
High-Precision Round-Trip Time Measurements
in the Internet with HIPERCONTRACER

Thomas Dreibholz
SimulaMet – Simula Metropolitan Centre for Digital Engineering

Centre for Resilient Networks and Applications (CRNA)
Pilestredet 52, 0167 Oslo, Norway

dreibh@simula.no

Abstract—Accurately measuring Round-Trip Times (RTT) for
Internet communications is important for various research top-
ics, ranging from protocol performance and congestion control
to routing and network security. Unix systems, particularly
Linux and FreeBSD, provide some features to obtain network
packet timing information, but there is a lack of documen-
tation for these. With High-Performance Connectivity Tracer
(HIPERCONTRACER), there is already an open source tool for
running large-scale, long-running and high-frequency ICMP Ping
and Traceroute measurements. However, it lacks support of high-
precision timing.

As part of this paper, first the network packet timestamping
features of Unix systems are analysed and introduced, to provide
the reader with a detailed overview over the available methods,
their usage, as well as their limitations. Then, enhancements
to HIPERCONTRACER are presented for adding high-precision
timestamping support, as well as a UDP module to also perform
UDP Ping and Traceroute measurements. Finally, the newly
added features are demonstrated in a proof-of-concept analysis.

Keywords: Internet, Network, Round-Trip Time, Packet Time-
stamping, Measurement, Tools, HIPERCONTRACER

I. INTRODUCTION

The reliable transport of payload data between applications
over interconnected networks is a complex operation. To tackle
this challenge, the task is separated into layers, each providing
specific functionalities (like routing, ordered transport, reliable
transport, server pooling, etc.). Commonly used models for
these layers are the 4-layer TCP/IP model, or the 7-layer
Open Systems Interconnection (OSI) model. For this paper,
the latter one is suited best. Since these models are well-
known, it is referred to literature like [1]. Figure 1 shows
the network communication in this model. Data flows through

Figure 1. Application Communication over a Network in the OSI Model

the various layers via interfaces. Protocols realise the peer-
to-peer communication of each layer. While end-systems ob-
viously need all layers, routers may only realise the lower
ones. But layering comes with costs, e.g. encapsulating and
decapsulating Protocol Data Units (PDU), copying data, etc.,
not only for computation but also in form of latency. This
particularly applies to end-systems, where most layers are
realised in software. The latency reduces interactivity of real-
time communications, but also affects protocol performances.
So, for analysis and research, it is interesting and important
to get accurate information about latencies in the network.

This paper focuses on the high-precision measurement of
Round-Trip Times (RTT) between applications on Unix sys-
tems. The overall motivation is to run long-term measurements
to observe RTTs between different end-systems, in order to
support further analysis on performance and security [2].

In Section II, the basic tools Ping, Traceroute and HIPER-
CONTRACER [3] are introduced. Then, Section III provides
a detailed overview over the possibilities of obtaining packet
timestamping information on Unix (Linux, FreeBSD) systems.
Particularly, this is the result of a detailed analysis of kernel
sources and testing, to cope with the sparsely documented
timing features. Section IV presents the enhancements made to
obtain high-precision RTT measurements. This is followed by
a proof-of-concept analysis in Section V. Finally, Section VI
presents conclusions and future work.

II. PING, TRACEROUTE AND HIPERCONTRACER

Two basic features for network connectivity testing are
usually provided by the operating system: Ping and Traceroute.
They are briefly introduced in the following, due to their
relevance for this work.

Ping [1] uses the Internet Control Message Protocol (ICMP),
i.e. ICMPv4 [4] for IPv4 [5] or ICMPv6 [6] for IPv6 [7],
for sending simple test messages. That is, an ICMP “Echo
Request” is sent to a remote system, to which it should respond
with an ICMP “Echo Response”. The response contains a
copy of the request’s payload (hence the name “echo”), i.e.
using the payload for storing a timestamp with the system time
before the transmission, the sender of a request can use the
response’s contained timestamp to compute the RTT between
both systems.

https://orcid.org/0000-0002-8759-5603
mailto:Thomas Dreibholz (托马斯博士) <dreibh@simula.no>

Figure 2. Networking API Layers

Traceroute [1] extends this idea by sequentially sending
messages with Time-to-Live (via IPv4) or Hop Limit field
(via IPv6) incremented from one. Obviously, if the setting
is too low for reaching the destination, a router sends an
ICMP “Time Exceeded” error message to the sender, thereby
revealing the router’s IP address. This is utilised for collecting
the router addresses on the path, including the RTTs between
the sender and these routers.

Ping and Traceroute tests are usually performed by the
simple command-line tools ping and traceroute, which
just print their results in text form to standard output. They
are not suitable for long-term, high-frequency measurements,
storing the data in a structured database (i.e. SQL or NoSQL).
Furthermore, there are various different implementations, with
mostly neither documentation on how timing information is
obtained nor its accuracy. Finally, due to the sequential per-hop
operation, traceroute is also quite slow. To overcome these
limitations, particularly observed with long-term measure-
ments for [8], the open source tool HIPERCONTRACER1 [3]
(High-Performance Connectivity Tracer) has been developed.
It already offers high-performance, long-term, high-frequency
HIPERCONTRACER Ping and Traceroute measurements, with
a known method of how timing information is obtained.
However, its timing accuracy is limited. Before explaining
how HIPERCONTRACER has been extended to overcome this
limitation (in Section IV), it is first necessary to provide an
overview of how to measure packet timing in Unix systems.

III. HOW TO MEASURE PACKET TIMING

For accurate packet timing measurement, it is first necessary
to understand how packet transmission and reception work
in Unix systems. Therefore, this is explained first (Subsec-
tion III-A). Then, the timing is explained (Subsection III-B).
This is followed by the actual measurement possibilities.

A. Overview

First, it is necessary to provide an overview over how the
different OSI layers (see Figure 1) are actually realised in a
Unix system. Therefore, Figure 2 provides an illustration: the

1HIPERCONTRACER: https://www.nntb.no/∼dreibh/hipercontracer/.

Figure 3. Network Timing in the API Layers

3 upper layers are part of the application itself, and realised
in user space. Transport Layer (UDP, ICMP2), Network Layer
(IPv4, IPv6) and the upper section of the Data Link Layer
(generic part, as well as hardware-specific driver part) are
realised in the operating system kernel (i.e. kernel space).
The interface between user space and kernel space is the
well-known Berkeley Sockets API [9], which provides system
calls (syscalls) to the application for accessing the networking
functionalities of the kernel. Below the kernel is the actual
hardware (e.g. a certain Ethernet network interface). The
interface between kernel and hardware is realised by the
corresponding device’s driver implementation.

B. A Packet’s Journey Through the OSI Layers

Figure 3 illustrates the places where to obtain packet timing
information. Clearly, the application itself can obtain the
system time before sending (TX) and after receiving (RX)
a packet. However, the application timing is influenced by the
process scheduling, e.g. concurrent workload on the system,
and context switches between kernel and user space.

In the kernel, it is interesting to distinguish between schedul-
ing (i.e. the packet is enqueued) and transmission (i.e. the
packet is provided by the driver to the underlying hardware) on
transmission. Between scheduling and transmission, there may
be queuing, e.g. due to busy network interfaces, traffic shaping,
etc. On reception, datagrams (no reordering is necessary)
should be passed without significant latency to the user space
(i.e. the application gets notified to read the newly arrived
datagram). The measurement accuracy in the kernel is higher
than in user space, since the process scheduling and context
switch inaccuracy is avoided. However, to obtain transmission
timing, the driver-specific code needs to support it.

Clearly, the most accurate timing can be obtained from the
hardware, e.g. an Ethernet interface, itself. The hardware is not
influenced by effects of the application and operating system,
but – of course – needs to support hardware timestamping
for transmission (i.e. TX) and reception (i.e. RX). Hardware
timestamping support is particularly used for the Precision
Time Protocol (PTP) [10] to enable sub-microseconds clock
synchronisation, which is e.g. necessary for mobile broadband

2From the perspective of using ICMP for “Echo Request”/“Echo Reply”.

https://www.nntb.no/~dreibh/hipercontracer/

base stations. That is, many recent network interfaces (mostly
Ethernet) provide this feature.

Now, the interesting question is: How to obtain these
timestamps from the system? Since the timestamping features
are sparsely documented, detailed analysis of kernel sources,
including extensive testing, had been conducted as part of this
work, in order to solve this question. Table I summarises the
results, showing the kernel features and their support for each
type of timestamp: yes (✓), no (×) or not applicable (–). The
details are explained in the following.

C. System Time

In an application, the most obvious way to generate a
timestamp is to call the operating system’s function to obtain
the current system time. That is, it can be obtained right before
sending a datagram (transmission), or directly after receiving
a datagram (reception). The Portable Operating System Inter-
face (POSIX) standard for Unix offers two functions:

1) gettimeofday() returns the current system time as
timeval structure in microseconds (µs) granularity.

2) clock_gettime() returns the current system time as
timespec structure in nanoseconds (ns) granularity.

Unix systems (including Linux and FreeBSD) offer underlying
syscalls to be used by these functions.

However, syscalls may be expensive, since they involve
context switches application → kernel → application. Both,
Linux and FreeBSD, therefore apply a Virtual Dynamic Shared
Object (vDSO) [11] to load a small shared library into the
application’s address space. It provides wrappers for these
functions. Instead of performing a syscall, the timing infor-
mation is obtained via a shared, read-only memory block.
So, the expensive syscall is avoided, and obtaining the timing
information comes at the low cost of a regular function call.

D. SIOCGSTAMP and SIOCGSTAMPNS

More accurate packet reception timestamps are available
from the Linux kernel via two ioctl() syscalls:

1) SIOCGSTAMP [12] returns the last packet’s reception
time as timeval in microseconds (µs) granularity.

2) SIOCGSTAMPNS [12] instead returns a timespec in
nanoseconds (ns) granularity.

SIOCGSTAMP/SIOCGSTAMPNS is Linux-specific, i.e. not
available under FreeBSD. This approach is simple to use,
but ioctl() needs to perform a regular (i.e. expensive)
syscall, which is necessary for every packet. However, since
the reception timestamp is already recorded in the kernel upon
reception, this does not influence the accuracy of the timing
information.

E. SO TIMESTAMP and Variants

A more platform-independent way to obtain packet recep-
tion timestamps is the SO TIMESTAMP socket option (to be
set once per socket via setsockopt() call). When enabled,
it provides the timestamp as control data, together with the
actual data of the packet, when making a recvmsg() syscall
to request a received packet from the kernel. That is, both, data

and timing information, are obtained with a single syscall.
SO TIMESTAMP comes in different variants:

• SO TIMESTAMP under Linux and FreeBSD (by default)
provide a packet’s reception time as timeval in mi-
croseconds (µs) granularity.

• On FreeBSD, it is possible to set the clock source
using the socket option SO TS CLOCK [13]. If set
to SO TS REALTIME, SO TIMESTAMP provides a
timespec in nanoseconds (ns) granularity instead.

• On Linux, SO TIMESTAMPNS provides a timespec
in nanoseconds (ns) granularity.

That is, unlike SIOCGSTAMP (see Subsection III-D),
SO TIMESTAMP – using compile-time conditions – provides
kernel reception timestamping on different platforms.

F. SO TIMESTAMPING

Packet transmission timestamping is (currently) only avail-
able on Linux, using the SO TIMESTAMPING [14] socket
option. This option controls both, the usage of software (i.e.
kernel, which is denoted as “software” in the API) as well as
hardware timestamping in both directions (see also Figure 3).
As for the SO TIMESTAMP variants (see Subsection III-E),
the reception timestamping information (software and hard-
ware, if available) is delivered by recvmsg() as control data
together with the packet data.

For the transmission side, timing information about each
outgoing packet (software and hardware, if available) is re-
turned in the error queue of the transmitting socket. It is
only necessary to once enable the socket option RECVERR
(IPv4) or IPV6 RECVERR (IPv6) for the socket. Then,
like for receiving incoming packets and their control data,
the error queue can be read with recvmsg() using the
MSG ERRQUEUE flag. There, the data about the outgoing
packets is provided in the same way as for the reception
side. Since it would be inefficient to also return a copy of
the transmitted packet data, SO TIMESTAMPING allows to
attach an internal ID (a sequence number, which is only stored
in the kernel’s metadata structures) to each outgoing packet
(e.g. on sendmsg() syscall), which is used in the error
queue to only refer to a certain packet, without copying and
delivering its contents again.

While software scheduling (outgoing) and reception (incom-
ing) timestamping is always available, software transmission
timestamping (outgoing packet is forwarded to the underlying
hardware) requires the support of the network interface driver.

Support for hardware timestamping (both directions) re-
quires support by the underlying hardware, as well as support
by the corresponding driver. For each network interface, it
is furthermore necessary to enable hardware transmission and
reception support. Hardware may support both directions, only
one direction, or none. Furthermore, hardware may support
timestamping for arbitrary incoming packets, or only for in-
coming PTP [10] packets. For generic hardware timestamping
(as needed for ICMP and UDP), the underlying network
interface must be configured using the ioctl() syscall
SIOCSHWTSTAMP [14], with:

Table I
PACKET TIMESTAMPING POSSIBILITIES UNDER LINUX AND FREEBSD

Method Type Application Kernel Hardware Accuracy System SupportOut In Scheduler Out In Out In
gettimeofday() System Call ✓ ✓ – – µs POSIX Standard
clock_gettime() System Call ✓ ✓ – – ns POSIX Standard

SIOCGSTAMP ioctl() System Call – × × ✓ × × µs Linux
SIOCGSTAMPNS ioctl() System Call – × × ✓ × × ns Linux (≥2.6.22)
SO TIMESTAMP Socket Option – × × ✓ × × µs Linux, FreeBSD

SO TIMESTAMP+SO TS CLOCK Socket Option – × × ✓ × × ns FreeBSD
SO TIMESTAMPNS Socket Option – × × ✓ × × ns Linux (≥2.6.22)
SO TIMESTAMPING Socket Option – ✓ ✓ ✓ ✓ ✓ ns Linux (≥2.6.30)

1) tx type = HWTSTAMP TX ON enables hardware
timestamping for outgoing packets.

2) rx filter = HWTSTAMP FILTER ALL enables hard-
ware timestamping for arbitrary incoming packets.

The hardware timestamping capabilities of a network interface
can be checked3 with the ethtool tool. It is important to
note that hardware timestamps are using the device’s clock
(denoted as “raw”, see [14]), while all other timestamps
(software, i.e. kernel, as well as the application) are using
the system’s clock.

IV. HIPERCONTRACER ENHANCEMENTS

HIPERCONTRACER [3] in its current version 1.6.8 provides
HIPERCONTRACER Ping and Traceroute measurements over
ICMP. For the packet timestamping, it uses:

• clock_gettime() (see Subsection III-C) for the
transmission timestamp (via std::chrono::system clock in
the standard C++ library, converted to microseconds),

• SIOCGSTAMP (see Subsection III-D) for the reception
timestamp (on Linux) or clock_gettime() (else).

So, HIPERCONTRACER records RTTs with mediocre accu-
racy on Linux, with reduced accuracy otherwise, in microsec-
onds granularity.

As part of this work, HIPERCONTRACER has been im-
proved with the following features:

1) On Linux, SIOCGSTAMP usage has been replaced
by SO TIMESTAMPING with corresponding error
queue processing. SO TIMESTAMP+SO TS CLOCK
(see Subsection III-E) is used on FreeBSD. All time-
stamps are now recorded with nanoseconds granularity.

2) With SO TIMESTAMPING, all time sources from Fig-
ure 3 are recorded (when supported by the driver imple-
mentation and the hardware; see Subsection III-F).

3) The ICMP code has been separated into an ICMP
module, to allow for implementing further protocols.

4) An UDP module has been added. So, it is possible to
run UDP Ping and Traceroute measurements as well.

UDP Ping and Traceroute are a variation of the ICMP
variant (see Section II): instead of sending a request by ICMP,
they use UDP. Since ICMP is implemented as part of the

3Example: sudo ethtool -T <INTERFACE>.

TCP/IP protocol stack, no additional software is needed for
a system to support responding to an ICMP “Echo Request”.
However, firewalls may block this kind of test traffic, or
limit the data rate. UDP, on the other hand, needs a small
server application to send a response: an Echo [15] service.
Therefore, a corresponding implementation has been added
to HIPERCONTRACER as well. This requires support by
the remote side, but allows more flexibility. Measurement
infrastructures like NORNET EDGE [16], [17] therefore run
UDP Ping measurements, while infrastructures like NORNET
CORE [18] instead use ICMP. The new UDP module now
allows HIPERCONTRACER to support both variants, and even
compare them, with the same program settings and timestam-
ping features.

It should be noted that the UDP module uses raw sockets
to generate the outgoing UDP packets, in order to obtain
all incoming error messages (like ICMP “Time Exceeded”)
for each message. This means that the full HIPERCON-
TRACER/UDP/IP header hierarchy is prepared by the appli-
cation, including the Internet-16 checksum [19] computation
for IPv4 header [5] (IPv6 has no checksum) and UDP data-
gram [20].

The HIPERCONTRACER enhancements are available in the
Git repository4, as branch “dreibh/udpping”5. They are going
to be merged into the next major release 2.0.

V. PROOF-OF-CONCEPT ANALYSIS

For a proof-of-concept analysis, and to demonstrate the ca-
pabilities of the HIPERCONTRACER enhancements described
in Section IV, measurements were conducted from a system
at SimulaMet in Oslo, Norway (NO). The system is a
Dell Precision 5820 running Ubuntu Linux 22.04.2 LTS. It
is equipped with an Intel I219-LM Gigabit Ethernet interface.
Of course, this interface and its driver support the software
and hardware timestamping capabilities (see Subsection III-F).
All measurements were made between May 20 and May 24,
2023. The Internet connection is using the Internet service
provider (ISP) Uninett.

Table II
HIPERCONTRACER PING RTTS TO DIFFERENT TARGET SITES (IN µS)

Target Provider IP Samples Q1%.App Q1%.SW Q1%.HW Mean.App Mean.SW Mean.HW
Bergen, NO BKK IPv4 1452455 6459.97 6362.07 6306.38 6810.67 6672.72 6604.70
Bergen, NO BKK IPv6 1462396 6285.53 6235.80 6203.00 6596.24 6517.30 6465.54
Bergen, NO Uninett IPv4 1450837 6173.01 6099.72 6061.38 6431.39 6363.84 6328.97
Bergen, NO Uninett IPv6 1461746 6339.03 6214.52 6149.12 6618.63 6487.25 6416.91
Gjøvik, NO Uninett IPv4 1451237 14083.91 13950.44 13879.62 14360.74 14222.00 14146.22
Gjøvik, NO Uninett IPv6 1462896 14187.44 14059.04 13987.00 14462.50 14329.15 14252.39
Karlstad, SE SUNET IPv4 1450708 17298.92 17169.90 17100.00 17536.45 17397.74 17322.09

Kristiansand, NO PowerTech IPv4 1450445 17112.00 17013.94 16965.25 17619.38 17544.81 17501.85
Kristiansand, NO Uninett IPv4 1450878 4993.59 4865.45 4811.00 5287.41 5153.14 5093.88
Kristiansand, NO Uninett IPv6 1462120 4941.10 4819.37 4765.50 5225.37 5096.89 5037.81

Narvik, NO Broadnet IPv4 1451261 24546.38 24412.25 24339.12 27592.40 27462.12 27389.03
Narvik, NO PowerTech IPv4 1448400 25914.21 25791.63 25722.50 28974.68 28841.99 28768.26
Narvik, NO PowerTech IPv6 1460417 26014.87 25884.36 25808.12 29069.09 28934.54 28854.93
Narvik, NO Uninett IPv4 1450879 19783.49 19650.63 19578.62 20078.29 19940.41 19864.31

Oslo (Simula), NO Uninett IPv4 1450769 1833.12 923.83 892.62 1960.95 1279.53 1240.36
Oslo (UiO), NO Uninett IPv4 1450950 1915.09 996.43 965.38 2073.75 1321.88 1277.05
Oslo (UiO), NO Uninett IPv6 1465612 1463.92 957.06 925.12 1627.17 1248.67 1214.66
Stavanger, NO Uninett IPv4 1450998 10332.18 10202.71 10133.88 10603.50 10466.64 10393.53
Tromsø, NO Uninett IPv4 1450913 23164.79 23032.40 22959.88 23450.55 23312.30 23235.45

Trondheim, NO Uninett IPv4 1451140 8899.60 8768.07 8700.25 9181.28 9044.08 8972.03
Trondheim, NO Uninett IPv6 1463854 8829.04 8704.03 8637.62 9094.92 8963.60 8891.82

A. Round-Trip Times

To present an overview, HIPERCONTRACER performed
Ping and Traceroute measurements to 10 target sites of the
NORNET CORE [18] infrastructure in Norway as well as
Sweden (SE), over IPv4 as well as IPv6 (where available),
using its ICMP module. Most of these sites block UDP
Echo [15] traffic (firewalls), i.e. UDP vs. ICMP will be
analysed separately in Subsection V-B. The interval for Ping
is 1 s, Traceroute runs are made approximately every 5 min
with 3 rounds per run. Sites can have multiple ISPs.

Table II presents the Ping results of the measurement:
the application RTT (App; using system time, see Subsec-
tion III-C), as well as the software and hardware timestamping
RTTs (SW and HW; using SO TIMESTAMPING, see Subsec-
tion III-F) in form of 1% quantile (Q1%; i.e. 1% of the samples
are below this value) and mean (Mean) in µs. Obviously,
as expected, the RTT is lowest for hardware and highest
for application timestamping. Interesting is the difference,
which represents the cost of the corresponding processing step:
approximately 30 to 70 µs between software and hardware,
significantly more between application and software (i.e. ker-
nel). Note that the hardware results (i.e. from/to hardware
interface) make the measurements independent of software
effects on the local side. Of course, the remote side still
involves software (for ICMP: kernel only) to send back an
Echo Reply.

As part of future work, the precise HIPERCONTRACER
RTT results may be used to detect anomalies, like detours for
malicious interception, in network paths [2]: given the speed
of light in fibre cables is approximately 2.054 ∗ 108 m/s [21],

4HIPERCONTRACER master: https://github.com/dreibh/hipercontracer/.
5Branch: https://github.com/dreibh/hipercontracer/tree/dreibh/udpping/.

each µs of RTT represents around 102.7 m6 of cable length.
However, the latency contributions of the involved components
(routers, remote end-system) need to be investigated further.

Comparing the hardware RTTs for IPv4 and IPv6 by the
1% quantile, it can be seen that the difference between the two
IP versions is relatively small, with differences of just up to
around 150 µs. There is no clear advantage for one of the ver-
sions, e.g. IPv6 is slightly better with BKK in Bergen (6203 µs
vs. 6306 µs), while IPv6 is slightly worse with Uninett at
the same site (6149 µs vs. 6061 µs). Theoretically, IPv6
has slightly less overhead (constant header size, no header
checksum to process). However, there are clear differences
between the different ISPs. These are particularly visible for
the targets in Narvik, NO and Kristiansand, NO. The
differences indicate routing and access technology variations,
so it is interesting to look at the cumulative distribution
function (CDF) of the hardware RTTs in Figure 4: Most targets
show a steep incline around the average RTT. But for some
targets, this incline is smaller. The most interesting one is
clearly the Narvik target. For further analysis of the underlying
effects, it is therefore interesting to take a look at the raw RTT
data the CDF is computed from.

Figure 5 presents a 3-hour segment of the data for the
Narvik, NO target, again split between IPv4 (left-hand
side) and IPv6 (right-hand side), as well as ISP (Broadnet,
PowerTech, Uninett). Only PowerTech offers IPv6 at this site.
Each point shows a single hardware RTT measurement. The
data is aggregated in 15-minute intervals, where a bright box
indicates the absolute minimum/maximum of the interval, and
a dark box represents the 1%/99% quantiles. A thick blue line
displays the mean of each interval. Interesting here is a split of
the RTTs between the three ISPs: While Uninett offers a high-

6Note, the RTT measures both, forward and backward direction.

https://github.com/dreibh/hipercontracer/
https://github.com/dreibh/hipercontracer/tree/dreibh/udpping/

IPv4 IPv6

0 10000 20000 30000 0 10000 20000 30000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

RTT [µs]

C
D

F

Target

Bergen, NO Gjøvik, NO Karlstad, SE Kristiansand, NO Narvik, NO

Oslo (Simula), NO Oslo (UiO), NO Stavanger, NO Tromsø, NO Trondheim, NO

Provider

BKK Broadnet PowerTech

SUNET Uninett

Figure 4. CDF Plot of HIPERCONTRACER Ping Hardware RTTs (in µs)

Figure 5. Time-Series Plot of HIPERCONTRACER Ping Hardware RTTs (in ms) for the Target in Narvik, NO

bandwidth fibre link, PowerTech and Broadnet are consumer-
grade Asymmetric Digital Subscriber Lines (ASDL). That is,
these ADSL lines not only have a significantly higher delay,
but the low bandwidth also leads to more queuing. This results
in a significant variation of the RTT values. Precise RTT
measurement (see Table II) furthermore shows that Broadnet
has an around 1400 µs better RTT than PowerTech (24339 µs
vs. 25723 µs). Analysing network performance of different
subscriptions and access technologies in detail, with HIPER-
CONTRACER as measurement tool, is subject of further work.
For this, it can provide data for both, precise RTTs by Ping
as well as routing information by Traceroute measurements.

B. ICMP versus UDP
Finally, RTT results for using the ICMP and UDP module

(see Section IV) are compared. Since the NORNET CORE sites
utilised for Subsection V-A block UDP Echo [15] traffic, a
separate target server has been set up at Simula in Oslo,
NO. That is, the HIPERCONTRACER machine and the target

server are located at different sites in Oslo, with the external
network of the ISP Uninett in-between. For this experiment,
10 Pings/s have been sent via ICMP as well as UDP. Table III
shows the RTT results, again by 1%-quantile and mean. For
better readability, the results for software (SW) and applica-
tion (App) are shown as differences: software to hardware
(Diff.*.SW) and application to software (Diff.*.App).

The 1%-quantile for the hardware RTT provides an indicator
for the latency of the transport using the 4 variants: ICMP or
UDP over IPv4 or IP6. Interestingly, IPv6 provides almost
the same RTT for ICMP and UDP (702 µs vs. 705 µs). This
clearly differs from the results for IPv4 (866 µs vs. 731 µs).
Although it would be expected that processing ICMP at the
remote side would be faster than for UDP (since it is handled
only by the kernel, i.e. no context switches are necessary),
UDP has a smaller RTT. Further investigation is necessary
here, since this could be an effect of different handling in the
network, like e.g. firewalls. Generally, the RTTs for IPv6 are

Table III
HIPERCONTRACER PING RTTS (IN µS) FOR ICMP AND UDP TRANSPORT

IP Protocol Samples Q1%.HW Diff.Q1%.SW Diff.Q1%.App Mean.HW Diff.Mean.SW Diff.Mean.App
IPv4 ICMP 1604231 866.12 ↑ 74.38 ↑ 129.30 1098.37 ↑ 91.26 ↑ 176.74
IPv4 UDP 1605151 730.88 ↑ 77.49 ↑ 159.15 1000.31 ↑ 91.27 ↑ 213.50
IPv6 ICMP 1604587 702.00 ↑ 65.95 ↑ 110.52 865.66 ↑ 90.89 ↑ 171.39
IPv6 UDP 1602995 705.50 ↑ 70.85 ↑ 149.06 914.96 ↑ 91.23 ↑ 221.98

lower than for IPv4. This is expected, since IPv6 does not need
a header checksum to be computed and verified (i.e. reduced
processing overhead).

But how is the software on the local side contributing to ap-
plication and software RTT? On average, the packet processing
between kernel and Ethernet interface (SW) very consistently
adds around 91 µs, regardless of IP version and protocol.
This is not unexpected, since the Data Link Layer should
not make a difference (unless offloading features are used,
e.g. for TCP segmentation). For the application RTT, another
171 µs to 222 µs are added to the software RTT. The difference
between the protocols and IP versions is expected, due to
different code paths in HIPERCONTRACER. So, HIPERCON-
TRACER provides the accuracy to make these differences
visible. Clearly, further analysis is needed. Therefore, as part
of future work, it is intended to analyse the effects of end-
systems and network components in more detail, particularly
beginning with experiments in controlled environments.

VI. CONCLUSIONS

Obtaining high-precision RTT measurements for Internet
communications is important for various research topics on
computer networks. While Unix systems – like Linux and
FreeBSD – already provide features for accurate network
packet timestamping, they lack documentation. HIPERCON-
TRACER is an open source tool for high-performance, large-
scale, high-frequency ICMP Ping and Traceroute measure-
ments. But its RTT recording accuracy was not optimal.

In this paper, the network packet timestamping features of
Unix systems have been analysed and introduced first. This
includes available methods, their usage and their limitations, to
provide an overview over the various options. In the following,
HIPERCONTRACER has been enhanced with support for the
high-precision timestamping features of current Linux kernels,
as well as with improved accuracy for FreeBSD, in order
to provide highly accurate RTT measurements. Furthermore,
a UDP module has been added to also support UDP Ping
and Traceroute measurements. The new features have been
demonstrated by a proof-of-concept analysis.

As part of ongoing and future work, all enhancements are
going to be merged into the coming HIPERCONTRACER 2.0
release. Furthermore, it is intended to introduce HIPERCON-
TRACER 2.0 into large-scale measurement infrastructures, in
order to continuously run long-term measurements in the
Internet. This particularly includes the NORNET CORE [18]
testbed (currently using HIPERCONTRACER 1.6.8), as well
as the 4G/5G mobile broadband measurement infrastructure
NORNET EDGE [16], [17].

REFERENCES

[1] A. S. Tanenbaum, Computer Networks, 5th ed. Upper Saddle River,
New Jersey/U.S.A.: Prentice Hall, Oct. 2010.

[2] A. Arouna, S. Bjørnstad, S. J. Ryan, T. Dreibholz, S. Rind, and A. M.
Elmokashfi, “Network Path Integrity Verification using Deterministic
Delay Measurements,” in Proceedings of the 6th IEEE/IFIP Network
Traffic Measurement and Analysis Conference (TMA), Enschede, Over-
ijssel/Netherlands, Jun. 2022.

[3] T. Dreibholz, “HiPerConTracer - A Versatile Tool for IP Connectivity
Tracing in Multi-Path Setups,” in Proceedings of the 28th IEEE Inter-
national Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Hvar, Dalmacija/Croatia, Sep. 2020, pp. 1–6.

[4] J. B. Postel, “Internet Control Message Protocol,” IETF, RFC 792, Sep.
1981.

[5] ——, “Internet Protocol,” IETF, RFC 791, Sep. 1981.
[6] A. Conta, S. E. Deering, and M. Gupta, “Internet Control Message Pro-

tocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,”
IETF, Standards Track RFC 4443, Mar. 2006.

[7] S. E. Deering and R. M. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” IETF, Standards Track RFC 2460, Dec. 1998.

[8] F. Golkar, T. Dreibholz, and A. Kvalbein, “Measuring and Comparing
Internet Path Stability in IPv4 and IPv6,” in Proceedings of the 5th
IEEE International Conference on the Network of the Future (NoF),
Paris/France, Dec. 2014, pp. 1–5.

[9] W. R. Stevens, B. Fenner, and A. M. Rudoff, Unix Network Program-
ming. Addison-Wesley Professional, 2003.

[10] H. Weibel, “Technology Update on IEEE 1588: The Second Edition of
the High Precision Clock Synchronization Protocol,” in Proceedings of
the Embedded World Conference and Exhibition, Nürnberg, Bayern/Ger-
many, Mar. 2009.

[11] Linux Manual Pages, “vdso(7),” Mar. 2023, accessed: 2023-05-
17. [Online]. Available: https://man7.org/linux/man-pages/man7/vdso.7.
html

[12] ——, “socket(7),” Mar. 2023, accessed: 2023-05-17. [Online]. Available:
https://linux.die.net/man/7/socket

[13] FreeBSD Manual Pages, “setsockopt(2),” Mar. 2023, accessed: 2023-
05-17. [Online]. Available: https://man.freebsd.org/cgi/man.cgi?query=
setsockopt

[14] Linux Kernel Documentation, “Timestamping,” Mar. 2023, accessed:
2023-05-17. [Online]. Available: https://docs.kernel.org/networking/
timestamping.html

[15] J. B. Postel, “Echo Protocol,” IETF, RFC 862, May 1983.
[16] T. Čičić, A. Kvalbein, A. S. Al-Selwi, F. I. Michelinakis, and T. Dreib-

holz, “Norske mobilnett i 2022 – Tilstandsrapport fra Centre for Resili-
ent Networks and Applications,” Simula Metropolitan Center for Digital
Engineering, Centre for Resilient Networks and Applications (CRNA),
Oslo/Norway, Tech. Rep., Apr. 2023.

[17] A. Kvalbein, D. Baltrūnas, K. R. Evensen, J. Xiang, A. M. Elmokashfi,
and S. Ferlin, “The NorNet Edge Platform for Mobile Broadband
Measurements,” Computer Networks, Special Issue on Future Internet
Testbeds, vol. 61, pp. 88–101, Mar. 2014.

[18] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet Core – A Multi-
Homed Research Testbed,” Computer Networks, Special Issue on Future
Internet Testbeds, vol. 61, pp. 75–87, Mar. 2014.

[19] R. T. Braden, D. A. Borman, and C. Partridge, “Computing the Internet
Checksum,” IETF, RFC 1071, Sep. 1988.

[20] J. B. Postel, “User Datagram Protocol,” IETF, RFC 768, Aug. 1980.
[21] N. M. Juma, A. D. Edwards, P. Chang, K. L. Corwin, B. R.

Washburn, and N. S. Rebello, “Measuring the Speed of Light in
an Optical Fiber – Integrating Experimentation and Instrumentation,”
Ann Arbor, Michigan/U.S.A., Jul. 2009, poster. [Online]. Available:
https://advlabs.aapt.org/tcal/files/JumaN9.pdf

https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://linux.die.net/man/7/socket
https://man.freebsd.org/cgi/man.cgi?query=setsockopt
https://man.freebsd.org/cgi/man.cgi?query=setsockopt
https://docs.kernel.org/networking/timestamping.html
https://docs.kernel.org/networking/timestamping.html
https://advlabs.aapt.org/tcal/files/JumaN9.pdf

	Introduction
	Ping, Traceroute and HiPerConTracer
	How to Measure Packet Timing
	Overview
	A Packet's Journey Through the OSI Layers
	System Time
	SIOCGSTAMP and SIOCGSTAMPNS
	SO_TIMESTAMP and Variants
	SO_TIMESTAMPING

	HiPerConTracer Enhancements
	Proof-of-Concept Analysis
	Round-Trip Times
	ICMP versus UDP

	Conclusions
	References

