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Abstract. We present an analysis and numerical study of an optimal control problem for the
Landau-de Gennes (LdG) model of nematic liquid crystals (LCs), which is a crucial component in
modern technology. They exhibit long range orientational order in their nematic phase, which is rep-
resented by a tensor-valued (spatial) order parameter Q = Q(x). Equilibrium LC states correspond
to Q functions that (locally) minimize an LdG energy functional. Thus, we consider an L2-gradient
flow of the LdG energy that allows for finding local minimizers and leads to a semi-linear parabolic
PDE, for which we develop an optimal control framework. We then derive several a priori estimates
for the forward problem, including continuity in space-time, that allow us to prove existence of op-
timal boundary and external “force” controls and to derive optimality conditions through the use
of an adjoint equation. Next, we present a simple finite element scheme for the LdG model and a
straightforward optimization algorithm. We illustrate optimization of LC states through numerical
experiments in two and three dimensions that seek to place LC defects (where Q(x) = 0) in desired
locations, which is desirable in applications.
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1. Introduction. Liquid crystals (LCs) are a critical material for emerging tech-
nologies [20, 37]. Their response to optical [8, 28, 53, 34, 18], electric/magnetic
[14, 1, 51], and mechanical actuation [63, 21, 7, 48] has already yielded various devices,
e.g. electronic shutters [32], novel types of lasers [35, 16], dynamic shape control of
elastic bodies [15, 58], and others [46, 40, 55, 59, 57]. In fact, [60] demonstrate that
LCs can enable logic operations within soft matter, which can lead to creating auton-
omous active materials with the capability to make decisions. Thus, optimization of
LC devices in these applications is of obvious interest.

LCs are considered a meso-phase of matter in which its ordered macroscopic
state is between a spatially disordered liquid, and a fully crystalline solid [56]. In their
nematic phase, in which long ranged orientational order exists, the Landau-de Gennes
(LdG) theory introduces a tensor-valued function Q to describe local order in the LC
material. In particular, the eigenframe of Q yields information about the statistics
of the distribution of LC molecule orientations; see [56, Sec. 1.3] for an excellent
derivation. The energy functional for Q, which is minimized at equilibrium, involves
both a bulk potential, of “double-well” type, and an elastic contribution involving
the derivatives of Q. Often, an L2-type gradient flow is used to compute (local)
minimizers of the LdG energy functional.

The goals of this paper are to formulate an optimal control problem for the L2-
gradient flow of the LdG energy, derive several analytical results, and demonstrate the
ability to optimize LC behavior with numerical simulations. To the best of our knowl-
edge, a fully fledged, PDE-based, optimal control formulation of the LdG model of
LCs has not been done before. Utilizing both boundary controls and external “force”
controls, we prove existence of optimal controls for the LdG model. In addition, we
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2 T. M. SUROWIEC AND S. W. WALKER

show several numerical experiments, of tracking control type, that seek to place LC
defects in desired locations. Defects correspond to sudden spatial changes in Q and
are discussed more thoroughly in section 7; also see [39] for an introduction to defects
in mathematical models of liquid crystals. Our method should be useful for optimizing
LC devices in a variety of applications.

The paper is organized as follows. Section 2 explains the LdG model and the
associated optimal control problem, as well as discuss related work on the Allen-Cahn
equation. The well-posedness of the parabolic PDE coming from the L2-gradient flow
of the LdG energy is established in section 3 along with several analytical results.
Existence of optimal controls is shown in section 4 and first order optimality con-
ditions are established in section 5. Section 6 describes our finite element method
for approximating the forward and adjoint problems; see [2, 19, 47, 5, 9, 38, 61] for
other numerical methods for models related to LdG. We illustrate our method with
numerical experiments in section 7 and close with some remarks in section 8.

2. Liquid Crystal Theory. This section reviews the Landau-de Gennes (LdG)
theory for a nematic phase. We start with the following clarifications.

First, we note that the minimization of the standard free energy of the LdG
model gives rise to a semilinear elliptic partial differential equation (PDE), which
admits multiple solutions. Theoretically, this semilinear equation could be included
as a constraint in an optimization problem. However, there is no guarantee that
the second derivative of the LdG free energy functional is surjective. This would
significantly complicate the derivation of optimality conditions and severely limit the
convergence theory of numerical optimization algorithms. To remedy these issues, we
will consider an evolution equation, which amounts to an L2-gradient flow of the LdG
free energy. This time-dependent control strategy is analyzed in subsequent sections.

The second point of clarification involves the bulk potential used to model the
nematic-to-isotropic phase transition ψ̃. In the discussion below, we will first introduce
a traditional double well function and derive an associated evolution equation. For
mathematical reasons, we then modify this term beyond physically meaningful values
of |Q|.

Notation. We typically denote scalars and vectors with lowercase letters, while
tensors are denoted with uppercase letters. Boldface capital letters typically denote
vector spaces or function spaces. Standard notation is used for Sobolev spaces and
inner products.

2.1. Landau-de Gennes Model. Let S be the space of symmetric, d× d ten-
sors, and S0 the set of symmetric, traceless d × d tensors, where d = 2 or 3. The
order parameter of the LdG theory is given by Q ∈ S0, which represents the sta-
tistical distribution (i.e. a covariance matrix) of LC molecules at a given point in
space [56]. This means that the eigenvalues λi(Q) should satisfy the following bound:
−1/d ≤ λi(Q) ≤ (d − 1)/d for i = 1, ..., d. In the standard model discussed below,
the eigenvalue bounds are not explicitly enforced, though they are usually satisfied
through the effect of the double-well (c.f. [41]).

We mainly focus on the d = 3 case, and represent the state of the LC material by
a tensor-valued function Q : Ω→ S0, where Ω ⊂ R3 is the physical domain of interest.
Moreover, we take Ω to be an open, bounded, Lipschitz domain with boundary Γ,
and outward unit normal ν; the normal derivative is denoted ∂ν . The standard free
energy of the LdG model is defined as [43, 44]:
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E [Q] :=

∫
Ω

W (Q,∇Q) dx+
1

η2
dw

∫
Ω

ψ̃(Q) dx+ ηΓ

∫
Γ

fΓ(Q) dS(x)−
∫

Ω

χ(Q) dx,

(2.1)

where W (Q,∇Q) is the elastic energy density [43, 44]. Since optimal control of the
Landau-de Gennes model has yet to be developed, we simplify W (Q,∇Q) to the
one-constant model, i.e. W (Q,∇Q) = 1

2 |∇Q|
2. Future extensions of this work will

consider more general elastic energies.
The bulk potential ψ̃ models the nematic-to-isotropic phase transition. It is a

(non-symmetric) double-well type of function that is typically given by

ψ̃(Q) = a0 −
a2

2
tr(Q2)− a3

3
tr(Q3) +

a4

4

(
tr(Q2)

)2
, ψ̃ ≥ 0,(2.2)

where a2, a3, a4 are material parameters. The choice of constants affects the stability
of the nematic phase. Since we are only interested in the nematic phase, a2, a3, a4 are
positive, and a0 is a convenient positive constant to ensure ψ̃ ≥ 0. Stationary points
of ψ̃ are either uniaxial or isotropic [41], i.e. if Q is uniaxial, then it corresponds to

Qij = s0 (ninj − δij/3) , for 1 ≤ i, j ≤ 3,(2.3)

where s0 > 0 depends on ψ̃, [ni]
3
i=1 ≡ n ∈ R3 is a unit vector, and δij is the Kronecker

delta; Q = 0 is the isotropic state. The parameter ηdw > 0, appearing in (2.1), is
known as the nematic correlation length, and usually satisfies ηdw � 1.

The surface energy fΓ(Q), with parameter ηΓ > 0, accounts for weak anchoring of
the LC material at the boundary, i.e. it imposes an energetic penalty on the boundary
conditions for Q. In this paper, we use a Rapini-Papoular type anchoring energy [4]:

fΓ(Q) =
1

2
tr (Q− UΓ)

2 ≡ 1

2
|Q− UΓ|2,(2.4)

where UΓ : Γ → S0 and we take UΓ to be one of the control variables in the optimal
control problem stated in subsection 2.2. The function χ(·) is used to (approximately)
model interactions of the LC material with external fields, e.g. an electric field. In
this paper, we take χ(Q) = Q : UΩ, where UΩ : Ω→ S0 is also a control variable.

Local minimizers of the energy E [Q] can be found through an L2 gradient flow,
which can be thought of as a simple damped, evolutionary LdG model. This leads to
the following parabolic equation for Q in strong form:

Qt −∆Q+
1

η2
dw

̂̃
ψ′(Q) = ηΩUΩ, in Ω× (0, tf),(2.5a)

∂νQ+ ηΓQ = ηΓUΓ, on Γ× (0, tf),(2.5b)

Q(·, 0) = Q0, in Ω,(2.5c)

where M̂ denotes the traceless part of a symmetric tensor M , Q0 : Ω → S0 is the
initial condition, and tf > 0 is a given final time. The system (2.5) can be viewed as
a tensor-valued analog of the Allen-Cahn equation with Robin boundary conditions.
Taking ηΓ →∞ recovers strong anchoring, i.e. the Dirichlet condition Q = UΓ on Γ.
In this paper, ηΓ > 0 is fixed and finite.

The first and second derivatives of ψ̃ are a 2-tensor and 4-tensor, respectively:

ψ̃′(Q) = −a2Q− a3Q
2 + a4 tr(Q2)Q,

[ψ̃′′(Q)]ijkl = −a2δikδjl − 2a3Qjkδli + a4

(
2QijQkl + tr(Q2)δikδjl

)
,

(2.6)
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4 T. M. SUROWIEC AND S. W. WALKER

where the second derivative is written with indices for clarity. In addition, for ana-
lytical purposes, we modify the bulk potential to have quadratic growth as |Q| → ∞.
For instance, let ρ : [0,∞)→ R+ be a C∞ cut-off function such that

ρ(r) = 1, if r < b1, ρ(r) = monotone, if b1 ≤ r ≤ b2, ρ(r) = 0, if r > b2,

where 1 ≤ b1 < b2 are two fixed constants. Then, the modified potential is given by

ψ(Q) = ψ̃(Q)ρ(tr(Q2)) + a2
4tr(Q2)

[
1− ρ(tr(Q2))

]
,(2.7)

which will be used throughout the remainder of the paper. Clearly, there exist uniform
constants c0, c1, c2, depending on a0, a2, a3, a4, b1, b2, such that

|ψ(Q)| ≤ a0 + c0|Q|2, |ψ′(Q)| ≤ c1|Q|, |ψ′′(Q)| ≤ c2, for all Q ∈ S0,(2.8)

noting that |Q|2 ≡ tr(Q2). For typical choices of the physical constants in (2.2),
choosing b1 = 1 and b2 = 2 is effective since this modification does not change the
location of the local minimizers. In addition to (2.8) we observe that ψ′′ is globally
Lipschitz with uniformly bounded derivative ψ′′′(Q) for all Q ∈ S0.

In addition, we will often make use of the convex splitting

ψ(Q) ≡
[
(d2/2)tr(Q2) + ψ(Q)

]
− (d2/2)tr(Q2) =: ψc(Q)− ψe(Q),(2.9)

where ψc, ψe are non-negative convex functions with d2 > 0 (i.e. a “stabilization”
constant) chosen sufficiently large to ensure a convex split. In particular, we note
that ψ′c(Q) and ψ′e(Q) are monotone functions and there is a constant 0 < d̃2 < d2

such that, for d2 sufficiently large, ψc(Q) satisfies the lower bounds:

ψc(Q) ≥ a0 +
d̃2

2
|Q|2, ψ′c(Q) : Q ≥ d̃2|Q|2, P : ψ′′c (Q) : P ≥ 3d̃2|P |2.(2.10)

Henceforth, we take all constants to be non-dimensional; see [24] for a detailed
treatment of how the LdG model is non-dimensionalized.

2.2. Optimal control problem. We formulate an optimal tracking control
problem for the LdG model. The following Sobolev spaces are used throughout:

V := H1(Ω;S0), H := L2(Ω;S0), HΓ := L2(Γ;S0),

where each space is endowed with its respective natural norm. For every t ∈ (0, tf ],
the space-time cylinder and boundary are defined as

Ct := Ω× (0, t), C ≡ Ctf , Gt := Γ× (0, t), and G ≡ Gtf .(2.11)

Next, we introduce target functions:

ZC ∈ L2(C), ZG ∈ L2(G), Ztf ∈ H1(Ω).(2.12)

In contrast to optimal control problems with scalar or vector-valued controls, the
bound constraints used to defined the set of admissible controls Uad are slightly more
complicated. These are discussed below.

We now define the optimal control problem: minimize the functional

J(Q,UΩ, UΓ) :=
βC
2
‖Q− ZC‖2L2(C) +

βG
2
‖Q− ZC‖2L2(G)

+
βtf
2
‖Q(·, tf)− Ztf‖2H +

αC
2
‖UΩ‖2L2(C) +

αG
2
‖UΓ‖2H1(0,tf ;HΓ),

(2.13)
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over a set of admissible controls (UΩ, UΓ) ∈ Uad ⊂ L2(C) × L2(G), subject to Q
satisfying the PDE constraint (2.5). The coefficients satisfy βC , βG , βtf , αC , αG ≥ 0,
where at least one of βC , βG , βtf is nonzero, and αC , αG > 0. Tracking objectives as in
(2.13) are ubiquitous in optimal control. For our application, the final two summands
are quadratic cost functionals that force a certain regularity. The first two terms
represent the desire to track a transition of targeted textures ZC , whereas the third
summand Ztf is a desired stationary texture. Nematic textures correspond to director
orientations associated with Q at each point x in the domain. Therefore, a desired
texture Ztf could be one in which all directors are oriented in the same direction, e.g.,
parallel to a surface, or in which the directors follow a particular pattern.

In practice, the available control mechanisms may be technically limited, e.g.,
finite dimensional, stationary or only on the boundary. We include distributed controls
in the bulk and boundary here for more generality. Restrictions to the cases just
mentioned would not change the core of the analysis. The control set Uad is always
taken to be nonempty, closed, and convex. An example of such a set is

Uad :=
{
P ∈ L2(C) | |P | ≤ uΩ, a.e. in C

}
×
{
P ∈ H1(0, tf ;HΓ) | |P | ≤ 1, a.e. in G

}
.

(2.14)

Here, uΩ may be an arbitrary, essentially bounded scalar-valued function on C. The
constant bound 1 for the boundary controls is in fact dictated by the application
(recall the eigenvalue bounds discussed in subsection 2.1). Note that if UΓ is constant
in time, then the H1(0, tf ;HΓ) space is replaced by HΓ, and the αG term in (2.13)
becomes an HΓ norm. In most applications, boundary controls are constant in time.
Allowing the boundary control to vary in time is mainly for the sake of generality.

Due to the similarities of (2.5) with the Allen-Cahn equation, there are a wide
array of relevant contributions in the literature, where optimal control of Allen-Cahn
and related equations, e.g., Cahn-Hilliard, have been studied. We highlight here
several early studies [33, 30, 31], which focused on the optimal control of Cahn-Hilliard
(phase field problems of Caginalp-type); more recent work [26, 27], in which the author
studied the optimal control of scalar- and vector-valued Allen-Cahn equations with
a nonsmooth bulk energy term (obstacle potential), and [17]. In some sense, [17]
is the most relevant. However, there are several major differences. Our boundary
condition has no diffusive term, because it is not clear how that would manifest in
an LC system, which thus affects our solution’s regularity. Moreover, we are dealing
with a parabolic system with tensor-valued solutions and controls; the PDE in [17] is
scalar-valued. This affects several arguments needed to derive first-order optimality
conditions and greatly increases the difficulty for numerical methods.

3. Well-posedness of the forward problem. To prove well-posedness of
(2.5), we start with the usual arguments (cf. [25]). The minimal regularity of the
data is given by

(3.1) UΩ ∈ L2(0, tf ;H), UΓ ∈ H1(0, tf ;HΓ) Q0 ∈ V,

and the space of weak solutions we consider is

(3.2) W := L∞(0, tf ;V) ∩ L∞(0, tf ;HΓ) ∩H1(0, tf ;H) ∩ L2(0, tf ;V).

Remark 3.1. Since tf is finite and L∞(0, tf ;V) is continuously embedded into
L2(0, tf ;V), the fourth space in the definition of W is redundant. However, we keep
it as written to emphasize that the L∞(0, tf ;V) and L2(0, tf ;V) norms are utilized at
different points in the analysis.

This manuscript is for review purposes only.



6 T. M. SUROWIEC AND S. W. WALKER

Our notion of weak solution is as follows. We say Q ∈ W is a weak solution of
(2.5), if Q(0) ≡ Q(·, t)|t=0 = Q0, and for a.e. s ∈ (0, tf), we have

(Qt(s), P (s))H + (∇Q(s),∇P (s))H +
1

η2
dw

(ψ′(Q(s)), P (s))H

+ηΓ (Q(s), P (s))HΓ
= ηΓ (UΓ(s), P (s))HΓ

+ ηΩ (UΩ(s), P (s))H ,

(3.3)

for all P ∈ H1(0, tf ;H) ∩ L2(0, tf ;V) with P (0) = 0, where we introduced the inner
products on H and HΓ, respectively.

The solutions of the forward problem (3.3) are tensor-valued in space. There is
little work on such problems in the control literature. Nevertheless, in many instances,
we can exploit the Hilbert space structure on V or H and extend the derivations of
typical energy estimates and Lipschitz continuity results. As a consequence, the proofs
of any results that follow the corresponding scalar or vector-valued cases without
major changes have been drastically shortened and placed in the appendix.

3.1. Uniqueness of the state and a Lipschitz bound. Under the assump-
tion that solutions Q with the appropriate regularity exist, we can prove Lipschitz
continuity with respect to the input controls and therefore, a fortiori, uniqueness of so-
lutions. Existence of solutions ultimately follows from a standard Galerkin approach.

Theorem 3.2 (Continuous dependence on the data). Let Q1, Q2 ∈ W be two
solutions of (3.3) corresponding to the input variables UΩ,i, UΓ,i, Q0,i, for i = 1, 2,
which satisfy (3.1). Then there exists a constant c > 0, independent of the input
variables, such that

(3.4) ‖Q1 −Q2‖2C([0,tf ];H) + ‖Q1 −Q2‖2L2(0,tf ;V)

≤ c
(
‖Q0,1 −Q0,2‖2V + ηΩ‖UΩ,1 − UΩ,2‖2L2(C) + ηΓ‖UΓ,1 − UΓ,2‖2H1(0,tf ;HΓ)

)
.

Remark 3.3. We use c > 0 as a generic constant throughout the text. We also
note that the state space W can be compactly embedded into the space C([0, tf ];H).

Proof. The result follows by standard energy techniques, i.e. first test with the
difference of solutions. The lack of a monotone nonlinear operator is handled using
the convex splitting (2.9), which exploits the linear growth of ψ′e. Afterwards, we
apply weighted Young’s inequalities and the classic Gronwall lemma. We omit the
details.

3.2. Existence and Energy Estimates. This section is concerned with the
existence of weak solutions. We use a Faedo-Galerkin approach, for which we require
the following assumption. This condition will be tacitly assumed throughout the
remainder of the text.

Assumption 3.4. For each n ∈ N (sufficiently large) there is an n-dimensional
subspace Vn of V such that if {Yk}nk=1 is the basis of Vn and Πn : V → Vn is
the linear projection onto Vn, then Πn satisfies the following convergence property:
‖ΠnP − P‖V → 0, as n→∞, for all P ∈ V.

Typically Vn is based on the eigenvectors of the Laplacian associated to (in this
case) homogeneous Robin boundary conditions. As another example, when Ω has a
piecewise C2 boundary, Vn can be a conforming finite element space with n nodal
degrees-of-freedom defined over a conforming (curvilinear) mesh of Ω. Next, we define
Qn0 := ΠnQ0, which under Assumption 3.4 means Qn0 converges strongly to Q0 in V ,
as n→ +∞. Set Qn0,k := (Q0, Yk)H for each k = 1, . . . , n.

This manuscript is for review purposes only.
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3.2.1. Existence of a discrete solution in H1(0, tf ;Vn). We start with the
existence of unique solutions to the semi-discrete system.

Proposition 3.5. There exists a unique solution Qn ∈ H1(0, tf ;Vn) such that

(3.5)
(Qnt (s), P )H + (∇Qn(s),∇P )H + ηΓ (Qn(s), P )HΓ

+
1

η2
dw

∫
Ω

ψ′(Qn(s)) : P

= ηΩ (UΩ(s), P )H + ηΓ (UΓ(s), P )HΓ
,

for all P ∈ Vn and for a.e. s ∈ (0, tf), with Qn(0) = Qn0 .

Proof. The proof involves a standard application of the Carathéodory existence
theorem, i.e. (3.5) reduces to a system of coupled ODEs, for which existence and
uniqueness is straightforward to show.

3.2.2. A priori estimates. Given the existence of finite dimensional solutions,
we now consider energy estimates. Let M1 : R3 → R be given by M1(x1, x2, x3) =
c(x1 +ηΩx2 +ηΓx3). For readability, we will often leave off the arguments of M1 when
it is clear in context; c > 0 is a generic constant that can be updated as needed. It
will never depend on n, the controls, or the input data.

Proposition 3.6. Suppose that Q0, UΩ, UΓ satisfy (3.1). Then for all n ∈ N, the
solutions Qn from Proposition 3.5 satisfy the bound

(3.6) ‖Qn‖2L2(0,tf ;V) ≤M1(‖Q0‖2H, ‖UΩ‖2L2(C), ‖UΓ‖2L2(G)).

Proof. The result follows by similar energy techniques as in the proof of Theo-
rem 3.2; we omit the details.

By exploiting the Hilbert space structure and the nature of the finite dimensional
inner products, we can again use standard derivation techniques to derive further
energy estimates and ultimately prove that the sequence of finite dimensional solutions
is bounded in W. To indicate the dependence of the bound on the controls, we define
M2 : R4 → R by M2(x1, x2, x3, x4) = (1/2) (δ1x1 + δ2x2 + δ3x3 + δ4x4). The positive
constants δ1, . . . , δ4 are arbitrary and can be adjusted as needed. Given input controls,
we leave off the arguments and abbreviate both M1 and M2 by setting

M1 ≡M1(‖Q0‖2H, ‖UΩ‖2L2(C), ‖UΓ‖2L2(G)),

M2 ≡M2(‖UΓ(t)‖2HΓ
, ‖UΓ(0)‖2HΓ

, ‖(UΓ)t‖2L2(Gt), ‖UΩ‖2L2(Ct)).

Proposition 3.7. Suppose that Q0, UΩ, UΓ satisfy (3.1). Then there exists an
M0 ≥ 0 for all n such that

(3.7) ‖∇Qn0‖2H +
1

η2
dw

∫
Ω

ψc(Q
n
0 )− 1

η2
dw

∫
Ω

ψe(Q
n
0 ) + δ′2‖Qn0‖2HΓ

≤M0,

holds. Up to rescaling by a generic constant, it also holds for all n a.e. in t that

(3.8) ‖Qnt ‖2L2(Ct) + ‖∇Qn(t)‖2H + ‖Qn(t)‖2HΓ
≤M0 +M1 +M2.

Furthermore, up to rescaling by a generic constant, it holds for all n a.e. in t that

(3.9) ‖Qnt ‖2L2(Ct) + ‖∇Qn(t)‖2H + ‖Qn(t)‖2H ≤M0 +M1 +M2.

Finally, as a consequence of (3.8), (3.9), and (3.6), the sequence of solutions {Qn},
with Qn from Proposition 3.5, is bounded in W.

Proof. See Appendix A.
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8 T. M. SUROWIEC AND S. W. WALKER

In order to obtain further properties of the control-to-state mapping, we need a
stronger Lipschitz continuity result which we first state for the semi-discrete problem.

Proposition 3.8. Suppose that Q0,i, UΩ,i, UΓ,i, for i = 1, 2, satisfy (3.1) and let
Qn0,i = ΠQ0,i, where Π is given in Assumption 3.4. Then the corresponding solutions
Qni , for i = 1, 2, satisfy the bound

(3.10) ‖Qn1 −Qn2‖W ≤

c
(
‖UΩ,1 − UΩ,2‖2L2(0,tf ;H) + ‖UΓ,1 − UΓ,2‖2H1(0,tf ;HΓ) + ‖Qn0,1 −Qn0,2‖2V

)1/2

,

where c > 0 is a generic constant that does not depend on the controls, states, or n.

Proof. The proof is straightforward and directly mirrors the proof of Theorem 3.2.
In particular, the Lipschitz continuity of the gradient of the bulk energy term is
essential. We omit the details.

3.2.3. Passage to the limit. In light of the uniform bounds and energy esti-
mates on {Qn} provided above, we can now prove the existence of a solution.

Theorem 3.9. For every triple (Q0, UΩ, UΓ) that satisfies (3.1), there exists a
unique solution Q̄ ∈ W of the weak form (3.3) and a ρ > 0 such that

(3.11) ‖Q̄‖W ≤ ρ.

Proof. See Appendix B.

Remark 3.10. Note that despite the fact it depends on UΩ and UΓ, the constant
ρ in (3.11) can be bounded from above by a uniform constant, which is independent
of UΩ and UΓ, provided the latter two are taken over a bounded set in the space
L2(C) × H1(0, tf ;HΓ). This is a direct consequence of the structure of the a priori
estimates.

The previous results also allow us to pass to the limit along a subsequence to
obtain the following global Lipschitz bound from (3.10):

(3.12) ‖Q1 −Q2‖W ≤

c
(
‖UΩ,1 − UΩ,2‖2L2(0,tf ;H) + ‖UΓ,1 − UΓ,2‖2H1(0,tf ;HΓ) + ‖Q0,1 −Q0,2‖2V

)1/2

,

provided the controls are feasible.
The final result in this section involves the continuity of the states on the full

space-time cylinder. In contrast to the results above, our nonlinear system in tensor-
valued variables inhibits a direct application of the standard techniques as can be
found, e.g., in the relevant chapters in [54]. We require a few additional steps, which
we provide here. The remainder can be found in the appendix. Note that the following
argument is unique to the one elastic constant case. For more general elastic energy
densities, we require new techniques to derive such continuity results in future studies.

To begin, given the existence of a solution Q̄ in W, we have Q̄ ∈ L6(C), which
follows from the Sobolev embedding theorem and the fact that tf < +∞. Therefore,
Q̄ is the unique solution of the system of linear parabolic equations given by

Q̂t −∆Q̂ = ηΩUΩ −
1

η2
dw

ψ′(Q̄), in Ω, ∂νQ̂+ ηΓQ̂ = ηΓUΓ, on Γ,(3.13)

with Q̂(·, 0) = Q0 in Ω. Next, we use the fact that there exists a set of five symmetric,
traceless, 3× 3 orthonormal matrices {Ei}5i=1 ⊂ R3×3 such that every Q ∈ V admits
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the representation Q = qiE
i where qi ∈ H1(Ω;R) for i = 1, . . . , 5. Let q̄i denote the

scalar-valued functions for the solution Q̄.
This decomposition was also exploited in [19]. It provides us with an isometric

isomorphism between V and H1(Ω;R5) and allows us to split the tensor-based prob-
lem into five separate scalar parabolic equations with Robin boundary conditions. In
addition, we note that the second bound in (2.8) implies that ψ′(Q̄) is also in L6(C).

Now that we can separate the system into independent scalar-valued equations,
and apply the well-known regularity theory to obtain continuity of Q̄. To be clear,
we obtain continuity of each q̄i via e.g., [54, Thm. 5.5], and consequently of Q̄. The
remainder of the proof is concerned with removing the dependency on Q̄ from the
upper bound. Since this does not require any special techniques for tensor-valued
solutions, we have placed it in Appendix C.

Theorem 3.11. If, in addition to (3.1), we have UΩ ∈ Lr(C), UΓ ∈ Ls(G), Q0 ∈
C(Ω), with r ∈ (5/2, 6] and s > 4, then Q̄ ∈ C(C). Next, let

(3.14) Ureg := [L2(C)×H1(0, tf ;HΓ)] ∩ [Lr(C)× Ls(G)],

endowed with the natural norm

(3.15) ‖(UΩ, UΓ)‖Ureg = max{‖(UΩ, UΓ)‖L2(C)×H1(0,tf ;HΓ), ‖(UΩ, UΓ)‖Lr(C)×Ls(G)}.

Then there exists a constant c > 0 independent of Q̄, (UΩ, UΓ) ∈ Ureg, and a constant
M0 such that

(3.16) ‖Q̄‖C(C) ≤ c
(√

M0 + ‖(UΩ, UΓ)‖Ureg
+ ‖Q0‖C(Ω)

)
.

Remark 3.12. If Q0 ≡ 0, then M0 = 0. Moreover, since c is independent of
(UΩ, UΓ), we can vary on a ball in Ureg and obtain a uniform bound on the solution
operator S(UΩ, UΓ) in (4.1) below as a mapping from Ureg into C(C).

Proof. See Appendix C.

Remark 3.13. In optimal control, proving the state variable is continuous on C
is often useful for the derivation of optimality conditions for zero-order bound con-
straints, as it provides an essential constraint qualification in the convex setting. How-
ever, a constraint of the type “Q ≥ 0” is not interesting for the current application.
Nevertheless, the continuity of Q̄ provides a justification for constraints of the type
“|Q̄| = 0” on lower-dimensional manifolds embedded in Ω, which would correspond
to the placement of defects. The analysis of this challenging type of constraint will
be part of future research.

Remark 3.14. The energy estimates and related bounds derived in this section
(and the associated appendices) can be useful for future work on the a priori numerical
analysis of the optimal control problem as they would remain true if we replace the
controls UΩ and UΓ by, e.g., finite element approximations. At several points, we
adjust the coefficients in M0, M1, M2, the generic constant c, and ρ in (3.11) used
throughout the text. Nevertheless, these arguments should be largely unaffected by
the usage of discrete controls and ultimately stable bounds.

4. Existence of optimal controls. We denote the control-to-state operator
for the forward problem (3.3) by

(4.1) S : L2(C)×H1(0, tf ;HΓ)→W,

i.e. S(UΩ, UΓ) ∈ W solves (3.3) for any controls (UΩ, UΓ) ∈ L2(C)×H1(0, tf ;HΓ).
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Theorem 4.1. Suppose that the set of control constraints Uad is a nonempty,
closed, and convex subset of L2(C)×H1(0, tf ;HΓ). Then the optimal control problem
(2.13)-(2.14) admits a solution.

Remark 4.2. The assumption that Uad ∩ [L2(C)×H1(0, tf ;HΓ)] is closed can be
guaranteed in a variety of contexts, e.g. for pointwise a.e. bound constraints. More-
over, if the boundary control is independent of time or only applied at a finite number
of points in time, as in many applications, then this assumption is fulfilled.

Proof. For readability, we set Ũad := Uad∩[L2(C)×H1(0, tf ;HΓ)]. By assumption,
this set is nonempty, closed, and convex and therefore weakly closed in L2(C) ×
H1(0, tf ;HΓ). In addition, we restrict the control-to-state operator S(UΩ, UΓ) to Ũad.

By hypothesis, Ũad 6= ∅. Consequently, there exists a minimizing sequence
{(UΩ,n, UΓ,n)} ⊂ Ũad for (2.13)-(2.14). Clearly, {(UΩ,n, UΓ,n)} is uniformly bounded
in L2(C) × L2(G). Moreover, since {(UΩ,n, UΓ,n)} is a minimizing sequence, there
exists an n0 ∈ N such that for all n ≥ n0:

{(UΩ,n, UΓ,n)} ⊂
{(UΩ, UΓ) ∈ Uad |J(S(UΩ, UΓ), UΩ, UΓ) ≤ J(S(UΩ,n0 , UΓ,n0), UΩ,n0 , UΓ,n0)} .

By the definition of J , there is a constant c > 0, such that ‖UΓ,n‖H1(0,tf ;HΓ) ≤ c,
for all n ≥ 1. It follows that there exists a subsequence {(UΩ,nk

, UΓ,nk
)} and (weak)

limit point (ŪΩ, ŪΓ) ∈ Ũad. Finally, it follows in light of Theorem 3.9, Remark 3.10,
equation (3.11), and the Aubin-Lions-Lemma that there exists a subsequence {Ql}
with Ql := S(UΩ,nkl

, UΓ,nkl
) that converges to Q̄ such that

• Ql → Q̄ weakly∗ in L∞(0, tf ;V),
• Ql → Q̄ weakly in L2(0, tf ;V),
• Ql → Q̄ weakly∗ in L∞(0, tf ;HΓ),
• Ql → Q̄ weakly in H1(0, tf ;H),
• Ql → Q̄ strongly in C([0, tf ];L

6−ε(Ω,S0)) for ε ∈ (0, 5].
Using analogous arguments to those in Appendix B, it follows that Q̄ = S(ŪΩ, ŪΓ).
Finally, the weak lower-semicontinuity of J along with the properties of Ql and
(UΩ,nkl

, UΓ,nkl
) guarantee that (ŪΩ, ŪΓ) is an optimal solution of (2.13)-(2.14).

5. First-Order Optimality Conditions and the Adjoint Equation. We
first derive a differentiability result for S.

Theorem 5.1. Under the hypotheses of Theorem 3.11, the control-to-state map-
ping S from Ureg intoW is Fréchet differentiable. Moreover, given (UΩ, UΓ), (HΩ, HΓ)
in Ureg, the derivative of S at (UΩ, UΓ) in direction (HΩ, HΓ) is given by the unique
solution Ξ = S′UΩ,UΓ

(HΩ, HΓ) of (5.1).

Proof. Let (UΩ, UΓ), (HΩ, HΓ) ∈ L2(C) × L2(G), denote Q̄ := S(UΩ, UΓ), QH :=
S(UΩ +HΩ, UΓ +HΓ), and let Ξ be the solution to

Ξt −∆Ξ +
1

η2
dw

ψ′′(Q̄) : Ξ = ηΩHΩ, in Ω, ∂νΞ + ηΓΞ = ηΓHΓ, on Γ,(5.1)

with Ξ(·, 0) = 0. It follows from Theorem 3.11 that ψ′′(Q̄) is continuous on C. Next,
we set AH := QH − Q̄ − Ξ and show that it behaves like o(‖(HΩ, HΓ)‖) in the
appropriate norms. Almost everywhere on C, we have

ψ′(QH)− ψ′(Q̄)− ψ′′(Q̄) : Ξ = ψ′′(Q̄) : AH −XH ,

where XH := −
∫ 1

0
ψ′′(Q̄ + τ(QH − Q̄)) − ψ′′(Q̄)dτ : [QH − Q̄]. With the extended

assumptions of Theorem 3.9, AH satisfies
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(AH)t −∆AH +
1

η2
dw

ψ′′(Q̄) : AH =
1

η2
dw

XH , in Ω, ∂νAH + ηΓAH = 0, on Γ,(5.2)

with AH(·, 0) = 0. The system (5.2) is a simplified version of the nonlinear forward
problem. Therefore, using a slight modification of the same arguments, we can prove
that AH ∈ W. In particular, we readily obtain the following bound (for a generic
constant c > 0 independent of H = (HΩ, HΓ)): ‖AH‖W ≤ c‖(XH , 0)‖L2(C)×L2(G).

As a consequence of the Lipschitz continuity of ψ′′, we have (a.e. on C)

|XH | ≤
∫ 1

0

|ψ′′(Q̄+ τ(QH − Q̄))− ψ′′(Q̄)|dτ |QH − Q̄|,≤ c|QH − Q̄|2,

where c represents the Lipschitz modulus for ψ′′. Note that ψ′′′(Q) is only non-
zero on the set where tr(Q2) = |Q|2 is between two fixed constants b1 and b2, i.e.,
where Q is bounded in space-time. Then for a.e. t ∈ (0, tf) we obtain the bound:
‖XH(t)‖2H ≤ c‖QH(t)− Q̄(t)‖4L4(Ω). It follows from (3.12), the definition of W, and

the Sobolev embedding theorem that ‖QH(t)− Q̄(t)‖Lp(Ω) ≤ c‖(HΩ, HΓ)‖Ureg
, for a.e.

t ∈ (0, tf) and any p ∈ [1, 6]. Consequently, we have

‖XH(t)‖2H ≤ c‖(HΩ, HΓ)‖2Ureg
‖QH(t)− Q̄(t)‖2L4(Ω).

Integrating in time and taking the square root, we obtain

‖XH‖L2(G) ≤ c‖(HΩ, HΓ)‖Ureg
‖QH − Q̄‖L2(0,tf ;L4(Ω)),

which immediately yields ‖(XH , 0)‖L2(C)×L2(G) = o(‖(HΩ, HΓ)‖Ureg
).

Corollary 5.2. Under the assumptions of Theorem 5.1, the reduced objective
function J : Ureg → R defined by

(5.3)
J (UΩ, UΓ) :=

βC
2
‖S(UΩ, UΓ)− ZC‖2L2(C) +

βG
2
‖S(UΩ, UΓ)|Γ − ZG‖2L2(G)

+
βtf
2
‖S(UΩ, UΓ)(·, T )− Ztf‖2H +

αC
2
‖UΩ‖2L2(C) +

αG
2
‖UΓ‖2H1(0,tf ;HΓ),

is Fréchet differentiable. Furthermore, given Q̄ = S(ŪΩ, ŪΓ), a direction (HΩ, HΓ) ∈
Ureg, and Ξ = S′

ŪΩ,ŪΓ
(HΩ, HΓ), the associated solution of (5.1), the directional deriv-

ative of J at (ŪΩ, ŪΓ) in direction (HΩ, HΓ) is given by:

(5.4)
J ′ŪΩ,ŪΓ

(HΩ, HΓ) = βC
(
Q̄− ZC ,Ξ

)
L2(C) + βG

(
Q̄Γ − ZG ,Ξ

)
L2(G)

+βtf
(
Q̄(tf)− Ztf ,Ξ(tf)

)
H

+ αC
(
ŪΩ, HΩ

)
L2(C) + αG

(
ŪΓ, HΓ

)
H1(0,tf ;HΓ)

.

Moreover, if R is the unique weak solution of the linear parabolic (adjoint) equation:

−Rt −∆R+
1

η2
dw

ψ′′(Q̄) : R = βC(Q̄− ZC), in Ω× (0, tf)(5.5a)

∂νR+ ηΓR = βG(Q̄Γ − ZG), on Γ× (0, tf)(5.5b)

R(·, tf) = βtf (Q̄(tf)− Ztf ), in Ω,(5.5c)

then we have
J ′ŪΩ,ŪΓ

(HΩ, HΓ) = ηΩ (R,HΩ)L2(C) + ηΓ (R,HΓ)L2(G)

+ αC
(
ŪΩ, HΩ

)
L2(C) + αG

(
ŪΓ, HΓ

)
H1(0,tf ;HΓ)

.
(5.6)

Proof. The differentiability of the reduced objective functional is a consequence
of Theorem 5.1, the smoothness of the original tracking-type functional, and the chain
rule. This yields (5.4). For the equivalent characterization (5.6), we use (5.4) and
the adjoint equations (5.5) by following the standard computations for the adjoint
calculus, see e.g., [54].
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Theorem 5.1 and Corollary 5.2 provide us with first-order optimality conditions of
primal and dual type and a means of efficiently calculating derivatives of the reduced
objective functional, which are needed for numerical methods.

Theorem 5.3. In addition to (3.1), suppose Q0 ∈ V ∩C(Ω) and Uad ∩ Ureg 6= ∅.
If the optimal solution (ŪΩ, ŪΓ) of (2.13)-(2.14) is in Uad ∩ Ureg, then the following
variational inequality holds:

(5.7) ηΩ

(
R,UΩ − ŪΩ

)
L2(G)

+ ηΓ

(
R,UΓ − ŪΓ

)
L2(G)

+ αC
(
ŪΩ, UΩ − ŪΩ

)
L2(C) + αG

(
ŪΓ, UΓ − ŪΓ

)
H1(0,tf ;HΓ)

≥ 0,

for all (UΩ, UΓ) ∈ Uad ∩ Ureg, where R solves (5.5) with Q̄ = S(ŪΩ, ŪΓ).

Proof. This is an immediate consequence of Theorem 5.1 and Corollary 5.2. To see
this, note that J (ŪΩ, ŪΓ) ≤ J (UΩ, UΓ) ∀(UΩ, UΓ) ∈ Uad. By assumption, Uad∩Ureg

is a nonempty convex set. Therefore, the previous relation gives us the difference
quotients

0 ≤ λ−1(J (ŪΩ + λHΩ, ŪΓ + λHΓ)− J (ŪΩ, ŪΓ)),

where λ ∈ (0, 1) and (HΩ, HΓ) = (UΩ, UΓ)− (ŪΩ, ŪΓ) with (UΩ, UΓ) ∈ Uad∩Ureg. The
rest follows from Theorem 5.1 and Corollary 5.2; in particular (5.6).

6. Finite Element Approximation. We discretize (3.3) in the following way.
First, we assume that Ω is polyhedral so that it can be represented exactly by a
conforming triangulation Th = {Ti} of shape regular simplices (e.g. tetrahedra),
where h = maxT∈Th diam(T ). In other words, Ω ≡ ∪T∈ThT . Curved domains can
also be considered; the polyhedral assumption is only for simplicity.

Next, we define the space of continuous piecewise polynomial functions on Ω:
Mk
h(Ω) :=

{
v ∈ C0(Ω) | v|T ∈ Pk(T ), ∀T ∈ Th

}
, for k ≥ 1, and we reserve M0

h(Ω)
for piecewise constant functions. Let {Ei}5i=1 be a basis of S0. We then define the
following continuous, piecewise linear approximation of V:

Vh :=

{
P ∈ C0(Ω;S0) | P =

5∑
i=1

pi,hE
i, pi,h ∈M1

h(Ω), 1 ≤ i ≤ 5

}
⊂ V,(6.1)

and denote by Ih the standard Lagrange interpolant on Vh. Therefore, we approx-
imate Q ∈ L2(0, tf ;V) by Qh ∈ H1(0, tf ;Vh), i.e. piecewise linear in time; c.f. [19].
We also introduce the following piecewise constant approximations of H and HΓ,
respectively, for approximating the controls UΩ, UΓ:

Hh :=

{
P ∈ L2(Ω;S0) | P =

5∑
i=1

pi,hE
i, pi,h ∈M0

h(Ω), 1 ≤ i ≤ 5

}
⊂ H,

HΓ,h :=

{
P ∈ L2(Γ;S0) | P =

5∑
i=1

pi,hE
i, pi,h ∈M0

h(Γ), 1 ≤ i ≤ 5

}
⊂ HΓ,

(6.2)

where M0
h(Γ) :=

{
v ∈ L2(Γ) | v|F ∈ P0(F ), ∀F ∈ Fh

}
, where Fh = {F} is the set of

faces that make up ∂Ω. Thus, we approximate UΩ ∈ L2(0, tf ;H), UΓ ∈ H1(0, tf ;HΓ)
by UΩ,h ∈ H1(0, tf ;Hh), UΓ,h ∈ H1(0, tf ;HΓ,h), respectively. The control bounds are
enforced at the nodal degrees-of-freedom of Hh and HΓ,h, i.e. at the centroid of the
mesh elements.

Furthermore, we discretize the time interval [0, tf ] into a union of K sub-intervals
of uniform length δt, i.e. time-steps. With this, we write Qkh(x) := Qh(x, kδt), and
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approximate Qt(x, kδt) by the finite difference quotient: δt−1
(
Qk+1
h (x)−Qkh(x)

)
. In

addition, the time-dependence of the controls is written UkΩ,h(x) := UΩ,h(x, kδt),

UkΓ,h(x) := UΓ,h(x, kδt).

The fully discrete version of (3.3) is as follows. Given the initial condition Q0(·) :=
IhQ(·, t = 0), and controls {UkΩ,h}Kk=0 ⊂ Hh, {UkΓ,h}Kk=0 ∈ HΓ,h, we iteratively solve

the following implicit equation for k = 0, ...,K − 1: find Qk+1
h ∈ Vh such that

δt−1
(
Qk+1
h −Qkh, Ph

)
H

+
(
∇Qk+1

h ,∇Ph
)
H

+
1

η2
dw

(
ψ′(Qk+1

h ), Ph
)
H

+ηΓ

(
Qk+1
h , Ph

)
HΓ

= ηΓ

(
Uk+1

Γ,h , Ph

)
HΓ

+ ηΩ

(
Uk+1

Ω,h , Ph

)
H
, ∀ Ph ∈ Vh.

(6.3)

For δt sufficiently small, depending on ηdw, (6.3) is monotone at each time-step and
can be effectively solved with Newton’s method. Similar to (2.5), (6.3) is a tensor-
valued version of a discrete Allen-Cahn equation with Robin boundary conditions.
Convergence of Qh to the exact solution Q of (2.5) follows from the standard theory
for semi-linear parabolic problems; c.f. [19, 52, 62, 61]. The adjoint problem is solved
in an analogous way, using a similar discretization; since the adjoint PDE (5.5) is
linear (variable coefficient), Newton’s method is not required.

7. Numerical Results. We approximate minimizers of (2.13), by discretizing
the forward problem in (3.3) with the finite element method described in section 6.
Moreover, the time integrals present in (2.13) are discretized with the trapezoidal
rule. This leads to a discrete form of the adjoint problem in (5.5) along with the cor-
responding discrete form of the derivative functional (5.6). Thus, we use a projected
gradient optimization method, with a back-tracking line-search, see e.g., [6, 23], to
compute (discrete) optimal solutions of (2.13). During the line-search, we compute
the projection onto the convex set in (2.14) by straightforward normalization of the
current guess for UΩ and UΓ. The entire algorithm was implemented in NGSolve [49].

We present examples when the dimension d is 2 or 3. Our experiments involve
tensor quantities that are uniaxial (recall (2.3) when d = 3). For any d > 1, a uniaxial
Q has the form Qij = s∗ (ninj − δij/d), for 1 ≤ i, j ≤ d, where [ni]

d
i=1 ≡ n ∈ Rd is a

unit vector (often called the director) and s∗ depends on the coefficients in ψ.
The concept of defect is ubiquitous in liquid crystals and plays a critical role in our

numerical experiments. Assuming that Q has a uniaxial form, a defect corresponds to
a discontinuity in the director n. Let d = 2 and suppose n : R2 → R2 is a vector field
defined in the plane, continuous everywhere except at isolated points. The index of
n, about a point of discontinuity p0, is simply the number of full rotations of n(a(s))
along a closed path a(s) that surrounds p0 (see [22, pg. 280]). For vector fields, the
index is always an integer. If n̂ : R2 → RP1, i.e. n̂(x) ≡ −n̂(x) (also known as a line
field), then the index may be a half-integer. One can represent a line field n̂ with a
vector field n (see [3]), and vice-versa, in the sense that n̂⊗ n̂ = n⊗ n ≡ [ninj ]

d
i,j=1.

Thus, since all Q-tensors are uniaxial in dimension d = 2, and the algebraic form of
a uniaxial Q involves n⊗ n, the degree of the defect of Q at p0 is simply the index of
the director n (or equivalently n̂) about p0.

In dimension d = 3, the degree of a defect makes sense relative to a plane in R3.
For instance, if the set of defects (points of discontinuity) forms a C1 curve, α, in R3,
then the degree of a point on that curve is computed relative to the normal plane of
the curve. In other words, let n be the eigenvector of Q with largest eigenvalue and
define the degree of the defect to be the index of n with respect to a closed curve (in
the normal plane) around a point of discontinuity in α.
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However, the LdG model will not create point (line) discontinuities in dimension
d = 2 (d = 3) because Q(t, ·) ∈ H1(Ω;S0). Therefore, any potential discontinuities get
smoothed out causing Q to vanish there (i.e. the liquid crystal “melts”). Thus, in the
LdG model, the location of defects are usually identified with regions where Qij = 0
for 1 ≤ i, j ≤ d. For more information on defects, see [13, 12, 50, 56, 29, 39, 45, 36, 10].

7.1. Control of a +1/2 degree point defect in two dimensions. The do-
main is the unit square Ω = (0, 1)2 and the parameters of the forward problem are as
follows. The coefficients of the double well in (2.2) are

a0 = 1, a2 = 16.32653061225, a3 = 0, a4 = 66.63890045814,(7.1)

and ψ(Q) has a global minimum at Q∗ = s∗ [ninj − δij/2]
2
i,j=1, where n ∈ R2 is any

unit vector, and s∗ = 0.7. The other coefficients are given by ηdw = 0.2, ηΩ = 0,
ηΓ = 100.

The initial condition was defined as follows. First, let n = n(x1, x2) be given by

n =

(
cos

θ[0.5, 0.5]

2
, sin

θ[0.5, 0.5]

2

)
, θ[a, b](x1, x2) := atan2

(
x2 − b
x1 − a

)
,(7.2)

where atan2 is the four-quadrant inverse tangent function and brackets [a, b] indicate
parameters. In other words, n ⊗ n corresponds to a +1/2 degree defect centered at
(0.5, 0.5). Next, we set r[a, b](x1, x2) = |(x1 − a, x2 − b)| and

Q0 :=
r2[0.5, 0.5]

r2[0.5, 0.5] + δ2
s∗ [ninj − δij/2]

2
i,j=1 ,(7.3)

where δ = ηdw/4; this ensures that Q0 ∈ H1(Ω;S0) ∩ C0(Ω;S0). The final time is
tf = 0.4 and the time-step is δt = 0.004.

The control parameters in (2.13) are

βC = 1.0, βG = 0.0, βtf = 1.0, αC = 0.0, αG = 0.01,(7.4)

and the targets are given by setting z =
(

cos θ[0.25,0.35]
2 , sin θ[0.25,0.35]

2

)
and

ZC = Ztf =
r2[0.25, 0.35]

r2[0.25, 0.35] + δ2
s∗ [zizj − δij/2]

2
i,j=1 , ZG = 0.(7.5)

In other words, the control objective is to drive Q toward a state that has a +1/2
degree defect located at the coordinates (0.25, 0.35).

In this example, we set UΩ ≡ 0, so we only optimize the boundary control UΓ

which we enforce to be time-independent. The initial guess for optimizing the control
is given by setting u = (cos θ[0.5, 0.5], sin θ[0.5, 0.5]) and

(7.6) UΓ =
r2[0.5, 0.5]

r2[0.5, 0.5] + δ2
s∗ [uiuj − δij/2]

2
i,j=1 .

Note: we enforce the convex constraint in (2.14) with a projected gradient method.
Figure 1 shows the performance of our gradient descent method. The UΓ resid-

ual is computed as follows. Let P kΓ satisfy
(
P kΓ , HΓ

)
L2(Γ)

= −J ′
0,Uk

Γ
(0, HΓ), for all

HΓ ∈ HΓ,h (note: we treat the control as time-independent here), where k is the
optimization iteration. In other words, P kΓ is the L2(Γ) projection of the nega-
tive gradient. Next, let ΠΓ be the projection onto the boundary control part of
the convex set in (2.14). Then the UΓ residual, at the k-th iteration, is defined as
‖UkΓ − ΠΓ

(
UkΓ + P kΓ

)
‖L2(Γ). The computed boundary controls UΓ at later iterations
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Fig. 1: Optimization history (subsection 7.1). The UΓ residual is described in the
text.

Fig. 2: Target ZC (left) and optimized boundary control UΓ (right) (subsection 7.1).
We visualize ZC by plotting line segments that correspond to the eigenvector of ZC
with maximum eigenvalue; UΓ is visualized similarly. Note how the boundary control
mimics the boundary conditions of the target.

do not exhibit any active set, i.e. the inequality constraint is not active. However,
we found that removing the constraint yielded an optimal UΓ that was not physi-
cal, i.e. the eigenvalues of UΓ were outside the physical range (recall the discussion
around (2.14)). Thus, it is necessary to enforce the inequality constraint during the
line-search.

Figure 2 shows the target ZC and optimized boundary control UΓ. Figure 3 shows
the initial and final state of Q that clearly demonstrates the efficacy of the control.

7.2. Prevent +1/2 and −1/2 degree point defects from annihilating in
two dimensions. Most of the parameters are the same as in subsection 7.1 with the
following modifications. The initial condition is given by first defining:

n :=

(
cos

(
θ[0.4, 0.505]

2
+
π

2

)
, sin

(
θ[0.4, 0.505]

2
+
π

2

))
,

m :=

(
cos−θ[0.6, 0.495]

2
, sin−θ[0.6, 0.495]

2

)
,

(7.7)

i.e. n ⊗ n corresponds to a +1/2 degree defect centered at (0.4, 0.505) and m ⊗ m
corresponds to a −1/2 degree defect centered at (0.6, 0.495). Then, we set
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16 T. M. SUROWIEC AND S. W. WALKER

Fig. 3: Initial state for Q(t = 0) (left) and final state for Q(t = tf) (right) (subsec-
tion 7.1). Line segments correspond to the eigenvector of Q with maximum eigenvalue;
the color scale is based on the maximum eigenvalue. The position of the point defect
(at the final time) is almost exactly the same as in the target.

Q0
n :=

r2[0.4, 0.505]

r2[0.4, 0.505] + δ2
s∗ [ninj − δij/2]

2
i,j=1 ,

Q0
m :=

r2[0.6, 0.495]

r2[0.6, 0.495] + δ2
s∗ [mimj − δij/2]

2
i,j=1 ,

(7.8)

where δ = ηdw/4; this ensures that Q0
n, Q

0
m ∈ H1(Ω;S0)∩C0(Ω;S0). Then, the initial

condition is given by the following interpolation:

Q0 := (1− x)Q0
n + xQ0

m.(7.9)

The control parameters in (2.13) are the same as in (7.4), and the targets ZC , Ztf
have the same form as (7.9), except the +1/2 defect is placed at (0.2, 0.6) and the
−1/2 defect is placed at (0.8, 0.4). Note that ZG = 0 plays no role. In other words,
the control objective is to drive Q toward a stable configuration of a +1/2 and −1/2
defect. In this example, we set UΩ ≡ 0, so we only optimize the boundary control UΓ

which we enforce to be time-independent. The initial guess for optimizing the control
is the constant tensor UΓ = s∗ [n̂in̂j − δij/2]

2
i,j=1, where n̂ = (1, 0). In this case, the

Q state evolves toward a constant state identical to the initial boundary control, i.e.
the two initial defects annihilate.

In this example, we modify the inequality constraint in (2.14) to be |P | ≤ 0.6
on Γ. Figure 4 shows the performance of our gradient descent method. The UΓ

residual is computed as in subsection 7.1. The computed boundary control UΓ does
exhibit an active set. Indeed, it was necessary to lower the bound to 0.6 in order
to ensure that the computed control satisfied the eigenvalue bounds described in
subsection 2.1, which in two dimensions is −1/2 ≤ λi(UΓ) ≤ 1/2, for i = 1, 2. This
further emphasizes that the inequality constraint is needed to prevent computing
minimizers of the objective functional that are not physical (see the discussion in
subsection 7.1).

Figure 5 shows the target ZC and optimized boundary control UΓ; note that the
maximum value of λ1(UΓ) is 0.42. Figure 6 shows the initial and final state of Q that
clearly demonstrates the efficacy of the control.

7.3. Control of a +1/2 line defect in three dimensions. The domain is the
unit cube Ω = (0, 1)3 and the parameters of the forward problem are as follows. The

This manuscript is for review purposes only.



OPTIMAL CONTROL OF THE LANDAU-DE GENNES MODEL 17

Fig. 4: Optimization history (subsection 7.2). The UΓ residual is described in the
text.

Fig. 5: Target ZC (left) and optimized boundary control UΓ (right) (subsection 7.2).
We visualize ZC by plotting line segments that correspond to the eigenvector of ZC
with maximum eigenvalue; UΓ is visualized similarly. Note how the boundary control
mimics the boundary conditions of the target.

Fig. 6: Initial state for Q(t = 0) (left) and final state for Q(t = tf) (right) (subsec-
tion 7.2). Line segments correspond to the eigenvector of Q with maximum eigenvalue;
the color scale is based on the maximum eigenvalue. The position of the point defect
(at the final time) is almost exactly the same as in the target.
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18 T. M. SUROWIEC AND S. W. WALKER

coefficients of the double well in (2.2) are

a0 = 1, a2 = 7.5021037403, a3 = 60.975813166, a4 = 66.519068908,(7.10)

and ψ(Q) has a global minimum at Q∗ = s∗ [ninj − δij/3]
3
i,j=1, where n ∈ R3 is any

unit vector, and s∗ = 0.700005531. The other coefficients are given by ηdw = 0.2,
ηΩ = 0, ηΓ = 100.

The initial condition was defined as follows. First, let n = n(x1, x2) be given by

n :=

(
cos

θ[0.5, 0.5]

2
, sin

θ[0.5, 0.5]

2
, 0

)
, θ[a, b](x1, x2) := atan2

(
x2 − b
x1 − a

)
,(7.11)

similar to (7.2). In other words, n ⊗ n corresponds to a +1/2 degree defect, in any
plane parallel to the x3 = 0 plane, centered at (0.5, 0.5). Then, we have

Q0 :=
r2[0.5, 0.5]

r2[0.5, 0.5] + δ2
s∗ [ninj − δij/3]

3
i,j=1 ,(7.12)

where δ = ηdw/4; this ensures that Q0 ∈ H1(Ω;S0) ∩ C0(Ω;S0). The final time is
tf = 0.3 and the time-step is δt = 0.006.

The control parameters in (2.13) are the same as in (7.4). The targets are defined
through a parameterized curve in R3, denoted (x̃1(ξ), x̃2(ξ), x̃3(ξ)), given by

f(ξ) := l2ξ
2 + l3ξ

3, l2 = 3c0, l3 = −2c0, c0 = 0.6,

(x̃1(ξ), x̃2(ξ), x̃3(ξ)) := (f(ξ) + 0.2, f(ξ) + 0.2, ξ) , for 0 ≤ ξ ≤ 1.
(7.13)

Next, we define r̃2(x1, x2, x3) := (x1 − x̃1(x3))
2

+ (x2 − x̃2(x3))
2
,

θ̃(x1, x2, x3) := atan2

(
x2 − x̃2(x3)

x1 − x̃1(x3)

)
, z =

(
cos

θ̃

2
, sin

θ̃

2
, 0

)
,(7.14)

and the targets are given by

ZC = Ztf =
r̃2

r̃2 + δ2
s∗ [zizj − δij/3]

3
i,j=1 , ZG = 0.(7.15)

In other words, the control objective is to drive Q toward a state that has a +1/2
degree defect, with respect to the x3 = l0 plane, located at (x̃1(l0), x̃2(l0), l0).

In this example, we set UΩ ≡ 0, so we only optimize the boundary control UΓ

which we enforce to be time-independent. The initial guess for optimizing the control
is given by setting UΓ = Q0.

Figure 7 shows the performance of our gradient descent method. The UΓ resid-
ual is computed as in subsection 7.1. The computed boundary controls UΓ at later
iterations do not exhibit any active set, i.e. the inequality constraint is not active.

Figure 8 shows the target ZC and optimized boundary control UΓ. We note,
however, that the most negative eigenvalue, λ3(Q) (not plotted), is approximately
−0.33 at the core of the defect in UΓ on the x3 = 1 side of the cube (see middle plot
of Figure 8). Again, it is necessary to enforce the inequality constraint during the
line-search in order to prevent computing minimizers of the objective functional that
are not physical (see the discussion in subsection 7.1). Figure 9 shows the initial and
final state of Q that clearly demonstrates the efficacy of the control.

Remark 7.1. In dimension d = 2, all Q-tensors have a uniaxial form. For d = 3,
Q is uniaxial if and only if Q has two repeated eigenvalues [56]. Moreover, even if
the initial condition Q0 is uniaxial, the solution Q(t, ·) of (2.5) will not be uniaxial
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Fig. 7: Optimization history (subsection 7.3). The UΓ residual is described in the
text.

Fig. 8: Target ZC (left) and optimized boundary control UΓ (middle, right) (subsec-
tion 7.3). We visualize ZC by plotting line segments that correspond to the eigenvector
of ZC with maximum eigenvalue; UΓ is visualized similarly. Middle (Right) view shows
the front (back) three faces.

in general, i.e. it will become biaxial with three distinct eigenvalues. Typically, the
solution is only biaxial near a defect; away from a defect, it is (essentially) uniaxial
because of the global minimum properties of the bulk potential in (2.2) (see [44]).

The right plot of Figure 9 shows the normalized biaxiality measure [42], βbi(Q), of
the solution Q on the iso-surface surrounding the line defect. Note that 0 ≤ βbi(Q) ≤
1, with βbi(Q) = 0 corresponding to a uniaxial state and βbi(Q) = 1 representing
“maximal” biaxiality.

8. Conclusions. The main contribution of this paper is to show that optimal
control of LC devices, in the framework of the LdG model, is possible. Indeed, our
numerical study demonstrates this effectively by directly controlling the placement
of defects, which is of considerable interest in the LC scientific community. We only
consider boundary controls in our numerical study since that is most relevant in
applications. Further extensions of our framework, as related to actual LC systems,
would involve controls that are either finite-dimensional (in space) or with a special
restriction on the admissible controls, e.g. homeotropic versus planar anchoring for
boundary controls.

From an analytical standpoint, by restricting our study to the one-parameter
model (i.e. the only non-zero elastic constant is `1 = 1), we were able to exploit a
large number of derivation techniques for the optimal control of scalar Allen-Cahn
equations. The rigorous proofs for the bounds and energy estimates in the tensor-
valued setting have therefore been relegated to appendices. Nevertheless, there remain
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Fig. 9: Initial state for Q(t = 0) (left) and final state for Q(t = tf) (middle) (subsec-
tion 7.3). Line segments correspond to the eigenvector of Q with maximum eigenvalue;
the color scale is based on the maximum eigenvalue. The position of the line defect
(at the final time) is very close to that in the target. Right plot: the color scale
corresponds to the biaxiality measure (see Remark 7.1). Away from the defect (not
shown), Q is essentially uniaxial with βbi(Q) ≈ 0.

a number of analytical challenges if we wish to go beyond the one-parameter model.
For example, our current proof of continuity in space-time may only work in the
current setting and new techniques or regularity results also appear necessary. This
is because for more general elastic constants, the Laplacian in (2.5) is replaced by a
more general elliptic operator that fully couples all components of the Q-tensor.

Finally, our numerical study made use of a basic optimization algorithm. A
more advanced scheme, e.g., one based on second-order information would require an
additional sensitivity result to derive an analytical formula for second-order directional
derivatives (Hessian-vector products) for use in Newton-type methods. At least for
the bulk energy term considered here, such a result should be obtainable by modifying
the proof of differentiability in section 5.

Appendix A. Proof of Proposition 3.7. We start by using the test function
P = Qnt (s) for all s ∈ [0, tf ] in (3.5). This leads to

(A.1) ‖Qnt (s)‖2H +
d

dt
‖∇Qn(s)‖2H +

ηΓ

2

d

dt
‖Qn(s)‖2HΓ

+
1

η2
dw

d

dt

∫
Ω

ψ(Qn(s))

= ηΩ (UΩ(s), Qnt (s))H + ηΓ (UΓ(s), Qnt (s))HΓ
.

We continue (A.1) by using UΓ ∈ H1(0, tf ;HΓ), integrating from 0 to t ∈ (0, tf ],
and rearranging terms to obtain new constants δ′1, . . . , δ

′
4 > 0:

(A.2) δ′4‖Qnt ‖2L2(Ct) + ‖∇Qn(t)‖2H +
1

η2
dw

∫
Ω

ψ(Qn(t)) + δ′1‖Qn(t)‖2HΓ
≤

‖∇Qn0‖2H +
1

η2
dw

∫
Ω

ψ(Qn0 ) + δ′2‖Qn0‖2HΓ
+ δ′3‖Qn‖2L2(Ct) +M2.

We can bound the penultimate term in (A.2) by applying (3.6) and

‖Qn‖2L2(Ct) ≤ ‖Q
n‖2L2(C) ≤ cemb‖Qn‖2L2(0,tf ;V) ≤ cembM1,

where cemb is an embedding constant. M1 absorbs δ′3 and cemb below.
Based on the order of the nonlinearity ψ, the continuity of the trace operator,

and the convex splitting ψ = ψc − ψe, there is a constant M0 ≥ 0 such that

‖∇Qn0‖2H +
1

η2
dw

∫
Ω

ψc(Q
n
0 )− 1

η2
dw

∫
Ω

ψe(Q
n
0 ) + δ′2‖Qn0‖2HΓ

≤M0.
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Since ψc is continuous on V due to the Sobolev embedding theorem and ψe(Q) is
quadratic in Q, we can pass to the limit in n and thus obtain (3.7).

Next, since ψ is bounded from below, we can adjust all the constants and coeffi-
cients if necessary to obtain the bound

(A.3) δ′4‖Qnt ‖2L2(Ct) + ‖∇Qn(t)‖2H + δ′1‖Qn(t)‖2HΓ
≤M0 +M1 +M2.

This yields (3.8). Now, by letting ε > 0 be a small positive constant, we can bound
(A.3) from below, which yields

(A.4) δ′4‖Qnt ‖2L2(Ct) +min{1−εδ′1, ε
δ′1
κ0
}
(
‖∇Qn(t)‖2H + ‖Qn(t)‖2H

)
≤M0 +M1 +M2.

Here, κ0 comes from using a Poincaré type inequality. We can now adjust the coeffi-
cients and constants to deduce the bound:

(A.5) ‖Qnt ‖2L2(Ct) + ‖∇Qn(t)‖2H + ‖Qn(t)‖2H ≤ c (M0 +M1 +M2) .

This yields (3.9). It follows from (A.3), (A.5), and (3.6) that {Qn} is uniformly
bounded in W (3.2).

Appendix B. Proof of Theorem 3.9. The Aubin-Lions-Simon Lemma, see
e.g., Theorem II.5.16, pages 102-103 in [11] provides several helpful statements. We
provide brief justifications afterwards, as these are well-known embeddings.

1. There exists a subsequence {Qk} with Qk := Qnk that converges strongly to
the function Q̄ in C([0, tf ];L

6−ε(Ω,S0)) for ε ∈ (0, 5].
2. There exists a subsequence {Ql} with Ql := Qkl that converges weakly in

W1 :=
{
Q ∈ L2(0, tf ;V)

∣∣ Qt ∈ L2(0, tf ;H)
}

to Q̄.

3. There exists a subsequence {Qm} with Qm := Qlm that converges weakly to
Q̄ in L2(0, tf ;HΓ).

The first subsequence exists by the Aubin-Lions Lemma, which implies that

W2 :=
{
Q ∈ L∞(0, tf ;V)

∣∣ Qt ∈ L2(0, tf ;H)
}
,

is compactly embedded into the space C([0, tf ];L
6−ε(Ω,S0)). Here, we make use of the

Sobolev embedding theorem to embed V into L6−ε(Ω,S0). The second subsequence
exists due to the reflexivity of W1; likewise for the final subsequence. Finally, we can
also argue that Q̄ ∈ W, by appealing to the bounds in Appendix A, which are stable
under passage to the limit in n. To be more specific, we can find an independent
constant ρ > 0 such that

(B.1)

ess supt∈[0,tf ]
(‖∇Q̄(t)‖2H + ‖Q̄(t)‖2H)1/2 ≤ ρ,

ess supt∈[0,tf ]
‖Q̄(t)‖HΓ ≤ ρ,

(‖Q̄‖2L2(C) + ‖Q̄t‖2L2(C))
1/2 ≤ ρ

‖Q̄‖L2(0,tf ;V) ≤ ρ.

We arrive at the bound in the space W, i.e. (3.11).
It remains to show that Q̄ is a weak solution of (2.5). Uniqueness is a consequence

of Theorem 3.2. For arbitrarily fixed data (UΩ, UΓ, Q0) that satisfies (3.1) and a test
function P ∈ W1 such that P (0) = 0 a.e., we recall (3.5) and integrate in t:∫ tf

0

(Qnt , P )H +

∫ tf

0

(∇Qn,∇P )H +
1

η2
dw

∫ tf

0

∫
Ω

ψ′(Qn) : P

+ηΓ

∫ tf

0

(Qn, P )HΓ
= ηΩ

∫ tf

0

(UΩ, P )H + ηΓ

∫ tf

0

(UΓ, P )HΓ
.

(B.2)
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The convergence of the linear terms in (B.2) follows by straightforward arguments,
e.g., weak convergence and use of compact embeddings. For the nonlinear term, it
suffices to note that ψ′ is globally Lipschitz, which provides, e.g., strong convergence in
C([0, tf ];L7/4(Ω)) of ψ′(Qk) to ψ′(Q̄). Given P ∈ L2([0, tf ];V) ⊂ L2([0, tf ];L

7/3(Ω)),
we can then pass to the limit.

Appendix C. Proof of Theorem 3.11. After using the bootstrapping and
decomposition technique, we derive from [54, Thm. 5.5] the existence of some constant
c > 0, independent of (UΩ, UΓ), for which we have

(C.1) ‖Q̄‖C(C) ≤ c
(
‖ηΩUΩ −

1

η2
dw

ψ(Q̄)‖Lr(C) + ‖ηΓUΓ‖Ls(G) + ‖Q0‖C(Ω)

)
.

We remove the dependence on Q̄ from the right-hand side, by noting that (2.8) implies

(C.2) ‖ψ′(Q̄)‖Lr(C) ≤ c1‖Q̄‖Lr(C) ≤ c1cemb‖Q̄‖L∞(0,tf ;V) ≤ ρ,

where the second inequality follows from the continuous embedding of L∞(0, tf ;V)
into Lr(C) (provided r ∈ (5/2, 6]), cemb is the associated embedding constant, and ρ
is from (B.1). Next, we derive an explicit bound for ρ. Starting from (A.5), we note
that before passing to the limit in n we have√
‖∇Qn(t)‖2H + ‖Qn(t)‖2H ≤

√
M0 +M1 +M2 ≤

√
M0+

M1(‖Qn0‖H, ‖UΩ‖L2(C), ‖UΓ‖L2(G))+M2(‖UΓ(t)‖HΓ
, ‖UΓ(0)‖HΓ

, ‖(UΓ)t‖L2(Gt), ‖u‖L2(Ct)).

Here, we use the subadditivity of
√
· along with the fact that M1 and M2 are simple

multilinear maps of their arguments with positive coefficients. We may then pass
to the limit in n along an appropriate subsequence and obtain the same inequality
independent of n. The M0-term is independent of (UΩ, UΓ). The M1-term can be
bounded in the first argument by ‖Q0‖C(Ω) and the (UΩ, UΓ)-terms by stronger norms.

For the M2-term we have several possibilities. Since (UΩ, UΓ) ∈ Ureg, with norm
given by (3.15), and H1(0, tf ;HΓ) is continuously embedded into C([0, tf ];HΓ), we
can bound the first two arguments in M2 first by ‖UΓ‖C([0,tf ];HΓ) and then further
from above by ‖UΓ‖H1(0,tf ;HΓ). The latter two arguments can be bounded from above
by the norms ‖(UΓ)t‖L2(G) and ‖UΩ‖L2(C), respectively. Clearly, the third argument
can be bounded from above by ‖UΩ‖H1(0,tf ;HΓ). Since r > 2, the fourth argument
can be bounded from above by ‖UΩ‖Lr(C). By combining all of these observations,
we deduce the existence of a constant c > 0, independent of Q̄, (UΩ, UΓ) and Q0 such
that for all t ∈ [0, tf ] we have√

‖∇Q̄(t)‖2H + ‖Q̄(t)‖2H ≤
√
M0 + c(‖(UΩ, UΓ)‖Ureg + ‖Q0‖C(Ω)),

which implies that ‖Q̄‖L∞(0,tf ;V) ≤
√
M0 + c(‖(UΩ, UΓ)‖Ureg + ‖Q0‖C(Ω)). Combin-

ing this bound with (C.1) and (C.2), there exists a constant c > 0, independent

of Q̄, (UΩ, UΓ) and Q0, such that ‖Q̄‖C(C) ≤ c
(√

M0 + ‖(UΩ, UΓ)‖Ureg + ‖Q0‖C(Ω)

)
.

The assertion then follows.
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