulation mechanisms, as, e.g., temporal coding, which enhances
the benefits of Spike-Timing-Dependent Plasticity (STDP) [54] for
local learning [55].

As a consequence of the encoding choice, the neural simu-
lation frequency in SNNs fh = 1

∆th
needs to be larger than the

control frequency fc ; i.e., the control interval has to be longer than
the neural simulation interval. We set fh = 1 kHz, corresponding
to a time resolution of 1ms, which is a commonly used value in
the literature [31].

Depending on the value chosen for fc we use two rate coding
lavors. When fc = 4Hz, we use the standard version of rate
oding. Given a sensor reading r (k) we convert it to a spike train
s follows. We first compute f (k) by linearly scaling r (k) between
min and fmax:
(k)
= r (k)(f − f )+ f . (27)
max min min
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(

hen we generate a spike train with spike frequency f (k), i.e., we
mit a spike every

⌊
fh
f (k)

⌋
neural time steps. Formally speaking, we

ssign each value ν(h) in the spike train for h = k
⌊

fh
fc

⌋
, . . . , (k+

)
⌊

fh
fc

⌋
− 1, i.e., for the kth control interval, as:

ν(h) =

{
1 if ∃n ∈ N s.t. h = h0 + n

⌊
fh
f (k)

⌋
0 otherwise.

(28)

here we set h0 = k
⌊

fh
fc

⌋
to the starting point of the control

interval. Concerning the output conversion, we compute the av-
erage frequency of the output spike train in the control interval,
the inverse of the average inter-spike timing, and we scale it
considering the maximum frequency fmax to compute a(k):

a(k) = 2

⎛⎜⎜⎝ fh
fmax

h=(k+1)
⌊
fh
fc

⌋
−1∑

h=k
⌊
fh
fc

⌋ ν(h)

⎞⎟⎟⎠− 1. (29)

ote that, since a(k) is defined in [−1, 1], we multiply by 2
nd subtract 1 to the rescaled value, which would otherwise be
efined in [0, 1]. We set fmin = 5Hz and fmax = 50Hz for
iological plausibility.
With the highest control frequency fc = 60Hz, we modify the

standard rate coding to take into account the fact that fc ≈ fmax.
or the input conversion, we employ Eq. (28), but we set h0 to
he neural time step of the last spike occurred before this control
nterval. For the output conversion we modify Eq. (29) to consider
he last nw control intervals, i.e., from k − nw − 1 to k, as in a
moving average. Hence, the output conversion equation becomes

a(k) = 2

⎛⎜⎜⎝ 1
nw

fh
fmax

h=(k+1)
⌊
fh
fc

⌋
−1∑

h=(k−nw+1)
⌊
fh
fc

⌋ ν(h)
⎞⎟⎟⎠− 1. (30)

fter preliminary experimentation, we set nw = 5, as in [39].
We remark that the value-to-spikes and the spikes-to-value

onversions are stateful. In particular, at fc = 60Hz, an un-
ounded number of previous control time steps may impact
n the value-to-spikes conversion (since the last previous spike
ight have occurred in any previous control time step). In the
pikes-to-value conversion, exactly nw previous control time steps
re considered.

. Neuroevolution of VSR neural controllers

As described in the previous section, the controller of a VSR is
dynamical system defined by two parametric functions fθ and
θ . These functions determine the way in which the VSR reacts
o different conditions, i.e., its behavior. Naturally, the goal of
ptimization is to find the most effective parameters θ to induce
behavior which leads the VSR to successfully accomplish a given
ask.

Since we are employing ANNs as controllers and evolutionary
echniques for optimization, the process of optimizing the con-
roller parameters θ can be referred to as neuroevolution. This
eans that we are searching the space of ANNs to find the most
uitable ones for solving the task at hand. In this study, we keep
he neural topology fixed throughout the entire optimization
rocess, unlike other classical neuroevolutionary techniques, as
.g., NEAT [56,57], which also search the space of ANN topolo-
ies. Hence, here we consider the space Rp of ANN numerical
arameters θ as search space, and aim to the find the optimum
8

herein. Although one could, in principle, include all possible ANN
arameters in the search space, thus subjecting them to optimiza-
ion, we limit ourselves to weights and biases (only weights for
NNs), keeping all other free parameters fixed to hand-set values
i.e., the activation function ϕP and SNN parameters ∆th, λh, vrest,
λψ , and ψinc).

Therefore, we reduce the search of an effective VSR neural
controller to a numerical optimization problem, which we tackle
with a simple variant of Evolution Strategies (ES) [58], described
in Algorithm 1. We chose ES as they have not only been rec-
ognized as a scalable alternative to reinforcement learning for
continuous control tasks [59], but they have also already proved
successful for the neuroevolution of VSR controllers [7,23].

1 function evolve():
2 P ← ∅
3 foreach i ∈ {1, . . . , npop} do
4 P ← P ∪ {0+ U(−1, 1)p}
5 end
6 foreach g ∈ {1, . . . , ngen} do
7 Pparents ← bestIndividuals

(
P,

⌊
|P|
4

⌋)
8 µ← mean(Pparents)
9 P ′ ← {bestIndividuals(P, 1)}

10 while |P ′| < npop do
11 P ′ ← P ′ ∪ {µ+ N(0, σ )p}
12 end
13 P ← P ′

14 end
15 return bestIndividuals(P, 1)
16 end

Algorithm 1: The simple ES used for neuroevolution.

The considered variant of ES operates on a population of p-
dimensional numerical vectors θ. First, the population of size npop
is initialized: each individual is randomly generated, sampling
each component from a uniform distribution over the interval
[−1, 1]. Then, the algorithm proceeds iteratively for ngen iter-
ations as follows. First, the fittest quarter of the population is
selected as parents, and their element-wise mean µ is computed.
Then, the fittest individual is promoted to the following gen-
eration. Last, each offspring is generated from µ by adding a
random Gaussian noise N(0, σ ) to each of its components, until
the new generation reaches the target size of npop. At the end of
the iterative process, the fittest individual obtained is returned.

We remark that neuroevolution, i.e., the application of an
evolutionary algorithm to optimize a neural network (here, just
the parameters), is not the only approach for finding a good
controller for a robotic agent performing a given task. In par-
ticular, in the last years, reinforcement learning proved to be a
very practical alternative, also in scenarios where a model of the
robot-environment systems is not known and where the input
and output of the robots are numerical, vectors i.e., in continuous
control tasks [60]. Interestingly, many of the most successful
variants of reinforcement learning do, internally, exploit neural
network, often being potentially rather large [61]: as such, those
approaches are also forms of optimization in the space of (the
parameters for) neural networks, as neuroevolution is. However,
neuroevolution and (deep) reinforcement learning do differ in
a key aspect: while for the former a single measure of quality
(the fitness) is needed for capturing the degree of achievement
of the task by the robot at the end of one entire attempt (the
robot life, or the episode), for reinforcement learning a measure
of achievement (the reward) should continuously be available to
the robotic agent at every time step. In these terms, the reward
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an be viewed as a form of supervision (possibly sparse, in prac-
ice), which is not needed by agents subjected to neuroevolution.
eyond this apparent difference, recent trends are making the
oundary between reinforcement learning and (neuro)evolution
ore and more fuzzy [59], also for robotic control [62]. Indeed,

einforcement learning has been used also for VSRs, by Bhatia
t al. [46]: the authors consider a few different tasks and describe
he very specific reward function being used for each of them.
otably, in most cases that function exploits information (e.g., the
bsolute position of some parts of the robot) that is not perceived
y the VSR through sensors, but is assumed to be known by
n external entity which continuously feeds it to the robot, in
he form of reward values: the practicality of such an approach
hould be verified in practice.

. Experiments and discussion

We performed a thorough experimental evaluation to char-
cterize the peculiarities of various neural models for control-
ing VSRs. In particular, we investigated along three quantitative
xes, which are naturally intertwined: (a) effectiveness, (b) effi-
iency, and (c) generalization ability. Moreover, we also analyzed
ualitatively the behavior of the evolved VSRs.
We applied neuroevolution to optimize the controller for 9

ifferent simulated robots resulting from the combination of 3
orphologies and 3 sensory apparatuses. For each robot, we ex-
erimented with both high and low control frequencies, i.e., fc ∈
60Hz, 4Hz}, in combination with each one of the four proposed
eural models.
We considered the task of locomotion, a common one in

volutionary robotics, for which we employed a flat terrain during
volution, and rougher terrains to test the generalization ability
f the best individuals obtained.
Finally, we visually inspected and systematically analyzed

he behavior of each robot, following the pipeline introduced
y Pigozzi et al. [7].
We remark that, to properly put our results into context, we

lso included in our experimentation the current state-of-the-art
ontroller for VSRs, that is the one involving the MLP as neural
odel and employing a control frequency of fc = 60Hz.

.1. Procedure and parameters

.1.1. VSR morphologies and sensors
We experimented with three morphologies:

• biped , with 10 voxels enclosed in a 4 × 3 grid;
• worm , with 10 voxels enclosed in a 5 × 2 grid;
• comb , with 11 voxels enclosed in a 7 × 2 grid.

We equipped each morphology with three different sensory
pparatuses:

• touch, with one touch sensor in each voxel in the bottom
row of the grid;
• sight, with five proximity sensors in each voxel in the right-

most column of the grid, with α set to − π
4 ,−

π
8 , 0,

π
8 and

π
4 rad and d = 10m (for reference, the side of each voxel is
3m long);
• rich, with the sensors of touch and sight, one x- and one y-

velocity sensor in each voxel in the top row of the grid, and
one area sensor in each voxel.

Fig. 2 shows the 9 VSR bodies resulting from the combination
f the 3 morphologies and the 3 sensory apparatuses. Addition-
lly, Table 1 summarizes, for each of the 9 VSR bodies, the number
of voxels (ranging from 10 to 11) and the number m of sensors

ranging from 2 to 39).
9

7.1.2. VSR neural controllers
Concerning the topology of the neural controllers, we em-

ployed the same number of hidden layers l∗ = 1 for all the models
and both control frequencies fc = 60Hz and fc = 4Hz; we set the
number of neurons in the single hidden layer to the number of
inputs, i.e., m1 = m0 = m. This resulted in the number |θ| of
volvable parameters and the size |s| of the ANN state showed
n Table 1: |θ| ranges from 24 for case biped, touch, SNN (and
NN-H) to 3521 for the case comb, rich, RNN; |s| ranges from 0,
.e., no state, for all the MLP-based cases to 267 for the case comb,
ich, SNN-H. We recall that VSRs equipped with SNN and SNN-H
eural controllers have some additional state used for the input
nd output conversion (see Section 5.2).
Fig. 3 summarizes the same data of Table 1 in the form

f a scatter plot, where each marker corresponds to one case
morphology, sensory apparatus, neural model) and is colored
ccording to the neural model. From this figure, the differences
mong neural models in terms of |θ| and |s| are apparent. With
he increasing complexity of the VSR body (i.e., with increasing m
nd n), RNNs are more expressive in terms of computation rather
han of memory (i.e., the amount of parameters |θ| grows faster
han the state size |s|), while SNNs are more expressive in terms
f memory rather than of computation (i.e., |s| grows faster than
θ|).

Concerning the network-wise, non optimizable parameters of
he neural models, we used tanh as the activation function ϕP

in MLP and RNN), ∆th = 1ms, λv = 0.01 s−1, vrest = 0mV (in
NN and SNN-H), λψ = 0.01 s−1, ψinc = 0.2mV (in SNN-H), and
0 = 1mV (in SNN). Finally, in all the experiments, we set the
nitial state s = 0, with the exception of the parts of the state
orresponding to the membrane potentials in SNN and SNN-H,
hat we set, element-wise, to vrest (which is 0 too).

.1.3. Evolutionary optimization
We used the EA of Algorithm 1 with npop = 36, σ = 0.35,

nd ngen = 572. We set npop based on the number of cores of
he machines where we executed the experiments, in order to
ully exploit the inherent capability of this EA to parallelize the
itness computation of the candidate solutions. We set ngen based
n npop in order to make each evolutionary run terminate after
0 000 fitness evaluations. We set σ based on our experience and
n some exploratory experiments.
For each combination of morphology, sensory apparatus, neu-

al model, and control frequency, we executed 10 independent
volutionary runs by varying the random seed. Overall, we exe-
uted 3 · 3 · 4 · 2 · 10 = 720 evolutionary runs.
We optimized VSRs for the task of locomotion on a flat terrain.

or each candidate solution θ, we initially placed a VSR equipped
ith a neural controller parameterized with θ on a flat terrain and

et the simulation run for 30 s. We hence measured the average
-velocity vx of the center of mass of the VSR during the last 25 s
f the simulation and used it as the fitness of θ. We discarded
he first 5 s of the simulation to let the neural controllers reach a
teady gait regime; we also verified that the remaining 25 s were
ong enough to allow VSRs to exhibit an assessable behavior.

We limited ourselves to the locomotion task for it is a fun-
amental and challenging problem in evolutionary robotics, re-
uiring the proper exploitation of the information coming from
ultiple sensors to effectively guide and coordinate the actuators.
oreover, locomotion is common to many real-world applica-

ions, where it can be declined in various nuances, e.g., climb-
ng [46], or it can occur as sub-task, e.g., in exploring unknown
nvironments through path planning [63,64] or carrying objects
round [46].
For the experiments, we built a software framework based

n JGEA [65] for the evolutionary optimization and on 2D-VSR-
im [51] for the simulation of the VSRs. For the latter, we set
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Fig. 2. VSR morphologies and sensory apparatuses.
Table 1
Number n of voxels and overall number m of sensors for the combinations of morphology and sensory apparatus. For each
combination and each neural model, number |θ | of parameters and state size |s|.

Param. size |θ | State size |s|

Morphology Sens. app. m n MLP RNN SNN SNN-H MLP RNN SNN SNN-H

Biped
Touch 2 10 36 40 24 24 0 2 14 42
Sight 15 10 400 625 375 375 0 15 40 120
Rich 35 10 1620 2845 1575 1575 0 35 80 240

Worm
Touch 5 10 90 115 75 75 0 5 20 60
Sight 10 10 220 320 200 200 0 10 30 90
Rich 35 10 1620 2845 1575 1575 0 35 80 240

Comb
Touch 4 11 75 91 60 60 0 4 19 57
Sight 10 11 231 331 210 210 0 10 31 93
Rich 39 11 2000 3521 1950 1950 0 39 89 267
Fig. 3. Number |θ| of parameters and state size |s| for each combination of
morphology, sensory apparatus, and neural model. The four neural models differ
in how |s| and |θ| depend on the VSR body complexity (i.e., number n of voxels
and overall number m of sensors).

each parameter to its default value, as we already witnessed
no significant dependency of the results on them, provided they
are kept fixed [12]. We made the software publicly available
at https://github.com/giorgia-nadizar/NeuralModelsVSR. We per-
formed the experiments on two workstations equipped with a
10
Intel
®

Xeon
®

CPU W-2295 with 36 cores running at 3.00GHz to
4.80GHz and with 64GB RAM. On this hardware, one simulation
of 30 s (simulated time) lasted approximately 0.9 s (wall time).

7.2. Effectiveness of evolved neural controllers

We consider as search effectiveness of the neuroevolution the
effectiveness of the evolved neural controllers, namely, the fitness
v⋆x of the best individual at the end of the evolutionary run.

Fig. 4 shows v⋆x for the 72 different cases in the form of a
matrix of box-plots. In particular, for each combination of mor-
phology (row of plot), sensory apparatus and control frequency
fc (column of plots), and neural model (box color), the figure
considers the 10 values for v⋆x obtained from the 10 runs with
different random seeds. We recall that for v⋆x , the greater, the
better.

For what concerns the neural models, Fig. 4 shows that RNN
gives the best results, i.e., the fastest robots: the median v⋆x
is sharply larger than the one obtained with the other neural
models in almost all the cases. To further validate this finding, we
performed a number of statistical significance tests, as follows:
for each combination of morphology, sensory apparatus, control
frequency, and each pair of neural models, we carried out a
one-sided Mann Whitney U rank test (after having verified the
adequate hypotheses) with the null hypothesis that the distri-
bution of v⋆x for the first neural model is stochastically lower or
equal than the distribution of v⋆x for the second neural model.
Then, with a significance level of α = 0.05 (with Bonferroni
correction with n = 12), we counted, for each pair of neural mod-
els, the number of combinations for which the null hypothesis is
rejected. Table 2 shows the outcome of this procedure. The table
confirms the findings suggested by Fig. 4: RNN is significantly
better than the other models in the vast majority of the 18 cases
and is not significantly worse than any other model.

https://github.com/giorgia-nadizar/NeuralModelsVSR
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Fig. 4. Fitness v⋆x of the best individual at the end of the evolution.
Table 2
Number of cases (i.e., combinations of morphology, sensory apparatus, and
control frequency) for which the neural model on the row is statistically
significantly better (in terms of v⋆x , see text) than the neural model on the
olumn. The last column shows the overall number of pairwise comparison for
hich a neural model is statistically significantly better than one other neural
odel.

MLP RNN SNN SNN-H Tot.

MLP – 0 6 5 11
RNN 12 – 17 14 43
SNN 4 0 – 0 4
SNN-H 7 0 13 – 20

Besides highlighting the sharp differences in median v⋆x among
neural models, Fig. 4 also shows that RNN tends to have the
largest variability in v⋆x (vertical extent of the boxes). Neverthe-
less, this neural model often outperforms the other models even
in the worst evolutionary run.

If we restrict the comparison to the other three models, the
experiments summarized in Fig. 4 suggest that there is no clear
winner. In particular, MLP and SNN-H outperform each other
in a similar number of cases: yet, they appear to perform best
in different conditions (more on this later). Finally, both Fig. 4
and Table 2 show that homeostasis is beneficial: for the major-
ity of cases, SNN-H outperforms SNN, while the opposite never
happens.

A second set of considerations can be made by observing
Fig. 4 in terms of the sensory apparatus. Sight looks the case
for which the differences among neural models are the most
consistent when the morphology and control frequency vary. In
particular, neural models with larger states (i.e., |s|) appear to
perform better with this sensory apparatus. This finding seems
to agree with some previous studies [66] on simulated embodied
agents that suggested that long-term planning is more important
when coupled with fine-grained sensing, like long-range sight.
However, we believe that in our scenario, i.e., locomotion on a
flat terrain, the long-term planning ability of an agent does not
play a significant role. Instead, we explain our finding in terms of
the kind of information the sight sensory apparatus provides: for
most time, most of the proximity sensors just return 1, since there
are no objects to be seen. Only when the robot bends in such
a way that the sensors ‘‘see’’ the terrain, they return a different
value. Hence, the information coming from sight is ‘‘sparse’’ in
time: in order to exploit this information for forming an effective
gait, the VSR has to store it for a while; for this reason, a large
memory is beneficial. Our interpretation is corroborated by two
other observations. First, with sight, MLP is always worse at f =
c

11
60Hz than fc = 4Hz: the fact that with the lower frequency
the control values are kept constant for a longer time somehow
mitigates the inability of MLP to store information, i.e., its lack
of state. Second, with touch, MLP is never worse than SNN or
SNN-H: here, the sensory information induces a purely reactive
behavior (i.e., expand some voxels as soon as they touch the
ground) which is much more effective and hence the memory is
not particularly useful.

Finally, for what concerns the morphologies, Fig. 4 shows that
the biped is the most effective morphology in locomotion, as
it has been observed in some previous studies [5,24]. However,
neuroevolution is able to find controllers that generate effective
gaits in almost all the cases (with the exceptions of MLP with
sight and fc = 60Hz for the worm and the comb).

7.3. Efficiency of neuroevolution

We consider as search efficiency of the neuroevolution the
effort taken to find an effective solution. Since a definition of
effective solution based on the absolute value of the fitness would
hardly fit all the considered cases, we consider as effective a
solution whose fitness is ≥ 80% of the fitness v⋆x of the best
individual at the end of the corresponding run. This way, we
define the efficiency as the number g80 of generations the EA
takes to find the first effective solution.

Fig. 5 shows how the fitness vx of the best individual varies
during the evolution for the 72 cases. For each combination of
morphology, sensory apparatus, control frequency, and neural
model, the figure shows the median vx across the 10 runs vs. the
number of generations, i.e., iterations of the EA of Algorithm 1.
Based on the data backing Fig. 5, which confirms the findings
drawn in the previous section, we computed g80 for each run.
Fig. 6 shows g80 for the 72 cases in the form of a matrix of
box-plots, organized in the same way as Fig. 4.

By observing Fig. 6, it can be seen that the differences among
neural models in terms of efficiency of the search are less ap-
parent than the ones in terms of effectiveness. However, RNN
again appears to be the preferable neural model, since it results
in a more efficient search, i.e., lower g80, in many cases. This is
confirmed also by the statistical significance analysis we carried
out in the same way we did for v⋆x , whose outcome is summarized
in Table 3. We highlight the fact that RNN has a lower g80 in many
cases, despite being also the model with the largest effectiveness
v⋆x : that is, it allows to find the fastest VSR in the shortest time.
This can be appreciated by observing Fig. 5, e.g., for biped, rich,

4Hz. There are, however, cases where the neuroevolution takes
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Fig. 5. Fitness vx during the evolution.
Fig. 6. Efficiency measured with g80 , defined as the number of generations needed to reach a solution with fitness vx ≥ 0.8v⋆x .
Table 3
Number of cases (i.e., combinations of morphology, sensory apparatus, and
control frequency) for which the search with the neural model on the row is
statistically significantly more efficient (in terms of g80 , see text) than the search
ith the neural model on the column. The last column shows the overall number
f pairwise comparison for which a neural model is statistically significantly
etter than one other neural model.

MLP RNN SNN SNN-H Tot.

MLP – 0 0 0 0
RNN 7 – 9 5 21
SNN 3 1 – 0 4
SNN-H 3 0 4 – 7

longer to find an effective solution with RNN, than with other
models, e.g., for biped, sight, 60Hz.

For what concerns the other models, Table 3 and Fig. 6 show
hat (a) MLP never results in a faster search than the other models
nd (b) homeostasis is beneficial also for efficiency: SNN-H is
ever worse than SNN and outperforms it in a few cases.
Beyond neural models, Fig. 6 suggests that – not surprisingly –

he number |θ| of parameters does impact the search efficiency;
in turn, |θ| depends mainly on the number m of sensors in the
SR, as shown earlier in Table 1. For touch, that corresponds to
θ| ∈ [24, 115], the search is in general very fast: 100 generations
are often enough to find an effective solution. For the sight
and rich sensory apparatuses, for which |θ| ∈ [210, 625] and
12
|θ| ∈ [1575, 3521] respectively, the g80 is not as different as
one could expect, given the rather large difference in |θ|. We
hypothesize that this is motivated by the fact that searching for
a good controller is harder with sight only: from another point
of view, while the search space for sight is smaller than the one
for rich, the fitness landscape for the former might be harder
to be explored. We leave the investigation on how the sensory
apparatus impacts on the fitness landscape to future work.

7.4. Generalization ability

We define as generalization ability the ability of an evolved
neural controller to retain its effectiveness when operating in
conditions different from the ones it has been evolved in. For the
task of locomotion, we consider the x-velocity as effectiveness
and the shape of the terrain as conditions.

In particular, for measuring the generalization ability of the
four neural models coupled with the different morphologies,
sensory apparatuses, and control frequencies, we took the best
VSR obtained at the end of each evolutionary run (i.e., the one
giving v⋆x for that run) and measured its x-velocity on a set of 16
unseen terrains, different from the flat one used for measuring
the fitness. We considered uphill and downhill terrains with an
even surface, and terrains with an uneven surface, including some
with small steps and some with small hills. We collected the 16 vx
values from the simulations (computed discarding the initial 5 s,
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Fig. 7. Generalization ability ρ of the evolved neural controllers.
Table 4
Number of cases (i.e., combinations of morphology, sensory apparatus, and
control frequency) for which the neural model on the row is statistically
significantly better (in terms of ρ, see text) than the neural model on the
column. The last column shows the overall number of pairwise comparison for
which a neural model is statistically significantly better than one other neural
model.

MLP RNN SNN SNN-H Tot.

MLP – 0 0 0 0
RNN 7 – 4 4 15
SNN 2 3 – 2 7
SNN-H 4 4 2 – 10

as for the evolution) and averaged them, obtaining one v̄x for each
SR. Finally, we computed the ratio ρ = v̄x

v⋆x
between the average

-velocity on the unseen terrains and the one obtained on the
lat terrain: ρ represents the degree to which the effectiveness in
locomotion is retained in different conditions, hence, it represents
the generalization ability of a neural controller.

Fig. 7 shows ρ for the 72 different cases in the form of a matrix
of box-plots, organized in the same way as Figs. 4 and 6. We recall
that also for ρ, like for v⋆x , the greater, the better.

By comparing, at a glance, Fig. 7 against Fig. 4, it is apparent
that the differences among neural models are smaller for ρ than
for v⋆x . This is further confirmed by Table 4, that summarizes the
outcome of a statistical significance analysis we carried out in the
same way we did for v⋆x in Tables 2 and 3.

On average, the x-velocity achieved by best VSRs on the un-
seen terrains is 40% of the one achieved on the flat terrain. In
terms of generalization ability, RNN does not outperform the
other neural models as neatly as for v⋆x : while, in practice, VSRs
equipped with RNN are still the fastest also on unseen terrains,
ρ is comparatively smaller. We believe this can be explained by
the fact that the gaits obtained with RNN were highly optimized
for the flat terrain and hence the corresponding VSRs struggled
more in different conditions.

On the other hand, MLP still appears to be the worst neural
model. Table 4 shows that it is the being outperformed by the
other models in the largest number of cases. Moreover, despite
having obtained low v⋆x values when coupled with sight at fc =
60Hz, in those cases it is still the worst model also in terms
of ρ. Since MLP is the only model without a state, we interpret
this finding as a clue that memory is beneficial to generalization
ability.

Finally, the differences between SNN and SNN-H are negligible
in terms of ρ, according to Fig. 7 and Table 4. That is, home-
ostasis brings a clear advantage in terms of effectiveness without
corresponding to any significant drop in generalization ability.
13
7.5. Behavioral analysis

Besides the quantitative analysis devoted to assessing the
performance of the neural models, it is relevant to characterize,
on a more qualitative level, the behaviors each of them induces
when coupled with different VSR morphologies and sensory ap-
paratuses. Given the large amount of combinations considered,
though, it would be impossible to visually inspect all the evolved
VSRs, yet, with an overview, we noticed some core differences
worth systematically analyzing.

To this extent, we relied on some behavioral features automat-
ically extracted from the gait of the VSR in a simulation, based on
the position and orientation of its voxels over time [7]. More in
detail, we proceeded as follows:

(i) for each ith voxel of the VSR, we considered the signals
x(k)i , y

(k)
i , β

(k)
i of its center x- and y-coordinates and of its

rotation β—for the latter, we consider the voxel initial
(i.e., at k = 0) rotation as reference;

(ii) for each time step and each of the three signals, we com-
puted the average across all the voxels, hence obtaining
three VSR-wise signals x(k), y(k), β (k);

(iii) we computed the first differences of the three signals,
obtaining ∆x(k),∆y(k),∆β (k);

(iv) for each one of the three signals, we calculated the Fast
Fourier Transform (FFT), from which we took the magni-
tude, filtered out frequency components not in the range
[0Hz, 4Hz], and re-sampled the remaining components to
have 8 of them for each signal.

From the concatenation of these 3 · 8 components we obtained
the final behavior vector, i.e., the feature vector describing the
behavior of the VSR in a simulation.

We applied this feature extraction procedure to the gait of
the best VSR obtained from each evolutionary run. As during
evolution, we conducted a simulation of 30 s on a flat terrain,
but we considered only the last 25 s for obtaining the behavior
vector of the VSR, assuming the discarded 5 s are enough to reach
a steady gait.

In order to enable the comparative visualization of the be-
havior vectors, we performed a dimensionality reduction using
the principal component analysis (PCA). In particular, we grouped
the behavior vectors by VSR morphology and, after standardizing
them, we relied on the PCA to perform a dimensionality reduction
from 24 to 2. For the biped and the comb morphologies, the
reduction captured around 60% of the total variance, whereas for
the worm, it captured around 50%. For each of the morphologies,
we visualized the first two components obtained in a scatter plot,
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Fig. 8. Behaviors PCA. Note that PCA was performed independently for each shape, i.e., the principal components are not the same in the plots. The letters in each
lot refer to the individuals we sampled for visual inspection: the videos of the simulations are available at https://giorgia-nadizar.github.io/NeuralModelsVSR/. For
he biped, the four behaviors are shown in the form of time-lapses in Fig. 1.
t
i
f
u
t
g
f

8

f
a
i
t
a
n
t
a
c
g
w
m
m
t

w
r
V
p
o
l
r
t
l
b
f
u
o
N
p
d
m

istinguishing neural models with different colors, and control
requencies with different markers. We report the scatter plots
or the three morphologies in Fig. 8.

For each of the plots in the figure we can notice that the
oints appear to be mostly concentrated in one area, with some
cattering around. This can be considered as an indicator that
ach morphology is associated to one main effective behavior
r to a range of similar effective behaviors, yet there is some
oom for diversity. Focusing on the first plot, corresponding to
he biped morphology, we see a great overlap between MLPs and
NNs at the center of the plane. Moving away from the center,
e see RNNs with fc = 60Hz neatly separated on the left side,
hereas RNNs with low control frequency appear akin to SNN-H,
lightly to the right. Concerning the worm morphology, we see a
igher density at the center, but with multiple tails: SNN-H with
c = 60Hz with some SNNs on the top right, mostly RNNs with
c = 4Hz at the bottom, and a mixture of MLPs and RNNs on
he left. Last, for the comb morphology, we have the central area
ostly occupied by MLPs and SNNs, MLPs and RNNs with fc =
0Hz on the left, and a scatter of SNN-H on the right. Focusing
n the global picture, i.e., considering all the morphologies, we
an note that RNNs and SNN-H usually appear to move away
rom the center, i.e., they tend to induce more diverse behaviors,
specially for the worm and the comb. Moreover, we see that for
hese models, the control frequency plays a more important role
n determining the VSR behavior than for MLPs and SNNs. This
ight be a hint that the larger the state, the more important the
ontrol frequency becomes in guiding the behavior. Such finding
s more difficult to notice from bare performance results, as, in
eneral, evolution tends to find a way to achieve good results,
ventually making up for less effective behaviors with a finer
uning of parameters.

Finally, we manually selected 4 evolved VSRs for each mor-
hology that corresponded to distant points in the PCA plots of
ig. 8—we marked those points with capital letters in the figure.
e analyzed the 12 behaviors and verified that they are indeed
ualitatively different. We made the videos of the corresponding
imulations publicly available at https://giorgia-nadizar.github.io/
euralModelsVSR/. One of the VSR for each morphologies exhib-
ted a vibrating behavior, namely A for the biped, D for the worm,
for the comb. Interestingly, in all the three cases, the VSRs
ere equipped with an RNN operating at fc = 60Hz: indeed,
ue to their nature, in which hidden neurons are fed with their
ctivation value at the previous step, RNNs are particularly prone
 e

14
o generate this kind of behavior. However, while in our exper-
ments vibration is effective for locomotion, real VSRs (maybe
abricated with the techniques described in [67,68]) might be
nable to perform an effective locomotion just by vibrating. From
his point of view, RNNs appear to be more prone to the reality
ap problem [69,70] than SNNs and MLPs, when operating at
c = 60Hz.

. Discussion and limitations

Through our experimental analysis we investigated how dif-
erent neural models are intertwined with the VSRs performance
nd behavior for the locomotion task. Namely, we observed that
n almost all cases it was possible to achieve effective gaits thanks
o neuroevolution, regardless of the VSR morphology, sensory
pparatus, or neural model. However, it was clear that some
eural models couple with the VSR dynamics more successfully
han others. Namely, those with state, i.e., RNN and SNN (with
nd without homeostasis), proved to be better at exploiting the
omplex dynamics deriving from soft materials, thus achieving
reater effectiveness and more diverse behaviors. Yet, in the cases
here an instinctive behavior sufficed, e.g., if the sensory infor-
ation could be immediately exploited, we noticed that even
ore simple models like MLPs could carry out the locomotion

ask well.
As this study was conducted in simulation only, one note-

orthy limitation derives from not testing the controllers in the
eal-world. In fact, there have been various attempts at building
SRs, starting from that of Hiller and Lipson [4], which initially
roposed this type of robots. After this germinal work, several
ther groups have pursued physical implementations of modu-
ar soft robots, as [71,67,68], the most ambitious of them even
elying on living matter [72]. However, to this date, none of
he existing physical VSRs can be finely controlled with closed-
oop controllers as in this study, making it still unfeasible to
ring this experimentation to the real-world. As a matter of
act, it remains unclear whether the observations made in sim-
lation could still hold for real robots, given the wide range
f (sometimes unpredictable) dynamics of actual soft materials.
evertheless, we deem this study as a useful starting point for
ractitioners, who can benefit from the high level observations
rawn, as, e.g., those regarding the importance of the controller
emory in some circumstances.
Another potential limitation of this study lies in the consid-
ration of the locomotion task only. Namely, it is not clear if the

https://giorgia-nadizar.github.io/NeuralModelsVSR/
https://giorgia-nadizar.github.io/NeuralModelsVSR/
https://giorgia-nadizar.github.io/NeuralModelsVSR/
https://giorgia-nadizar.github.io/NeuralModelsVSR/
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indings deriving from this experimental evaluation can be ported
o other scenarios. However, it is worth to mention that most
f the relevant tasks for modular soft robots, e.g., VSRs, consist
f either variants of locomotion or involve locomotion as sub-
ask [46]. Hence, our results can be a source of knowledge to
uild upon when considering locomotion-based tasks. Moreover,
ome of the made observations remain valid also for completely
ifferent tasks, as, e.g., the possibility of exploiting instinctive
ehaviors when memory is not available.

. Concluding remarks

Choosing the most effective neural network models for robotic
ontrol is an open question. This is particularly challenging for
odular and soft robots, due to their intricate dynamics emerging

rom the interactions of the components in response to their
orphological computation, the available sensory apparatus, and

he responses from the environment. In this work, we have car-
ied out a systematic experimental campaign involving simu-
ated modular robots to shed the light onto the benefits of dif-
erent neural network models, including networks without and
ith state. Our main findings show that networks with recurrent
onnections are generally beneficial in terms of effectiveness,
pecifically for the task of locomotion of voxel-based soft robots.
owever, spiking neural networks provide often better ability to
eneralize to changes in the environment. This is particularly true
hen a mechanism of homeostatic plasticity is introduced, which
rovides an opportunity of fast adaptation during the lifetime of
he robotic agent.

As future work, we plan to address some of the limitations
f this study, with the goal of synthesizing more general ob-
ervations on the potential of different neural models for robot
ontrol. Namely, we aim at experimenting in different scenarios,
aking inspiration from the tasks of [46] and extending further
o other tasks which also require more high level capabilities as,
.g., planning ahead. Moreover, we plan to extend our study to
ther instances of simulated modular robots [73,74,46], both soft
nd not, to assess the consistency of outcomes across different
imulators and robots. Last, it would be noteworthy to consider
eural models with unsupervised learning paradigms in combi-
ation with neuroevolution, as Hebbian Learning for MLPs [24]
r STDP [54] for SNNs.
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