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Abstract. Optimal values and solutions of empirical approximations of stochastic optimization prob-

lems can be viewed as statistical estimators of their true values. From this perspective, it is important to

understand the asymptotic behavior of these estimators as the sample size goes to infinity. This area of study

has a long tradition in stochastic programming. However, the literature is lacking consistency analysis for

problems in which the decision variables are taken from an infinite dimensional space, which arise in optimal

control, scientific machine learning, and statistical estimation. By exploiting the typical problem structures

found in these applications that give rise to hidden norm compactness properties for solution sets, we prove

consistency results for nonconvex risk-averse stochastic optimization problems formulated in infinite dimen-

sional space. The proof is based on several crucial results from the theory of variational convergence. The

theoretical results are demonstrated for several important problem classes arising in the literature.
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1 Introduction

The asymptotic behavior of empirical approximations is a central point of study in optimization
under uncertainty. There is a long tradition going back to the fundamental contributions [31, 22,
62, 57, 63, 33, 64, 49, 65, 55, 50, 40, 69, 56]. These works have since given rise to standard derivation
techniques for problems with finite dimensional decision spaces. There are in essence three main
techniques used to obtain asymptotic statements. The first possibility uses epi-convergence of
sample-based approximations of objective functions over compact sets and therefore draws from
powerful statements in the theory of variational convergence. The second type of method employs
a uniform law of large numbers for sample-based approximations of objective functions. Finally,
asymptotic statements can also be derived from stability estimates for optimal values and solutions
with respect to probability semimetrics. This requires, amongst other things, that the class of
integrands in the objective constitutes a P -uniformity class for the semimetric in question.
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Given a general stochastic optimization problem

min
z∈Zad

EP [F (z)], (1)

an empirical approximation would take the form

min
z∈Zad

EPN
[F (z)], (2)

where the original probability measure P is replaced by a (sequence of) typically discrete approxima-
tion(s) PN for N ∈ N. For example, the probability measure PN could be an empirical probability
measure associated with a random sample of size N from P . This is a common approach often
referred to as “sample average approximation” (SAA), see e.g., [34, 68]. A data-driven viewpoint
can be drawn from machine learning in which (1) represents the “population risk minimization”
problem and (2) the corresponding “empirical risk minimization” problem. Here, the underlying
probability measure of the data P is typically unknown. It is therefore of interest to understand
the behavior of solutions in the big data limit (as N → ∞).

The main questions can be easily stated: Do the optimal values and solution sets of (2) converge
to their “true” counterparts for (1) as N passes to infinity and what is the strongest form of
stochastic convergence that can be guaranteed? If we treat the N -dependent objects as statistical
estimators of the true values and seek to prove at least convergence in probability, then these are
questions of consistency, cf. [66].

Motivated by recent advances in partial differential equation (PDE)-constrained optimization
under uncertainty [24, 37], scientific machine learning [9, 48], nonconvex stochastic programming
[42, 51, 16], and statistical estimation [59, 60, 43], we provide such consistency results for stochastic
optimization problems in which the decision variables z may be taken in an infinite dimensional
space Z. We will consider more general “risk-averse” problems in which the expectation EP is
allowed to be replaced by certain classes of convex risk functionals R. And as it is often lacking
in the application areas mentioned above, we do not assume convexity of the integrand F . For
consistency results on finite dimensional risk-averse stochastic optimization problems, we refer the
reader to [17, 66, 68].

From an abstract perspective, we consider stochastic optimization problems of the type

min
z∈Zad

R[F (z)] + ℘(z). (3)

Here, Zad is typically a closed convex subset of an infinite dimensional space; ℘ is a deterministic
convex cost function; F is a random integrand that typically depends on the solution of a differential
equation subject to random inputs; and R is a convex functional that acts as a numerical surrogate
for our risk preference, e.g., a convex combination of EP [X] and a semideviation EP [max{0,X −
EP [X]}].

Despite the past successes in consistency analysis listed above, there is a major difficulty in
extending the finite dimensional arguments to the infinite dimensional setting. In order to use both
the epigraphical as well as the uniform law of large numbers approaches, we need an appropriately
defined norm compact set that contains both the approximate N -dependent solutions as well as
true solutions. It is not enough for the feasible set to be closed and bounded. For example, the
simple set of pointwise bilateral constraints

Zad :=
{
z ∈ L2(0, 1): 0 ≤ z(x) ≤ 1 for a.e. x ∈ (0, 1)

}

is weakly sequentially compact in L2(0, 1), but not norm compact. The literature is not void of
results for infinite dimensional problems. However, the stability statements developed in [30, 58] and
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the large deviation-type bounds derived in [46, 45] have only been demonstrated for strongly convex
risk-neutral problems. While it may be possible to extend some of these results to a risk-averse
setting, it appears rather challenging to obtain statements about the consistency of minimizers
without strong convexity. In the recent preprint [44], consistency results for optimal values and
solutions are established for risk-neutral PDE-constrained optimization using a uniform law of large
numbers. Our framework and that in [44] are different. Besides considering risk-neutral problems,
i.e., R = EP , the work [44] requires the integrands be continuously differentiable, the decision space
be a separable Hilbert space, and requires a specific strongly convex control regularization in the
objective function. Moreover, [44] establishes consistency for exact solutions while we are able to
establish consistency for approximate solutions using epiconvergence.

The paper is structured as follows. In Section 2, we introduce the basic notation, assumptions,
and several preliminary results necessary for the remaining parts of the text. Afterwards, in Section
3, we present our main result. Finally, the utility of the main consistency result is demonstrated
for several problem classes in Section 4.

2 Notation, Assumptions, and Preliminary Results

We introduce several concepts, notation and assumptions that are required in the text.

2.1 Probability and Function Spaces

Throughout the text, all spaces are defined over the real numbers R and metric spaces are equipped
with their Borel σ-field. Let Ξ be a complete separable metric space, A the associated Borel σ-
algebra, and P : A → [0, 1] a probability measure. The triple (Ξ,A,P) is always assumed to be a
complete probability space. Throughout the manuscript, (Ω,F , P ) is a probability space.

If Υ is a Banach space, then its topological dual space is denoted by Υ∗. Their dual pairing is
denoted by 〈v,w〉Υ∗ ,Υ for v ∈ Υ∗, w ∈ Υ. If Υ is reflexive, we identify its bi-dual (Υ∗)∗ with Υ.
Throughout the text, we will use p ∈ [1,∞) for a general integrability exponent. In the application
section, we will consider problems involving random partial differential equations. These require
several function spaces. The underlying physical domain D ⊂ R

d with d ∈ {1, 2, 3} will always be
an open bounded Lipschitz domain.

For a Banach space (V, ‖·‖V ) we will denote the Lebesgue–Bochner space Lp(Ξ,A,P;V ) of all
strongly A-measurable V -valued functions by

Lp(Ξ,A,P;V ) = {u : Ξ → V : u strongly A-measurable and ‖u‖Lp(Ξ,A,P;V ) <∞}

endowed with the natural norms ‖u‖Lp(Ξ,A,P;V ) = (EP[‖u‖
p
V ])

1/p for p ∈ [1,∞) and for bounded
fields: ‖u‖Lp(Ξ,A,P;V ) = P-ess sup

ξ∈Ξ
‖u(ξ)‖V . In the event that V = R, we simply write Lp(Ξ,A,P).

For the PDE applications, we use Lp(D) to denote the usual Lebesgue space of p-integrable (or
essentially bounded) functions over D. For more details on Lebesgue–Bochner spaces, we refer the
reader to [29, Chapter III]. We denote convergence in the norm by → and weak convergence by ⇀.
For a sequence (vk), we denote by (vk)K a subsequence of (vk), where K ⊂ N is an infinite index
set.

Given two random variables X1,X2 ∈ Lp(Ω,F , P ) for p ∈ [1,∞), we say that X1 and X2 are
distributionally equivalent with respect to P if P (X1 ≤ t) = P (X2 ≤ t) for all t ∈ R. A functional
ρ : Lp(Ω,F , P ) → R is said to be law invariant with respect to P if for all distributionally equivalent
random variables X1,X2 ∈ Lp(Ω,F , P ) we have ρ(X1) = ρ(X2). In this setting, it therefore makes
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sense to use the (abuse of) notation ρ(HX), where HX(t) := P (X ≤ t) with t ∈ R as opposed
to ρ(X). We caution that this does not mean we redefine the function ρ over a space of càdlàg
functions. For a (cumulative) distribution function H defined on R, its quantile function H−1

is defined by H−1(t) := infs∈R{ s : H(s) ≥ t } for t ∈ (0, 1). Let (Ω,F , P ) be nonatomic and
let ρ : Lp(Ω,F , P ) → R be law invariant for p ∈ [1,∞). Since (Ω,F , P ) is nonatomic, there
exists a random variable G : Ω → [0, 1] with uniform distribution ν on [0, 1] [21, Prop. A.7] (see
also [11, Prop. 9.1.11]). Let X ∈ Lp(Ω,F , P ) be a random variable. Since H−1

X (G(·)) has the
same distribution function as that of X [20, Prop. 9.1.2] and H−1

X (G(·)) ∈ Lp(Ω,F , P ), we have
ρ(HX) = ρ(H−1

X (G(·))). More generally, we write ρ(H) instead of ρ(H−1(G(·))), provided that H

is a distribution function on R with
∫ 1
0 |H−1(q)|pdν(q) <∞.

2.2 Convex Analysis and Several Key Functionals

Given a Banach space V , the (effective) domain of an extended real-valued function f : V →
(−∞,∞], will be denoted by dom(f) := {x ∈ V : f(x) < ∞}. We typically exclude convex
functions that take the value −∞. For f : V → (−∞,∞] and ε > 0, xε ∈ V is an ε-minimizer of f
provided infv∈V f(v) is finite and f(xε) ≤ infv∈V f(v)+ε. The ε-solution set (ε ≥ 0) is then the set
Sε := {x ∈ V : f(x) ≤ infv∈V f(v) + ε}, provided that infv∈V f(v) is finite. We use the convention
S = S0.

Let Υ be a normed space. For x ∈ Γ ⊂ Υ and Ψ ⊂ Υ, we define

dist(x,Ψ) = inf
y∈Ψ

‖x− y‖Υ and D(Γ,Ψ) = sup
x∈Γ

dist(x,Ψ).

We recall that a Banach space V has the Radon–Riesz (Kadec–Klee) property if vk → v whenever
(vk) ⊂ V is a sequence with vk ⇀ v ∈ V and ‖vk‖V → ‖v‖V as k → ∞. More generally, we will
say that a function ϕ : V → [0,∞) is an R-function if it is convex and continuous, and if vk → v as
k → ∞ whenever (vk) ⊂ V is a sequence with vk ⇀ v ∈ V and ϕ(vk) → ϕ(v) as k → ∞. Notions
related to but different from that of an R-function are available in the literature, such as functions
having the Kadec property and strongly rotund functions [13, 14]. The notion of an R-function is
first introduced in our manuscript. If V is a reflexive Banach space, then there exists an R-function
on V [13, p. 154]. A notion of regularizers different from that of an R-function can be found in [32].

As the following fact demonstrates, the class of R-functions is rather large and includes, e.g.,
typical cost functions and regularizers used in PDE-constrained optimization. See Section 4.2 for
an example of an R-function in the context of PDE-constrained optimization.

Lemma 1. Let V be a Banach space. If ℘ : [0,∞) → [0,∞) is convex and strictly increasing
and ϕ : V → [0,∞) is an R-function, then ℘ ◦ ϕ is an R-function. In particular, if V has the
Radon–Riesz property, then ℘ ◦ ‖ · ‖V is an R-function.

Proof. The function ℘ ◦ϕ is convex and continuous. Let vk ⇀ v and ℘(ϕ(vk)) → ℘(ϕ(v)). Since ℘
is strictly increasing on [0,∞), it has a continuous inverse. Hence ϕ(vk) → ϕ(v).

For a Banach space V and a complete probability space (Ξ,A,P), f : V ×Ξ → (−∞,∞] is said
to be random lower semicontinuous provided f is jointly measurable (with respect to the tensor-
product σ-algebra of the Borel σ-algebra on V and A) and f(·, ξ) is lower semicontinuous for every
ξ ∈ Ξ. If Υ1 and Υ2 are metric spaces, then G : Υ1 ×Ξ → Υ2 is a Carathéodory mapping provided
G(υ, ·) is measurable for all v ∈ Υ1 and G(·, ξ) is continuous for all ξ ∈ Ξ.

Finally, there are many concepts of risk measures in the literature. We will work with the
following with further refinements as needed in the text below. Let ρ : Lp(Ω,F , P ) → (−∞,∞].
We consider the following conditions on the functional ρ.
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(R1) Convexity. For all X,Y ∈ Lp(Ω,F , P ) and λ ∈ (0, 1), we have ρ(λX + (1− λ)Y ) ≤ λρ(X) +
(1− λ)ρ(Y ).

(R2) Monotonicity. For all X,Y ∈ Lp(Ω,F , P ) such that X ≤ Y w.p. 1, we have ρ(X) ≤ ρ(Y ).
(R3) Translation equivariance. If X ∈ Lp(Ω,F , P ) and C is a degenerate random variable with

C = c w.p. 1 for some c ∈ R, then ρ(X + C) = ρ(X) + c.
(R4) Positive homogeneity. If X ∈ Lp(Ω,F , P ) and γ > 0, then ρ(γX) = γρ(X).
The risk measure ρ is called convex if it satisfies (R1)–(R3) and it is referred to as coherent if it
satisfies (R1)–(R4), see [2], [23], and in particular [68, p. 231].

2.3 Epiconvergence and Weak Inf-Compactness

Variational convergence, in particular (Mosco-)epiconvergence, plays a central role in consistency
analysis. We provide here the necessary definitions and results from the literature. In addition, we
prove several new results that are tailored to applications involving PDEs with random inputs.

We recall the notions of epiconvergence and Mosco-epiconvergence [4, 19].

Definition 2 (Epiconvergence). Let V be a complete metric space. Let φk : V → (−∞,∞] be a
sequence and let φ : V → (−∞,∞] be a function. The sequence (φk) epiconverges to φ if for each
v ∈ V

1. and each (vk) ⊂ V with vk → v as k → ∞, lim infk→∞ φk(vk) ≥ φ(v), and
2. there exists (vk) ⊂ V with vk → v as k → ∞ such that lim supk→∞ φk(vk) ≤ φ(v).

In many instances in infinite dimensional optimization, especially the calculus of variations,
optimal control, and PDE-constrained optimization we are forced to work with weaker topologies
in the context of variational convergence. If the underlying space is a reflexive Banach space, then
we may appeal to epiconvergence in the sense of Mosco, which was introduced in [47].

Definition 3 (Mosco-epiconvergence). Let V be a reflexive Banach space and let V0 ⊂ V be a
closed, nonempty, convex set. Let φk : V0 → (−∞,∞] be a sequence and let φ : V0 → (−∞,∞] be
a function. The sequence (φk) Mosco-epiconverges to φ if for each v ∈ V0

1. and each (vk) ⊂ V0 with vk ⇀ v as k → ∞, lim infk→∞ φk(vk) ≥ φ(v), and
2. there exists (vk) ⊂ V0 with vk → v such that lim supk→∞ φk(vk) ≤ φ(v).

In the definition of Mosco-epiconvergence, we allow for the sequence (φk) and the epi-limit φ
to be defined on a nonempty, convex, closed subset of a reflexive Banach space. This allows us to
model constraints without the need for indicator functions. We will see below in Theorem 4 that
this variation on the original definition leaves the crucial implications of Mosco-epiconvergence
intact. In other words, Theorem 4 provides conditions sufficient for consistency of optimal values
of Mosco-epiconvergent objective functions; compare with [3, Thm. 1.10], [18, Thm. 5.3], and [14,
Thm. 6.2.8], for example.

Theorem 4. Let V be a reflexive Banach space and let V0 ⊂ V be a closed, nonempty, convex
set. Suppose that hk : V0 → (−∞,∞] Mosco-epiconverges to h : V0 → (−∞,∞]. Let (vk) ⊂ V0 and
(εk) ⊂ [0,∞) be sequences such that εk → 0+ and for each k ∈ N, let vk satisfy

hk(vk) ≤ inf
v∈V0

hk(v) + εk.

If (vk)K is a subsequence of (vk) such that vk ⇀ v̄ as K ∋ k → ∞, then
1. v̄ ∈ V0,
2. h(v̄) = infv∈V0 h(v),
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3. infv∈V0 hk(v) → infv∈V0 h(v) as K ∋ k → ∞,
4. hk(vk) → h(v̄) as K ∋ k → ∞.

Proof. Since (vk) ⊂ V0 and V0 is weakly sequentially closed, we have v̄ ∈ V0. Since (hk) Mosco-
epiconverges to h on V0, it epiconverges to h, where V0 may be understood as a complete metric
space using the norm topology. Hence

lim sup
k→∞

inf
v∈V0

hk(v) ≤ inf
v∈V0

h(v); (4)

see, e.g., [3, Props. 1.14 and 2.9]. Then Mosco-epiconvergence ensures

lim inf
K∋k→∞

inf
v∈V0

hk(v) = lim inf
K∋k→∞

[εk + inf
v∈V0

hk(v)] ≥ lim inf
K∋k→∞

hk(vk) ≥ h(v̄).

Combined with (4), we find that h(v̄) = infv∈V0 h(v) and infv∈V0 hk(v) → infv∈V0 h(v) as K ∋ k →
∞. The assertion hk(vk) → h(v̄) as K ∋ k → ∞ is implied by the above derivations and

lim sup
K∋k→∞

hk(vk) ≤ lim sup
K∋k→∞

[εk + inf
v∈V0

hk(v)] = lim sup
K∋k→∞

inf
v∈V0

hk(v) ≤ lim sup
k→∞

inf
v∈V0

hk(v).

Proposition 5 demonstrates a weak compactness property of approximate minimizers to “regu-
larized” optimization problems with Mosco-epiconvergent objective functions. Let Z be a reflexive
Banach space, let Zad ⊂ Z be a closed, nonempty, convex set, and let fk, f : Zad → (−∞,∞].
Furthermore, let ϕ : Z → [0,∞) be a convex, continuous function. We define the optimal values

m
∗
k := inf

z∈Zad

{ fk(z) + ϕ(z) } and m
∗ := inf

z∈Zad

{ f(z) + ϕ(z) } (5)

and the solution sets

Sεkk := { z ∈ Zad : fk(z) + ϕ(z) ≤ m
∗
k + εk } and S := { z ∈ Zad : f(z) + ϕ(z) = m

∗ }.

Proposition 5. Let Z be a reflexive Banach space, let Zad ⊂ Z be a nonempty, closed, convex
set, let ϕ : Z → [0,∞) be a convex, continuous function, and let Z0 ⊂ Z be bounded. Suppose that
fk : Zad → (−∞,∞] Mosco-epiconverges to f : Zad → (−∞,∞]. Let (εk) ⊂ [0,∞) be a sequence
with εk → 0+. Suppose that S 6= ∅ and that for all k ∈ N,

Sεkk ⊂ Z0 and Sεkk 6= ∅.

If (zk) is a sequence with zk ∈ Sεkk for all k ∈ N and (zk)K is a subsequence of (zk), then (zk)K has
a further subsequence (zk)K1

converging weakly to some z̄ ∈ S and ϕ(zk) → ϕ(z̄) as K1 ∋ k → ∞.

Proof. Since (zk)K ⊂ Zad, (zk)K ⊂ Z0, Z0 is bounded, and Zad is closed and convex, (zk)K has a
further subsequence (zk)K1

such that zk ⇀ z̄ ∈ Zad as K1 ∋ k → ∞ [12, Thms. 2.23 and 2.28].
Since z̄ ∈ Zad, the Mosco-epiconvergence of (fk) to f ensures the existence of a sequence (z̃k) ⊂ Zad

such that z̃k → z̄ ∈ Zad as k → ∞ and lim supk→∞ fk(z̃k) ≤ f(z̄). Since z̃k → z̄ implies z̃k ⇀ z̄,
we have limk→∞ fk(z̃k) = f(z̄). Since zk ∈ Sεkk and z̃k ∈ Zad, we have for all k ∈ N,

fk(zk) + ϕ(zk) ≤ fk(z̃k) + ϕ(z̃k) + εk. (6)
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Since (fk) Mosco-epiconverges to f , we have f(z̄) ≤ lim infK1∋k→∞ fk(zk). Combined with the fact
that ϕ is continuous and

lim inf
K1∋k→∞

fk(zk) + lim sup
K1∋k→∞

ϕ(zk) ≤ lim sup
K1∋k→∞

fk(zk) + ϕ(zk),

the estimate (6) ensures

f(z̄) + lim sup
K1∋k→∞

ϕ(zk) ≤ lim sup
K1∋k→∞

fk(z̃k) + ϕ(z̃k) + εk ≤ lim sup
k→∞

fk(z̃k) + ϕ(z̃k) + εk

= lim
k→∞

fk(z̃k) + ϕ(z̃k) + εk = f(z̄) + ϕ(z̄).

Since zk ⇀ z̄ as K1 ∋ k → ∞, S 6= ∅, and (fk) Mosco-epiconverges to f , Theorem 4 ensures
z̄ ∈ S. Since z̄ ∈ S, we have f(z̄) ∈ R. Thus lim supK1∋k→∞ ϕ(zk) ≤ ϕ(z̄). Since ϕ is convex and
continuous, it is weakly lower semicontinuous. Combined with zk ⇀ z̄ as K1 ∋ k → ∞, we have
ϕ(zk) → ϕ(z̄) as K1 ∋ k → ∞.

While the sum of an Mosco-epiconvergent sequence and a convex, continuous function Mosco-
epiconverge, Proposition 5 allows us to draw further conclusions about the minimizers to composite
optimization problems defined by sums of Mosco-epiconvergent and convex, continuous functions
than a direct application of the “sum rule.” For example, if ϕ is an R-function, then the sequence
(zk)K1

considered in Proposition 5 converges strongly to an element of S.

Corollary 6. If the hypotheses of Proposition 5 hold true and ϕ is an R-function, then each
subsequence of (zk) has a further subsequence converging strongly to an element of S.

Remark 7. If Zad is bounded, then we can choose Z0 = Zad in Proposition 5. The condition
Sεkk ⊂ Z0 for all k ∈ N in Proposition 5 is related to a “weak inf-compactness” condition, provided
that Z0 is also convex and bounded. In this case, Z0 is weakly (sequentially) compact. Instead of
requiring Sεkk ⊂ Z0 for all k ∈ N, we could require for some γ ∈ R and for all k ∈ N,

∅ 6= { z ∈ Zad : fk(z) + ϕ(z) ≤ γ } ⊂ Z0. (7)

The level set condition (7) ensures that Sεkk is nonempty, provided that fk is weakly lower semi-
continuous. In case that Z0 is norm compact, the condition (7) has been used, for example, in
Theorem 2.1 in [40] to establish consistency properties for infinite dimensional stochastic programs.
If supk∈N m

∗
k <∞, γ > supk∈N m

∗
k and for all k ∈ N,

{ z ∈ Zad : fk(z) + ϕ(z) ≤ γ } ⊂ Z0,

then Sεkk ⊂ Z0 for all sufficiently large k ∈ N since we eventually have supk∈N m
∗
k + εk ≤ γ.

Corollary 8. If the hypotheses of Proposition 5 hold, then m
∗
k → m

∗ as k → ∞. If furthermore ϕ
is an R-function, then D(Sεkk ,S) → 0 as k → ∞.

Proof. Let zk ∈ Sεkk for each k ∈ N. The hypotheses ensure that (fk) Mosco-epiconverges to f . Let
(m∗

k)K be a subsequence of (m∗
k). Proposition 5 ensures that (zk)K has a further subsequence (zk)K1

that weakly converges to some element in S. Combined with Theorem 4, we find that m∗
k → m

∗ as
K1 ∋ k → ∞. Since S is nonempty, m∗ ∈ R. Putting together the pieces, we have shown that each
subsequence of (m∗

k) has a further subsequence converging to m
∗. Hence m

∗
k → m

∗ as k → ∞.
It must still be shown that D(Sεkk ,S) → 0 as k → ∞. Since Sεkk ⊂ Z0 and S ⊂ Z are

nonempty, and Z0 is bounded, we have D(Sεkk ,S) ≤ D(Z0,S) < ∞ for all k ∈ N. Let us define
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the sequence ̺k := D(Sεkk ,S). Let (̺k)K be a subsequence of (̺k). We have just shown that
̺k ≤ D(Z0,S) < ∞. Moreover ̺k ≥ 0. Using the definition of the deviation, we find that there
exists for each k ∈ N, z̃k ∈ Sεkk such that ̺k ≤ dist(z̃k,S)+1/k. Corollary 6 ensures that (z̃k)K has
a further subsequence (z̃k)K1

that strongly converges to some z̄ ∈ S. Since S is nonempty, dist(·,S)
is (Lipschitz) continuous [1, Thm. 3.16]. It follows that dist(z̃k,S) → 0 as K1 ∋ k → ∞. Hence
̺k → 0 as K1 ∋ k → ∞. Since each subsequence of (̺k) has a further subsequence converging to
zero, ̺k → 0 as k → ∞.

Proposition 9 demonstrates that epiconvergence can imply Mosco-epiconvergence. This result
is particularly relevant for PDE-constrained problems. If V is a Banach space and Y is a complete
metric space, we refer to a mapping G : V → Y as completely continuous if (vk) ⊂ V and
vk ⇀ v ∈ V implies G(vk) → G(v).

Proposition 9. Let Z0 ⊂ Z be a nonempty, closed, convex subset of a reflexive Banach space Z
and let Y0 ⊂ Y be a closed subset of a Banach space Y . Suppose that B : Z → Y is linear and
completely continuous with B(Z0) ⊂ Y0. If hk : Y0 → (−∞,∞] epiconverges to h : Y0 → (−∞,∞]
and hk ◦ B : Z0 → (−∞,∞] epiconverges to h ◦ B : Z0 → (−∞,∞], then hk ◦ B : Z0 → (−∞,∞]
Mosco-epiconverges to h ◦B : Z0 → (−∞,∞].

Proof. Fix z̄ ∈ Z0. Let (zk) ⊂ Z0 be a sequence with zk ⇀ z̄. We have Bzk, Bz̄ ∈ Y0. The complete
continuity of B yields Bzk → Bz̄ as k → ∞. Since (hk) epiconverges to h, lim infk→∞ hk(Bzk) ≥
h(Bz̄). The hypotheses ensure that hk ◦B epiconverges to h ◦B. Putting together the pieces, we
conclude that (hk ◦B) Mosco-epiconverges to h ◦B.

For the applications considered in Sections 4.2 and 4.3, B is the adjoint operator of a compact
(Sobolev) embedding operator, and hence linear and completely continuous.

3 Consistency of Empirical Approximations

We consider the potentially infinite dimensional risk-averse stochastic program

min
z∈Zad

R[F (Bz)] + ℘(z), (8)

where

F (y)(ω) := f(y, ξ(ω)), (9)

the set Y0 is a closed subset of a separable Banach space Y , f : Y0 × Ξ → R is a Carathéodory
function, and B : Z → Y is a linear, continuous operator. Moreover ξ : Ω → Ξ is a random element
with law P = P ◦ ξ−1, f(y, ·) ∈ Lp(Ξ,A,P), and R : Lp(Ω,F , P ) → R with 1 ≤ p < ∞ is a law
invariant convex risk measure.

We introduce the empirical approximation of (8) for the case when (Ω,F , P ) is nonatomic.
Let ξ1, ξ2, . . . be defined on a complete probability space (Ω′,F ′, P ′) and assume the sequence is
composed of independent identically distributed Ξ-valued random elements each with law P =
P ◦ ξ−1. For y ∈ Y0 and N ∈ N, the empirical distribution function Ĥy,N (·;ω

′) of the sample
f(y, ξ1(ω′)), . . . , f(y, ξN (ω′)) is defined by

Ĥy,N(t;ω
′) :=

1

N

N∑

i=1

1(−∞,t](f(y, ξ
i(ω′))),
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where ω′ ∈ Ω′ and 1(−∞,t] is the indicator function of the interval (−∞, t]. We denote by Ĥ−1
y,N(·;ω

′)

the quantile function of Ĥy,N(·;ω
′). We often omit writing the second arguments of Ĥy,N and Ĥ−1

y,N .
The empirical approximation of (8) is given by

min
z∈Zad

R[ĤBz,N ] + ℘(z). (10)

Recall from our discussion on law invariant risk measures that R[ĤBz,N ] means the risk mea-
sure R does not distinguish between z,N -dependent random variables with distribution functions
equivalent to ĤBz,N .

Our consistency analysis is based on the conditions in Assumption 10.

Assumption 10. 1. The space Z is a separable, reflexive Banach space, Zad ⊂ Z is nonempty,
closed, convex and bounded. The space Y is a separable Banach space, and Y0 ⊂ Y is closed,
and p ∈ [1,∞).

2. The mapping B : Z → Y is linear and completely continuous and B(Zad) ⊂ Y0.
3. The function ℘ : Z → [0,∞) is convex and continuous.
4. The function f : Y0 × Ξ → R is a Carathéodory function.
5. For all y ∈ Y0, f(y, ·) ∈ Lp(Ξ,A,P) and F : Y0 → Lp(Ω,F , P ) defined in (9) is continuous.
6. For each ȳ ∈ Y0, there exists a neighborhood Yȳ ⊂ Y0 of ȳ and a random variable h ∈
Lp(Ξ,A,P) such that f(y, ·) ≥ h(·) for all y ∈ Vȳ.

Let m∗ be the optimal value of problem (8) and let S be its solution set. Furthermore, let
m̂∗
N be the optimal value of (10) and let Ŝ r

N be its set of r-minimizers, where r ≥ 0. The “with
probability one”-statements in Theorem 11 are with respect to P ′.

Theorem 11. Let Assumption 10 hold. Suppose further that (Ω,F , P ) is nonatomic and complete.
Let R : Lp(Ω,F , P ) → R be a convex, law invariant risk measure. If (rN ) ⊂ [0,∞) is a deterministic
sequence such that rN → 0 as N → ∞, then m̂∗

N → m∗ w.p. 1 as N → ∞. If furthermore ℘ is an

R-function, then D(Ŝ rN
N ,S ) → 0 w.p. 1 as N → ∞.

To establish Theorem 11, we verify the hypotheses of Corollaries 8 and 22 (in the Appendix).

Lemma 12. If Assumption 10 holds and R : Lp(Ω,F , P ) → R is a convex risk measure, then
Zad ∋ z 7→ R[F (Bz)] is completely continuous.

Proof. Since R is a finite-valued convex risk measure, it is continuous [61, Cor. 3.1]. Assumption 10
ensures the continuity of y 7→ F (y). Hence y 7→ R[F (y)] is continuous. Now the complete continuity
of B implies that of z 7→ R[F (Bz)].

We recall from our discussion on law invariant risk measures in Section 2, the identityR[Ĥy,N (ω
′)] =

R[Ĥ−1
y,N (G(·);ω

′)], where G : Ω → [0, 1] is a random variable with uniform distribution ν.

Lemma 13. Let Assumption 10 hold. Suppose further that (Ω,F , P ) is nonatomic and complete.
Let R : Lp(Ω,F , P ) → R be a convex, law invariant risk measure. Then Y0 × Ω′ ∋ (y, ω′) 7→
R[Ĥ−1

y,N (G(·);ω
′)] is a Carathéodory function.

Proof. Let f(y, ξ(1)) ≤ · · · ≤ f(y, ξ(N)) be the order statistics of the sample f(y, ξ1), . . . , f(y, ξN ).
For q ∈ (0, 1] and y ∈ Y0, we have Ĥy,N (q;ω

′) = f(y, ξ(j)(ω′)) if q ∈ ((j − 1)/N, j/N ] irrespective
of whether the sample is distinct.

9



We show that y 7→ R[Ĥ−1
y,N (G(·);ω

′)] is continuous for each ω′ ∈ Ω′. Let yk → y and fix ω′ ∈ Ω′.

Using the fact that ν is the uniform distribution and P ◦G−1 = ν, we have

∫

Ω
|Ĥ−1

yk,N
(G(ω);ω′)− Ĥ−1

y,N (G(ω);ω
′)|pdP (ω) =

∫ 1

0
|Ĥ−1

yk,N
(q;ω′)− Ĥ−1

y,N (q;ω
′)|pdν(q)

=
1

N

N∑

i=1

|f(yk, ξ
i(ω′))− f(y, ξi(ω′))|p.

Since f is a Carathéodory function and p ∈ [1,∞), it follows that Ĥ−1
yk,N

(G(·);ω′) → Ĥ−1
y,N(G(·);ω

′)

in Lp(Ω,F , P ). Combined with the continuity ofR, we haveR[Ĥ−1
yk,N

(G(·);ω′)] → R[Ĥ−1
y,N (G(·);ω

′)]

as k → ∞. Consequently, y 7→ R[Ĥ−1
y,N (G(·), ω

′)] is continuous for each ω′ ∈ Ω′.

For each fixed y ∈ Y0, the function ω′ 7→ Ĥ−1
y,N(G(·);ω

′) ∈ Lp(Ω,F , P ) is measurable because it
is the composition of a piecewise constant and measurable functions.

Combining these arguments, we find that (y, ω′) 7→ R[Ĥ−1
y,N (G(·);ω

′)] is a Carathéodory func-
tion.

Corollary 14. Under the hypotheses of Lemma 13, (a) S is nonempty and closed, (b) Ŝ r
N has

nonempty, closed images for each r ∈ [0,∞), and (c) m̂∗
N and Ŝ r

N are measurable for each r ∈
[0,∞).

Proof. (a) Since the set Zad is nonempty, closed, convex, and bounded, Lemma 12 when com-
bined with the direct method of the calculus of variations ensures the assertions.

(b) Using the properties of Zad listed in part (a), Lemma 13 when combined with the direct
method of the calculus of variations and the complete continuity of B ensures the assertions.

(c) Since B is completely continuous and Z is a Banach space, B is continuous. Lemma 13,
the continuity of B, and Theorem 8.2.11 in [5] imply the measurability assertions.

Proof of Theorem 11. To establish the consistency statements, we verify the hypotheses of Corol-
laries 8 and 22. Corollary 14 ensures that S is nonempty. Hence dist(·,S ) is (Lipschitz) continuous
[1, Thm. 3.16]. Corollary 14 implies that m̂∗

N is measurable and that Ŝ
rN
N is measurable with closed,

nonempty images. Combined with Theorem 8.2.11 in [5], it follows that D(Ŝ rN
N ,S ) is measurable.

Corollary 22 ensures that for almost all ω′ ∈ Ω′, Zad ∋ z 7→ R[Ĥ−1
Bz,N(G(·);ω

′)] Mosco-

epiconverges to Zad ∋ z 7→ R[F (Bz)] as N → ∞. We have Ŝ
rN
N ⊂ Zad. Moreover, Ŝ

rN
N and

S ⊂ Zad are nonempty, and ℘ is continuous and convex. Now, for almost all ω′ ∈ Ω′, Corollary 8
ensures that m̂∗

N (ω
′) → m∗ as N → ∞. Hence w.p. 1, m̂∗

N → m∗ as N → ∞. If furthermore ℘ is

an R-function, then for almost all ω′ ∈ Ω′, Corollary 8 ensures D(Ŝ rN
N (ω′),S ) → 0 as N → ∞.

Hence w.p. 1, D(Ŝ rN
N ,S ) → 0 as N → ∞. Since m̂∗

N and D(Ŝ rN
N ,S ) are measurable, we obtain

the almost sure convergence statements.

4 Applications

We conclude with the application of our main result, Theorem 11, to several problem classes.
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4.1 Consistency of Epi-Regularized and Smoothed Empirical Approximations

Using Theorem 11, we demonstrate the consistency of solutions to epi-regularized and smoothed
risk-averse programs using the average value-at-risk. These types of risk measures are popular
in numerical approaches, see [36, 38, 39, 6, 72, 15]. For β ∈ [0, 1), the average value-at-risk
AVaRβ : L1(Ω,F , P ) → R is defined by

AVaRβ[X] = inf
t∈R

{ t+ 1
1−βE[(X − t)+] },

where (x)+ := max{0, x} for x ∈ R. Throughout the section, m∗ and S denotes the optimal
value and 0-solution set of (8), respectively, with the risk measure R = AVaRβ. Moreover, we

denote by m∗
N the optimal value and by Ŝ r

N the r-solution set (r ≥ 0) of the problem’s empirical
approximation. The average value-at-risk AVaRβ is a law invariant risk measure [67].

Epi-regularization of risk measures has been proposed and analyzed in [38]. We apply the epi-
regularization to the average value-at-risk. As in Example 2 in [38], we consider AVaRβ as defined
on L2(Ω,F , P ) throughout the remainder of this section. We define Φ : L2(Ω,F , P ) → R by

Φ[X] := (1/2)E[X2] + E[X].

For ε > 0, the epi-regularization AVaRεβ : L
2(Ω,F , P ) → R of AVaRβ is given by

AVaRεβ[X] := inf
Y ∈L2(Ω,F ,P )

{AVaRβ[X − Y ] + εΦ[ε−1Y ] }. (11)

The risk functional AVaRεβ can be shown to be law invariant. See Appendix B.
For ε > 0, we consider the epi-regularized empirical average value-at-risk optimization problem

min
z∈Zad

{AVaRε
β[ĤBz,N ] + ℘(z) }.

We let m̂ε
epi,N be its optimal value and Ŝ ε

epi,N be its 0-solution set. Note that for fixed ε > 0, our
main result, Theorem 11, already provides an asymptotic consistency result. However, in numerical
procedures, the ε-parameter is typically driven to zero. Therefore, we prove a stronger statement
here.

Proposition 15. Let Assumption 10 hold with p = 2. Suppose further that (Ω,F , P ) is nonatomic
and complete. Let (εN ) ⊂ (0,∞) with εN → 0 as N → ∞. Then m̂εN

epi,N → m∗ w.p. 1 as N → ∞.

If furthermore ℘ is an R-function, then D(Ŝ εN
epi,N ,S ) → 0 w.p. 1 as N → ∞.

The proof of Proposition 15 is based on the following result.

Lemma 16. Fix ε > 0. The functional AVaRεβ : L2(Ω,F , P ) → R is a law invariant, convex risk

measure. For all X ∈ L2(Ω,F , P ), it holds that

AVaRβ[X] − εβ
2(1−β) ≤ AVaRεβ[X] ≤ AVaRβ [X].

Proof. The functional AVaRεβ is a convex risk measure [38, pp. 776 and 778–779]. By the arguments
in Appendix B, it is law invariant. Since Φ[0] = 0, the second estimate is implied by Proposition 1
in [38]. Fix X ∈ L2(Ω,F , P ). Since AVaRβ is subdifferentiable [68, p. 243], Proposition 2 in [38]
yields for all subgradients ϑ ∈ ∂AVaRβ[X] (see, e.g., p. 480 in [68] for definitions of subgradients
and subdifferentials),

AVaRεβ[X] ≥ AVaRβ[X]− εΦ∗[ϑ].
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Here Φ∗ is the Fenchel conjugate to Φ; see, e.g., p. 232 in [68] for a definition. Let ϑ ∈ ∂AVaRβ[X]
be arbitrary. We have 0 ≤ ϑ ≤ 1/(1−β) w.p. 1, E[ϑ] = 1 [68, p. 243] and Φ∗[ϑ] = (1/2)E[(ϑ− 1)2];
see Remark 5 in [38]. Hence

Φ∗[ϑ] = (1/2)E[ϑ2]− E[ϑ] + (1/2) = (1/2)E[ϑ2]− (1/2) ≤
1

2

1− (1− β)

1− β
=

1

2

β

1− β
.

Proof of Proposition 15. Following the proof of Corollary 14 and using the fact that AVaRεNβ is a

law invariant, convex risk measure (see Lemma 16), we find that m̂εN
epi,N and S

εN
epi,N are measurable.

Lemma 16 ensures that m̂∗
N − εNβ

2(1−β) ≤ m̂εN
epi,N ≤ m̂∗

N . Applying Theorem 11 with R = AVaRβ

yields m̂∗
N → m∗ w.p. 1 as N → ∞. Combined with εN → 0, we find that m̂εN

epi,N → m∗ w.p. 1 as
N → ∞.

If zεNN ∈ Ŝ
εN
epi,N , then Lemma 16 ensures that zεNN ∈ Ŝ

rN
N , where rN := εNβ

2(1−β) . Hence Ŝ
εN
epi,N ⊂

Ŝ
rN
N , yielding D(Ŝ εN

epi,N ,S ) ≤ D(Ŝ rN
N ,S ). Applying Theorem 11 with R = AVaRβ yields the

second assertion.

Next, we establish the consistency of solutions to smoothed average value-at-risk problems using
a smoothing function for (·)+. For brevity, we focus on a particular smoothing function for the plus
function (·)+. For ε > 0, we define the smoothed plus function (·)+ε : R → R by

(x)+ε := ε ln(1 + exp(x/ε)).

Using (·)+ε , we define the smoothed average value-at-risk σεβ : L
2(Ω,F , P ) → R by

σεβ[X] := inf
t∈R

{ t+ 1
1−βE[(X − t)+ε ] }. (12)

This version of the smoothed average value-at-risk has been used in [72] for stochastic stellarator coil
design and in [6] for adaptive sampling techniques for risk-averse optimization. See the Appendix
B for a short proof of its law invariance.

For ε > 0, we consider the smoothed empirical average value-at-risk optimization problem

min
z∈Zad

{σεβ [ĤBz,N ] + ℘(z) },

We let m̂ε
s,N be its optimal value and Ŝ ε

s,N be its 0-solution set.

Proposition 17. Let Assumption 10 hold with p = 2. Suppose further that (Ω,F , P ) is nonatomic
and complete. Let (εN ) ⊂ (0,∞) with εN → 0 as N → ∞. Then m̂εN

s,N → m∗ w.p. 1 as N → ∞. If

furthermore ℘ is an R-function, then D(Ŝ εN
s,N ,S ) → 0 w.p. 1 as N → ∞.

Proposition 17 is established using Lemma 18.

Lemma 18. Fix ε > 0. The functional σεβ : L
2(Ω,F , P ) → R is a law invariant, convex risk

measure. For all X ∈ L2(Ω,F , P ), it holds that

AVaRβ[X] ≤ σεβ[X] ≤ AVaRβ [X] + ln(2)ε/(1 − β).

Proof. The smoothed average value-at-risk σεβ is a convex risk measure [36, Props. 4.4–4.6]. By the

arguments in Appendix B, it is law invariant. For x ∈ R, we have (x)+ ≤ (x)+ε ≤ (x)+ + ε ln(2),
yielding the error bounds.
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Proof of Proposition 17. The proof is similar to that of Proposition 15. Following the proof of
Corollary 14 and using the fact that σεNβ is a law invariant, convex risk measure (see Lemma 18),

we find that m̂εN
s,N and Ŝ

εN
s,N are measurable. Lemma 16 ensures that m̂∗

N ≤ m̂εN
s,N ≤ m̂∗

N +
ln(2)εN/(1 − β). Applying Theorem 11 with R = AVaRβ yields m̂∗

N → m∗ w.p. 1 as N → ∞.
Combined with εN → 0, we find that m̂εN

s,N → m∗ w.p. 1 as N → ∞.

If zεNN ∈ Ŝ
εN
s,N , then Lemma 16 ensures that zεNN ∈ Ŝ

rN
N , where rN := ln(2)εN/(1 − β). Hence

Ŝ
εN
s,N ⊂ Ŝ

rN
N , yielding D(Ŝ εN

s,N ,S ) ≤ D(Ŝ rN
N ,S ). Applying Theorem 11 with R = AVaRβ yields

the second assertion.

4.2 Risk-Averse Semilinear PDE-Constrained Optimization

Our consistency result, Theorem 11, is applicable to risk-averse semilinear PDE-constrained opti-
mization as we demonstrate in this section. Following [39] (see also [25, 26]), we consider

min
z∈Zad

(1/2)R[‖(1 − ιS(z))+‖2L2(D)] + (α/2)‖z‖2L2(D), (13)

where α > 0, ι : H1(D) → L2(D) is the embedding operator of the compact embedding H1(D) →֒
L2(D), Zad := { z ∈ L2(D) : l(x) ≤ z(x) ≤ u(x) for a.e. x ∈ D } with l, u ∈ L2(D) and l(x) ≤ u(x)
for a.e. x ∈ D, and for each (z, ξ) ∈ L2(D)× Ξ, S(z)(ξ) ∈ H1(D) is the solution to:

find u ∈ H1(D) : A(u, ξ) = B1(ξ)ι
∗z + b(ξ), (14)

where ι∗ is the adjoint operator to ι, A : H1(D) × Ξ → H1(D)∗, B1 : Ξ → L (H1(D)∗,H1(D)∗),
and b : Ξ → H1(D)∗ are defined by

〈A(u, ξ), v〉H1(D)∗,H1(D) :=

∫

D
a(ξ)(x)[∇u(x)T∇v(x) + u(x)v(x)]dx+

∫

D
u(x)3v(x)dx,

〈B1(ξ)y, v〉H1(D)∗,H1(D) :=

∫

D
[B(ξ)y](x)v(x)dx, 〈b(ξ), v〉H1(D)∗,H1(D) :=

∫

D
b(ξ)(x)v(x)dx.

Here, b : Ξ → L2(D) is essentially bounded, a : Ξ → C0(D̄) is measurable and there exist constants
κmin, κmax > 0 such that κmin ≤ a(ξ)(x) ≤ κmax for all (ξ, x) ∈ Ξ × D̄. It remains to define
B(ξ) : H1(D)∗ → H1(D). Fix (y, ξ) ∈ H1(D)∗ × Ξ. We define B(ξ)y ∈ H1(D) as the solution to:
find w ∈ H1(D) such that

∫

D
[r(ξ)∇w(x)T∇v(x) + w(x)v(x)]dx = 〈y, v〉H1(D)∗,H1(D) for all v ∈ H1(D),

where r : Ξ → (0,∞) is random variable such that there exist rmin, rmax > 0 with rmin ≤ r(ξ) ≤ rmax

for all ξ ∈ Ξ. Since ιu = u for all u ∈ H1(D), we have 〈ι∗z, v〉H1(D)∗,H1(D) = (z, v)L2(D) for all

z ∈ L2(D) and v ∈ H1(D) [12, p. 21].
We express (13) in the form given in (8) and verify Assumption 10. For each (y, ξ) ∈ H1(D)∗×Ξ,

we consider the auxiliary random operator equation:

find u ∈ H1(D) : A(u, ξ) = B1(ξ)y + b(ξ). (15)

Lemma 19. Under the above hypotheses, for each (y, ξ) ∈ H1(D)∗×Ξ, the operator equation (15)
has a unique solution S̃(y)(ξ), S̃(y) ∈ Lq(Ξ,A,P;H1(D)) for each q ∈ [1,∞] and y ∈ H1(D)∗,
(y, ξ) 7→ S̃(z)(ξ) is a Carathéodory mapping, and S̃ : H1(D)∗ → Lq(Ξ,A,P;H1(D)) is Lipschitz
continuous for each q ∈ [1,∞].
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Let U be a reflexive Banach space. We recall that an operator A : U → U∗ is κ-strongly
monotone if there exists κ > 0 such that

〈A(u2)−A(u1), u2 − u1〉U∗,U ≥ κ‖u2 − u1‖
2
U for all u1, u2 ∈ U.

Proof of Lemma 19. For each ξ ∈ Ξ, A(·, ξ) is κmin-strongly monotone and it holds that

‖B1(ξ)‖L (H1(D)∗,H1(D)∗) ≤ 1/min{rmin, 1};

cf. [39, p. 13]. The existence, uniqueness and the stability estimate

‖S̃(y)(ξ)‖H1(D) ≤ (1/κmin)‖B1(ξ)y‖H1(D)∗ + (1/κmin)‖b(ξ)‖H1(D)∗

are a consequence of the Minty–Browder theorem [73, Thm. A.26], for example. Using Filippov’s
theorem [5, Thm. 8.2.10], we can show that S̃(y) is measurable. Combined with the stability
estimate and Hölder’s inequality, we conclude that S̃(y) ∈ Lq(Ξ,A,P;H1(D)) for each q ∈ [1,∞]
and y ∈ H1(D)∗. Since for all y1, y2 ∈ H1(D)∗ and ξ ∈ Ξ, we have (cf. [39, eq. (3.7)])

‖S̃(y2)(ξ)− S̃(y1)(ξ)‖U ≤ (1/κmin)‖B1(ξ)[y2 − y1]‖H1(D)∗ ,

the mapping (y, ξ) 7→ S̃(y)(ξ) is a Carathéodory mapping, and S̃ : H1(D)∗ → Lq(Ξ,A,P;H1(D))
is Lipschitz continuous for all q ∈ [1,∞].

The function ℘ defined by ℘(z) := (α/2)‖z‖2L2(D) is an R-function according to Lemma 1, as

α > 0 and L2(D) is a Hilbert space and hence has the Radon–Riesz property [12, Prop. 2.35]. The
operator B := ι∗ is linear and completely continuous because ι is a compact operator by the Sobolev
embedding theorem. We define f : H1(D)∗×Ξ → [0,∞) by f(y, ξ) := (1/2)‖(1− ιS̃(y)(ξ))+‖2L2(D).

The mapping J : Lq(Ξ,A,P;H1(D)) → Lq/2(Ξ,A,P) given by J (u) := (1/2)‖(1 − ιu)+‖2L2(D) is

continuous for q ∈ [2,∞) [38, Proposition 5]. Lemma 19 ensures that J ◦S̃ : H1(D)∗ → Lq/2(Ξ,A,P)
is well-defined and continuous for q ∈ [2,∞), yielding the continuity of F with p = q/2. Having
verified Assumption 10 for p ∈ [2,∞), we can apply Theorem 11 to study the consistency of
empirical approximations of (13).

4.3 Risk-Averse Optimization with Variational Inequalities

We consider a risk-averse optimization problem governed by an elliptic variational inequality with
random inputs. Our presentation is inspired by that in [28]. We consider

min
z∈Zad

(1/2)R[‖ιS(z) − ud‖
2
L2(D)] + (α/2)‖z‖2L2(D), (16)

where α > 0, ud ∈ L2(D), ι : H1
0 (D) → L2(D) is the embedding operator of the compact embedding

H1
0 (D) →֒ L2(D), and Zad is as in Section 4.2. For each (z, ξ) ∈ L2(D) × Ξ, S(z)(ξ) ∈ H1

0 (D) is
the solution to the parameterized elliptic variational inequality:

find u ∈ Kψ : 〈A(ξ)u − ι∗z, v − u〉H−1(D),H1
0
(D) ≥ 0 for all v ∈ Kψ, (17)

where ι∗ is the adjoint operator to ι, H−1(D) := H1
0 (D)∗, A : Ξ → L (H1

0 (D),H−1(D)) is a
parameterized elliptic operator, and Kψ := {u ∈ H1

0 (D) : u(x) ≥ ψ(x) for a.e. x ∈ D } with ψ ∈
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H1(D) and ψ∂D ≤ 0 is the obstacle. The set Kψ is nonempty [71, p. 129]. For (y, ξ) ∈ H−1(D)×Ξ,
we also consider the auxiliary parameterized elliptic variational inequality:

find u ∈ Kψ : 〈A(ξ)u − y, v − u〉H−1(D),H1
0
(D) ≥ 0 for all v ∈ Kψ. (18)

If S̃(y)(ξ) with y = ι∗z is a solution to (18), then it is a solution to (17).
We assume that A : Ξ → L (H1

0 (D),H−1(D)) is uniformly measurable, that is, there ex-
ists a sequence Ak : Ξ → L (H1

0 (D),H−1(D)) of simple mappings such that Ak(ξ) → A(ξ) in
L (H1

0 (D),H−1(D)) as k → ∞ for each ξ ∈ Ξ. Moreover, we assume that there exist constants κmin,
κmax > 0 such that for each ξ ∈ Ξ, A(ξ) is κmin-strongly monotone and ‖A(ξ)‖L (H1

0
(D),H−1(D)) ≤

κmax. Under these conditions, the auxiliary variational inequality (17) has a unique solution S̃(y)(ξ)
for each (y, ξ) ∈ H−1(D) × Ξ, and S̃(·)(ξ) is Lipschitz continuous with Lipschitz constant 1/κmin

for each ξ ∈ Ξ; cf. [28, Thm. 7.3]. Using results established in [27, p. 180], we can show that
S̃(y) ∈ Lq(Ξ,A,P;H1

0 (D)) for all q ∈ [1,∞] and y ∈ H−1(D). Combined with the Lipschitz

continuity, we find that S̃ : H−1(D) → Lq(Ξ,A,P;H1
0 (D)) is continuous for each q ∈ [1,∞].

We express (16) in the form given in (8) and verify Assumption 10. The function ℘ defined
by ℘(z) := (α/2)‖z‖2L2(D) is an R-function; see Section 4.2. The operator B := ι∗ is linear and

completely continuous because ι is a compact operator. We define f : H−1(D) × Ξ → [0,∞) by
f(y, ξ) := (1/2)‖ιS̃(y)(ξ) − ud‖

2
L2(D). The mapping J : Lq(Ξ,A,P;H1

0 (D)) → Lq/2(Ξ,A,P) given

by J (u) := (1/2)‖ιu − ud‖
2
L2(D) is continuous for q ∈ [2,∞); cf. [37, Example 3.2 and Theorem

3.5]. Combined with the continuity of S̃, we find that J ◦ S̃ : H−1(D) → Lq/2(Ξ,A,P) is well-
defined and continuous for q ∈ [2,∞), yielding the continuity of F with p = q/2. Having verified
Assumption 10 for p ∈ [1,∞), we can apply Theorem 11, which in turn yields the consistency of
empirical approximations of (16).

5 Conclusion

We have seen that consistency results, in particular, norm consistency of empirical minimizers
for nonconvex, risk-averse stochastic optimization problems involving infinite dimensional decision
spaces are in fact available. The central property on which the entire discussion depends is the
ability to draw compactness from the structure of the objective function. As the examples illustrate,
this is much more the rule rather than the exception. In fact, even in examples such as topology
optimization, [8], where the decision variable enters the PDE in a nonlinear fashion, the required
use of either filters or other regularization strategies, see e.g. [41, 70], also provides compactness.

There remain many open challenges. These include applications to multistage or dynamic
problems, large deviation results for optimal values and solutions, and central limit theorems. In
many instances, the known techniques are limited by nonsmoothness of the risk measure R and
the infinite dimensional decision spaces. However, the main result in this text, Theorem 11, is
a first major step and an essential tool towards verifying the convergence of numerical optimiza-
tion methods that make use of empirical approximations. Moreover, for numerical computations,
the decision spaces of infinite dimensional risk-averse optimization problems must typically be dis-
cretized. Therefore, in a practical setting, these problems have the additional challenge that the
numerically computed estimators are generally dependent on both the sample size N and addi-
tional spacial discretization parameters. As initial contributions for risk-neutral PDE-constrained
problems [30, 45] demonstrate, an infinite dimensional consistency analysis provides an important
component in the numerical analysis of these challenging optimization problems.
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A Law of Large Numbers for Risk Functionals

We generalize the epigraphical law of large numbers for law invariant risk function established
in Theorem 3.1 in [66] to allow for random lower semicontinuous functions defined on complete,
separable metric spaces instead of R

n. The proof of Theorem 3.1 provided in [66] generalizes
to this more general setting with only a few notational changes needed. Nevertheless, we verify
the liminf-condition of epiconvergence using ideas from the proof of Proposition 7.1 in [60]. The
limsup-condition is established as in [66].

Assumption 20. Let (Ω,F , P ) be a nonatomic, complete probability space, and let (Θ,Σ,M) be
a complete probability space. Let ζ : Ω → Θ be a random element with distribution M and let
ζ1, ζ2, . . . defined on a complete probability space (Ω′,F ′, P ′) be independent identically distributed
Θ-valued random elements each having the same distribution as that of ζ. Let (V, dV ) be a complete,
separable metric space and let 1 ≤ p <∞.

(R1) The function Ψ : V ×Θ → R is random lower semicontinuous.

(R2) For each v ∈ V , Ψv(·) := Ψ(v, ·) ∈ Lp(Θ,Σ,M).

(R3) For each v̄ ∈ V , there exists a neighborhood Vv̄ ⊂ V of v̄ and a random variable h ∈
Lp(Θ,Σ,M) such that Ψ(v, ·) ≥ h(·) for all v ∈ Vv̄.

Theorem 21 is as Theorem 3.1 in [66] but allows for complete, separable metric spaces V instead
of Rn. Let ρ : Lp(Ω,F , P ) → R be a law invariant risk measure and let Assumption 20 hold true. Let
v ∈ V and let Ĥv,N (·;ω

′) be the empirical distribution function of Ψ(v, ζ1(ω′)), . . . ,Ψ(v, ζN (ω′)).

Moreover, let Ĥ−1
v,N (·;ω

′) be its quantile function. We define φ̂N : V × Ω′ → R and φ : V → R by

φ̂N (v, ω
′) := ρ(Ĥ−1

v,N (G(·);ω
′)) and φ(v) := ρ(Ψv(ζ)) = ρ(Ψv(ζ(·))). Here G : Ω → [0, 1] is a random

variable with uniform distribution ν as discussed in Section 2.1. We often omit writing the second
argument of φ̂N .

Theorem 21. If Assumption 20 holds and ρ : Lp(Ω,F , P ) → R is a law invariant, convex risk
measure, then φ is lower semicontinuous and finite-valued, and φ̂N epiconverges to φ w.p. 1 as
N → ∞.

Before establishing Theorem 21, we formulate a law of large numbers with respect to Mosco-
epiconvergence.

Corollary 22. Let Y0 ⊂ Y be a closed subset of a separable Banach space Y and let W0 be a
nonempty, closed, convex subset of a reflexive, separable Banach space W . Let the hypotheses of
Theorem 21 hold with V = Y0. Suppose that B : W → Y is linear and completely continuous with
B(W0) ⊂ Y0. Then φ̂N ◦B : W0 → R Mosco-epiconverges to φ ◦B : W0 → R w.p. 1 as N → ∞.

Proof. Theorem 21 ensures that φ̂N epiconverges to φ w.p. 1 as N → ∞. Since W0 defines a
complete separable metric space, B(W0) ⊂ Y0, and B is continuous, Theorem 21 further ensures
that φ̂N ◦B epiconverges to φ◦B w.p. 1 as N → ∞. Combined with Proposition 9 and the complete
continuity of B, we conclude that φ̂N ◦B Mosco-epiconverges to φ ◦B w.p. 1 as N → ∞.

As already mentioned, the proof of Theorem 21 presented in [66, Thm. 3.1] for V = R
n can be

generalized to the above setting without much effort. A key result for establishing Theorem 21 is
Theorem 23. To formulate Theorem 23, let X ∈ Lp(Ω,F , P ) be a random variable and X1,X2, . . .
defined on a complete probability space (Ω′,F ′, P ′) be independent identically distributed real-
valued random variables each having the same distribution as that of X. Moreover, let ĤN(·;ω

′)
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be the empirical distribution function of the sample X1(ω
′), . . . ,XN (ω

′), and Ĥ−1
N (·;ω′) be its

quantile function.

Theorem 23 (see [66, Thm. 2.1] and [68, Thm. 9.65]). If (Ω,F , P ) is complete and nonatomic,
1 ≤ p <∞, and ρ : Lp(Ω,F , P ) → R is a law invariant, convex risk measure, then ρ(ĤN ) converges
to ρ(X) w.p. 1 as N → ∞.

Proof. We present a proof somewhat different from that in [66]. Fix ω′ ∈ Ω′. Using a change of
variables and the fact that G : Ω → [0, 1] has uniform distribution ν, we obtain

∫

Ω
|Ĥ−1

N (G(ω);ω′)−H−1
X (G(ω))|pdP (ω) =

∫ 1

0
|Ĥ−1

N (q;ω′)−H−1
X (q)|pdP ◦G−1(q)

=

∫ 1

0
|Ĥ−1

N (q;ω′)−H−1
X (q)|pdν(q).

Since 1 ≤ p < ∞, X ∈ Lp(Ω,F , P ) and X1,X2, . . . defined on (Ω′,F ′, P ′) are independent iden-
tically distributed each with the same distribution as that of X, the latter integral converges
P ′-almost surely to zero as N → ∞; see [54, Cor. on p. 48], [52, Cor. 3], [53, Cor. 3 on p. 666].
Since ρ : Lp(Ω,F , P ) → R is a real-valued convex risk measure, it is continuous [61, Cor. 3.1]. We
obtain for almost every ω′ ∈ Ω′, ρ(Ĥ−1

N (G(·);ω′)) → ρ(H−1
X (G(·))) as N → ∞. Combined with

ρ(X) = ρ(H−1
X (G(·))) and ρ(ĤN ) = ρ(Ĥ−1

N (G(·))), we obtain the assertion.

Proof of Theorem 21. The fact that φ is finite-valued and lower semicontinuous can be established
as in the proof of Theorem 3.1 in [66]. To establish the epiconvergence, we make use of the
constructions made in the proof of Proposition 7.1 in [60]. Proposition 7.1 in [60] establishes
epiconvergence in case that ρ(·) = E[·], but without assuming (Ω,F , P ) be nonatomic. Let E ⊂ V
be a countable dense subset of V and Q+ be the nonnegative rational numbers. For v ∈ V and
r ∈ [0,∞), we define πv,r on Θ by

πv,r(θ) := inf
w∈B(v,r)

Ψ(w, θ) if r > 0 and πv,0(θ) := Ψ(v, θ) if r = 0,

where B(v, r) := {w ∈ V : dV (w, v) < r}. Theorem 3.4 in [35], (R1), and (R2) ensure that πv,r is
an extended real-valued random variable for each v ∈ V and r ≥ 0. Combined with (R3), we find
that for every v ∈ E , there exists a neighborhood Vv ⊂ V of v and rv ∈ (0,∞) such that

B(v, rv) ⊂ Vv and πv,r(·) ∈ L
p(Θ,Σ,M) for all r ∈ [0, rv ] ∩Q+.

Let H̃v,r,N (·;ω
′) be the empirical distribution function of πv,r(ζ

i(ω′)), i = 1, . . . , N , and let
H̃−1
v,r,N (·;ω

′) be its quantile function. For every v ∈ E and r ∈ [0, rv ]∩Q+, Theorem 23 ensures that

ρ(H̃−1
v,r,N (G; ·)) → ρ(πv,r(ζ)) w.p. 1 as N → ∞. Since {(v, r) : r ∈ [0, rv ] ∩Q+, v ∈ E} is countable,

there exists Ω′
0 ⊂ Ω′ with Ω′

0 ∈ F ′ and P ′(Ω′
0) = 1 such that

ρ(H̃−1
v,r,N (G;ω

′)) → ρ(πv,r(ζ)) as N → ∞ for all ω′ ∈ Ω′
0 and r ∈ [0, rv ] ∩Q+, v ∈ E .

Now, we verify the liminf-condition of epiconvergence. Fix v ∈ V and fix vN → v as N → ∞.
There exist zℓ ∈ E with zℓ → v as ℓ → ∞, rℓ ∈ (0, rv ] ∩Q+ with rℓ → 0, and for each ℓ ∈ N, there
exists N̄(ℓ) ∈ N such that

v ∈ B(zℓ+1, rℓ+1) ⊂ B(zℓ, rℓ), and vN ∈ B(zℓ, rℓ) for all N ≥ N̄(ℓ).
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Fix ℓ ∈ N. For all N ≥ N̄(ℓ) and ω′ ∈ Ω′
0, Theorem 6.50 in [68] when combined with the fact

that ρ is law invariant and monotone ensures

φ̂N (vN , ω
′) = ρ(Ĥ−1

vN ,N
(G;ω′)) ≥ ρ(H̃−1

zℓ,rℓ,N
(G;ω′)). (19)

Moreover, for all ω′ ∈ Ω′
0,

ρ(H̃−1
zℓ,rℓ,N

(G;ω′)) → ρ(πzℓ,rℓ(ζ)) as N → ∞. (20)

Since v ∈ B(zℓ+1, rℓ+1) ⊂ B(zℓ, rℓ), we have πzℓ,rℓ ≤ πzℓ+1,rℓ+1
≤ πv,0. For all ℓ ∈ N and θ ∈ Θ,

the lower semicontinuity of Ψ(·, θ) (see (R1)) ensures πzℓ,rℓ(θ) ր πv,0(θ) = Ψ(v, θ) as ℓ → ∞ [35,
p. 432]. Thus πv,0 − πz1,r1 ≥ πv,0 − πzℓ+1,rℓ+1

≥ 0 for all ℓ ∈ N. Consequently, |πv,0 − πz1,r1 |
p ≥

|πv,0 − πzℓ+1,rℓ+1
|p. Since πz1,r1(ζ), πv,0(ζ) ∈ Lp(Ω,F , P ), the dominated convergence theorem

implies πzℓ,rℓ(ζ) → πv,0(ζ) as ℓ → ∞ in Lp(Ω,F , P ). Using the fact that the risk measure ρ is
real-valued and convex, it follows that ρ is continuous [61, Cor. 3.1] and monotone. Consequently,
ρ(πzℓ,rℓ(ζ)) ր ρ(πv,0(ζ)) = φ(v) as ℓ → ∞. Combined with (19) and (20), we find that for all
ω′ ∈ Ω′

0,

lim inf
N→∞

φ̂N (vN , ω
′) ≥ φ(v).

Now, we verify the limsup-condition of epiconvergence using the arguments in [66]. Since
φ is defined on a separable metric space, finite-valued and lower semicontinuous, there exists a
countable set D ⊂ V such that for each v ∈ V , there exists a sequence (vk) ⊂ D such that vk → v
and φ(vk) → φ(v) as k → ∞ [74, Lem. 3]. Since D is countable, Theorem 23 ensures the existence
of Ω′

1 ⊂ Ω′ with Ω′
1 ∈ F ′ and P ′(Ω′

1) = 1 such that for each v ∈ D and all ω′ ∈ Ω′
1, we have

φ̂N (v, ω
′) → φ(v). Fix v ∈ V and let (vk) ⊂ D be a sequence such that vk → v and φ(vk) → φ(v) as

k → ∞. We now proceed with a diagonalization argument (see, e.g., Corollary 1.16 or 1.18 in [3]).
For each k ∈ N and every ω′ ∈ Ω′

1, we have φ̂N (vk, ω
′) → φ(vk) as N → ∞. Moreover φ(vk) → φ(v)

as k → ∞. Consequently, for each ω′ ∈ Ω′
1, there exists a mapping N ∋ N 7→ kω′(N) ∈ N increasing

to ∞ such that φ̂N (vkω′(N), ω
′) → φ(v) as N → ∞. Since vk → v as k → ∞, we further have

vkω′(N) → v as N → ∞ for each ω′ ∈ Ω′
1. Combining the derivations, we have shown that for

each ω′ ∈ Ω′
1 and every v ∈ V , there exists a sequence (vkω′(N)) converging to v as N → ∞ and

φ̂N (vkω′ (N), ω
′) → φ(v) as N → ∞. Since Ω′

0∩Ω′
1 ∈ F ′ and P ′(Ω′

0∩Ω′
1) = 1, we have demonstrated

the almost sure epiconvergence of φ̂N to φ.

B Law Invariance of AVaRε
β and σ

ε
β

Both AVaRεβ defined in (11) and σεβ given in (12) are optimized certainty equivalents in the sense of
[7], i.e. they are fully characterized by convex, continuous scalar regret functions vepi,ε, vs,ε : R → R

such that for each X ∈ L2(Ω,F , P ),

AVaRεβ[X] = inf
t∈R

{ t+ E[vepi,ε(X − t)] },

σεβ[X] = inf
t∈R

{ t+ E[vs,ε(X − t)] },

where ε > 0, vs,ε(x) := (1− β)−1(x)+ε , and

vepi,ε(x) :=





− ε
2 if x ∈ (−∞,−ε],

1
2εx

2 + x if x ∈
(
− ε, εβ

1−β

)
,

1
1−β

(
x− εβ2

2(1−β)

)
otherwise.
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The fact that AVaRεβ can be expressed in the above form has been demonstrated in Example 2 on
p. 778 in [38].

It is not essential for the underlying probability space to be nonatomic for the law invariance
of these functionals. Indeed, start by letting v : R → R be continuous and hence, measurable. For
each X ∈ L2(Ω,F , P ) and t ∈ R, let v(X−t) be integrable, which is the case for both vepi,ε and vs,ε.
Let X1, X2 ∈ L2(Ω,F , P ) be distributionally equivalent with respect to P . Since the distribution
functions of X1 and X2 are equal and each distribution function uniquely determines a probability
law on R [10, Thm. 12.4], it holds that P ◦X−1

1 = P ◦X−1
2 . For all t ∈ R, we have

E[v(X1 − t)] =

∫

Ω
v(X1(ω)− t)dP (ω) =

∫

R

v(x− t)dP ◦X−1
1 (x)

=

∫

R

v(x− t)dP ◦X−1
2 (x) =

∫

Ω
v(X2(ω)− t)dP (ω) = E[v(X2 − t)].

Hence, AVaRεβ and σεβ are law invariant. As a result, a large class of risk measures/optimized
certainty equivalents are law invariant.
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