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Distributed Dynamical Systems and Neural Cellular Au-
tomata (NCA) have long been inspired by natural phenom-
ena. Drawing inspiration from morphogenesis [1], metamor-
phosis [2], and gene regulatory networks [3], among oth-
ers, the inspired works have showcased the abilities of dis-
tributed dynamical systems. In addition, distributed systems
of homogeneous computational units are suggested to be
quite useful in robot control: In modular robots that reused
computational units across the body in locomotion tasks, re-
searchers have suggested that such robot control can lead to
robustness to new environments [4], robustness to changes
in the body during co-optimization of body and control [5],
and an ability to scale up or down the number of modules
without further optimizing the controllers [6; 7]. Addition-
ally, as Artificial Intelligence (AI) in the past years has been
growing in size and therefore monetary and environmental
cost [8], the parameter reduction inherent in homogeneous
distributed systems of computational units is becoming very
attractive. However, the road ahead from locomotion to
more complex tasks might not be immediately apparent, be-
cause the control for these mechanically dependent bodies
are inspired by natural phenomena or decentralized swarm
systems that do not have to function as a whole. How do we
expand on distributed systems to come closer to animal in-
telligence? How much of an intelligent animal’s abilities can
be achieved with distributed control and processing? Can a
distributed system have a unified sense of self?

Many important breakthroughs in AI have been inspired
by neuroscience. From the neuron inspiring the percep-
tron [9], to the visual pathway inspiring convolutional neural
networks [10], research on the brain has been integral to AI.
However, as the two fields got more specialized, fewer re-
searchers were able to keep a foot in each discipline, and
the fields got separated. Recently, many prominent AI re-
searchers put their name to a white paper that suggested that
artificial general intelligence could not be reached without a
return to being inspired by neuroscience [11]. The emerg-
ing field of NeuroAI hopes to reunite neuroscience and AI,
to let these two disciplines drive each other’s development.
It therefore seems apt to consider what role Distributed Dy-

Figure 1: A simplified explanation. The neocortex con-
sists of columns of neurons. Certain columns will respond
to certain sensors. Here, some columns in the somatosen-
sory cortex receive the fingertips’ perceptions of the cup.

namical Systems and NCAs can play in NeuroAI.
The brain is often theorized to be wholly or partially dis-

tributed. For example, the PDP movement from the 80s ar-
gued for seeing the brain as a distributed system of neurons
that self-organizes to perform higher order functions [12].
Recently, Jeff Hawkins popularized the idea of the dis-
tributed neocortex in his popular science book “A Thousand
Brains” [13]. This was a culmination of his scientific work
on the minicolumn hypothesis that arose with Mountcastle
in the 70s [14]. The minicolumn hypothesis posits that the
neocortex, which is the thin outer layer of the brain, con-
sists of fairly homogeneous columns stacked side-by-side
(see Figure 1). The columns only receive and process lim-
ited parts of the total sensor input of the animal, and are also
involved in the movement of sensors. The columns mostly
communicate locally with other columns. The distributed
structure of the neocortex is involved in, and might under-
lie, most higher-order thinking, including language, vision,
and problem solving [15] – as well as possibly conscious-
ness [16].

Viewing distributed systems of computational units in
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Figure 2: The project idea. a) One theory about the function of the cortical columns is that they work together to classify
objects. As the rat moves its whiskers across the cup, the corresponding columns in the barrel cortex are activated, and predict
what they are sensing. b) Left: The artificial cortex. Right: The sensor input. Just like the whiskers of the rat, each cell can
move to receive independent neighborhoods of sensor input.

light of the minicolumn hypothesis provides inspiration for
how these systems could be extended to test more of their ca-
pabilities in a mechanically dependent body. This gives us
a framework for shaping the system, in terms of how com-
putational units should communicate, and how/if the units
should be integrated. It also lets us expect what the system
should be capable of, judging by what tasks the neocortex is
usually involved in. As AI is encouraged to move towards
more embodied systems, the minicolumn hypothesis pro-
vides a good inspiration for controlling and problem-solving
in bodies with a distributed system.

Additionally, modeling the neocortex through distributed
systems can inform neuroscience through normative mod-
eling. Normative modeling is the practice of modeling
circuits in the brain with optimized artificial neural net-
works [17; 18]. These normative models are then used to
further gain understanding and theorize about the brain cir-
cuit. This could potentially help research on the minicolumn
hypothesis, and help illuminate how it can function in a dis-
tributed manner, while still providing a unified experience.

Proposed future work
As an example of how the minicolumn hypothesis can in-
form work on distributed systems of computational units,
herein NCAs, we present our ongoing project. It builds on
the work of Randazzo et al. [19], where an NCA was op-
timized to classify the MNIST dataset and adapt to pertur-
bations in the input. Likewise, we will work on an image
classification task, with the goal of later expanding the sys-
tem to robot control.

In the work of Randazzo et al., the NCA might be sensi-
tive to elongation of numbers, because the cells get flooded
with information that is not representative of the digit. For
example, parts of a four resemble a one, but humans know
the important parts of a four are not the straight lines. We

propose that the system’s resilience to such distortions in-
creases if the system only focuses on the relevant sensor in-
put. Such resilience to unimportant information might also
later prove to be useful in robots with many sensor inputs.

To construct such a system, we were inspired by the bar-
rel cortex in the neocortex in rodents. Each barrel column in
the cortex is directly connected to the independently mov-
ing whisker hairs and is involved in their whisking move-
ment [20] (see Figure 2a). We theorize that one benefit of
this is that when presented with a lot of similar, and seem-
ingly useless, sensor input, the rodent is able to focus its at-
tention on interesting features in the task space. In this way,
a system modeled on the barrel cortex might obtain the abil-
ity to ignore irrelevant information in a classification task.

In the system of Randazzo et al., the NCA is applied iter-
atively to a 20-dimensional image containing the grayscale
MNIST datapoint in one channel, 9 channels for communi-
cation between cells (called hidden channels), and 10 chan-
nels for outputting the believed value of the digit [19]. We
will be extending this system with one major alteration: The
NCA will be able to choose which part of the image and
corresponding hidden channels it sees by an action output
for each cell in the image. However, the cell will not be able
to change its location in the communication substrate (the
artificial barrel cortex, see the left matrix in Figure 2b). This
means that just like in the barrel cortex, communication be-
tween neighboring whiskers is facilitated, while the actual
movement of the whisker, and what it senses, is kept more
independent. This ensures information can always flow from
every cell to every other cell, given enough time, even as the
whiskers focus on different parts of the image. Because this
does not enable us to use gradient descent like Randazzo et
al., we choose instead to use an evolutionary strategy to op-
timize the system [21].
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