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Abstract—Cloud computing makes complex processing an
off-premise activity by offering software- and hardware-based
services using standard security protocols over the Internet. It
has been seen that the cloud is not ideal for latency-sensitive
applications. Thanks to the current growth of network com-
munication and infrastructure, fog adds a computing resource
delegation model between the user and the cloud. Fog aims to
improve latency-sensitive applications support. Here, we propose
one unified, proactive resource orchestration framework from a
cloud/fog service provider perspective. The framework consists
of a predictor and a resource allocator module. Users subscribe
to these resources to execute their applications. The framework is
modular and does not require application-specific information. A
service provider can customise each module. We have presented
the framework prototype by showing each module’s simulated
performance results using the parameters of our cloud/fog
research testbed.

Index Terms—Cloud, Fog, Neural Network, Prediction,
Wavelet

I. INTRODUCTION

Cloud has become a popular computing platform, primarily
due to the readily available resources at scale and a lower
price than hosting on-premise. Fog1 brings a new resource
delegation-based business model between the user and the
cloud [1], [2]. Fog can better support latency-sensitive appli-
cations while being resourcefully backed by the cloud. Fog
devices have limited computing and storage capacities, while
the cloud is still a viable solution to offload applications for
more resources. Fog’s resource capacity can be improved by
employing upcoming hardware packed with smaller, faster,
more energy-efficient transistors.

Offloading the compute-intensive portion or the complete
application2 to nearby fog can improve the applications’
performance. The latency-tolerant part of an application can be
hosted in the cloud and transferred back to fog when needed.
Overall, fog can optimise network bandwidth and support
heterogeneous hardware and services.

Fog still needs to be a mature distributed resource delegation
model and suffers from resource management and data security
issues [2]. With one unified resource orchestration framework,
efficiently offloading tasks to fog may be manageable while

1In this paper, we have followed the NIST definition of cloud and fog
computing.

2We define a task as a single unit of work of an application, while an
application may consist of multiple tasks.

managing users’ requirements and limited capacity [3]. Al-
location can be improved by exploiting historical resource
usage patterns. Delegating resources in advance can improve
the quality-of-service (QoS) [4] and also the quality-of-
experience (QoE) of an application.

Server virtualisation using a hypervisor is the backbone of
currently distributed computing platforms. Hypervisor-based
virtualisation hosts virtual machines (VMs) on top of the
host operating system. Container-based virtualisation is a
lightweight way to host a virtual environment. Cloud uses
both, while fog primarily supports containers. Resource or-
chestration is a classical problem in distributed computing
and a very popular research topic [2], [3], [5]. Many scholars
propose multiple computation offloading strategies to optimise
latency, energy cost, and architectures to improve the QoS [6].
However, except [7], we have yet to find much work that
proposes a unified resource allocation framework combining
forecasting and resource allocation strategies.

To fill this gap, here, we propose a Proactive Resource
Orchestration Framework, called PROF, for cloud/fog plat-
forms. In particular, we are answering the following research
question: How to build a unified, proactive resource orchestra-
tion framework based on a fast prediction and a light resource
allocation policy? PROF aims to support partial and complete
task offloading. Our contributions are:

• A unified resource orchestration framework that offers
seamless resource management in a cloud/fog platform.
A cloud/fog service provider should employ it, and users
can subscribe to such resources for their applications.

• We explain the architecture and its core components. We
also argue the applicability of such a unified framework.

• Next, we develop a hybrid prediction model and compare
multiple lightweight task allocation policies by simulating
using parameters from a cloud/fog research testbed.

• Finally, we show that such a framework can improve
resource utilisation and task processing time. Overall,
it can be deployed using best practices from software
engineering.

II. BACKGROUND

The proposed framework should be used to optimise the
overall resource orchestration of a cloud/fog platform. Here,
we will briefly discuss two primary modules of the framework.
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A. Prediction
Time-series models are popular and efficient for predicting

regular, historical time-series data. Machine learning (ML)
models can outperform time-series models when data contains
many features, but at an increased computational cost. Below,
we briefly discuss the employed time series models and one
simple ML model for prediction.

1) Time-Series-Based Models: The autoregressive (AR)
model is a stochastic process for modelling univariate time
series. It can be analysed with standard linear least squares
and the moving average (MA), known as ARMA.

AutoRegressive Integrated Moving Average (ARIMA)
model generalises the ARMA class that incorporates non-
stationary univariate time series data. It includes the lag of
stationary series, the forecast errors, and the integrated (I)
component, which allows the series to be differentiated. In
ARIMA(p,d,q), p is the number of AR terms, d represents
non-seasonal differences, and q is the number of MA terms.
The differencing parameter d takes integer values and can be
scaled up or down, provided the sum of AR coefficients and
the sum of MA coefficients are close to one.

Seasonal ARIMA (SARIMA) can exploit the seasonality of
time series. It can be written as ARIMA(p,d,q)(P,D,Q)h,
where (P ,D,Q)h identifies the order of seasonality and h is
the number of periods. The seasonal part consists of back-
shift operators of the seasonal data sets. We have used wavelet
decomposition to improve the prediction accuracy of the used
models, where the wavelet output is used as input for the
prediction models. We call these models hybrid models, and
such models can outperform the standard time-series predic-
tion models [8].

2) Wavelet: It converts time series into high- and low-
frequency components using a finite length window or
wavelets. The attractiveness of wavelet transformation lies
in its decomposition properties for time-scale localisation. It
has an optimal trade-off between time and frequency. It is
free from any assumption related to stationary characteristics.
Wavelet can analyse non-stationary systems. The input of a
wavelet model is a signal with its temporal aspect. The mother
wavelet function transforms the given input signal into its
different components, which helps to understand the data. To
decompose the given series, we have used a maximal overlap
discrete wavelet transform with Daubechies wavelets [9] as
the mother function, with a window length of eight. It is
worth noting that Daubechies does not suffer from the slow
convergence issue. Four levels of the original times series’
additive decomposition are used for the ARIMA and SARIMA
models.

3) ML Model: Neural network (NN) supports the nonlinear
relationship between a variable and its predictors (input lay-
ers). The prediction is made via a nonlinear combination of
input layers. The existence of a hidden layer makes it either
linear or nonlinear. The selection of weights of the inputs is
non-trivial. Weights can be selected using a learning algorithm.
NNs are ordered by the number of hidden units and the amount
of weight decay.

Employed NN (in this paper) is a single-hidden layer feed-
forward network (SLFN) combined with a wavelet model.
The primary motivation behind using the SLFN is that input
weights may not be needed to adjust manually as the model
can approximate any continuous function. It has also been
seen that with n hidden neurons and randomly chosen input
weights, SLFN can learn n distinct observations with small
error [10]. No hidden layer is also possible, if there are skip-
layer units. Setting zero weight can be beneficial when the data
is very dynamic. We have developed a wavelet and SLFN-
based hybrid predictor for our prediction scenario.

B. Allocator

We have used Reliable Server Pooling (RSerPool) for the
allocation purpose [11]. RSerPool is an IETF standard for
a server pooling approach. It provides a simple application-
independent and open-source framework. It is lightweight and
aims to serve latency-sensitive applications. Furthermore, it
supports large distributed resources to achieve high resilience
and is suitable for low-capacity devices.

RSerPool can manage combined cloud/fog resource pools
using suitable policies and configurations [12]. It also supports
simple resource selection policies such as random (RAND)
and round-robin (RR) as baseline models. Resource pool-
related information, such as the current workload, can be used
to select resources with the lowest current workload. RAND,
RR, and even least used (LU)-like policies are unsuitable,
because they do not differentiate between the cloud and fog
resource types. As a solution, fog resources can be prioritised
using the priority least used (PLU) policy, trying to use least-
loaded fog resources, otherwise, use cloud resources. Load
states need updates, which may take time, particularly for
remote cloud resources. Therefore, the priority least used with
degradation (PLUD) combines PLU with a load degradation
counter. Each time a resource is selected, its degradation
counter is increased to compensate for the inaccurate load
information. This counter is reset on load state update (i.e.
the latest data from the resource). Finally, PLU and PLUD
are combined with a delay penalty factor (DPF), which also
considers the current network round-trip times between the
components of PLU-DPF and PLUD-DPF. It may provide
further performance benefits for small tasks.

III. PROPOSED FRAMEWORK

Tasks can move back and forward based on available
resources, and employing a PROF-like framework will ease
such management. PROF is designed to be proactive and mod-
ular. It should be operated by a single service provider who
manages a cloud and fog platform. PROF uses a lightweight
hybrid prediction model and a resource allocation policy. The
framework works in two sequential stages (refer to the blue-
shaded region of Figure 1). The first stage is focused on
predicting the number of upcoming resource requests, mainly
VMs and containers3. Combining a cloud and fog platform in

3The framework is tested with VM request data while container-related data
is unavailable.
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Figure 1: Representation of proactive resource orchestration framework.

a unified way reduces the information silos, leading to better
platform resource management. Predicting upcoming appli-
cations’ resource requirements brings the proactive feature.
Using the forecasting data, the allocator allocates resources in
advance to reduce task waiting and queuing time, which can
further improve the application’s QoE/QoS.

A. Design Consideration

We have considered four primary design goals while devel-
oping this framework. They are briefly described below:

• Low Overhead: PROF implementation overhead should
be low to offer lower latency. Hence, we assume that a
single service provider will manage both the cloud and
fog platforms, and employ RSerPool, which is suitable
for devices with minimal resources.

• High Throughput: PROF should handle many requests
at high speed. We have used a lighter predictor and
allocation framework to achieve that.

• Ease of Management: PROF is based on an IETF standard
for a server pooling approach, state-of-the-art model
wavelet and NN. Using such models eases the deploy-
ment process.

• Interoperability: RSerPool is an application-independent
framework. Besides, open-source-based application de-
velopment and RESTful APIs-based approach also help
to achieve the goal.

B. Prediction

From Figure 1, we see that users submit their tasks using
RESTful APIs. Applied resource filtering logic stores the
application in a container- or a VM-specific queue. The
queue length is dynamic and can be set to a fixed unit of
time (valid for our case). Creating a dedicated task queue
helps to parallelise the prediction process. Each prediction
model can run in parallel inside containers. The allocator
uses predicted results for proactive scheduling. Based on the
resource selection policy’s decision, tasks will be moved to
fog or cloud.

It has been seen that the collected trace from a production
environment is smoother than random data [13]. The predic-
tion helps to identify resource requirements of tasks ahead
of time. For prediction, the predictor uses three application

attributes. They are i) application arrival time, ii) application
required resource type, and iii) requested quantity. As an
output, the predictor forecasts the total VM or container count
based on each type. Generally, time-series-based prediction
models are less complex and faster than ML models. Applying
a simpler prediction model can reduce overheads significantly,
but in some cases, efficiency can be reduced. Parallel predic-
tion of task queues can speed up the overall allocation process,
provided the allocation policy is also faster.

We have compared three prediction models: ARIMA,
SARIMA and SLFN. We also built their hybrid version using
wavelet decomposition. We found hybrid models are more
accurate in prediction and reduce the total model execution
time. There might be failed predictions due to the randomness
(spikes) of the users’ requests. PROF will allocate extra
resources in such cases, increasing application waiting time.
If the model fails to perform and forecasts to reserve more
or fewer resources, the predictor should be tuned further
or replaced. Here, we have focused on the latency-sensitive
application; tasks are primarily assigned to the fog resources.

C. Allocator

The predicted result will be used as input to the allocation
process. The service provider can customise the prediction
and allocation modules based on their preference and plat-
form insights. For VMs, RSerPool framework-based allocator
(refer to Subsection II-B) expects the VM type and required
quantity, while for containers, it expects CPU and memory
requirements. It is important noting that the RSerPool frame-
work allows the definition of more policies using application-
specific features when necessary.

IV. EVALUATION

We have reported the results of prediction and allocation
modules, while simulating using the parameters collected from
our cloud/fog research testbed. For analysis, we have used
a trace of incoming VM requests over seven days with six
minutes intervals, collected from one small private cloud
service provider. For privacy reasons, the trace is a univariate
time series containing a time stamp and the corresponding
interval’s total number of VM requests.



Table I: Error measures of all six models.

1-Hour Prediction 2-Hours Prediction
Model RMSE MAPE RMSE MAPE

ARIMA 0.4974432 7.987505 0.5367095 8.318853
SARIMA 0.5297760 8.274079 0.4678396 6.146552
SLFN 0.4930488 6.944248 0.4963941 6.280406
Wavelet ARIMA 0.4095534 4.077404 0.5396644 8.131191
Wavelet SARIMA 0.3916113 5.600092 0.339822 4.567944
Wavelet SLFN 0.00784473 0.08739554 0.01041639 0.1215156

A. Prediction Result

We have performed an out-sample, multi-step prediction
using two popular forecasting accuracy measures: root mean
squared error (RMSE) and mean absolute percentage er-
ror (MAPE). RMSE is a scale-dependent forecasting error
measure based on squared errors, while MAPE is a scale-
independent error measure. We have six models, where
ARIMA, SARIMA and SLFN are the standard models, and
their hybrid forms use wavelet decomposition. Results4 fo-
cusing on one-hour and two-hours prediction scenarios are
presented in Table I.

1) Standard Models’ Performance: We fitted an
ARIMA(1,1,2) model for prediction on the seven-day data
set. The ARIMA model offers better prediction accuracy
than SARIMA(2,1,2)(1,1,1) model. However, ARIMA
misses the trend for two-hour out-sample prediction and
performs worse than the SARIMA model. Unlike ARIMA,
the fitted SARIMA(2,1,2)(1,1,1) with h = 1 model
performs better for two-hours prediction. SARIMA takes
more time (≈6 seconds) to complete both cases’ forecasts.
Next, we have employed SLFN for forecasting. We fitted
an average of 20 networks, each of which is a 32-16-1
network with 545 weights for both cases. Compared to other
time series models, SLFN performs better but with a longer
execution time (≈70 seconds).

2) Hybrid Models’ Performance: We developed a hybrid
model using wavelet decomposition to improve the predic-
tion ability of the above models. Wavelets decompose the
data into high- and low-frequency components; each part is
forecasted separately and combined. We employ a Dabuchies
least asymmetric wavelet of length eight and perform a four-
level decomposition. It means four wavelet details and one
wavelet smooth for each data set. Table I shows that the hybrid
Wavelet ARIMA model is better for one-hour. For short pre-
diction, the Wavelet ARIMA variant achieves ≈4% (MAPE
error measure) improvement compared to the vanilla ARIMA
model. Wavelet decomposition improves the SARIMA model
for both scenarios. It can be seen that wavelet can improve
the prediction by 1.6% (MAPE error measure).

Finally, compared to other models, the hybrid SLNF-based
approach achieves more than 6% improvement in prediction
accuracy for both cases. We found that four levels of wavelet
decomposition and a wavelet length of eight offer the best
result for SLFN. It is because a wavelet can decompose its

4We used a server with an Intel processor (model i7-8565U with 1.80 GHz
clock speed) with eight cores, 16 GiB memory and running Ubuntu
22.04.2 LTS.

input signal with temporal aspects into different components.
Apart from that, weights in SLFN can approximate any
continuous function. For both cases, the execution time of the
Wavelet SLFN model is ≈29 seconds, which is lower than
the standard model. The wavelet part is fast, and execution
time is around ≈22 milliseconds. Hence, building a hybrid
model improves the model performance and reduces the total
execution time for SARIMA and SLFN.

B. Allocation Results

Based on the service provider’s trace, we have simulated
using RSPSIM [11, Chapter 6] and CalcAppProtocol [11,
Section 8.3], which is a generic application where servers
provide a specific capacity (in work units/second). Requests
consume this capacity, and a multi-tasking server processes
these requests. Clients generate several work units with an
inter-request time (in seconds). They are queued and sequen-
tially distributed to and processed by servers.

The simulated environment consists of 14 cloud servers,
providing a capacity of 18,000 work units/s, handling up to
two simultaneous requests. That is, each task is processed
with at least 9000 work units/s. The one-way delay between
the user and cloud server is 30 milliseconds (based on intra-
European communication) and 300 milliseconds (based on
communication between Europe and China). The one-way
delay between clients and fog units is between 5 milliseconds
and 15 milliseconds. The result is based on simulations
using our cloud/fog research testbed parameters. 50 clients
issue requests of 9,720,000 work units on average. With an
average inter-request time of 2719 seconds, server utilisation is
around 70.9%. For the cloud/fog setup, four cloud servers are
replaced by dedicated fog units, with a 50% increased capacity
(i.e. 27,000 work units/second) and up to 3 simultaneous
requests.

1) Performance of Policies without Prediction: In Table II,
we have reported the resource utilisation (in % scale for both,
fog and cloud) together with queuing time, startup time and
task processing time in seconds. Task handling time is the
sum of all three times. We compare all policies mentioned in
Subsection II-B. We have used RAND and RR as baseline
models for a fair comparison. RAND and RR just distribute
the tasks, leading to a longer processing time. Sometimes, it
results in rejection on a fully-loaded server with a following
retry, leading to increased startup time. As a result, RAND and
RR offer the highest task-handling time per request among all
policies.

LU makes better choices based on load information. How-
ever, it does not distinguish between fog and cloud resources
and selects mainly cloud servers instead fog servers. PLU is
the best scheduling policy, and PLUD is the second-best one.
Although, there is very little difference in this scenario. Both
use mostly fog resources, leading to better task-handling times.
DPF-based policies select the nearer servers, but there is a little
benefit as the tasks are long-running.

2) Performance of Policies with Prediction: Table III and
Table IV show the pros and cons (↑ denotes the deterioration



Table II: Average server utilisation in percentage and average request times in seconds.

Policy Fog Util. Cloud Util. Queuing Time Startup Time Processing Time Handling Time
LU 47.89 67.19 0.00 0.06 411.99 412.05

PLU 61.91 13.60 0.00 0.02 370.52 370.54
PLUD 62.00 14.02 0.00 0.02 371.39 371.41

PLUD-DPF 62.05 13.65 0.00 0.02 371.86 371.88
PLU-DPF 62.01 13.86 0.00 0.02 372.27 372.29

RAND 50.08 58.86 1.25 0.08 630.62 631.95
RR 47.09 69.60 0.15 0.06 434.48 434.69

Table III: Model comparison on one hour prediction relative to original data.

Policy Fog Util. (%) Cloud Util. (%) Processing Time (seconds) Handling Time (seconds)
LU ↓ 5.84 ↓ 8.23 ↓ 10.08 ↓ 10.09

PLU ↓ 9.74 ↓ 1.40 ↓ 0.04 ↓ 0.04
PLUD ↓ 6.70 ↓ 2.24 ↑ 0.66 ↑ 0.66

PLUD-DPF ↓ 6.81 ↓ 2.43 ↑ 13.06 ↑ 13.05
PLU-DPF ↓ 7.25 ↓ 3.96 ↓ 9.26 ↓ 9.27

RAND ↓ 3.97 ↓ 7.45 ↓ 50.60 ↓ 50.60
RR ↓ 7.28 ↓ 6.76 ↓ 7.60 ↓ 7.61

Table IV: Model comparison on two hours prediction relative to original data.

Policy Fog Util. (%) Cloud Util. (%) Processing Time (seconds) Handling Time (seconds)
LU ↓ 0.08 ↑ 0.29 ↑ 1.44 ↑ 1.44

PLU ↓ 0.65 ↓ 1.12 ↓ 5.71 ↓ 5.72
PLUD ↑ 0.52 ↑ 0.42 ↑ 2.14 ↑ 2.14

PLUD-DPF ↑ 0.12 ↑ 1.11 ↑ 4.32 ↑ 4.32
PLU-DPF ↑ 0.26 ↓ 0.56 ↓ 0.87 ↓ 0.87

RAND ↑ 0.17 ↓ 0.61 ↑ 3.09 ↑ 3.09
RR ↓ 0.10 ↑ 0.14 ↓ 2.00 ↓ 2.02

and ↓ shows the improvements) related to resource utilisation
and task processing time of all scheduling policies while
running on predicted data sets. To compare the models, we
have used one-hour and two-hours trace data, together with
the predicted output of the Wavelet SLFN model.

Overall, the two-hours prediction results in Table IV fit
better. The one-hour results in Table III are short, and the
PLUD model performs better for task processing scenarios,
while resource utilisation is not good. Moving to Table IV,
we can see that PLUD improves resource utilisation again,
and PLUD-DPF optimises the task processing times.

Determining what performance can be expected from and
achieved by underlying public cloud service providers is also
interesting. Here, we aim to showcase the feasibility of such
a unified resource orchestration model. We do not want to
claim that the PLUD policy is good. Service providers should
tune/choose an applicable policy. Therefore, we briefly provide
network performance results of public cloud service providers
together with our cloud/fog platform.

C. Network Performance

In Table V, we have reported the cloud network connection
test result. All tests present average download speed and access
latency of VM, cloud storage and content delivery network.
We also have reported the VM latency data of our cloud/fog
research testbed. Our cloud platform’s speed is the minimum
Internet service provider (ISP) subscription speed, and the
maximum speed is 1 Gbit/s. Our fog platform is based on
a 4G network and does not have a dedicated storage and

content delivery network. The VM access latency of our cloud
platform is comparable with cloud service providers.

We also compare cloud platforms based on the media
content, because it represents a content distribution over the In-
ternet use case scenario (an ideal QoE-based use case). We had
chosen three typical media sizes : 1 GiB for standard definition
(SD), 3 GiB for high definition (HD), and 7 GiB for ultra-high
definition (4K). Due to resource constraints, the download
speed of our cloud/fog testbed is significantly lower. Such
download speed can reduce the application’s performance.
Our platform data shows the possibility of implementing
our proposed unified resource orchestration framework into
a commercial platform. It is worth noting that we have used
such platform-related parameters for all simulations.

D. Applicability

PROF aims to become vendor-neutral and portable to multi-
cloud platforms. PROF will not store user resource usage data
following the user privacy policy. Two upcoming QoE-based
applications, such as content distribution over the Internet and
mixed-reality applications, will benefit from such frameworks,
where no significant amount of time will be consumed for
task-resource mapping. Currently, large content distribution
platforms do not have fog-based services. To offer better
QoS/QoE, such platforms collaborate with ISPs. They use an
ISP’s existing infrastructure to store popular media content
near the users. The Open Connect program from Netflix5

5urlhttps://openconnect.netflix.com/en gb/



Table V: Access latency (in milliseconds) of cloud service providers and content downloading time (minutes:seconds) for three
different media file formats.

Service Region Compute Storage Content Delivery Network Download Speed Mbit/s SD HD 4K
Amazon Cloud Stockholm 15.00 23.00 32.08 836.01 0:10 0:31 1:13

Microsoft Cloud Oslo 38.00 42.33 22.34 476.59 0:18 0:55 2:09
Google Cloud Helsinki 25.08 97.08 17.50 461.51 0:19 0:57 2:13
NorNet Fog distributed over Norway 59.17 – – 32.49 4:31 13:34 31:41

NorNet Cloud distributed over Norway 27.00 – – ≥100.00 1:28 4:24 10:17

is an example of such a scenario. For mixed reality-based
applications, the issue is primarily network bandwidth to offer
optimum QoE. Moving the primary QoE-related services to
fog will improve the individual user’s perceived experiences.

V. TECHNICAL CHALLENGES

In the following, we will discuss four primary technical
challenges focusing on content/media distribution and mixed-
reality applications. They are i) security, ii) resource capacity,
iii) network support for better QoE, and iv) standardisation for
better cloud/fog platform adoption.

A. Security

We should protect applications and data, while running
in the public cloud and also while in transit. Data encryp-
tion is essential for collaborative content distribution plat-
forms. In this direction, researchers are working on trust-
based computing. While protecting the code and data, trust
can be achieved from hardware and software. Homomorphic
Encryption (HE) is a mechanism that preserves the message
structure and supports certain operations without decrypting
the data. However, the efficiency and practicality of HE are
known challenges. Cryptographic approaches to trust-based
computing, such as fully homomorphic encryption and secure
multi-party computations, are progressing slowly. Cloud-based
sandboxing can protect user code from malware at the data
transport level by applying Internet-level security protocols
such as transport layer security (TLS) [14].

Application-level security isolates the network, I/O and
memory environment for safe execution, but increases over-
heads. Applications are running inside the VMs, and there
are events related to VM-based attacks. Current virtualisation
technologies also suffer from new security vulnerabilities,
such as the denial-of-service of xenstored (Xen Project) via a
malicious user’s out-of-memory allocation [15]. Besides that,
certified container images contain at least one high or critical
vulnerability, while community container images are the most
vulnerable. Such vulnerabilities come from popular scripting
languages, such as JavaScript and Python [16]. Some counter-
measures could be based on cryptographic models, custom
security layers and sandboxing. We also need to improve
container engines’ security by ensuring that containers process
their task inside themselves and third parties do not misuse
them. One solution could be to use a secure container runtime
such as Kata containers6, but with extra overhead.

6Kata containers: https://katacontainers.io.

B. Resource Capacity

Fog devices are resource-constrained. Hardware disaggre-
gation may help the fog units to scale [17]. Disaggregation
creates several consolidated single-resource pools and allows
the composition of logical compute platforms with flexible and
scalable resources. For instance, providing more CPU/GPU-
based compute resources than memory can better service
the image-processing-related tasks (ideal for mixed reality-
based use cases), while stacking more memory than compute
units can support content streaming type applications. The
system disaggregation approach can help to customise the
fog based on the application requirements. Unfortunately, the
disaggregated server approach has yet to find more attention
from the community, but we should rethink improving user
QoS/QoE by employing resource disaggregation. Networking
infrastructure and software support is needed to use disaggre-
gated resources at the fog and cloud levels.

C. Bandwidth Requirements

Internet users are geographically distributed and use differ-
ent connections, such as Asymmetric Digital Subscriber Lines
and optical fibre-based connections. Service providers can
place caches next to an ISP’s point-of-presence to improve the
QoE (for a content distribution application) while generating
extra network management overheads. A congested network
will yield lower video quality, due to packet loss. Content
providers invest significantly large resources to get more
customers. Currently, the issue is not only about the subscriber
listing, but also about offering them higher QoE.

In an experiment, it has been seen that public cloud plat-
forms are compatible towards applications that can tolerate
delays of up to 100 ms [18]. For better QoE, network con-
gestion plays an important role, mainly for latency-sensitive
use cases such as mixed-reality applications, which require a
minimum frame rate of 60 Hz. Therefore, the maximum delay
between the process and the rendered frame should be limited
to 16.6 ms [19]. Such features can be achieved with innovative
network technology and unifying cloud/fog infrastructure.

D. Standardisation

Standardising service-oriented abstract models is crucial. It
allows heterogeneous devices to communicate via unified ab-
straction for seamless multiple service offerings. Standardising
resource delegation models can counter scalability challenges.
Generally, when the standardisation process completes, the
system interoperability improves. For instance, codec stan-
dardisation is highly required for streaming media content.

https://katacontainers.io


There is a need to develop a fast and efficient image and
video codec technologies similar to the AOMedia Video 1
coding format. Similarly, codec standardisation is also needed
to stream immersive media files for mixed-reality applications.
On a lower level, protocol standardisation is also needed.

VI. RELATED WORK

We refer readers to the surveys that focus on orchestration in
fog [2], in cloud [5], [6] for computation offloading processes
and [3] for research status and existing challenges.

Resource Prediction. In [20], the authors propose an ML-
based prediction model to forecast the future CPU and memory
workload demands. [8] shows how adding Kalman filter and
wavelet decomposition to the ARMA models’ popular variants
can increase the forecasting accuracy while predicting the
CPU, memory and network demand, while [4] shows how
workload prediction can improve cloud-based applications’
QoS.

Resource Orchestration. [21] presents a resource man-
agement algorithm to place ML applications onto edge ac-
celerators while respecting their latency constraints. [22] pro-
poses another resource orchestrating framework for delegating
resources to multiple cloud/edge platform tenants. Similarly,
[23] proposes a resource orchestrator for serverless architec-
tures to achieve the targeted time latency, and [24] discusses
the needs for container orchestration in fog and their required
capabilities for IoT applications. In [25], another workload or-
chestration framework is proposed to find a trade-off between
the requirements of infrastructure owners and the applications.
Furthermore, [26] presents an orchestration architecture for
fog, focusing only on the functional aspects such as time and
quality of the resource allocation process.

VII. CONCLUSION AND FUTURE WORK

Thanks to the networking domain’s progress, fog will soon
become a subscription-based resource delegation model to
users. A modular unified resource orchestration framework
can effectively deploy different applications on the cloud/fog
platform. PROF aims to be one such framework, consisting
of two modules: prediction and allocator. In this paper, we
have developed a hybrid prediction model based on wavelet
decomposition and SLFN. We showed that the hybrid predic-
tor outperforms (in terms of speed and accuracy measures)
other state-of-the-art time series models. We also used one
light resource allocation framework called RSerPool, which
accepts the output of the prediction model as input and offers
multiple resource selection policies. However, the cloud/fog
service provider can customise further or replace prediction
and allocation policies as per their platform insights. Our
experiments showed the feasibility of implementing such a
unified cloud/fog resource orchestration framework. We also
advocate for a lighter and faster framework to support both
QoS/QoE-based applications. In future work, we plan to
add latency-tolerant application-specific features to allocation
policies and look into data sets management issues.
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