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Abstract—Cloudified mobile networks are expected to deliver a multitude of services with reduced capital and operating expenses. A
characteristic example is 5G networks serving several slices in parallel. Such mobile networks, therefore, need to ensure that the SLAs
of customised end-to-end sliced services are met. This requires monitoring the resource usage and characteristics of data flows at the
virtualised network core, as well as tracking the performance of the radio interfaces and UEs. A centralised monitoring architecture can
not scale to support millions of UEs though. This paper, proposes a 2-stage distributed telemetry framework in which UEs act as early
warning sensors. After UEs flag an anomaly, a ML model is activated, at network controller, to attribute the cause of the anomaly. The
framework achieves 85% F1-score in detecting anomalies caused by different bottlenecks, and an overall 89% F1-score in attributing
these bottlenecks. This accuracy of our distributed framework is similar to that of a centralised monitoring system, but with no overhead
of transmitting UE-based telemetry data to the centralised controller. The study also finds that passive in-band network telemetry has
the potential to replace active monitoring and can further reduce the overhead of a network monitoring system.

Index Terms—Bottleneck, Congestion, Mobile Cloud Network, Telemetry, Anomaly, Classification.
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1 INTRODUCTION

A cloudified mobile network represents a network architec-
ture in which the mobile network functions and services
are virtualised, enabling them to be run on cloud-based
platforms. This approach leverages the scalability, flexibility,
and cost-effectiveness of cloud computing technologies to
provide a multi-service infrastructure with service assur-
ance and simplified network management [1]. In the near
future, these networks are expected to carry, beside today’s
best effort traffic, a multitude of use cases with stringent
requirements e.g., IoT, industrial automation and highly
interactive multiverse traffic [2].

To ensure that the different tenants of a cloudified mobile
network are accommodated, it needs to quickly detect and
remediate performance degradation in the end services.
Detecting performance degradation necessitates the timely
collection of representative telemetry, the automation of
flagging any performance degradation, root cause attribu-
tion and finally the design of an effective control system
that re-configures the affected network elements.

This paper proposes a network monitoring framework
to timely detect and trigger the attribution of a performance
issue in a cloudified mobile network. Unlike data centre net-
works, the telemetry architecture in mobile networks have
received little attention. Differences between the two types
of networks, especially the challenging radio interface, make
adopting data centre approaches insufficient. We tackle this
by employing a 2-stage distributed telemetry framework, in

which User Equipments (UEs) act as early warning sensors
at stage-1 of the telemetry framework, and triggers the
stage-2 by flagging the occurrence of an anomaly to the
mobile network controller. An anomaly is flagged as a
result of performance degradation in an end-service. The
mobile network controller, then uses a supervised Machine
Learning (ML) algorithm to identify the root cause of the
anomaly. The ML model is built up on periodic active,
passive and in-band telemetry monitoring of different links
and components of the cloudified mobile network, where
periodicity can be tuned after striking right balance between
the overhead of telemetry collection, transmission and the
non-deterministic performance-related state of the mobile
network. A classical shortcoming of a supervised ML ap-
proach is the fact that training may not be comprehensive
enough i.e., it does not cover emerging or unknown anoma-
lies. Other than minimizing the monitoring overhead, a by-
product of our distributed telemetry framework is that it
signals out new types of anomalies and uses them to further
improve the system.

To assess our 2-stage distributed framework, we have
built a mobile network testbed based on the cloudified
architecture. We imitate performance degradation in the
network by introducing a set of bottleneck profiles, both in
the Radio Access Network (RAN) and the mobile network
core. These profiles encompass bandwidth congestion and
transmission delays on network links, data loss at relay
components, strained network resources within the network
cloud, and radio interference in the final mile.
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For troubleshooting mobile networks, its operators col-
lect key performance indicators (KPIs), usually every hour,
at various network elements like basestations and core
servers [3]. These KPIs are monitored for deviations from
the norm using simple thresholds, but the approach is slow,
imprecise, and reactive [4]. To address these challenges, ML
methods are increasing considered [4], [5] to automate net-
work troubleshooting. Deep learning, a subset of machine
learning, is particularly suitable for such networking issues
because it can handle large amounts of complex and high-
dimensional data. Additionally, extracting relevant features
or characteristics from the data is often necessary in trou-
bleshooting network problems. Deep learning models have
the capability to automatically extract these relevant fea-
tures during the learning process [6]. We, therefore, use sim-
ple deep learning models both for bottleneck detection, at
stage-1, and for its attribution, at stage-2, of our distributed
telemetry framework.

In this study, we make the following contributions:

1) Proposing bottleneck detection for mobile networks,
to be leveraged from end devices attached to the
network edge, i.e., UEs. At this stage (i.e., at stage-
1), we use Variational Autoencoder and achieve an
impressive performance of 85% F1-score in detect-
ing bottlenecks. This accuracy is not only 2% higher
but also includes detection of bottlenecks at RAN
that are missed by a recent related work [7].

2) Presenting a viable solution to the problem of us-
ing supervised ML for classifying problems with
potentially, yet, unlearned classes in the context of
mobile networks. At this stage (i.e., at stage-2) we
use Multi-Layer Perceptron (MLP) that attributes
bottlenecks with 89% F1-score. Th accuracy is
18% higher than that of a similar state-of-the-art
study [4], conducted on cloudified mobile network.

3) Empirically evaluating our approach in the lab in
comparison with a widely-used centralised teleme-
try framework. Our proposed distributed frame-
work shows comparable accuracy to that of a cen-
tralised approach, but with no overhead of trans-
mitting telemetry information from UEs to the cen-
tralised controller.

4) Investigating the potential of in-band network
telemetry in comparison with the traditional active
and passive monitoring methods, in a cloudified
mobile network.

The paper comprises of eight more sections. After dis-
cussing the background and motivation of the study in
Section 2, we explain our system architecture in Section 3.
In Section 4, we present our distributed framework for
bottleneck identification. Section 5 illustrates the types of
bottlenecks that we analyze along with machine learn-
ing models for their detection and attribution. Section 6
evaluates the 2-stage distributed telemetry framework in
comparison with a centralised system and with two state-
of-the art works. Furthermore, this section investigates the
potential and overhead of different monitoring approaches
used by the framework. We then point out the challenges
in the distributed framework in Section 7, followed by an

overview of related work in Section 8. The paper is finally
concluded, in Section 9, with key takeaways from the study.

2 BACKGROUND AND MOTIVATION

We term the events causing performance degradation to
end-users, in the mobile network, as bottlenecks. Bottle-
necks may appear due to issues in the wireless link or
network congestion, with an observable impact on end-
users, such as depicted in Figure 1. The figure shows bit
rate (Mbit/s), RTT and percentage of lost datagrams with
IPERF and UDP ping commands from a UE to a test server
in our experimental cloudified mobile testbed (mentioned
in Section 3), without any bottleneck on end-to-end path
and with different bottleneck profiles (illustrated in Table 2).
We observe that the bottlenecks indeed impact the perfor-
mance parameters at the end-devices, which in-turn effects
Quality-of-Experience (QoE). For example, studies like [8],
[9], [10] show that poor throughput, latency and packet loss
result in slow and unresponsive applications such as poor
audio or video quality during calls, slow loading times for
apps and websites, and increased buffering during media
streaming.
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Fig. 1: The impact of network bottleneck on performance
degradation at UE.

Identifying bottlenecks helps network operators to op-
timise their infrastructure. By pinpointing sources of bot-
tlenecks, operators can allocate resources more effectively,
such as adding to capacity where needed or dedicating
more resources to the affected network function instances.
Operators can also assess the demand patterns, predict
future growth, and plan network expansions accordingly.
Compared to other networks, the factors such as dynamic
topology, heterogeneous devices, varying user behavior,
mobility-induced fluctuations, load on the wireless links,
fluctuations of signal level and resource constraints on dif-
ferent network components, add complexity to accurately
identifying and mitigating bottlenecks in mobile networks
[11], [12].

Existing literature shows that ML can be leveraged to
automate detection of bottlenecks at run time [13]. To iden-
tify the root cause of performance degradation in a mo-
bile network, studies like [14], [15] employed a supervised
learning method, but these methods are dependent upon
labeled training samples and fail when an unlearned issue
arises. Furthermore, for accurate detection and attribution
of performance issues, it is essential to base the ML model
upon a holistic view of the network system. In other words,
the monitoring should reflect the state across different com-
ponents that inter-connect the end-to-end paths. A holistic
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view includes monitoring of both the services at the UEs
and the rest of the network infrastructure.

Monitoring the performance at UEs, can be done with
crowdsourcing [16], [17], where UEs tracks and reports
on Quality-of-Service (QoS) (e.g., network coverage quality,
handovers and throughput) and QoE features (such as page
load time in web-browsing applications or jitter in streaming
videos). Crowdsourcing, however, is expensive in terms
of data caps and overhead associated with the periodic
reporting of the monitored features to a central monitoring
entity [16]. Moreover, with of the ever increasing density of
UEs, mobile networks may be burdened by the high volume
of measurement data. There is a need to avoid this overhead,
without compromising the in-time and accurate detection of
a network performance degradation.

As far as the network infrastructure is concerned, passive
measurement strategy best suits where the components are
operated/controlled by the monitoring entity. It involves
recording and analyzing the user traffic to understand net-
work usage trends. In situations where it is not possible
to select capture points freely, active probing is used. This
method injects test traffic into the network to find faults
or issues. Active probes are controllable in terms of when
and what network features are to be measured. It, however,
burdens the probed devices and links with additional data.
Passive measurements do not inject additional data, but
monitoring all the traffic flows can be expensive in terms
of memory and processing resources. Additionally, network
administrators and operators typically utilise a component-
to-controller [18] monitoring framework, where, even pas-
sive measurements when uploaded to the centralised con-
troller, incur communication overhead.

Unlike traditional passive monitoring strategies [19] and
tools such as tcpdump [20] and wireshark [21], one can
apply the Inband Network Telemetry (INT) [22] method
used in datacenters [23], [24]. INT is a type of passive mon-
itoring system implemented with Programming Protocol-
independent Packet Processors (P4) [25], [26]. Being pro-
grammable, it allows a centralised network controller not
only to configure the measurement frequency and to change
the monitored features on the fly, but also to adjust the
monitoring granularity to per-user, per-link, per-flow down
to a packet-level.

In the light of the above discussed potentials and chal-
lenges, we aim to leverage a 2-stage distributed telemetry
architecture with following features:

• Local (or semi-local) learning with minimal moni-
toring overhead. Unlike crowdsourcing the UE does
not send the telemetry data to the central monitoring
entity i.e., to the mobile network controller. Instead,
anomaly detection on the monitored QoS/QoE met-
rics of end-services, local to the UE, is performed
either on the UE itself or at an edge compute element.
Anomaly detection flags both previously seen and
unseen performance issues.

• After an anomaly is detected, the data analytics at
the central monitoring entity is triggered. The cen-
tral monitoring entity runs a supervised bottleneck
classification model, being built upon periodic mea-
surements from different components and links of

the cloudified mobile network. For an unidentified
bottleneck instance, the features are logged into a file,
to be labelled and used in model retraining.

• The framework involves real time attribution of net-
work issues, that are impacting a significant number
of UEs. We therefore aim for a simple ML model that
is not only scalable, has quicker response time but
can also help to understand the impact of different
monitoring methods and parameters on the model’s
accuracy.

3 SYSTEM INFRASTRUCTURE

The hardware and software infrastructure of our mobile
network testbed is illustrated in Figure 2.

3.1 Cloudified Mobile Network

The main part of the network [27] is an Enhanced Packet
Core (EPC), containing four basic components:

1) Home Subscriber Server (HSS), for managing the
network subscriber accounts;

2) Mobility Management Entity (MME) for managing
the attachment of Evolved Node Bs (eNodeBs),
i.e. base stations, and UEs, e.g. smartphones or
modems;

3) Control Plane of the Serving and Packet Data Net-
work Gateway (SPGW-C), for managing access to a
Public Data Network (PDN), i.e. the Internet;

4) User Plane of the Serving and Packet Data Network
Gateway (SPGW-U), for forwarding user traffic be-
tween UEs and the PDN.

The HSS, MME, SPGW-C and SPGW-U are using
the open source implementation from OPENAIRINTER-
FACE (OAI) [28]. In addition to the four EPC components,
we also deploy FLEXRAN [29]. In particular, a FLEXRAN
Controller to manage the eNodeB parameters and provide
fine-granular metrics from the eNodeBs.

The eNodeB is deployed using the open source im-
plementation from OPENAIRINTERFACE. In addition, the
Software Defined Radio (SDR) ETTUS USRP B210 provides
both the antennas and the Radio Unit (RU), which converts
radio waves into digital waveforms.

Clearly, managing the components of a complex setup
manually is not straightforward. Therefore, we deploy
OPEN SOURCE MANO (OSM) [30] as the orchestration plat-
form for Network Function Virtualization (NFV). Basically,
OSM performs [31, Chapter 1]:

• Composition of Virtual Network Functions (VNFs)
into Network Services (NSs);

• Instantiation of NSs and their VNFs in an under-
lying Network Function Virtualization Infrastruc-
ture (NFVI) as so-called Virtual Deployment Units
(VDUs), which are virtual machines and/or contain-
ers;

• Run-time configuration (e.g. initial installation, run-
time change of parameters, reconfiguration) of the
VDUs;

• Monitoring of the VDUs (details in Subsection 3.2);
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Fig. 2: The testbed Infrastructure of the Cloudified Mobile Network.

• Scaling (i.e. increasing/decreasing the number of
instances) and removal of VDUs.

Currently, our setup is running OSM “Release EIGHT” on
UBUNTU 18.04 “Bionic Beaver”. OSM uses JUJU [32] for
managing the VDUs. That is, for each VDU, JUJU maintains
a separate container controlling it. Each container runs the
JUJU Charm of the corresponding component, which is
a custom Python program to implement the component-
specific control functionalities. In our setup, we use OPEN-
STACK [33] “Stein” on UBUNTU 19.04 “Disco Dingo” as
NFVI to host the VDUs, which are instantiated as virtual
machines in two OPENSTACK compute nodes. The VDUs
of MME, HSS, SPGW-C and SPGW-U run UBUNTU 18.04
“Bionic Beaver”, while the VDUs of FLEXRAN Controller
and P4 switches run UBUNTU 20.04 “Focal Fossa”.

3.2 Telemetry Components

As part of the components orchestration, OSM already
provides two ways of monitoring the deployed NSs:

1) By using features of the NFVI (i.e. by CEILOMETER
and GNOCCHI in OPENSTACK [34]);

2) By JUJU Charms, that run customised monitoring
code as part of the configuration service managing
the VDUs.

However, this monitoring only covers coarse metrics [35],
[36] – like CPU utilisation, per-interface packet and byte
counters, etc. – and does not represent the quality of services
features of user data traffic. Particularly, there is no informa-
tion about user flows (e.g. TCP connections, etc.) of users.
Packet and byte counters only represent the aggregation of
all users and their flows. We aim at a vendor-independent,
“standardised” solution for passive monitoring of the per-
flow user data traffic with P4 version 16 [26] based soft-
ware switches. P4 provides a standardised language for
programming packet processors, i.e. switches, which can be

compiled for different target devices. Currently, we deploy
P4 software switches, using the Behavioral Model Version 2
(BMv2) Simple Switch software implementation [37]. How-
ever, once available, it would be straightforward to just
replace them by more powerful, off-the-shelf P4 hardware
switches. In our testbed, as shown in Figure 2, we have P4
switches for the four important interfaces (actually: internal
networks):

1) S1-C, between eNodeB and MME (network control
traffic);

2) S1-U, between eNodeB and SPGW-U (encapsulated
user traffic);

3) SGi, between SPGW-U and PDN (decapsulated user
traffic);

4) FlexRAN, between eNodeB and the FLEXRAN Con-
troller (only FLEXRAN control traffic).

Particularly, the user traffic is handled on the S1-U interface,
where it is tunnelled via GPRS Tunnelling Protocol (GTP),
and on the SGi interface, where it is “normal” traffic without
encapsulation. It should also be noted that SGi traffic uses
the public IP address of an SPGW-U. An SPGW-U performs
Network/Port Address Translation (NAT/PAT) between an
internal address, used by a UE, and the public SPGW-U
address. Inside the tunnel, traffic therefore uses the internal
address of a UE.

We programmed the P4 switches, at S1-U and SGi, to
attach custom telemetry data to packets running over them.
For example, the S1-U switch attaches INT information to a
user packet (in the GTP tunnel), and forwards the modified
version of the packet to the Telemetry Collector (i.e., a part
of the mobile network collector), while the un-modified
to its destination (that is test server in Figure 3). The SGi
switch does the same before forwarding the packet into the
Internet. The Telemetry Collector correlates the two packet
snippets (on the flow identifiers that come with the INT
fields), and generates performance metrics. Note that the
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Fig. 3: Bottleneck identification in the 2-level distributed
monitoring framework.

actual outgoing packet into the Internet does not contain
telemetry data i.e., the privacy of the user is not getting
compromised.

With the received INT information of the packets, the
Telemetry Collector can track both the characteristics of
user data traffic and the status of the P4 switches such as
congestion at a port. Depending on the processing power
of the P4 switches and the Telemetry Collector, such a
system can be configured to only handle a subset of the
packets or flows, for creating samples (e.g. only every n-th
packet or flow or only flows of certain representative users,
etc.). Moreover, based on the monitoring needs, INT can be
performed on the data traffic with the granularity of per
user, per service type, per flow or per packet.

4 BOTTLENECK IDENTIFICATION SYSTEM

Figure 3 depicts a high level overview of the distributed
framework of our proposed bottleneck identification sys-
tem. It comprises of three stages:

1) System monitoring
2) Bottleneck detection
3) Bottleneck attribution (or classification)

Each of the three stages are elaborated in the following
subsections.

4.1 System Monitoring
In our 2-stage distributed framework, we monitor the com-
munication system both at the user side (i.e. at the UE) and
at the rest of the mobile network.

Monitoring at UE: It records QoE-based features of the
applications running on the end-device. The monitored

1. FEATURES COLLECTED BY FLEXRAN CONTROLLER: https://
mosaic5g.io/apidocs/flexran/flexran spec v2.2.3.html

features depend upon the specific application. This can be
page load time and throughput for a web-browsing service,
while for a streaming video it can be delay, jitter and
throughput. For our test scenario, we generate downlink
TCP traffic with IPERF from the test server as a user data
session, the quality features of which, shown in Table 1,
are monitored passively at the UE. This data transfer is
performed at the maximum bandwidth of the end-to-end
path. Other than monitoring performance of the service (i.e,
IPERF TCP session) passively, the UE also tracks RTT to the
test server by sending UDP ping messages every second.
This active measurement monitors latency on the end-to-
end path; an additional performance indicator of the end
service. Lastly, the UE passively monitors the radio coverage
quality via NETMONITOR2, every second. NETMONITOR
collects Reference Signal Received Power (RSRP), Reference
Signal Received Quality (RSRQ) and Received Signal to
Noise Ratio (RSSNR).

Monitoring status of eNodeB: The FLEXRAN controller
provides a northbound RESTful API for issuing control
commands and for obtaining statistics and reports for
the connected base stations using simple HTTP requests3.
We run the curl -X GET http://127.0.0.1:9999/
stats/manager/all command, every 5 seconds. This
gets the RAN configuration and status for the current TTI
for all eNodeBs connected to this controller. It reports on the
configuration of eNodeB(s) and UE(s), and statistics about
Medium Access Control (MAC), Radio Link Control (RLC)
and Packet Data Convergence Protocol (PDCP) layers.

Monitoring network data links: To monitor data flows,
network links and status of switching devices, we utilise the
P4 switches of S1-U and SGi interfaces (see Figure 2). The
switches create clones of the passing by packets and add
an additional header of “IP options” [39, Subsection 3.1]
with telemetry fields that comprise both of status of the
P4 switches and flow characteristics. The metrics of INT
can be programmed depending on the monitoring require-
ment. These cloned (mirrored) packets are then sent to
the Telemetry Collector (shown in Figure 2), for further
analysis. For our test scenario we apply INT, only on ping
packets, to compute four parameters on each of the two
switches. These are (1) packet count of the data flow using
count-min sketch [40], (2) hitter [41] which is a Boolean
metric that assesses if the packet is part of a bursty traffic.
We consider switch queue size of 5000 or more bytes as an
indicator of a bursty traffic, (3) deq timedelta that measures in
microseconds the amount of time a packet stays in P4 switch
queue, and (4) deq qdepth which indicates the length of the
switch queue when the packet was dequeued, in number
of packets. The last two parameters are derived from the
struct standard metadata of the P4 version 16 V1Model ar-
chitecture4. Along with these key parameters the mirrored
packet carries the flow identifier and the switch identifier to

2. NETMONITOR is an Android app from https://vavsoftware.ru.
3. FLEXRAN NORTHBOUND API: https://mosaic5g.io/apidocs/

flexran/#api-Stats-GetStatsHumanReadable.
4. STANDARD METADATA: https://github.com/p4lang/

behavioral-model/blob/main/docs/simple switch.md
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Type Description Examples of features
Monitoring at UE

Active monitoring from UE Ping to test server Average RTT, Packet loss percentage
Passive monitoring of an application
service

Downlink TCP IPERF from test server Transfer (MiB), Bitrate (Mbit/s), Jitter(ms)

Passive monitoring of network coverage NetMonitor App RSRP, RSRQ, RSSNR
Monitoring status of eNodeB

Control commands from northbound
RESTful API of FlexRAN controller

To obtains configurations and statistics
of eNB(s) and their UE(s)

We record features specified by
flex_cell_config, flex_ue_config
and flex_ue_stats_report1.

Monitoring of network data links
Active monitoring of S1-U and SGi
links

Ping from eNodeB to SPGW-U Average RTT, Packet loss percentage
Ping from SPGW-U to the test server Average RTT, Packet loss percentage

Passive monitoring by P4 switches at
S1-U and SGi

INT on user data traffic and status of the
switches

Packet count of a flow, packet length,
deq qdepth, deq timedelta, hitter

Monitoring of network resources
Passive monitoring of resource usage at
SPGW-U and FlexRAN controller

Using sar utility of Sysstat to collect
CPU and memory usage information,
and track disk input output activities

CPU usage features (i.e. %user, %system,
%iowait, %steal, %idle), Memory usage features
(i.e. kbmemfree, kbavail, kbmemused, perme-
mused, kbbuffers, kbcached, kbcommit, per-
commit, kbactive, kbinact, kbdirty) and I/O fea-
tures (such as tps, rtps, wtps, dtps) [38]

TABLE 1: Network-wide monitoring and measurements.

the Telemetry collector.
We also leverage active probes in the network system.

We have two such probes, one at the eNodeB and another at
the SPGW-U. The first one measures delay and packet loss at
the S1-U interface, and the other one at the SGi interface by
injecting Ping messages from the eNodeB and the SPGW-U,
destined to the SPGW-U and the test server, respectively.

Monitoring network resources: Lastly, we track the re-
source utilization in the mobile network, by monitoring load
on the CPU, memory and I/O disk operations with SYSSTAT.
We run SYSSTAT utility5 [38] periodically, every 5 seconds.
In the current architecture, we exploit SYSSTAT parameters
collected at the SPGW-U and the FlexRAN controller. These
two components reveal impact upon data and control flows,
respectively, under stressed and non-stressed resources. The
details of the monitored features are given in Table 1.

Other than UE measurements, rest of the network mea-
surements are periodically transmitted to the Telemetry
Collector part of the mobile network controller.

4.2 Bottleneck Detection

We formulate the bottleneck detection stage as an anomaly
detection problem. We denote the measurements, used
to identify bottlenecks, as multivariate time series T =
{x1, .., xT }, x(t) ∈ Rm is an m-dimensional vector of sam-
ples at timestamp t. An anomaly detection method learns a
model to label a binary variable yt ∈ {0, 1} at time t as 1
if anomaly is detected, where anomaly represents a rare or
unseen observation x

′

t.
The unsupervised anomaly detection allows for a more

holistic exploration of the data, enabling the identification
of various types of bottlenecks, including complex patterns
that may not be easily labeled by human operators. The
anomaly detection process is assuming that T contains
only normal samples and the model is trained to learn the

5. SYSSTAT: https://bencane.com/2012/07/08/
sar-sysstat-linux-performance-statistics-with-ease

distribution of normal data. An anomalous sample is one
that differs significantly from T . The difference between
the sample x

′

t and the normal data T is measured by an
anomaly score, which is then compared to a threshold. If
the score is above the threshold, the sample is considered as
anomalous.

4.3 Bottleneck Attribution
Once a bottleneck has been detected by the stage-1, we
need to specify the type and location of this bottleneck.
Note, in the wild, our framework will only trigger stage-
2 or bottleneck attribution when multiple UEs report it. It
is to avoid responding on quality degradation caused by a
context specific to a single UE, e.g., its end-device defect.
For this study we do not follow this restriction due to our
simplistic experimental testbed.

We take bottleneck attribution as a classification problem
and formulate it as a supervised learning model, which
is trained with known class labels. More specifically, we
define 10 classes of single bottlenecks (See Table 2). These
are bottlenecks that have a single source of occurrence e.g.,
congestion only at S1-U. Besides the single bottlenecks,
the classification model should also be able to classify the
composite bottlenecks, that has more than one sources e.g.,
data congestion at S1-U and stress on network resources.
Additionally, the model should identify any bottleneck that
is not experienced before as unidentified, instead of misclas-
sifying it. An unidentified bottleneck is registered in a log
file (as depicted by Figure 3) along with its corresponding
measurements features. If its occurrences increase, it can be
labelled and used for retraining the classification model.

5 SYSTEM IMPLEMENTATION

5.1 Types of Bottlenecks
To represent occurrences of different types of performance
issues in the mobile network, we follow the bottleneck
profiles of [4]:

1) generate congestion on network data paths,
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2) introduce packet loss at different intensities in the
network,

3) overload network resources at different intensities,
and

4) create interference at the radio access link.

Table 2 provides the complete list of bottlenecks that
we test on our system architecture. To emulate congestion,
we introduce an additional downlink TCP traffic flow at
the maximum bandwidth of the network link(s), using the
IPERF [42] tool. Next, for packet loss induction, we use
the Linux traffic control feature NETEM [43], [44]. These
latter experiments consist of either a high loss percentage
of around 5% or a low loss percentage of 1% and adversely
effect the passing by data flows. Thirdly, to overload the
network resources, we stress out the CPU and memory
resources and increase input/output disk operations with
the stress-ng tool [45]6. Lastly, to create radio interference we
deploy a GNU RADIO7 noise source on a separate system
using a dedicated SDR ETTUS USRP B210. The noise source
generates an additive white Gaussian noise (AWGN) signal
which has central frequency similar to that of the eNodeB
radio carrier.

The above bottlenecks are generated at different network
links and components, making it up to fourteen different
bottleneck profiles. In Table 2, the source link/component of
each bottleneck is mentioned in Location column. In terms of
ML, each bottleneck profile represents a class label. Further
to it, the bottleneck profiles are categorised into single and
composite groups depending on their complexity.

5.2 Bottleneck Detection and Attribution Models
As discussed earlier, in our bottleneck identification frame-
work, the detection stage comes first. Taking bottleneck
as an anomaly, our investigation shows that some of the
following widely used unsupervised anomaly detection
techniques result in excellent performance.

1) Isolation Forest (iForest): iForest algorithm [46] is
based on decision trees to separate outliers from
the rest of the data. It is widely used for anomaly
detection [47] [48]. Recursively, it partitions the data
by randomly choosing a feature and then selecting
a random split value, i.e. cut-off-point between the
max and min values of that feature. The algorithm
then determines if this isolates an anomalous mea-
surement sample; if so, it stops; otherwise, it selects
a different feature and a different cut-off point at
random. The anomalous measurement samples are
distinguished from the rest of the measurement data
by this random splitting of features, which will
result in shorter routes in trees. The measurement
samples that travel deeper into the tree are less
likely to be anomalies as they required more cut-
off-points to isolate them.

6. For high stress we use: stress-ng --cpu 4 -d
1 --hdd-bytes 1G -m 1 --vm-bytes 1G --iomix 1
--iomix-bytes 1G.
For low stress, we use: stress-ng --cpu 1 -d 1 --hdd-bytes
256M -m 1 --vm-bytes 256M --iomix 1 --iomix-bytes
256M.

7. GNU RADIO: https://www.gnuradio.org.

2) Autoencoder (AE) [49]: is an unsupervised artifi-
cial neural network composed of an encoder and
a decoder. The encoder (in Equation 1) takes the
input x and maps it into latent variable z, whereas
the decoder maps the latent variable z back into the
input space as a reconstruction x̂ (Equation 2). W
and b are the weight and bias of the neural network
and σ is the nonlinear transformation function.

z = σ(Wxzx+ bxz) (1)

x̂ = σ(Wzxz + bzx) (2)

The difference between the original input vector x
and the reconstruction x̂ is the reconstruction error
as in Equation 3. An autoencoder learns to minimize
this reconstruction error (loss).

loss = ||x− x̂|| (3)

The loss is considered to be an anomaly score, which
if above a predefined threshold, depicts an anoma-
lous data input.

3) Variational Autoencoder (VAE) [50]: To avoid the
over-fitting that may result from decoding the latent
space z without any reconstruction loss, we use
VAE i.e., an extended versions of AE. Instead of
encoding an input as a single point, VAE encodes
input as a distribution over z. A sample point from
this distribution is then decoded and the reconstruc-
tion error can be computed. Thus the encoders and
decoders of VAE are called probabilistic encoders
and decoders. Besides the reconstruction error, the
loss function of VAE has to regularise the latent
variable z that can be done using Kulback-Leibler
divergence (KL). The loss function can be expressed
in Equation 4, where µ, λ are the mean and co-
variance of the distribution and N is the Gaussian
distribution.

loss = ||x− x̂||+KL[N(µx, λx), N(0, 1)] (4)

After training, VAE reconstructs normal data very
well, while failing to do so with anomalous data
which the VAE has not encountered.VAE uses the
reconstruction error as the anomaly score.

4) Denoising Autoencoder (DAE) [51]: Again an exten-
sion of AE, DAE receives a corrupted data point x̂ as
input by adding random noise to the original input
x. The DAE is then trained to recover the original
uncorrupted data point x as its output.

After detection of a bottleneck anomaly, we aim for the
second stage i.e., a ML classification model to attribute the
type and location of the bottleneck. We, therefore need our
bottleneck classification stage to tackle three different types of
classification problems. These include:

1) Multi-class, to predict one of the 10 single bottleneck
classes mentioned in Table 2;

2) Multi-label classification, for predicting composite
bottlenecks mentioned in Table 2;
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Bottleneck Profile/Class Label Bottleneck Cause Complexity
Type Location
Congestion S1-U Downlink TCP IPERF at maximum available bandwidth

Single

Congestion SGi Downlink TCP iperf at maximum available bandwidth
Congestion S1-U and SGi Downlink TCP iperf at maximum available bandwidth
High stress on resources SPGW-U High CPU, Memory and Disk I/O stress
High Stress on Re-
sources

FlexRAN Controller High CPU, Memory and Disk I/O stress

Low packet loss SPGW-U 1% packet loss
High packet loss SPGW-U 5% packet loss
Radio interference Radio access link Radio frequency interference caused by a transmitter on the

same frequency at which the test UE received data
Low resource stress SPGW-U Low CPU, Memory and Disk I/O stress
Low resource stress FlexRAN Controller Low CPU, Memory and Disk I/O stress
High stress on resources SPGW-U and FlexRAN

Controller
High CPU, Memory and Disk I/O stress

Composite
Congestion, S1-U, Downlink TCP IPERF at maximum available bandwidth,
High resource stress FlexRAN Controller High CPU, Memory and Disk I/O stress
Congestion, S1-U, Downlink TCP IPERF at maximum available bandwidth,
High packet loss SPGW-U 5% packet loss
High packet loss, SPGW-U 5% packet loss,
High resource stress High CPU, Memory and Disk I/O stress

TABLE 2: Bottleneck profiles analysed on the testbed.

3) Unidentified classes; to predict occurrences of
new/unseen types of bottlenecks. These will in-
clude the bottlenecks profiles, upon which the ML
model is not trained.

Neural Networks, as deep learning models, have shown
promising results in different classification tasks [52]. Ar-
chitectures such as MLP, Convolutional Neural Networks
(CNNs), and Recurrent Neural Networks (RNNs) can be
used for multi-class and multi-label classification by mod-
ifying the output layer to accommodate multiple labels.
Among these, CNN is best suited for image classification
while RNN needs long temporal pattern as input. To be able
to tackle the bottleneck classification problem, we therefore
select a MLP model.

An MLP is a neural network with fully connected neu-
rons among layers. It has the capabilities to approximate,
through supervised learning, the function that relates the
input with the output. It offers flexibility in terms of its
architecture, for example by customizing its number of
layers, the number of nodes in each layer, and the activation
functions, MLP can both classify multi-label instances and
isolate the unseen instances. Although MLP is considered
a black-box model, its architecture allows for some level of
interpretability. We can analyze the weights and activations
in the hidden layers to gain insights into the learned repre-
sentations and understand how the model makes decisions.

Our MLP classifier has an input layer that expects 76 in-
puts and an output layer that matches with the number
of single bottleneck classes. Each node in the output layer
has a sigmoid activation, which predicts a probability of
class membership for the label, a value between 0 and 1.
This means, the MLP classifier will predict 10 probabilities
for each input sample. The output probability indicates the
confidence of the classifier in its predictions. An activation
threshold of 0.5 is then used to convert the probabilities gen-
erated by the MLP into binary predictions. If the predicted
probability for a label is ≥ 0.5, it is considered as positive
(1), and if it is below 0.5, it is considered as negative (0).
Based on this we can identify all types of bottlenecks. For
instance, an input sample with the output [0.1, 0.98, 0.2,

0.4, 0.09, 0.08, 0.3, 0.1, 0.03, 0.12] most likely belongs to the
second bottleneck class. For the composite bottleneck, more
than one class will have high probability ≥ 0.5 threshold.
This way, any sample that does not belong to any of the
bottleneck classes can me marked as unidentified.

6 EVALUATION

6.1 Dataset
To evaluate our proposed system, we exploit three different
datasets based on the design choices described above.

6.1.1 UE-based Dataset
It comprises the measurements collected at the UE (see
Table 1). In the UE dataset, 8 features are measured directly
at the UE namely, Average RTT, Packet loss percentage, Transfer
(MiB), Bitrate (Mbit/s), Jitter (ms), RSRP, RSRQ, and RSSNR.
Inter packet gap (IPG) is a metric computed from the moni-
tored feature of Average RTT. Our monitoring frequency is
every second, but for data analytics we take mean values
of the features in each 5 seconds window. For each of these
windows we also compute other statistical metrics including
median, skewness and kurtosis of all the primary features
given above, except of the radio quality indicators. The
resulting UE dataset consists of 28 features that we use for
bottleneck detection. Within this dataset 8,640 data samples
were collected under normal network conditions, which
form a baseline scenario in our monitoring. In the context
of this study a data sample denotes set of features that were
derived from a single 5 seconds window. In total, 40,320 data
samples were collected when various bottlenecks were em-
ulated in the network.

6.1.2 Mobile Network Dataset
The Mobile Network Dataset contains the measurements
collected from the components of mobile network, namely,
eNodeB, FlexRAN, SPGW-U and P4 switches. These mea-
surements, shown in Table 1, are reported to the Telemetry
Collector (Figure 2), which is a part of Network Con-
troller (Figure 3). Pre-processing steps are applied to the
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measurements before feeding into the bottleneck iden-
tification model. Initially, we filter out all the missing
values and constant features. In particular, we remove
all configuration and identifier-related variables such as
cell config.init nr, cell config.phy cell id, ue config.rnti and
imsi from the FlexRAN measurements. Secondly we retain
only one of the correlated features from a single monitoring
point, for example, retaining kbmemused and removing its
correlated feature of kbavail from memory usage features
reported by Sysstat at SPGW-U.

The switches at S1-U and SGi perform INT and mirrors
the modified packets to the Telemetry Controller, which not
only extracts the INT features defined in the Table 1, but also
derives metrics i.e., percentage of lost packets and uplink
& downlink jitter between corresponding INT packets re-
cieved from the two P4 switches. All mobile network-based
measurements make it to 54 different features. For the mea-
surements that we collect frequently, that is every second,
their statistical metrics including mean, median, kurtosis
and skewness are computed for every 5 seconds window.
This increases the number of features to 76. Just like the UE
dataset, the final dataset from the mobile network has 40,320
data samples.

6.1.3 Network-wide Dataset
It combines all features from both the UE-based dataset
and the network dataset. It is used to investigate the trade-
off between a centralised and the distributed monitoring and
analysis frameworks.

We divided the above datasets into two subsets of ratio
60 : 40 for training and testing sets respectively. During
training, 30% of the training data is held for validation.

6.2 Evaluation Metrics
To evaluate the performance of our bottleneck identifica-
tion framework, we use prediction (P), recall (R) and F1-
score (F1) [53]:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 ∗ P ∗R

P +R
,

where TP is True Positives, FP is False Positives and FN is
False Negatives.

We formulate the composite bottlenecks as multi-label
classes, and use the following metrics to evaluate their
classification accuracy:

• Hamming Loss: It is equal to the number of incorrect
predicted labels (TNIP) of the individual classes di-
vided by the total number of predictions (TNP). In
hamming loss the smaller the result, the better is the
model [54].

Hamming Loss =
TNIP

TNP

In other words if a composite bottleneck comprises of
c number of bottlenecks and there are n instances of
the composite bottleneck, then TNP = n×c. TNIP
denotes the number of single bottlenecks, within n×c
bottlenecks being classified incorrectly.

• Exact Match Ratio (EMR): is the most strict metric,
indicating the percentage of samples that have all

their labels classified correctly. In our case, the two
single bottlenecks that form the composite have to
be classified correctly in order to be considered as
TP. The disadvantage of this measure is that multi-
class classification problems have a chance of being
partially correct, but here we ignore those partially
correct matches [55].

For bottleneck detection, we define the threshold for the
anomaly score that provides the best F1-score.

6.3 Models Implementation
We implement the MLP model using three hidden layers
with 64, 24, 16 neurons respectively (these are chosen with
trial and error method). We use the rectified linear unit
(ReLU) as an activation function in the hidden layers which
converges very quickly during the training. The input data
propagates through the MLP layers, where each layer per-
forms a matrix multiplication followed by an activation
function. The computational complexity of a MLP model
depends on the number of layers, the number of neurons
in each layer, and the dimensionality of the input and
output [56]. For an MLP model with L layers, Ni neurons at
layer i, input dimension Nin, and output dimension Nout,
the computational complexity is roughly O(Nin×N1+N1×
N2 + ... + NL × Nout). So, the approximate computational
complexity of our MLP model with Nin = 76, Nout = 10,
three hidden layers and different numbers of neurons per
layer (i.e., N1 = 64, N2 = 24, N3 = 16) would be O(N2

in).
In our implementation for AE, VAE and DAE, the en-

coder and decoder both have two hidden layers with 28, 14
dimensions at the first and second hidden layer, respec-
tively. Each layer has N = 64 neurons. The computational
complexity of the encoder can be approximated as O(N2)
for each layer. Since there are two hidden layers, the over-
all complexity of the encoder would be proportional to
O(2 × N2). Similarly, the computational complexity of the
decoder is also proportional to O(2 × N2). Both encoder
and decoder approximate it to O(N2). In short, both the
bottleneck detection and the classification ML models make
it to a quadratic complexity.

Table 3 details the hyper-parameter setup used for each
model. The hyper-parameters are estimated using cross-
validation. Where a parameter is not specified, it indicates
that it is set by its default value. The MLP, AE, VAE, and
DAE models are implemented using Pytorch8 whereas iFor-
est is implemented with scikit-learn 1.2.29. All these models
are trained on NVIDIA V100 GPU 32GB.

6.4 Performance Analysis of the Bottleneck Identifica-
tion Framework
For the bottleneck detection stage, of our proposed bottleneck
identification system, we investigate the different methods
listed in Subsection 5.2, using UE-based dataset. Table 4
shows that AE-based methods demonstrate superior pre-
cision compared with the iForest model. However, VAE
outperforms all the other methods by up to 26% F1-score.

8. https://pytorch.org/
9. https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.IsolationForest.html
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TABLE 3: Hyper-parameter settings of the different meth-
ods.

Method Parameters Use

iForest The number of base estimators=600 Bottleneck
Detection

AE window size=20, Epochs=100,
Learning rate= 0.002

DAE
window size=20, Epochs=100,
Learning rate= 0.001, Noise=
Gaussian noise N (0, 0.1)

VAE window size=20, Epochs=100,
Learning rate= 0.001

MLP Epochs=200, Optimizer= Adam Op-
timizer [57], Learning rate=0.001

Bottleneck
Classification

The better performance of VAE is due to its learning the
underlying distribution of normal data. In contrast, DAE
and traditional AE focus more on identifying anomalies
based on deviations from normal patterns without explicitly
modeling the underlying distribution. iForest, on the other
hand, do not explicitly learn a latent representation and rely
on proximity measures to partition the data, limiting its
ability to capture complex patterns. We, therefore, proceed
with VAE in our further experimentation.

We train the VAE model with baseline measurements
and test it using a mix of baseline and bottleneck measure-
ments. The baseline measurements are captured when data
traffic does not co-exist with a bottleneck.

TABLE 4: Performance comparison between different
anomaly (i.e., bottleneck) detection methods using UE
dataset.

Method Precision Recall F1-Score
iForest 0.621 0.613 0.639
AE 0.821 0.51 0.63
DAE 0.85 0.82 0.83
VAE 0.90 0.81 0.85

Table 5 provides comparative bottleneck identification
results both for the distributed and centralised monitoring and
analysis frameworks. For distributed, it separately evaluates
the worth of the two measurement sets i.e., one collected
at UE and other within the mobile network. The table
shows that by using only measurements collected at UE,
VAE achieves an F1-score of 0.85 to detect different types
of bottlenecks collectively. When compared to the F1-score
of the model built upon mobile network-based measure-
ments, it is 4% lower. Reason of which is the low intensity
bottlenecks such as low packet loss and low stress (SPGW-
U and FlexRAN) that have negligible impact on the end-
users QoS and QoE features, as are depicted in Figure 4.
The UE measurements of these two bottlenecks have similar
distributions to that of the baseline, making them go un-
detected most of the time. Although the VAE model built
upon only mobile network-based measurements succeeds
in identifying the bottlenecks that directly affect the mobile
network, it fails when the source of performance degrada-
tion lies on the last mile such as in case of radio interference
and. In our experiments, the majority of the bottlenecks
originate from the mobile network infrastructure which re-
sults in high bottleneck detection accuracy using the mobile
network based measurements.

TABLE 5: Performance of our proposed bottleneck identifi-
cation system using different types of measurements.

System
Architec-
ture

Dataset Bottleneck
detection

Bottleneck
classification

P R F1 P R F1
Distributed UE-based 0.90 0.81 0.85 0.62 0.54 0.13

Mobile
network-
based

0.92 0.87 0.89 0.90 0.88 0.89

Centralised Network-
wide

0.94 0.89 0.91 0.95 0.91 0.93
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Fig. 4: Distribution of the most important UE features col-
lected under different test scenarios.

Our distributed framework achieves 0.89 F1-score in the
classification of the bottlenecks that are identified by the
UE as anomalies. The results of our distributed architecture
are highlighted by cyan color in Table 5. When compared
to the centralised framework, ours lag behind by just 2% in
detection and 4% in classification accuracy, respectively. This
slight accuracy lag is out-weighted by the scalability and
substantial reduction in overhead by the 2-stage distributed
monitoring and analysis framework. In other words, the
distributed framework is a feasible and better choice as:

• It relieves network from the overhead of transmitting
monitored features from a UE to the Telemetry Col-
lector, where in our experimental scenario, a single
UE collects 13% of total network-wide features.

• It is scalable, since the the monitoring and analysis
load of the mobile network does not increase with
increase in number of UEs. Each UE performs bottle-
neck detection on either its own end or at its mobile
edge.

• It triggers bottleneck classification at Telemetry Col-
lector only when an anomaly is reported by a sub-
stantial number of connected UEs. This process re-
lieves the network controller from the classification
exercise until QoS/QoE of its end devices does not
deteriorate.

Takeaways: Leveraging measurements at UE can help in
detecting bottlenecks that arise from issues in the last mile
as well as rest of end-to-end path. On one hand, UE based
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TABLE 6: Performance evaluation of single bottleneck clas-
sification.

Single Bottlenecks
Bottleneck class P R F1
S1-U congestion 0.94 0.88 0.91
SGi congestion 0.96 0.90 0.88
S1-U and SGi cong. 0.90 0.86 0.85
High SPGW-U stress 0.97 0.88 0.93
Low SPGW-U stress 0.87 0.84 0.85
High FlexRAN stress 0.96 0.90 0.93
Low FlexRAN stress 0.85 0.82 0.83
Low SPGW-U loss 0.85 0.83 0.84
High SPGW-U loss 0.86 0.88 0.87
Radio interference 0.89 0.81 0.84
Unidentified 0.91 0.82 0.85

triggering of an anomaly, relieves the mobile network from
continuous data analytics and on the other hand it helps the
system identify the bottlenecks that are out of cloudified
mobile network domain such as radio interference. Low
intensity bottlenecks at the mobile network are hardly de-
tectable by the UE, as they have negligible impact on end-
user services. We, however, argue that unless status of a
network does not deteriorate user experience, it should not
be considered a bottleneck.

6.5 Dissecting Classification Accuracy of Bottlenecks

Here, we dig deeper into understanding the performance of
our system in classifying single and composite bottlenecks
based on mobile network-based measurements. We also
evaluate the effectiveness of our classification model in deal-
ing with bottlenecks unknown to the model i.e., unidentified
bottlenecks.

6.5.1 Single and Composite Bottlenecks
Table 6 presents the evaluation results of our classifier per
bottleneck type for single bottlenecks. Our model is able to
classify the defined bottlenecks with high accuracy; F1-score
is above 0.84 and in some types even above 0.9. A closer
look reveals that the model predicts a considerable number
of the bottleneck events caused by low loss at SPGW-U as
caused by high loss bottleneck events at SPGW-U and vice
versa. The same applies for low and high stress at SPGW-U
and FlexRAN. The good point, however, is that the reason of
the bottleneck is correctly localised. Bottleneck generated by
radio interference is mainly identified by UE measurements,
more specifically RSSNR metric, as is shown by Figure 4.
Features collected by FlexRAN Controller about eNodeB
and its UE such as pdcp stats.pkt tx bytes and .wb cqi too
have partial contribution in identifying bottlenecks caused
by the interference.

Next we evaluate the performance of composite bottle-
necks classification. These results are summarised in Ta-
ble 7 using the EMR method and the hamming loss. The
hamming loss shows that our model is able to detect high
proportion of the single bottlenecks within composite bot-
tlenecks. For example, in the case of <S1-U congestion, High
SPGW-U loss> the hamming loss is 0.2 which means if there
are 100 samples for composite bottlenecks, our model will
predict correctly about 80% of the individual bottlenecks
that form the composite bottleneck. Unlike hamming loss,

TABLE 7: Performance evaluation of composite bottleneck
classification.

Composite Bottlenecks

Bottleneck classes PEMR REMR F1EMR
Hamming
loss

SPGW-U stress,
FlexRAN stress 0.84 0.83 0.83 0.27

S1-U congestion,
FlexRAN stress 0.82 0.79 0.80 0.23

S1-U congestion,
High SPGW-U loss 0.80 0.77 0.78 0.20

SPGW-U stress,
High SPGW-U loss 0.77 0.71 0.73 0.25

EMR marks a prediction to be correct only when both classes
within a composite bottleneck are labeled correctly. Based
on EMR metric we can observe that the performance of
the model in detecting composite bottleneck in the same
location is marginally worse than the case of bottlenecks
from different locations. For instance, <SPGW-U stress,
High SPGW-U loss> exhibits lower F1EMR which means
the model can hardly identify the composite bottleneck.

Although, our classifier shows good performance in
attributing single bottlenecks, the performance degrades in
composite bottleneck profiles. Reasons of which are:

• We assume that there is no correlation between the
single bottlenecks that form a composite bottleneck;
but in terms of cloudified mobile network stress
generated at one virtualised component impacts the
rest of the network, at different intensities. This phe-
nomena leads to 10% drop in accuracy of the com-
posite <SPGW-U stress, FlexRAN stress> bottleneck,
compared to the corresponding single bottlenecks
(see Table 6).

• Two single bottlenecks, emerging from same location
such as in the case of <SPGW-U stress, High SPGW-
U loss> increases attribution error. The model is
classifying it as a single bottleneck with <SPGW-U
stress> only. The reason of this miss-classification
is that the set of features that are impacted by the
resource-stress is super-set of the feature set affected
by loss, at SPGW-U.

Takeaways: Our bottleneck classification model achieves
high performance of above 0.83 up to 0.93 F1-score in the
different types of single bottlenecks. The False negatives
are mainly due to confusion between low and high inten-
sity bottlenecks, in addition to bottlenecks caused by the
interference. In case of the composite bottlenecks, the model
can classify them fairly well if the individual bottlenecks
are introduced in different network components, but when
introduced at the same location, the model accuracy drops.

6.5.2 Unidentified Bottlenecks
To investigate the behaviour of our model with an un-
seen bottleneck type, we train our model using a dataset
labelled with 9 types of single bottlenecks from Table 2.
For evaluation we apply the trained model on the single
bottleneck type that is absent in the training dataset. We
refer to bottleneck type as unidentified when it does not exist
in the training dataset. Table 6 shows the performance of
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Fig. 5: Average probability of each bottleneck classes com-
puted by the classification model in case of unidentified
bottlenecks.

our classification model in case it experiences an unidentified
bottleneck. The resulted performance metrics are averaged
from 10 experiments where we test 10 different single bottle-
necks, one at a time, as being unidentified. Interestingly, the
F1-score is similar to the identified bottleneck types i.e., 0.85.
It is 2% higher than F1-score of one of the single bottleneck
types (see Table 6).

Figure 5 depicts the average probabilities of classifying
unidentified bottlenecks per labelled bottlenecks. For exam-
ple, if the unidentified bottleneck is S1-U congestion, our
model predicts it as SGi congestion with a probability of 0.21
which is rounded to 0. In case of all probabilities below 0.5,
the bottleneck is marked as unidentified. Bottlenecks such as
S1-U congestion, SGi congestion and radio interference are clas-
sified as unidentified bottlenecks with high accuracy (≈ 98%)
if they are not introduced into our model during training.
On the other hand, the model can identify the type and
the location of the bottleneck if it experiences the same
bottleneck during training however with different severity.
For example, if the model is trained with high stress at
SPGW-U and tested against low stress at SPGW-U, our
model classifies it as high stress with a confidence of 63%.
This also applies to other bottlenecks with different severity
such as stress at FlexRAN and loss at SPGW-U.
Takeaways: When the mobile network experiences new
type of bottleneck that is not known before, our model
can correctly classify such bottlenecks as unidentified with
an F1-score of 85% (see Table 6). The miss-classification by
the model is due to its lack in differentiation between the
bottlenecks that have same cause but with varying intensity.

6.6 Comparison with state-of-the-art methods

In Table 8, we compare our proposed framework against
two recent works from state-of-the-art [7], [4]. We choose
these methods because they show some similarities to our
work. The work presented in [7] leverages DAE and Con-
volutional Autoencoder (CAE) for bottleneck detection in a

cloudified mobile core testbed. The authors did only active
and passive monitoring and did not collect measurements
from UEs. In our work, with UE-based measurements and
VAE, we can detect bottlenecks both at RAN and at core.
The accuracy is slightly better than that of DAE (see Table 4),
that is a preferred detection model of [7]. Other than using
DAE, [7] examines only four types of high severity bottle-
necks at the core network and does not consider bottlenecks
occurring at RAN. Also, they focused on detecting a single
bottleneck, whereas in real network deployment there might
be several simultaneous bottlenecks at different parts of the
networks.

G. Patouna et al.[4] on the other hand worked on bottle-
neck attribution. They preferred an unsupervised machine
learning model for identifying bottlenecks across different
locations of the network and layers of the system architec-
ture. Similar to our work, they defined different bottleneck
profiles, both single and composite. Hierarchical clustering
with number of clusters k equal to number of bottleneck
profiles was used by [4] to identify single bottlenecks.

By using mobile network dataset, the hierarchical clus-
tering (with k=10) shows a performance of 74.8% F1-score,
which is 17% lower than our MLP classifier for single
bottlenecks. Furthermore, the hierarchical clustering doesn’t
work well in the case of composite bottlenecks, therefore, the
authors of [4] leveraged fuzzy clustering model to identify
composite bottlenecks. Fuzzy clustering achieves F1 EMR of
66.2% that is 18.3% lower than that of MLP, in the case
of the composite bottlenecks. The advantage of our work
extends to have a single model that works fairly well for
both single and composite bottlenecks. Moreover, our model
has the ability to identify unknown bottlenecks.

TABLE 8: Comparison between our and two most
related works from literature.

Work Bottleneck ML-based
method

Performance

D A F1-
Score

F1
EMR

[7] ✓ ✗ DAE, CAE 83% -

[4] ✗ ✓
Hierarchical clus-
tering

74.8%(S) -

Fuzzy clustering - 66.2%(C)
Our ✓ VAE 85% -
work ✓ MLP 90%(S) 81%(C)
A Attribution.
D Detection.
(S) Attribution of single bottlenecks.
(C) Attribution of composite bottlenecks.

6.7 Potential of P4-based INT Monitoring

In our telemetry framework, the impact of issues on data
links i.e., S1-U and SGi interfaces are monitored in two
ways that is by active monitoring and by P4 based INT
monitoring. Since active monitoring injects additional load
on the network links by interfering with the user data,
we investigate if P4 based telemetry can replace active
monitoring in capturing bottlenecks on the data links. Fig-
ure 6 depicts separate contribution of these two types of
measurements along with other measurements, from the
mobile network, in classifying the bottlenecks that emit
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Fig. 6: Contribution of different types of mobile network
measurements in identifying issues at this domain. Mea-
surements contribution is calculated based on the features
importance using SHAP framework [58]. A higher contri-
bution of measurements is represented by a larger hexagon.

from the mobile network domain. ‘Other’ measurements
here represent the telemetry features collected by resource
monitoring and FlexRAN controller.

The figure shows that P4-based INT plays significant role
in classifying bottlenecks caused by congestion as well as
by high packet loss and stress at SPGW-U. The features
from active measurements too, help in attributing these
bottlenecks but with much less impact. As expected, for
the rest of the bottlenecks including stress at resources,
‘other’ measurements have higher classification power. We
argue, that the P4-switch lying on the eNodeB to FlexRAN
controller link (see Figure 3) can catch the high stress in
FlexRAN controller, if it is programmed for telemetry col-
lection.
Takeaways: The above comparative analysis depicts that P4
based INT monitoring has the potential to replace active
monitoring within mobile network. It assists in classifying
the bottlenecks that are introduced by stress, congestion
or packet loss at connected components and data links,
respectively.

6.8 System Overhead

Telemetry comes with processing, memory and bandwidth
cost of different intensities. Passive monitoring induces
bandwidth cost, only, when measurements are sent to a
central entity for data analytics. Compared to passive moni-
toring, active monitoring places additional overhead on net-
work links by interfering with the actual user traffic. In our
tested scenarios, active monitoring increases the overhead
on network data links by 6.2%. As for passive monitor-
ing of the resource utilization and its reporting towards
the Telemetry Collector of our cloudified mobile network
testbed, it has negligible impact on the VMs memory and
interfaces. Same is the case with measurement features of
eNodeB and its UE configuration and other characteristics at
FlexRAN controller. The reason of negligible impact of our
passive monitoring is that we do not apply it for tracking
data flows, in the mobile network. According to [59], when
passive monitoring is performed on data flows, it not only

de
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Fig. 7: Impact on queuing delay of data packets when a
virtual P4 switch performs in-band network telemetry in a
mobile network.

incurs significant disk I/O operations but also reduces end-
to-end throughput by 22%.

We track status of data flows and switches with P4-based
INT. We notice that INT-based monitoring increases the
processing overhead of the software switches by 48%, which
is inline to the findings of [59]. In Figure 7, we illustrate
the impact of the P4-based INT on the queuing delay of
user data packets i.e., deq timedelta. When the switches
are programmed to monitor packet count of each incoming
flow and identify if a packet is part of a bursty traffic, the
median deq timedelta of packets increases by 27%. A BMv2
software switch suffers from performance inconsistencies.
In Figure 7 we, therefore, present <0.05, 0.25, 0.5, 0.75, 0.95>
percentiles of the observed deq timedelta for both the No
INT and With INT P4-programs. Other than inconsistency,
latency with a BMv2 is significantly higher than that of a
production-grade software switch like Open vSwitch10 or
hardware P4 switch, that we intend to replace BMv2 switch
with.

To reduce the processing burden on the P4 switches and
on the Telemetry Collector, we programmed our P4 switches
to create cloned packets with INT information only on the
end-to-end Ping messages. Furthermore, one can reduce the
processing overhead and delay incurred by programmable
switches by only adding needed INT to the packets and at a
minimum acceptable frequency.

As for the overhead of data analytics methods, the train-
ing time for the bottleneck detection model can be measured
by the average time taken per epoch on UE dataset. Off-line
training for VAE requires 3 minutes per epoch to converge
in 100 epochs. MLP training for bottlenecks classification
requires 2.3 minutes per epoch (we train it for 200 epochs).
Once trained both can perform inference in less than 2 ms.

10. https://www.openvswitch.org/
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7 DISCUSSION

In this study we have presented a monitoring framework for
cloudified mobile networks. Our testbed is simplistic, as our
aim is to investigate the proposed framework‘s feasibility,
accuracy and overhead in comparison with a traditional cen-
tralised monitoring system. There are certain aspects of this
study that have nuances which require further exploration.
These include:

1) How will the distributed monitoring framework
behave in-case some of the UEs either do not par-
ticipate or have no compute resources to perform
anomaly detection on QoS/QoE features of their
end-service(s)?

2) Once an anomaly is detected, how will a UE report
it to the central telemetry collector/analyser?

3) What will be the monitoring frequency, before and
after an anomaly is reported to the mobile network?

As a solution to the first question, if a set of UEs lack
the ability to detect an anomaly, the network coverage
measurements and monitoring features of user applications
can be off-loaded to an edge computing device for data
analytics. In case a set of UEs do not participate at all,
then the framework will depend upon the UEs that do
contribute. Since the bottleneck attribution by the mobile
network only works for the issues that affect multiple UEs,
non-involvement of a subset of UEs will not hinder the
functionality of the framework. Other than an anomaly that
is affecting only a single UE or very few UEs on their
last mile, the network wide bottlenecks will not go un-
detected. We argue that like crowdsourced solutions such
as [60], monetary or gaming incentives such as in [61] can be
exploited to encourage end-users to participate in reporting
anomalies, in the performance of their end-services.

For the second challenge, we recommend a P4-INT like
solution for the UEs to report about the occurrence of an
anomaly. For example, any currently un-used or rarely used
field of the protocol header(s) in uplink data transfer can be
exploited to flag the detection of an anomaly. It can be as
simple as a flip of a single bit; once the data packet arrives
at a P4 switch, with P4-INT based telemetry the switch can
notify the Telemetry Collector, which can then proceed to
perform bottleneck classification.

Lastly, the monitoring frequency in mobile networks
should be dynamic that can be adjusted to how frequently
different issues arise in the mobile network. For example
it should be reduced in case the mobile network runs
smoothly, most of the time. Same should be the case with the
frequency of re-training the bottleneck classification model.
In case an anomaly is reported, the Telemetry Collector can
increase the monitoring frequency until no more anomalies
are reported by UEs. To avoid acting upon isolated cases
of anomalies being reported by one or very few UEs, the
monitoring and analysis system of the mobile network
should only activate if a threshold percentage of UEs per
base station, report an anomaly at same time.

8 RELATED WORK

In the following subsections, we explore the related work in
the areas of bottleneck identification, INT based telemetry
and anomaly detection in the mobile networks.

8.1 Telemetry for Identifying Bottlenecks
There is a big interest in developing telemetry solutions for
softwarised networks [62], [63], [64]. Advanced monitoring
solutions have been proposed to identify bottlenecks, while
attempting to balance high detection rates with minimal
monitoring overhead costs.

Some of the earlier research studies used a single teleme-
try approach such as passive monitoring [65], [66] to detect
if a capacity bottleneck is inflicting the network. As most
transmissions comprise of TCP communications, these early
works monitored the status of individual TCP transmissions
just outside of the 3G network on a link to the server in
the Internet [66], or inside the core network [65] to see
if there is any congestion in the mobile network. These
studies provide a coarse grained indication of presence or
absence of a bottleneck in the network but do not identify
the segment of the mobile network having the issue. With
both active and passive measurements, an other study [7]
preferred deep-learning method to detect bottleneck in the
core of a cloudified mobile network.

A somewhat granular approach is proposed by
QProbe [67], in which a train of small UDP probe packets
are transmitted by a server, outside the mobile network, to
a UE investigating if the end-to-end medium is congested.
Using Decision-Tree ML model, it exploits the inter-packet
arrival delay between the first and last probe packets of the
probe train, as well as the inter-packet gap between each
two adjacent probe packets arriving at the UE to locate, with
above 80% of accuracy, if the congestion has sprawled from
the last mile or rest of the end-to-end path. With Random-
Forest as an ML model, the study in Q-TSLP [5], reduces the
granularity of characterizing congestion related bottlenecks
into radio access link, RAN, core of the mobile network, and
rest of end-to-end path towards a server. It however, uses
only active monitoring, similar to QProbe, and TSLP [68] a
scheme originally designed to measure congestion on inter-
domain links in Internet.

A recent experimental study conducted by G. Patounas
et al. [4] used a hierarchical clustering method with So-
ergel/Tanimoto distance to separate different single bot-
tleneck profiles from the baseline performance and from
each other. They preferred Fuzzy clustering for identifying
composite bottleneck profiles. The study was conducted on
a testbed that deployed Orion RAN slice and virtualised
EPC components based on OAI 4G LTE. Using passive
monitoring, measurements were logged at all components
and VNFs of the mobile system as well as at UE and
server. The monitored measurements were divided into 3
groups i.e., service, network and infrastructure layers. The
study performed a centralised analysis of all the collected
measurements and concluded that infrastructure layer, fol-
lowed by network layer measurement features are the most
predictive in bottleneck identification.

8.2 Use of P4-INT
Other than traditional monitoring approaches of passive
and active probing, the third type of telemetry based on P4
programming was initiated by data centers. To track status
of switches and the data flows between its end-hosts, the
data centers used both INT and out-of-band monitoring.
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For example R. Joshi et al. proposed BurstRadar [23], an
out-of-band method, to monitor microbursts at the egress
pipeline of each switch in the network. To make good use
of the computing, memory and bandwidth resources of
the end-hosts, switches and the controller in a data center,
OmniMon [24] splits the telemetry tasks between the end-
hosts and switches and merges the results for analysis at
the controller. To reduce bandwidth overhead, PINT [69]
proposes the use of constant bit-budget i.e., 16 bits per
packet to carry queue occupancy, switch utilization statis-
tics, path tracing and tail latency of flows. Use of P4 based
telemetry has gradually being employed in other networks
such as Software Defined Networks (SDN). N.V. Tu et al. [70]
present an INT based monitoring system for Open Network
Operating System (ONOS), a widely used SDN controller
for SDN data plane. It employed P4-INT to be aware of
real time traffic, real time latency and link changes to detect
anomalies (e.g., traffic spikes) or failures (e.g., terminated
links) and hence to take right actions quickly.

In the context of mobile core networks, P4 switches have
been used for real-time attack detection and mitigation [71],
identification of malicious data [72], enhancing the User
Plane Function (UPF) [73] and ensuring QoS at the slice
level [74]. A recent study [59] investigated impact of P4-INT
on network performance compared to the traditional active
and passive monitoring approaches. [59] built a 4G network
with OAI upon virtual box, with its different components
as VMs. It deployed two switches, both in network core at
SGi interface, with a dummy forwarder node in between
the two switches. The authors found that processing and
memory overhead of software switches is more than both
the active (Ping) and passive (packet capture) monitoring on
the switches. But that passive approach suffered high I/O
disk activities and both the active and passive monitoring
dropped the throughput substantially, while for P4-INT it
was similar to the baseline.

8.3 Detecting Anomaly in Mobile Networks

Several machine learning-based methods have been pre-
sented focusing on detecting anomalies in network traffic.
For example, Hadj-Kacem et al. [75] proposed an anomaly
detection model that captured the correlation between the
different KPIs in a mobile network using functional prin-
cipal component analysis (FPCA). They used the logistic
regression classifier for the functional data to predict anoma-
lies. The logistic regression model achieved accuracy and
F1-score of 71% and 70%, respectively. Also, [76] leveraged
supervised classification models, namely logistic regression,
random forest, LightGBM and an ensemble classifier of
these earlier three models to detect high latency in mobile
broadband networks.

Other than supervised ML, various unsupervised meth-
ods have been proposed for anomaly detection in mobile
networks. [77] presented an autoencoder-based unsuper-
vised model to detect cell outages in mobile networks lever-
aging measurements from the UEs namely, RSRP and RSRQ
values of the serving cell and the neighboring cells, and the
radio link failure (RLF). Also, [78] proposed a framework
based on LSTM-autoencoder and One-class SVM (OC-SVM)
to detect abnormal traffic data. Recently, [79] proposed a

distributed anomaly detection framework for network data
forwarding latency in an unsupervised fashion. The study
used the hierarchical temporal memory (HTM) algorithm
for the online detection of anomalies.

Among the above-mentioned studies [7], [4], [59]
and [77] are similar in certain aspects to ours. [7] worked
on bottleneck detection in a cloudified mobile network as
we do in stage-1. We aim to characterise different bottleneck
profiles as in [4]. We employ a combination of monitoring
approaches including active, passive and P4-INT based
measurements such as in [59]. For anomaly detection at UE,
we run an an autoencoder-based unsupervised method like
that of [77]. As for dissimilarities, [7] is limited to bottlenecks
sourced from network core only. [4], aimed to identify the
monitoring layer whose parameters played primary role in
distinguishing among different bottleneck profiles. [59] per-
formed a limited study on network core, to understand the
overhead and impact of the three monitoring mechanisms
of active, passive and P4-INT on end-to-end performance.
As for anomaly detection at UE, [77] worked only on cell
outage detection.

9 CONCLUSION

In this paper, we present a 2-stage distributed telemetry
framework to identify and attribute bottlenecks in a cloud-
ified mobile network and its last mile. The system includes
monitoring both at the mobile network and its UEs. Moni-
toring at UEs assists in triggering identification of bottleneck
events that impact user’s experience. Inclusion of a UE not
only relieves the mobile network from continuous computa-
tion of data analytics but also helps the monitoring system
to catch a bottleneck that is beyond the internal scope of the
mobile network, such as radio interference. Mild bottlenecks
at the mobile network, however may go un-noticed by a UE
when they do not degrade its application performance.

By leveraging measurements at a UE, our VAE based
model accurately detects different types of bottlenecks
with 0.85 F1-score. To attribute the cause and location of
the bottlenecks, our classification model achieves 0.89 F1-
score. Overall, the bottleneck identification accuracy of our
distributed framework is comparable to that of a centralized
approach, making it a better choice due to the non-feasibility
of a centralized system.

Working with a combination of monitoring approaches,
our study further reveals that in-band network telemetry
can be the potential future alternate for active monitoring of
mobile network links.

In this study, we have provided a proof-of-concept of our
distributed telemetry framework using generic application
traffic at the UEs, virtual P4 switches and a cloudified
mobile core based on 4G VNFs. In the future, we plan
to focus on real applications of our framework. We will
upgrade our testbed with 5G VNFs realizing a 5G stan-
dalone core and hardware P4 switches. This will allow us
to evaluate our framework on use cases where the UE
is using novel applications with very high requirements,
such as live broadcasting and networked music over 5G
networks. Finally, we will explore the feasibility of applying
the framework online.
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