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Abstract. The proximal Galerkin finite element method is a high-order, low iteration com-
plexity, nonlinear numerical method that preserves the geometric and algebraic structure of point-
wise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal
Galerkin method and applies it to solve free boundary problems, enforce discrete maximum princi-
ples, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise
bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP)
algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-
dimensional optimization algorithm that may be viewed as having an adaptive barrier function that
is updated with a new informative prior at each (outer loop) optimization iteration. One of its
main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that
the original variational inequality can be replaced by a sequence of second-order partial differen-
tial equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements.
Throughout this work, we arrive at several unexpected contributions that may be of independent
interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an
algebraic/geometric connection between high-order positivity-preserving discretizations and certain
infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field,
density-based topology optimization. The complete latent variable proximal Galerkin methodology
combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential
geometry and can potentially lead to new synergies among these areas as well as within variational
and numerical analysis. This work is accompanied by open-source implementations of our methods
to facilitate reproduction and broader adoption.

1. Introduction. Although the origins of variational analysis can be traced back
at least to the seventeenth century [164], its role in the modern study of partial dif-
ferential equations (PDEs) only truly began to take shape around 1847 once William
Thomson introduced what is now known as the Dirichlet principle. In contemporary
language, this energy principle states that for all functions f ∈ L2(Ω) and g ∈ H1(Ω),
the (weak) solution of Poisson’s equation over a Lipschitz domain Ω ⊂ Rn,

(1.1) −∆u = f in Ω, u = g on ∂Ω,

can be obtained as the H1(Ω)-minimizer of the Dirichlet energy,

(1.2) E(v) =
1

2

∫

Ω

|∇v|2 dx−
∫

Ω

vf dx ,

confined to the constraint set H1
g (Ω) = g +H1

0 (Ω) = {v ∈ H1(Ω) | v = g on ∂Ω}.
Owing to the fact that H1

g (Ω) is nonempty, closed, and convex, it is a straight-
forward consequence of the Lions–Stampacchia theorem [183, 140] that the energy
minimizer u∗ ∈ K = H1

g (Ω) is the unique solution to the variational inequality (VI)

(1.3)

∫

Ω

∇u∗ · ∇v dx ≥
∫

Ω

fv dx for all v ∈ K − u∗.
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As it happens, the boundary condition in (1.1) is an equality constraint that induces
an affine structure on the feasible set. Moreover, it is this particular algebraic struc-
ture that can be exploited to show that the minimizer u∗ ∈ H1

g (Ω) is also uniquely
characterized by a variational equation. In the setting above, we have

(1.4)

∫

Ω

∇u∗ · ∇w dx =

∫

Ω

fw dx for all w ∈ H1
0 (Ω).

To arrive at this conclusion from (1.3), the key idea is to notice that H1
g (Ω)+H

1
0 (Ω) =

H1
g (Ω) and, therefore, one may replace v in (1.3) by u∗ ±w, for any w ∈ H1

0 (Ω). For
further details, see, e.g., [38, Proposition 9.22] and [48, Theorem 1.2.2].

When partial differential equations (PDEs) are first written down, their essential
boundary conditions are often the only explicit constraints that appear on the space
of solutions. As such, all students of the finite element method are taught to derive
variational equations like (1.4); cf. [102, Section 1.4], [48, Exercise 1.2.2], and [68,
Section 31.2.2]. In turn, viewing the variational equations that originate from essential
boundary conditions as structure-exploiting reductions of more general VIs may seem
esoteric to some practitioners. Yet, the motive becomes clear when the feasible set
has alternative algebraic structures.

To illustrate this point, it is instructive to consider imposing a pointwise non-
negativity constraint, u∗ ≥ 0, and setting g ≡ 0. Hereafter, let H1

+(Ω) = {v ∈
H1(Ω) | v ≥ 0 a.e.}. Thus, the subset

(1.5) K = {v ∈ H1
0 (Ω) | v ≥ 0 a.e.} = H1

0 (Ω) ∩H1
+(Ω),

forms a closed convex cone in H1(Ω). It is well-known that the conic structure of K
allows us to write

(1.6)

∫

Ω

∇u∗ · ∇v dx ≥
∫

Ω

fv dx for all v ∈ K,

with equality holding for v = u∗; see, e.g., [48, Theorem 1.1.2]. Although we ac-
knowledge this simplified variational formulation, we present it only as a motivating
example. Our work pursues a different type of algebraic structure.

Our aim is to provide a multiplicative structure-preserving approach to solv-
ing bound-constrained optimization problems and variational inequalities in Sobolev
spaces. This will lead us to working in Banach algebras, which are Banach spaces
that are closed under a continuous multiplication operation [51]. Instead of per-
forming Lagrangian relaxation or relying on penalty functions, the key component of
our approach is an adaptive form of entropy regularization. Through entropy regu-
larization, we will find, e.g., that minimizing the Dirichlet energy over functions in
H1
g (Ω) ∩ H1

+(Ω) can be reduced to solving a “Bayesian” sequence of second-order
semilinear PDEs where each right-hand side is biased by the prior solution.

Algorithm 1 outlines the meta-algorithm for the pointwise non-negativity con-
straint u∗ ≥ 0 considered above when f ∈ L∞(Ω) and g|∂Ω ∈ C(∂Ω) satisfies
ess inf∂Ω g > 0. Note that, unlike, e.g., descent methods [208, Section 3], this al-
gorithm converges for all step size values α > 0; cf. Theorem 4.13. A practical
version of the algorithm is readily implementable (see, e.g., [111, 113]) and reduces to
the finite element method that gives this paper its name.

Remark 1.1 (Proximal Galerkin). To differentiate between the method proposed
in this paper and a significantly different “proximal Galerkin” method proposed in
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Algorithm 1: Entropic proximal point algorithm for Dirichlet energy
minimization with a non-negativity constraint.

input: Step size parameter α > 0 and initial solution guess
w ∈ H1

g (Ω) ∩ L∞(Ω) satisfying ess inf w > 0.

repeat
Solve the entropic Poisson equation,

(1.7)

{
−∆u+ α−1 lnu = f + α−1 lnw in Ω ,

u = g on ∂Ω .

Assign w ← u.

until a convergence test is satisfied

[146], we consider the full name of our method to be the “latent variable proximal
Galerkin” method. Throughout the text, we typically use the abbreviated name
“proximal Galerkin” without any cause for confusion.

1.1. Notation. Our notation is rather standard for the finite element literature.
Norms are denoted by ∥·∥X , inner products by (·, ·)X , and duality pairings by ⟨·, ·⟩X′,X

for spaces X and its paired topological dual X ′. Whenever it is clear in context, we
leave off or abbreviate the subscripts in a natural way. Norm convergence will typically

be denoted by→ or
X→, for weak convergence we use the standard

X
⇀ or⇀. For subsets

C of infinite dimensional spaces, we denote the closure by clC, the boundary by bdC,
and the interior by intC. For a mapping F between normed linear spaces X and Y ,
the Fréchet derivative of F at x is indicated by F ′(x).

For an open bounded domain Ω ⊂ Rn, n ∈ {1, 2, ...}, Lp(Ω), p ∈ [1,∞], denotes
the usual Lebesgue space of (equivalence classes of) p-integrable functions when p ∈
[1,∞), and essentially bounded functions when p =∞, respectively. Furthermore, we
define

Lp+(Ω) := {u ∈ Lp(Ω) | u ≥ 0 a.e. in Ω}
for any p ∈ [1,∞].

For domains Ω in Rd, we denote the boundary by ∂Ω and the closure by Ω.
The spaces Lp(∂Ω) are defined in the usual way. When needed, we indicate the
surface measure for ∂Ω by dHn−1. The space of continuous functions on Ω is written
C(Ω). Similarly, Cm(Ω), m ∈ N ∪ {∞}, is the space of all m-times continuously
differentiable functions. The space of smooth compactly supported test functions on
Ω is given by C∞

c (Ω). The Sobolev space of L2(Ω) functions with L2(Ω) integrable
weak derivatives is denoted by H1(Ω) and its closed subspace of functions u with
trace γu = 0 is denoted by H1

0 (Ω). We use Hs(∂Ω), s ∈ (0, 1), for the usual Sobolev–
Slobodeckij space on ∂Ω. We refer the reader to a standard text on function spaces
for further details, e.g., [4, 154]. Finally, for simplicity of notation, we adopt the

following notational conventions: 0 ln 0 := 0 and ∥v∥H−1(Ω) := supw∈H1
0 (Ω)

(v,w)
∥∇w∥L2(Ω)

.

1.2. Outline. We have attempted to provide a scaffolded presentation of our
findings. To this end, Section 2 presents preliminary concepts and provides further
motivation for this work. Next, Section 3 reviews the literature and summarizes our
main contributions. Sections 4 through 6 present the essential features of proximal
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Galerkin methods for the obstacle problem, the advection-diffusion equation, and
topology optimization, respectively. Each of these sections contains an algorithm that
is designed be implemented in a production-level finite element code. The reader is
encouraged to compare these algorithms with our publicly available implementations
[111, 112, 113]. The main paper closes with ??, which contains a small number of
concluding remarks, and then proceeds to two technical appendices. Appendix A
contains the continuous-level mathematical analysis and Appendix B contains the
discrete-level, finite element theory. Appendices A and B are the most specialized
sections of the paper and may be skipped by a casual reader.

2. Preserving multiplicative structure. The proximal Galerkin finite ele-
ment method is a nonlinear numerical method that preserves the algebraic and geo-
metric structure of bound constraints in infinite-dimensional function spaces. In this
section, we study the multiplicative structure of non-negative functions and use the
Dirichlet energy (1.2) to illustrate how proximal Galerkin preserves this structure.

2.1. Deconstructing the semiring of non-negative functions. We discuss
the natural logarithmic transformation between non-negativity constraints and ex-
tended real-valued functions that may take the value −∞. This also first introduces
the latent variable ψ. We claim this provides a basis for the use of logarithmic trans-
formations to analyze and solve PDEs, an idea that goes back at least to work by
Schrödinger in 1926. Finally, we address the somewhat unnatural conditions this
transformation imposes on the solution spaces and variational equations themselves.
In turn, we show how a simple regularization of the transformed equations remedies
these concerns. We use this discussion to motivate the natural function spaces for
pointwise bound constraints in H1(Ω) and construct a direct link to entropy regular-
ization.

Let X be a set equipped with two binary operations: addition ⊕ : X × X → X
and multiplication ⊙ : X × X → X .

Definition 2.1 (Semiring). We say that X is a semiring if the following con-
ditions are satisfied [79, 81]:

• Addition ⊕ and multiplication ⊙ are associative;
• Addition ⊕ is commutative;
• Multiplication ⊙ is distributive with respect to addition ⊕.

We say that X is a commutative semiring if the conditions above are satisfied and,
moreover, multiplication ⊙ is commutative.

It is easy to check that the set of non-negative Lebesgue measurable functions,

(2.1) M+(Ω) =
{
v : Ω→ R+ | {v > c} is Lebesgue measurable ∀c > 0

}
,

forms a commutative semiring under the standard binary operations of pointwise
addition and multiplication. In particular, note that for any u, v ∈M+(Ω), we have

(2.2) u+ v ∈M+(Ω) , uv ∈M+(Ω) .

There is an interesting identification between M+(Ω) and the space of extended
real-valued measurable functions

(2.3) Mmax(Ω) =
{
φ : Ω→ R ∪ {−∞} | {φ > c} is Lebesgue measurable ∀c ∈ R

}
,

induced by the (pointwise) logarithm and exponential operators. Namely, for all
u ∈ M+(Ω), ψ ∈ Mmax(Ω), and α > 0, we have that α−1 lnu ∈ Mmax(Ω) and
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exp(αψ) ∈M+(Ω) under the convention that ln 0 = −∞ and, likewise, exp(−∞) = 0.
Such logarithmic transformations provide a family of semiring isomorphisms between
M+(Ω) and Mmax(Ω), where Mmax(Ω) is endowed with the following (generalized)
addition and multiplication operations:

(2.4) ψ ⊕ φ = α−1 ln(exp(αψ) + exp(αφ)) , ψ ⊙ φ = ψ + φ ,

respectively [151, 152]. Moreover, in the limit α → ∞, the generalized addition
operation (2.4) becomes the pointwise maximum operation [142, 147]; namely,

(2.5) ψ ⊕ φ→ max{ψ,φ} .

Logarithmic transformations of the above form have been used famously over the
last century to analyze differential equations in quantum mechanics [180], fluid flow
[98, 50], and electrical engineering [177, 148], and, more recently, to study stochastic
PDEs [29, 88]. Given that they appear to capture certain key algebraic properties of
the set of non-negative functions, it is tempting to use logarithmic transformations to
enforce non-negativity constraints on function spaces. Unfortunately, however, special
care is required to apply a logarithmic transformation to a non-negative solution
variable in a free-boundary problem.

For illustration, consider minimizing the Dirichlet energy (1.2) over the set of
non-negative functions

(2.6) K = {v ∈ H1
g (Ω) | v ≥ 0 a.e.} = H1

g (Ω) ∩H1
+(Ω).

Assuming that f ∈ L2(Ω) and u∗ ∈ H2(Ω), the well-known complementarity condi-
tions for the solution are as follows [116, p. 79]:

(2.7) u∗ ≥ 0, −∆u∗ − f ≥ 0, (∆u∗ + f)u∗ = 0 a.e. in Ω .

Another perspective uses a dual variable λ∗, also known as a Lagrange multiplier, to
formulate (2.7) as a mixed complementarity problem of the form:

(2.8) −∆u∗ − λ∗ = f, u∗ ≥ 0, λ∗ ≥ 0, ⟨u∗, λ∗⟩ = 0.

The Lagrange multiplier exhibits rather low regularity for general domains Ω, so the
term “λ∗ ≥ 0” is actually understood to mean ⟨λ∗, w⟩ ≥ 0 for all w ∈ H1

0 (Ω) with
w ≥ 0 a.e. in Ω, i.e., without further regularity assumptions λ∗ is merely a nonnegative
Radon measure on Ω. See [116, Chap. II, Sec. 6] for details.

If we wish to study this problem under a logarithmic transformation, then a
formal computation using the substitution u∗ = expψ∗ leads to the observation that

(2.9) ψ∗ = −∞ or − div(expψ∗∇ψ∗) = f ,

at almost every point in Ω. Analyzing these equations presents challenges, in part,
because it requires moving away from well-studied Sobolev spaces [4] and, instead,
working in a space of extended real-valued functions [117] endowed with the metric

(2.10) d(ψ,φ) = ∥∇ expψ −∇ expφ∥L2(Ω) .

One conclusion of this work is that the above concerns are alleviated by a simple
regularization of the degenerate PDE in (2.9). In particular, we show that for all
bounded f ∈ L∞(Ω), the latent solution variable ψ∗ = lnu∗ is recovered as the
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α → ∞ limit (with respect to the metric (2.10)) of a family of regularized solutions
ψ ∈ H1(Ω) ∩ L∞(Ω) satisfying

(2.11) − div(expψ∇ψ) + α−1ψ = f .

Moreover, the latent variable iteration ψ0 ∈ H1(Ω) ∩ L∞(Ω),

(2.12) − div(expψk∇ψk) + α−1ψk = f + α−1ψk−1 , k = 1, 2, . . . ,

formerly written with primal variables in Algorithm 1, converges to ψ∗ for all finite
α > 0; cf. Theorem 4.13.

The ambient function space for the regularized latent variable ψ is interesting
from an algebraic point of view because it is a Banach algebra. Indeed, the Sobolev
subspace H1(Ω) ∩ L∞(Ω), whose norm is

(2.13) ∥v∥H1(Ω)∩L∞(Ω) = max{∥v∥H1(Ω), ∥v∥L∞(Ω)} ,

is closed under the standard operations of pointwise addition and multiplication [38,
Proposition 9.4]. Maintaining closure under multiplication is desirable, in part, be-
cause it often allows one to construct a smooth exponential map [75, 76]. Indeed, of
particular interest to this work is the Nemytskii operator

(2.14) exp: H1(Ω) ∩ L∞(Ω)→ H1(Ω) ∩ intL∞
+ (Ω),

which is an isomorphism between H1(Ω) ∩ L∞(Ω) and the Banach–Lie group

(2.15) H1(Ω) ∩ intL∞
+ (Ω) = {w ∈ H1(Ω) ∩ L∞(Ω) | ess inf w > 0} ;

cf. Proposition A.9. Since the range of this isomorphism is contained in the H1(Ω) ∩
L∞(Ω)-interior of the set of essentially bounded non-negative H1(Ω) functions, we
find that the primal iterates,

uk = expψk ∈ H1(Ω) ∩ intL∞
+ (Ω) ⊂ int(H1(Ω) ∩ L∞

+ (Ω)) ,

will always be interior points. In the next motivational subsection, we explain that

an idenitical sequence of interior points uk
H1(Ω)−→ u∗ can be found by regularizing the

Dirichlet energy with an appropriate entropy functional.

2.2. Dirichlet free energy. Only special function spaces are endowed with a
norm topology that permits a continuous multiplication operator. Indeed, it is well-
known that H1(Ω) is only closed under multiplication when n = 1 [4]. Moreover, it is
easy to show that intH1

+(Ω) = ∅ for all n ≥ 2, which makes it impossible to define an
H1(Ω)-interior point in any of its subsets (cf. Remark 4.3). Because H1(Ω) ∩ L∞(Ω)
bypasses both of these topological issues, it is appealing to restrict the feasible set K
in (2.6) to essentially bounded functions when minimizing the Dirichlet energy.

Unfortunately, requiring the feasible set to be the intersection of K and L∞(Ω)
would cause the direct method of calculus of variations [21] to fail. This is because
the Dirichlet energy does not provide control over point-wise values of the solution
and K ∩ L∞(Ω) is not closed in the H1(Ω) norm topology. Therefore, one may
conclude that maintaining some important mathematical structures is in conflict with
the classical energy principle.

Fortunately, it turns out there is resolution to this conflict that exposes the missing
algebraic structure; namely, minimizing the Dirichlet free energy,

(2.16) A(u) = E(u) + θS(u).
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Here, θ = α−1 > 0 is a non-dimensional “temperature” parameter and

(2.17) S(u) =

∫

Ω

u lnu− udx ,

is the (negative) entropy functional. As we show in Theorem 4.7, all minimizers
of (2.16) lie in K ∩ L∞(Ω), i.e., for all θ > 0,

(2.18) u = argmin
v∈K

A(v) = argmin
v∈K∩L∞(Ω)

A(v) ,

is essentially bounded away from zero in Ω, and u = u(θ) converge linearly with
respect to θ to the unique non-negative minimizer of (1.2), u∗ = argminv∈K E(v).
More specifically, each u is an interior point and

(2.19) ∥∇u∗ −∇u∥2L2(Ω) ≤ 2θ(S(u∗) + |Ω|) ,

whenever f ∈ L∞(Ω); cf. Theorem A.15.
Finally, and just as importantly, the general VI that characterizes (2.18), i.e.,

(2.20)

∫

Ω

∇u · ∇v dx+ θ

∫

Ω

v lnudx ≥
∫

Ω

fv dx for all v ∈ K − u ,

can be replaced by a variational equality for the weak form of a semilinear PDE we
call the entropic Poisson equation, −∆u+ θ lnu = f ; namely,

(2.21)

∫

Ω

∇u · ∇w dx+ θ

∫

Ω

w lnudx =

∫

Ω

fw dx for all w ∈ H1
0 (Ω).

The entropic Poisson equation is the primal form of (2.11) and has numerous interest-
ing properties that we exploit in this work. We also note that θ ln(1/u) approximates
the true Lagrange multiplier λ∗ introduced in (2.8) above.

The essential idea presented above is expanded on in Sections 5 and 6 to accom-
modate bound constraints for general VIs that do not appear as a result of energy
principles, as well as those that appear in topology optimization with a view toward
other bound-constrained optimization problems. Crucially, and unlike traditional
penalty or barrier methods [163, 30, 207], it is not necessary to take θ → 0 in order
to get an arbitrarily accurate approximation of u∗. Indeed, the simple adaptive en-
tropic regularization algorithm given in Algorithm 1 (see also (2.12)), which comes
from regularizing the Dirichlet energy with a relative entropy functional, is far more
appealing and is derived in Section 4. Figure 2.1 provides a diagrammatic reference
for the main elements of the continuous-level algorithm in the case α = 1.

Remark 2.2 (Dirichlet free energy). We propose the name “Dirichlet free energy”
for the functional in (2.16) by analogy with the Helmholtz free energy from statistical
mechanics [168], A = E−TS, where E denotes total system energy, T denotes absolute
temperature, and S denotes thermodynamic entropy.

2.3. Pointwise-positivity for every polynomial degree. The majority of
this paper is based on pursing the aforementioned observation that the solution of VIs
for bound constraints, including (2.20), can be approximated arbitrarily accurately by
variational equations like (2.21). Leveraging this observation for computational pur-
poses leads to a new class of high-order, nonlinear finite element methods we refer to
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Primal variable u
−∆u + lnu = f + lnuk

Latent variable ψ

−div (expψ∇ψ) + ψ = f + ψk

Dual variable λ
λ = −∆u − f = ψk − ψ

Group isomorphism
u = expψ

Multiplicative update
u = uk exp(−λ)

Equivalence of the iterates

‖∇u∗ − ∇u‖L2(Ω) = d(ψ∗, ψ) = ‖λ∗ − λ‖H−1(Ω)

Dirichlet
Energy

Entr
op

y
R

eg
u

la
ri

za
ti

on

Proximal Point
B

anach
Algebra

Fig. 2.1: A trinity is formed by the three isomorphic representations of the iterates
in the latent variable proximal point method. In this figure, equations for the three
representations are given for the problem of minimizing the Dirichlet energy (1.2) over
non-negative functions u ∈ H1

g (Ω) ∩ H1
+(Ω). Note that, for simplicity, the step size

here is set to α = 1. See Theorems 4.7 and 4.13 for further details and consequences
for variable step sizes.

as proximal Galerkin methods. In turn, taking advantage of the multiplicative struc-
ture of the solution space leads to non-standard approximation spaces that naturally
preserve pointwise positivity at the discrete level.

As we shall also show in Section 4, a very convenient Galerkin discretization of the
entropic Poisson equation (1.7) is found by introducing a pair of linear subspaces Vh ⊂
H1

0 (Ω) and Wh ⊂ L∞(Ω) — for instance, spaces of high-degree piecewise polynomials
— and simultaneously approximating the solution u in both the primal space and the
latent space; namely,

(2.22) u ≈ uh and u ≈ expψh ,

where uh ∈ gh + Vh, ψh ∈ Wh, and gh ∈ H1(Ω) provides an approximation of the
boundary values gh|∂Ω ≈ g|∂Ω. The basic method is outlined in Algorithm 2.

A novelty of the approximate solution ũh = expψh is that it is guaranteed to de-
liver pointwise positivity. We exploit and extend the above property throughout this
work to develop some of the first high-order bound-preserving finite element methods
for a variety of benchmark problems. Another important property of this exponen-
tial discretization is that it preserves the multiplicative group structure of the set
intL∞

+ (Ω) = {w ∈ L∞(Ω) | ess inf w > 0}. More specifically,

(2.23) expψh expφh = exp(ψh + φh) ∈ exp(Wh) ⊂ intL∞
+ (Ω) ,

for all ψh and φh ∈Wh. Before expanding further on this and other topics, we present
a comprehensive review of the literature and an itemized list of contributions.
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Algorithm 2: Proximal Galerkin method for Dirichlet energy minimiza-
tion with a pointwise non-negativity constraint.

Input : Step size parameter α > 0, linear subspaces Vh ⊂ H1
0 (Ω) and

Wh ⊂ L∞(Ω), and initial solution guess ψh ∈Wh.
Output: Two approximate solutions, uh and ũh = expψh, and an

approximate Lagrange multiplier, λh = (ωh − ψh)/α.
repeat

Assign ωh ← ψh.
Solve the following (nonlinear) discrete saddle-point problem:





Find uh ∈ gh + Vh and ψh ∈Wh such that∫

Ω

α∇uh · ∇v dx+

∫

Ω

ψhv dx =

∫

Ω

(f + ωh) v dx for all v ∈ Vh ,
∫

Ω

uhφdx−
∫

Ω

exp(ψh)φdx = 0 for all φ ∈Wh .

until a convergence test is satisfied

3. Contributions and related work. The latent variable proximal Galerkin
finite element method is as much a finite element method as it is an optimization
algorithm. With this is mind, it is important to distinguish proximal Galerkin from
the extensive collection of other numerical methods for bound-constrained variational
problems. In turn, we choose to survey the optimization literature as well as the
numerical PDE literature. The main contributions of this work are highlighted and
itemized in Subsection 3.3.

3.1. Optimization methods for pointwise bound constraints. Bound-
constrained variational problems arise in many subjects. These include, but are not
limited to, contact mechanics [115, 207], financial mathematics [191, Chap. 12], math-
ematical image processing [13], and the geosciences, such as glaciology [218]. It is
here that we are often confronted with the requirement that the solution be pointwise
bounded from above or below by some critical threshold over at least a portion of
the physical domain or its boundary. In PDE-constrained optimization and optimal
control, bounds on the solution of the PDE, i.e., state constraints, naturally arise as
a modeling requirement, see the well-known monographs [197, 96] and the references
therein, especially [42, 43, 44]. Consequently, a great deal of effort has been spent on
treating bound constraints in infinite dimensions.

We mainly restrict our overview to the numerical solution of the obstacle prob-
lem (1.3), with K ⊂ {v ∈ H1(Ω) | v ≥ ϕ} for some ϕ ∈ H1(Ω) ∩ L∞(Ω), since
the available solvers capture the main essences of the common techniques for other
bound-constrained problems, however, we note that a number of the optimization
algorithms listed below are applicable far beyond this setting. Perhaps the most di-
rect approach begins by prescribing a finite-dimensional subspace of H1(Ω) for the
discrete solution and then solving the associated variational problem by methods of
nonlinear programming. In this “first-discretize-then-optimize” class of approaches,
the finite-dimensional reformulation typically amounts to a strongly convex quadratic
program or a discrete strongly monotone variational inequality. The fact that higher-
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order basis functions face numerous challenges when used to enforce pointwise bound
constraints limits the benefits of these approaches; for further discussion, see Subsec-
tion 3.2. However, a wealth of viable algorithms from nonlinear programming can
be applied to lowest-order discretizations; see, e.g., [30, 163]. Nevertheless, at least
for active set-based approaches, such as in [93], one will almost certainly observe
mesh-dependence.

Mesh-dependence means that the number of nonlinear solver iterations required to
reach a prescribed stopping tolerance (using the appropriate function space norm) will
grow without bound on successively finer meshes. Nevertheless, mesh-dependence can
be computationally mitigated by appealing to multigrid methods, as was done in the
celebrated papers [36, 87, 99, 100, 101, 118, 119, 120, 204]; see [83] for a comprehensive
review. Despite the favorable behavior of these multigrid methods, there is no proof
of mesh-independence in general. In particular, there is no guarantee that a given
sequence of meshes will not miss low-dimensional portions (sets of positive capacity
[116]) of the active set.

Mesh-dependence in active set methods arises from a lack of generalized differen-
tiability of the (nonsmooth) residual in the function space setting, cf. [93, 198]. This
has motivated researchers to propose and analyze algorithms for bound-constrained
problems in the continuous, i.e., infinite-dimensional setting. If an algorithm can be
shown to converge in the continuous setting and the problem of interest exhibits suf-
ficient stability properties around its solution, then this convergence will carry over
to perturbed problems. At least for conforming discretizations, the associated finite-
dimensional problem can be viewed as such a perturbation provided the discretization
is sufficiently fine. For further material on this topic, we refer the reader to the de-
tailed discussions and references to applications in [203] and the pioneering works
[153, 9, 8].

Infinite-dimensional algorithms follow their finite-dimensional counterparts and
can be roughly split into several categories: penalty methods, barrier methods, aug-
mented Lagrangian methods, and first-order methods of convex optimization. For
penalty (approximation) methods, we point the interested reader to the well-known
monograph [77], which claims these techniques go back to [138, 139]. However, we
note that the numerical methods in [77], e.g., coordinate descent, are not seen to
be competitive with more recent developments in the subsequent decades after its
publication.

Quadratic penalty methods are used widely in PDE-constrained optimization,
see, e.g., [94, 95, 92] and readily extendible to numerous applications; see, e.g.,
[122, 114, 3]. These are often referred to as “Moreau–Yosida”-based approaches be-
cause the quadratic penalty can be viewed as the Moreau envelope of the indicator
function for the bound constraints. The downside of these methods is the requirement
to drive the penalty parameter to infinity to restore feasibility. Mirroring their finite-
dimensional equivalents, interior point methods have also been investigated in detail
for certain classes of PDE-constrained problems, see, e.g., [178, 199, 205, 97, 179].
Our method is closer to interior point methods, due to the entropy term [187, 169],
and somewhat related to the first-order methods in [194, 217]. However, in contrast to
traditional interior point methods, the entropy functions employed in the text below
do not exclude points from the feasible sets as they are still well-defined for feasible
solutions that exhibit contact on sets of positive measure (or capacity). Recently,
entropy regularization has become a popular technique to promote exploration in
reinforcement learning [5, 135, 126]. The same technique is also used in semidefi-
nite programming [137] and optimal transport [55]. An early comparison of infinite-
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dimensional interior point versus quadratic penalty approaches can be found in [27].
We also point to more recent work [194, 217] on new penalty methods that appear to
be mesh-dependent. Finally, though not expressly developed for bound-constrained
problems in infinite-dimensional spaces, proximal point methods will play a central
role in our method. This is discussed in detail in Subsection 4.4 below.

Augmented Lagrangian approaches have also been developed for variational in-
equalities and PDE-constrained optimization; see, e.g., early work in [108, 107, 26, 28]
along with the monographs [77, 109, 207, 115] and the many references therein. Re-
cent work has extended these methods to more general problems in abstract Banach
spaces while simultaneously exploiting advances in matrix-free, inexact subproblem
solvers in constrained optimization (such as [91, 121]), see [31, 110, 17]. In finite di-
mensions, augmented Lagrangian approaches are generally superior to penalty-based
methods in the sense that the penalty parameter does not need to be driven to in-
finity to guarantee feasibility. Moreover, the penalty function in the subproblems is
adaptively updated by the dual variables at each iteration. However, as observed in
[17, Sec. 5], the situation is more delicate in infinite dimensions, e.g., it may be nec-
essary that some of the penalty parameters need to pass to infinity to guarantee the
generation of a sequence of iterates with feasible accumulation points and the dual
variables may not be bounded in those function spaces which are more easily treated
numerically.

3.2. Numerical methods for pointwise bound constraints. The develop-
ment of bound-preserving numerical methods for PDEs began in the early days of
scientific computing [129, 78] and has remained an important pursuit ever since. Al-
though the present paper focuses on an entirely different category of PDE problems,
hyperbolic conservation laws have provided a major source of motivation for research
on the topic [53, 90], and have inspired many bound-preserving techniques now ap-
plied to other classes of PDEs. In many situations, the challenge lies in the fact
that standard high-order numerical methods do not preserve key invariant domain
properties of the underlying physics [84], such as pointwise positivity [189], yet, such
properties are often required for numerical stability [209].

Some of the earliest attempts to ensure bound constraints involved using artificial
viscosity to dampen oscillations that would lead to negativity and other spurious
solution features [202, 128]. Later on, more sophisticated “high resolution” flux-
and slope-limiting strategies emerged [34, 200, 89, 190]; see also [134] for a classical
overview and further references.

One of the most popular approaches to designing high-order bound-preserving
methods is flux-corrected transport [34, 213, 123, 124]. The general idea relies on
forming a convex combination of a desired high-order solution and a bound-preserving
low-order solution. The method then selects the high-order solution wherever the
constraint is satisfied and locally transitions to the low-order solution wherever it is
necessary to avoid constraint violations. A more recent popular approach [215, 214,
216], which can be traced back to [170], relies on developing high-order schemes with
positive cell averages. If such a high-order scheme can be found, the local solution need
only be rescaled towards its (positive) mean wherever the constraints are violated.

The majority of high-order bound-preserving numerical methods for PDEs, in-
cluding the two methods just described for hyperbolic conservation laws, do not con-
strain the solution to the continuous-level feasible set. This is due, in part, to the
fact that checking pointwise bound violations with an arbitrary polynomial is pro-
hibitively expensive [127]. Instead, almost all modern methods involve one of two
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common strategies: (1) enlarging the feasible set by only constraining the values of
the solution at quadrature or nodal points [215, 189, 136, 64, 20] or (2) diminishing
the feasible set by constraining the solution’s basis function coefficients [2, 15, 144, 1].
The former strategy results in a relaxation of the underlying problem that allows for
solutions that are not truly positive pointwise. The latter strategy typically involves
discretizing the solution with a positive basis that guarantees, e.g., that the solution
is non-negative if its coefficient are non-negative; see [188, 165, 6, 52, 7, 56] for the
properties of various choices. If a high-order discretization is used, both strategies
lead to basis-dependent solutions, instead of solely approximation space-dependent
solutions.

Since limiters tend to have a minimal number of hyperparameters, enforcing
bound constraints using many of the techniques above may, at most, reduce to only
solving a single-variable optimization problem at each element. Recently, however,
optimization-based methods have been explored to enlarge the solution space [210, 32].
In these methods, a nonlinear program is solved at each element. Likewise, global
optimization approaches have also been explored, but, possibly owing to the cost, we
are only aware of investigations with simple model problems [141, 69].

Finally, logarithm-transformation methods, which date back at least to [104], have
been known in the literature for some time [105, 41, 145]. Yet, they have taken on new
interest in recent years [155, 143, 73, 201, 63]. Other earlier work of related interest
include [60, 39, 156, 131, 70]. The appeal is that discretizing a transformed variable
may deliver an approximation that is intrinsically structure-preserving and basis-
independent because it encodes geometry of the feasible set. However, as we have
already described in detail in Subsection 2.1, naively transforming a PDE variable
leads to theoretical concerns when the solution is permitted to reach the boundary of
the feasible set. Therefore, implementing these methods in practice can be challenging,
and may require ad-hoc assembly rules for the degenerate PDEs that arise, as noted
in [201].

3.3. Contributions of the present work. This paper focuses on establishing
a mathematical foundation for the proximal Galerkin finite element method and ex-
ploring some of its applications. The main technical results are developed specifically
for the obstacle problem. Yet, Sections 5 and 6 provide further sample applications
and suggestions for future work. In order to distinguish our work from previous and
parallel efforts described in the literature above, we itemize our primary contributions:

• We introduce a new numerical method to treat infinite-dimensional bound-
constrained variational inequality problems. The method hinges on an adaptive en-
tropy regularization technique that was introduced by Nemirovsky and Yudin in [161]
for general reflexive Banach spaces, but has been primarily explored as an efficient
optimization algorithm for finite-dimensional problems [193]. Moreover, the nature
of the functionals involved in our approach indicate that we need to work in a non-
standard, non-reflexive setting that is nevertheless natural for entropy regularization
in infinite dimensions.

• The adaptive entropy regularization technique explored in this paper indicates
the potential for a broad methodology in which the nonlinearity arising from the
variational derivative of the entropy term can be replaced by a slack variable — which
we call the “latent” variable — that is isomorphic to the regularized primal variable.
This ultimately delivers a greater degree of flexibility in the choice of discretization
scheme as the isomorphism naturally facilitates structure-preserving discretizations.
We coin this framework the latent variable proximal point (LVPP) methodology.
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• We apply the entropy regularization technique to the obstacle problem, and in
doing so derive (distributional forms of) the entropic Poisson equation,

(3.1a) −∆u+ lnu = f ,

and the binary-entropic Poisson equation,

(3.1b) −∆u+ arctanhu = f .

When understood as arising from the Euler–Lagrange equations for the regularized
energy functionals, these appear to be novel semilinear elliptic PDEs. Though a
similar equation to (3.1) has been investigated in [157] and the nonlinearities are, at
least when restricted to their domains, smooth and monotone, the Nemytskii operators
induced by ln and arctanh require special care as they have restricted domains when
defined from the original real-valued functions; cf. [12] and related literature for the
analysis of Nemytskii, i.e. nonlinear superposition operators.

• Motivated by the analysis of the entropic Poisson equation, we establish a non-
trivial geometric connection between non-negativity-constrained optimization and
group theory. Further geometric connections are established via entropy function-
als for other bound constraints.

• We present a novel finite element method to solve the entropic Poisson equation
and perform preliminary a priori error analysis on the resulting nonlinear mixed
method. Our numerical experiments indicate that the method is mesh-independent
when comparing the number of iterates required to reach a certain solution tolerance;
see, e.g., Subsection 4.9.

• We extend the contributions above to arrive at a novel approach to enforce dis-
crete maximum principles on non-symmetric elliptic PDE, e.g., the advection-diffusion
equation.

• We introduce two different types of stable finite element pairs for proximal
Galerkin discretizations of second-order elliptic VIs with pointwise bound constraints.
The first type employs a discontinuous latent variable ψh; cf. Subsection 4.7. These fi-
nite elements lead to a primal solution uh with a feasible cell average; cf. Remark 4.20.
The second type uses a C0(Ω)-continuous latent variable; cf. Subsection 5.3. In this
case, the correct quadrature rule induces a nodally-feasible primal solution; cf. Re-
mark 5.3. Both types of proximal Galerkin discretizations lead to a secondary solution
variable ũh that is feasible pointwise throughout the domain.

• We present a new algorithm for topology optimization to showcase the breadth
of applicability of the geometric optimization techniques developed in this work. The
algorithm is efficient and relatively simple to implement. Our results indicate that it
is also mesh-independent.

• We release our code [111, 112, 113], implemented in part using the finite element
software FEniCSx in Python and, otherwise, with the MFEM library in C++ [14], to
facilitate broader adoption in the community.

4. The obstacle problem. In Section 2, we surveyed several structural prop-
erties that entropy regularization brings to a specific form of the obstacle problem,

(4.1) min
u∈H1

g(Ω)

1

2

∫

Ω

|∇u|2 dx−
∫

Ω

fudx subject to u ≥ ϕ in Ω,

where ϕ = 0. In this section, we return to the same motivating example to review
these properties in greater detail and extend our conclusions in order to analyze
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nonzero obstacle functions ϕ ̸= 0. The main theoretical results in this section are the
representation theorem, Theorem 4.1, the characterization theorem, Theorem 4.7, and
the convergence theorem, Theorem 4.13. The section closes with a complete proximal
Galerkin algorithm to solve the obstacle problem (Algorithm 4) and a report of our
numerical experiments with it (Subsection 4.9).

4.1. The entropy gradient. Before we can properly investigate entropy regu-
larization and its role in treating the obstacle problem (4.1), we must closely analyze
the regularity of the entropy functional (2.17) in Lebesgue spaces. Doing so will guide
us toward the key geometric structure encoded in this functional. As a pedagogical
instrument, we proceed by building an analogy to the finite-dimensional setting.

Let x ∈ RN denote the N -dimensional vector (x1, . . . , xN ) and denote the non-
negative orthant in RN by

(4.2) RN+ = {(x1, . . . , xN ) ∈ RN | xi ≥ 0 for all i = 1, . . . N} .

Now, consider the corresponding finite-dimensional entropy function s : RN+ → R
defined by s(x) =

∑N
i=1 xi lnxi− xi, wherein we remind the reader of our simplifying

convention 0 ln 0 := 0. It is easy to see that s(x) is continuous and strictly convex on
RN+ , but only differentiable on its interior,

(4.3) intRN+ = {(x1, . . . , xN ) ∈ RN | xi > 0 for all i = 1, . . . N} ,

due to the logarithmic singularity in the gradient∇s(x) = (lnx1, . . . , lnxN ). A careful
analysis is required to determine what the effect of the same type of logarithmic
singularity will be at the function space level when analyzing the entropy functional
S in (2.17).

As our first key structural result shows, L∞
+ (Ω) and intL∞

+ (Ω) reflect the roles
played above in finite-dimensions by RN+ and intRN+ , respectively. The proof is de-
ferred to the outset of Appendix A.2.

Theorem 4.1 (Gradient representation). Let S : Lp(Ω) → R ∪ {+∞}, p ∈
[1,∞], be the negative entropy functional defined by

S(u) =

{ ∫
Ω
u lnu− udx, if u ∈ Lp+(Ω),

+∞, otherwise.

1. If p ∈ [1,∞], then S is strictly convex and lower semicontinuous.

2. If p ∈ (1,∞], then S is continuous on Lp+(Ω).

3. If p =∞, then S is continuously Fréchet differentiable on intLp+(Ω) with respect
to the Lp(Ω)-norm topology. In particular, the L∞(Ω)-Fréchet derivative of S
can be uniquely characterized by the variational equation

(4.4) ⟨S′(u), v⟩ =
∫

Ω

v lnudx for all u ∈ intL∞
+ (Ω) and v ∈ L∞(Ω).

Moreover, ∥S′(u)∥(L∞(Ω))′ = ∥∇S(u)∥L1(Ω), where

(4.5) ∇S(u) = lnu ∈ L∞(Ω)

is the unique primal representation (i.e., gradient) of S′(u) and is uniquely de-
termined by the variational equation

(4.6) (∇S(u), v) = ⟨S′(u), v⟩ for all u ∈ intL∞
+ (Ω) and v ∈ L1(Ω).
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At a first glance, it is tempting to define S from L1(Ω) into R∪{+∞}. This is the
perspective taken in much of the literature on infinite-dimensional convex analysis;
see, in particular, [35, 22]. In this setting, it is shown that we have strict convexity and
lower semicontinuity. However, as noted in [22, Remark 5.7], there are some issues
with this viewpoint. For example, S would be nowhere continuous, but it would admit
subgradients of the form lnu whenever u ∈ intL∞

+ (Ω).
As claimed above, and proven in Appendix A.2, we see that S : Lp(Ω) → R ∪

{+∞} is in fact continuous on Lp+(Ω) provided p > 1 and even continuously Fréchet
differentiable when we take p = ∞ and u ∈ intL∞

+ (Ω). Moreover, the derivative
S′(u) admits a “primal” representation of the form lnu, which connects back to the
convex analysis literature. Our proof techniques, however, are not based on duality
arguments or the properties of subgradients.

Since S will be used to define a Bregman distance below, whose domain needs to
fit together with the typical regularity spaces for partial differential operators, we can
safely choose any p ∈ [1,∞] so that the regularity space is continuously embedded
into Lp(Ω), even if this initially appears to rule out certain functions in the domain
of S. For example, if we are working with u ∈ H1(Ω), then we can select p ∈ [1, 2],
regardless of the dimension of Ω or regularity of ∂Ω. On the other hand, if the
dimension of Ω is n = 2 or higher, then H1(Ω) does not continuously embed into
L∞(Ω).

Finally, the properties of S given in Theorem 4.1 indicate that S : L∞
+ (Ω) → R

is part of an important class of essentially smooth functions introduced by Rockafel-
lar [172, Section 26] (in finite dimensions) known as Legendre functions, which are
extended to infinite dimensions in [35, 22]. As discussed in, e.g., [193, Section 2.3],
Legendre functions play a crucial role in proximal algorithms for finite-dimensional
convex optimization.

To prepare us for non-trivial obstacles ϕ ̸= 0, we have the following corollary to
Theorem 4.1 pertaining to the shifted entropy functional Sϕ(u) = S(u− ϕ). As with
Theorem 4.1, the proof of this result is deferred to Appendix A.2.

Corollary 4.2 (Gradient of the shifted entropy functional). Let ϕ ∈ L∞(Ω).
The shifted negative entropy functional Sϕ(u) is strictly convex on

(4.7) L∞
ϕ,+(Ω) = {w ∈ L∞(Ω) | w ≥ ϕ} .

and Fréchet differentiable on

(4.8) intL∞
ϕ,+(Ω) = {w ∈ L∞

ϕ,+(Ω) | ess inf(w − ϕ) > 0}

with respect to the norm topology on L∞(Ω). The Fréchet derivative of Sϕ can be
uniquely characterized by the variational equation

(4.9) ⟨S′
ϕ(u), v⟩ =

∫

Ω

v ln(u− ϕ) dx for all u ∈ intL∞
ϕ,+(Ω) and v ∈ L∞(Ω).

Moreover, ∥S′
ϕ(u)∥(L∞(Ω))′ = ∥∇Sϕ(u)∥L1(Ω), where

(4.10) ∇Sϕ(u) = ln(u− ϕ) ∈ L∞(Ω) ,

is the unique primal representation (i.e., gradient) of S′
ϕ : intL∞

ϕ,+(Ω)→ (L∞(Ω))′ in
L∞(Ω), determined by the variational equation

(4.11) (∇Sϕ(u), v) = ⟨S′
ϕ(u), v⟩ for all u ∈ intL∞

ϕ,+(Ω) and v ∈ L1(Ω).
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Remark 4.3 (Empty interior in the H1(Ω) topology). We recall that if K = {u ∈
H1
g (Ω) | u ≥ 0} = H1

g (Ω) ∩H1
+(Ω) and Ω ⊂ Rn with n > 1, then intK = ∅. This is a

simple consequence of the fact that H1(Ω) contains unbounded functions, and so we
can get arbitrarily close to any u ∈ K in the H1-norm with points outside K.

Remark 4.4 (No Riesz representation theorem). When inspecting Theorem 4.1
and Corollary 4.2, the reader should note that Lp(Ω) is a Banach algebra only in the
case p =∞ and we only prove that u 7→ Sϕ(u) is Fréchet differentiable with respect to
variations in this set; see (4.9). In fact, there is a key step in our proof of Theorem 4.1
that requires all functions u where the functional S(u) is differentiable to have a
multiplicative inverse 1/u ∈ L∞(Ω); see (A.19). Based in part on this requirement,
we continue to work directly with L∞(Ω), which is a non-reflexive Banach space
without a corresponding Riesz representation theorem [4]. It is, therefore, not a trivial
consequence of differentiability that the Fréchet derivative S′

ϕ(u) ∈ (L∞(Ω))′ has the
unique function space representation ∇Sϕ(u) ∈ L∞(Ω) given by (4.11). In fact,
the derivative of general functionals on L∞(Ω) lie in (L∞(Ω))′, which is the space
of absolutely continuous, finitely additive set functions of bounded total variation
on Ω; cf. [212, p. 118]. Throughout this work, we consciously choose to refer to
∇Sϕ : intL∞

ϕ,+(Ω)→ L∞(Ω) as the gradient of the (shifted) entropy functional, even
though we are well aware that the term “gradient” is typically understood as a Hilbert
space concept.

4.2. The entropy gradient is an isomorphism. Let us return to the finite-
dimensional entropy function s(x) =

∑N
i=1 xi lnxi − xi introduced at the begin-

ning of the previous subsection and focus on its properties in the strictly positive
orthant intRN+ ⊂ RN . In this case, the reader should note that x 7→ ∇s(x) =
(lnx1, . . . , lnxN ), is a bijection between the set of component-wise positive vectors
x ∈ RN+ and the entire vector space RN .

This correspondence has a special algebraic significance if we view RN+ as a Lie
group under the operation of componentwise multiplication,

(4.12) x⊗ y = (x1y1, . . . , xNyN ),

and view RN as its associated Lie algebra under addition; cf. [132, Example 7.4 (b)].
Indeed, the smooth map ∇s : intRN+ → RN given above is a Lie group isomorphism
because

(4.13) ∇s(x) +∇s(y) = (lnx1 + ln y1, . . . , lnxN + ln yN ) = ∇s(x⊗ y).
It is trivial to see that the same structure is replicated at the infinite-dimensional level
between the Banach–Lie algebra L∞(Ω) and its Banach–Lie group intL∞

+ (Ω) since

(4.14) ∇S(u) +∇S(v) = lnu+ ln v = ∇S(uv).
A deeper geometric meaning to this correspondence is revealed if we draw upon

the well-known result in differential geometry that all finite-dimensional Lie groups
are associated to their Lie algebra by an exponential map [132, Proposition 20.8]. In
the case of the Lie group intRN+ , it may be checked that the inverse of ∇s, defined
(∇s)−1(x) = (expx1, . . . , expxN ), is precisely this map. Conveniently, the finite-
dimensional result extends to the Banach–Lie group intL∞

+ (Ω) [75, 76], and we are
left with a similar geometric interpretation (cf. Figure 4.1) of the isomorphism induced
by the gradient of the entropy functional ∇S : intL∞

+ (Ω)→ L∞(Ω) and its inverse,

(4.15) (∇S)−1(u) = expu.
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Fig. 4.1: The exponential map (∇S)−1(v) = exp v is an analytic isomorphism be-
tween the Banach algebra L∞(Ω) and the Banach–Lie group intL∞

+ (Ω) = {v ∈
L∞(Ω) | ess inf v > 0}; see Proposition A.7. Moreover, its restriction to the sub-
algebra H1(Ω)∩L∞(Ω) forms an isomorphism with the subgroup H1(Ω)∩ intL∞

+ (Ω);
see Proposition A.9.

Moreover, it can be shown that restricting the exponential map (4.15) to the subalge-
bra H1(Ω) ∩ L∞(Ω) induces an isomorphism with the subgroup H1(Ω) ∩ intL∞

+ (Ω).
For further details, see Propositions A.7 and A.9.

Remark 4.5 (Exploiting the geometry of the feasible set). From the optimization
point-of-view, there is great value in the isomorphism ∇S residing in the fact that
L∞(Ω) is a Banach space and Banach spaces are natural spaces in which to construct
additive update formulas (they are complete, normed, and closed under addition).
Many competitive algorithms for unconstrained optimization problems, such as gra-
dient descent and Newton methods, are additive update formulas that leverage this
linear structure in some way [163]. Likewise, when dealing with constrained optimiza-
tion problems, most algorithms appeal to the linear structure of the ambient space
containing the feasible set. In Subsection 4.4, we will show how the isomorphism
∇S : intL∞

+ (Ω)→ L∞(Ω) allows us to ignore the ambient space the original problem
is posed in and work instead with the intrinsic geometry of the constraint set. This,
in turn, will allow us to treat constrained optimization problems in Sobolev spaces
with methods originally designed only for the unconstrained setting.

4.3. Relative entropy. Entropy not only delivers an isomorphism between the
Banach–Lie group intL∞

+ (Ω) and its Banach algebra L∞(Ω). It also induces a valuable
distance function called the relative entropy or (extended) Kullback–Leibler divergence.

We assume below that V is a Banach space. For any smooth convex function
G : V → R, its Bregman divergence is defined by the formula

(4.16) DG(u, v) = G(u)−G(v)− ⟨G′(v), u− v⟩ .

Encoded in this definition is the important observation that, because G is convex,
the graph {(u,G(u)) | u ∈ V } will always lie on or above its supporting hyperplanes,
{(u,G(v) + ⟨G′(v), u − v⟩) | u ∈ V }, for every v ∈ V at which G′(v) exists, see
[37] for this and related insights. The Bregman divergence DG : domG × domG′ →
R measures the vertical distance between these two sets. For nonsmooth convex
functionals that are merely subdifferentiable, the definition of subgradients g′ ∈ ∂G(u)
implies G(v) ≥ G(u) + ⟨g′, v− u⟩ for all v in domG. Therefore, Bregman divergences
can be defined for nonsmooth functionals using subgradients instead of derivatives,
with the caveat that there may be uncountably many g′ that describe a supporting
hyperplane at points of nonsmoothness; cf. [211].
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x

y
s(x) = x lnx− x

s(x0) + s′(x0)(x− x0)

Ds(x1, x0)

x0

x1

Fig. 4.2: The convex function s(x) = x lnx − x, its supporting hyperplane {s′(x0) +
s′(x0)(x−x0) | x ∈ R}, and its Bregman divergence Ds(x1, x0) = x1 ln(x1/x0)−x1+
x0.

Loosely speaking, a Bregman divergence is a generalization of the squared dis-
tance between two points in a Hilbert space, and is, therefore, not expected to satisfy
a triangle inequality. To see how this interpretation arises, it is a straightforward ex-
ercise to check, e.g., that if G : H1

0 (Ω)→ R, with G(u) = 1
2∥∇u∥2L2(Ω), the associated

Bregman divergence is

(4.17)
DG(u, v) =

1

2
∥∇u∥2L2(Ω) −

1

2
∥∇v∥2L2(Ω) − (∇v,∇u−∇v)

=
1

2
∥∇u−∇v∥2L2(Ω) .

The relative entropy D : Lp+(Ω)× intL∞
+ (Ω)→ R, for p ∈ [1,∞], is the Bregman

divergence induced by the entropy functional S. Given its importance to this work,
we neglect to write the subscript-S when working with this measure of distance. In
turn, we may select any u ∈ Lp+(Ω) and v ∈ intL∞

+ (Ω) to explicitly derive the relative
entropy as follows,

(4.18) D(u, v) = S(u)− S(v)− (∇S(v), u− v) =
∫

Ω

u ln
u

v
− u+ v dx .

An illustration of the Bregman divergence of the finite-dimensional entropy function
s(x) =

∑N
i=1 xi lnxi − xi is given in Figure 4.2 for the case N = 1. We initially

use the right-hand side of (4.18) in our study below without requiring its definition
as a Bregman divergence. After a careful analysis shows that the relevant solutions
are in L∞

+ (Ω), we then employ the usual properties of Bregman divergences where
required in several convergence proofs. This frees us from the rigid structures of
convex analysis, e.g., that often fix the domain V in the beginning and require us to
work only in this space and its given topology.

Along with other statistical distances, the relative entropy has a rich history of
being used to encode geometric structure in analysis within statistics, probability
theory, and information theory [11, 10, 162]. Although a Bregman divergence is not
symmetric, i.e., DG(u, v) ̸= DG(v, u) in general, it will satisfy the following important
properties when G is strictly convex [37, 47]:
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Proposition 4.6 (Properties of Bregman divergences). Let G : V → R be
smooth and strictly convex. Then the following properties hold:

Non-negativity. DG(u, v) ≥ 0 for all u ∈ domG and v ∈ domG′.

Positivity. DG(u, v) = 0 if and only if u = v.

Convexity. DG(u, v) is strictly convex in its first argument. Moreover, if G is strongly
convex, then so is u 7→ DG(u, v).

Linearity. Let F : V → R be smooth and strictly convex and λ ≥ 0. Then

(4.19) DG+λF (u, v) = DG(u, v) + λDF (u, v) .

Three points identity. For all u ∈ domG and v, w ∈ domG′, it holds that

(4.20) DG(u, v)−DG(u,w) +DG(v, w) = ⟨G′(v)−G′(w), v − u⟩ .

4.4. Proximal point. Recall that in Subsection 2.2 we proposed the regularized
Dirichlet free energy functional

(4.21) A(u) = E(u) + θS(u) ,

and argued that its minimizer will converge to the solution of the obstacle problem
in the limit θ → 0; cf. (2.19). Although this approach to solving the non-negative
obstacle problem is viable, there is a much more numerically stable alternative. In-
deed, it turns out that we can just as readily generate a sequence of positive functions
uk → u∗ by recursively regularizing the Dirichlet energy E(u) with the Bregman di-
vergence D(u, uk). The idea is relatively old in finite dimensions [45, 192, 47, 193], and
well-explored in reflexive Banach spaces [59, 58]. However, given that the algorithm
is not well-known in the finite element community, we present a classical description
that begins with a Hilbert space framework.

We now introduce the so-called proximal minimization algorithm [175, 167, 193],
due to Marinet [150]. In turn, let H be a Hilbert space and α > 0 be a positive step
size parameter. The proximal operator, introduced in [158] by Moreau, is defined for
every proper lower semi-continuous function F : H → R ∪ {∞} as follows,

(4.22) proxαF (v) = argmin
u∈H

{
F (u) +

1

2α
∥u− v∥2H

}
.

The utility of this operator lies largely in the fact that the ∥ · ∥2H -regularization term
in (4.22) transforms F (which may not be differentiable) into a finite-valued function,

(4.23) Fα(v) = min
u∈H

{
F (u) +

1

2α
∥u− v∥2H

}
,

with an α−1-Lipschitz continuous gradient [175]. Moreover, when F is convex, mini-
mizing either F or Fα is equivalent in the sense that

(4.24) inf
u∈H

Fα(u) = inf
u∈H

F (u) .

In fact, the set of minimizers, argminu∈H F (u), coincides with the set of fixed points
u∗ ∈ H that satisfy u∗ = proxαF (u

∗); see, e.g., [23, Prop. 12.28].
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Choosing to iterate this fixed point equation with variable step sizes αk > 0
delivers the proximal minimization algorithm [150, 174], written explicitly as

(4.25) u0 ∈ H, uk+1 = proxαk+1F
(uk), k = 0, 1, . . .

It is well-known (see, e.g., [85]), that F (uk) converges to F (u∗) at a rate inversely
proportional to the sum of the step sizes. More explicitly, it holds that

(4.26) F (uk)− F (u∗) ≤ 1

2

∥u∗ − u0∥2H∑k
ℓ=1 αℓ

.

Thus, the function values of proximal iterates (4.25) can converge “arbitrarily” fast
(by increasing αℓ), and the asymptotic complexity of the iteration (4.25) is determined
by the complexity of the method used to solve each subproblem (4.22). Convergence
of the function values carries over to convergence of the iterates provided an estimate
of the type

σ(∥u− v∥) ≤ F (u)− F (v)
holds, where σ is monotone and invertible on R+, e.g., if F is strongly convex.

The potentially arbitrary order of convergence in (4.26) makes the proximal point
algorithm an attractive candidate to solve many optimization problems. The draw-
back, however, is that each iteration of the algorithm requires the solution of a non-
smooth optimization problem that may be just as difficult to solve as the original
problem; cf. Remark 4.11. At the same time, the proximal operator (4.22) and fixed
point iterations (4.25) are fundamental to a broad selection of modern optimization
algorithms; see e.g., [23, 24, 193, 125] and the many references therein. They also
play a deep role in augmented Lagrangian methods, as recognized at least as early as
[173], which have seen a resurgence in interest due, in part, to their applicability for
infinite dimensional problems [110, 17].

It turns out many of the most important properties of the proximal minimiza-
tion algorithm also hold if 1

2∥u− v∥2H in (4.22) is replaced by a Bregman divergence
DG(u, v) [193]. Indeed, if we assume that G : V → R is a strictly convex functional
on a Banach space V , we may define the Bregman proximal operator

(4.27) proxGαF (v) = argmin
u∈domF∩domG

{
F (u) + α−1DG(u, v)

}
,

and the corresponding Bregman proximal minimization algorithm

(4.28) u0 ∈ domF ∩ domG′, uk+1 = proxGαk+1F
(uk), k = 0, 1, . . .

Figure 4.2 illustrates the execution of this algorithm for the one-dimensional en-
ergy function e(x) = 1

2x
2 + x and the relative entropy Ds(x, y) = x ln(x/y) − x + y.

Note that under the definitions above, one can show that (4.26) generalizes as follows
[47],

(4.29) F (uk)− F (u∗) ≤ DG(u
∗, u0)

∑k
ℓ=1 αℓ

.

See also Theorem 4.13.
Our contribution is to show that the proximal operator (4.27), with an appropri-

ately defined Bregman divergence, transforms the solution of an infinite-dimensional
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e(x)

e(x) +Ds(x, x0)

e(x) +Ds(x, x1)
e(x) +Ds(x, x2)

x0x1x2x3

Fig. 4.3: Illustration of convergence to the solution x∗ = 0 for the constrained mini-
mization problem minx∈[0,∞) e(x), where e(x) =

1
2x

2 + x, by solving the sequence of
minimization problems xk+1 = argminx∈[0,∞) {e(x) +Ds(x, xk)} starting at x0 = 1.

constrained optimization problem into a sequence of semi-linear PDEs whose solutions
converge to the solution of the underlying VI. In the case of the positive obstacle prob-
lem (i.e., F = E and G = S), this conclusion hinges on the following result. When
combined with (4.28), Theorem 4.7 leads us directly to Algorithm 1, which forms the
basis for the proximal Galerkin finite element method. We note that the proof is
technical and saved until Appendix A.3.

Theorem 4.7 (Solution characterization). Assume Ω ⊂ Rn is an open, bounded
Lipschitz domain, n ≥ 1. Let K = {v ∈ H1

g (Ω) | v ≥ 0} = H1
g (Ω) ∩ H1

+(Ω), where

g ∈ H1(Ω) ∩ C(Ω) satisfies min g|∂Ω > 0. Moreover, given f ∈ L∞(Ω), set

E(v) =
1

2

∫

Ω

|∇v|2 dx−
∫

Ω

fv dx,

and for w ∈ intL∞
+ (Ω) set D(v, w) =

∫
Ω
v ln(v/w)− v+w dx. Then, for any step size

α > 0, the (relative) Dirichlet free energy minimization problem,

(4.30) min
v∈K

Aα(v) := E(v) + α−1D(v, w),

has a unique solution u ∈ H1
g (Ω) ∩ intL∞

+ (Ω) that is (uniquely) characterized by the
weak form of the entropic Poisson equation; namely,

(4.31) (α∇u,∇v) + (lnu, v) = (αf, v) + (lnw, v) for all v ∈ H1
0 (Ω) .

Remark 4.8 (Adaptive entropy regularization). Similar to the free energy formu-
lation (2.16), where the Lagrange multiplier λ is approximated by θ ln(1/u), we see
that the subproblems (4.31) give rise to an approximation of the form α−1 ln(w/u).
Recalling that θ = α−1 we see that there is fundamental difference in the two ap-
proximations given by the inclusion of the function w. Chosen correctly, as with
uk in (4.28), this function can act as an informative prior on the sequence of sub-
problems. More specifically, w = uk allows us to view the Bregman divergence
v 7→ D(v, uk) =

∫
Ω
v ln(v/uk) − v + uk dx as a Bayesian barrier function that is

updated adaptively at each iteration k so that uk → u∗ without sending the step size
α→∞.
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From now on, we mainly focus on inhomogeneous obstacle problems; i.e., ϕ ̸= 0.
Therefore, we close this subsection with an important corollary for this case. Before
we state the result, we note that

Sϕ(u)− Sϕ(v)− (∇Sϕ(v), u− v) = D(u− ϕ, v − ϕ)

whenever u ∈ Lpϕ,+(Ω) and v ∈ intL∞
ϕ,+(Ω). Therefore, (u, v) 7→ D(u− ϕ, v − ϕ) is a

Bregman divergence on Lpϕ,+(Ω)× intL∞
ϕ,+(Ω). For technical reasons, we require the

obstacles to be in a particular subset of H1(Ω) defined by

O :=
{
φ ∈ H1(Ω) ∩ C(Ω) | ∆φ ∈ L∞(Ω)

}
.

Moreover, like Theorem 4.7, the proof of Corollary 4.9 is delayed until Appendix A.3.

Corollary 4.9 (Solution characterization for inhomogeneous obstacles). In
addition to the assumptions of Theorem 4.7, let ϕ ∈ O such that ess inf γ(g − ϕ) > 0
on ∂Ω and define

Kϕ := {u ∈ H1
g (Ω) | u ≥ ϕ a.e. in Ω}.

Then for any step size α > 0 and w ∈ intL∞
ϕ,+(Ω) the optimization problem

(4.32) min
v∈Kϕ

E(v) + α−1D(v − ϕ,w − ϕ),

has a unique solution u ∈ H1
g (Ω) ∩ intL∞

ϕ,+(Ω) that satisfies the weak form of the
(generalized) entropic Poisson equation; namely,

(4.33) (α∇u,∇v) + (ln(u− ϕ), v) = (αf, v) + (ln(w − ϕ), v) for all v ∈ H1
0 (Ω).

Remark 4.10 (Delicate analysis). Semilinear mixed variational inequalities of ob-
stacle type have been thoroughly studied, as detailed in the famous monograph by
J.-F. Rodrigues, [176, Chap. 4.6]. This includes regularity theory and a maximum
principle that relates the solution of the VI to the obstacle, forcing term, and bound-
ary values. The techniques go back to the seminal work by Stampacchia [184], Murty
and Stampacchia [159] and can also be found in [116]. However, the VI associated
with our problem is only valid if we can differentiate the “extra” nonlinearity in the
entropy term. This in turn requires the solution u of each subproblem to be essen-
tially bounded and strictly above the obstacle, so we need to resort to a more delicate
analysis solely based on the properties of the optimization problem.

Remark 4.11 (Challenges of the Hilbert space setting). Let χK : H1(Ω) → R ∪
{∞} denote the indicator function χK(x) = 0 if x ∈ K and χK(x) =∞ otherwise. It
is interesting to compare the operator

(4.34) proxαE+χK
(v) = argmin

u∈K

{
E(u) +

1

2α
∥u− v∥2H1

}
,

to proxSαE(v). Indeed, unlike (4.31), the subproblems that (4.34) induces each require
the solution of their own VI,

(4.35)

∫

Ω

∇((1 + α)u− v) · ∇w dx+

∫

Ω

(u− v − αf)w dx ≥ 0 for all w ∈ K − u,

that is at least as difficult to solve as the original VI defining u∗; cf. (1.3). Similar
issues tend to appear whenever squared norm regularization terms are used to design
proximal point algorithms for infinite-dimensional bound constraints.
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Alternatively, one can use a penalty method to solve the original problem by
considering instead a C1,1-quadratic penalty term of the type

1

2α

∫

Ω

max{0, ϕ− u}2 dx.

This functional is in fact the prox-operator (in the L2(Ω) topology) of the indicator
function for the larger feasible set

{
u ∈ L2(Ω) | u ≥ ϕ

}
. See [95, 94] for details in-

cluding second-order algorithms and an analytical path-following scheme for α. Note
that the subproblems using a quadratic penalty would be semismooth semilinear el-
liptic PDEs. However, since the nonlinearity does not arise from a strictly monotone
continuous function, we cannot derive a similar latent variable formulation.

Remark 4.12 (Comparison to the augmented Lagrangian method). It is possible
to view classical augmented Lagrangian methods as penalty methods that adaptively
change the penalty function and associated penalty parameter via the behavior of the
dual variable, i.e., Lagrange multiplier. Aside from identifying an efficient subproblem
solver, the challenge is usually to find an appropriate combination of update strategies
that allow for inexact subproblem solves and conservative parameter update rules
that still exhibit rapid convergence behavior in practice. The method described in
this work follows a similar strategy. Indeed, the role of the penalty function is played
by a Bregman distance, which is adaptively updated via the primal variable, and the
penalty parameter is given by α. Bregman distances allow us to better exploit the
geometry of the feasible set and the convergence theory of the proximal point method
provides a clear connection to convergence rates that even allows for α to remain
constant.

4.5. Latent variable proximal point. An appealing feature of the entropic
Poisson equation (4.33) is that its solution permits two additional representations;
cf. Figure 2.1. In both cases, we take advantage of the entropy gradient ∇S(v) = ln v
being an isomorphism (cf. Subsection 4.2). First, we may introduce the latent variable
representation,

(4.36) ψ = ln(u− ϕ) ⇐⇒ u = expψ + ϕ ,

by simply applying the entropy gradient transformation to the primal solution u. Sec-
ond, as already noted in Remark 4.8, we may construct a dual variable representation
which, for the inhomogeneous obstacle problem, is written as follows:

(4.37) λ = α−1 ln
w − ϕ
u− ϕ ⇐⇒ u = (w − ϕ) exp(−αλ) + ϕ .

The utility of these representations is witnessed if we consider how to solve either
of the primal subproblems (4.31) or (4.33). Indeed, due to the logarithmic terms, these
semi-linear PDEs are only defined if ess inf(u−ϕ) > 0, which appears to rule out most
efficient root-finding algorithms, such as Newton’s method, and discretization choices,
such as the Galerkin method. Fortunately, the alternative solution representations
above provide saddle-point relaxations of the entropic Poisson equation that do not
suffer from these two drawbacks.

We are now ready to state the final main theoretical result, which also estab-
lishes explicit bounds on the optimization error for the latent variable proximal point
(LVPP) algorithm, defined via (4.38) below. The proof is given in Appendix A.5.
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Theorem 4.13 (Convergence of LVPP). Assume αk+1 > 0, k = 0, 1, . . ., is a
sequence of positive step size parameters. Furthermore, assume Ω ⊂ Rn is an open,
bounded Lipschitz domain, n ≥ 1, ϕ ∈ O, and let g ∈ H1(Ω) ∩ C(Ω) such that
ess inf γ(g− ϕ) > 0. Fix ψ0 ∈ H1(Ω)∩L∞(Ω) and consider the sequence of functions
uk, ψk solving the following coupled system of variational equations:

(4.38)





Find uk+1 ∈ H1
g (Ω) and ψ

k+1 ∈ L∞(Ω) such that

(αk+1∇uk+1,∇v) + (ψk+1, v) = (αk+1f + ψk, v) for all v ∈ H1
0 (Ω) ,

(uk+1, φ)− (expψk+1, φ) = (ϕ, φ) for all φ ∈ L2(Ω) .

Then the Dirichlet energy of the primal iterates is monotonically non-increasing, i.e.,

(4.39) E(uk+1) ≤ E(uk) .

Moreover, if
∑k
j=1 αj →∞ as k →∞, then the subproblem solutions uk converge in

H1(Ω) to

(4.40) u∗ = argmin
u∈H1(Ω)

E(u) subject to u ≥ ϕ in Ω and u = g on ∂Ω .

Furthermore, the functions λk+1 = (ψk − ψk+1)/αk+1 converge strongly in H−1(Ω)
to the Lagrange multiplier λ∗ = −∆u∗ − f . In fact, the optimization error in both
uk and λk are equal and converge at the following arbitrary rate determined by the
sequence of step-sizes αk > 0,

(4.41)
1

2
∥λ∗ − λk∥2H−1(Ω) =

1

2
∥∇u∗ −∇uk∥2L2(Ω) ≤

D(u∗ − ϕ, u0 − ϕ)
∑k
j=1 αj

.

Remark 4.14 (Arbitrary orders of convergence). Theorem 4.13 shows that the
iteration complexity of LVPP depends on the choice of the step sizes αk. The conse-
quences of different step size choices is summarized in Corollary A.14. For example, we
find that constant step sizes lead to sublinear convergence and geometrically increas-
ing step sizes lead to first-order convergence. Even faster growing step size sequences
will achieve superlinear convergence. See also Remark 4.18.

Remark 4.15 (Convergence in the H1(Ω)-norm). At first glance, control over the
full H1(Ω) norm of uk appears problematic because (4.41) does not include the full
norm on H1

g (Ω). However, in light of the Poincaré inequality and u∗ − uk ∈ H1
0 (Ω),

we also obtain
1

2
∥u∗ − uk∥2L2(Ω) ≤ c

D(u∗ − ϕ, u0 − ϕ)
∑k
j=1 αj

,

where c > 0 is an embedding constant independent of k.

Remark 4.16 (Convergence of the latent variable). If we adopt the conventions
ln 0 = −∞ and exp(−∞) = 0, we may define ψ∗ = ln(u∗ − ϕ) as an extended real-
valued function on Ω; cf. Subsection 2.1. Likewise, we may understand convergence of
the latent variable ψ → ψ∗ under the metric implied by this transformation. Indeed,
consider the metric d(ψ,φ) = ∥∇ expψ − ∇ expφ∥L2(Ω), first introduced in (2.10).
Clearly,

d(ψ∗, ψ) = ∥∇(expψ∗ + ϕ)−∇(expψ + ϕ)∥L2(Ω) = ∥∇u∗ −∇u∥L2(Ω) ,(4.42)

which converges to zero as k →∞ by (4.41).
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Remark 4.17 (Dual variable mixed formulation). The formulation (4.38) is de-
rived by setting w = uk, α = αk+1, and substituting the equation ψk+1 = ln(uk − ϕ)
into (4.33). If, instead, we considered the dual variable substitution λk+1 = ln((uk −
ϕ)/(uk+1 − ϕ))/αk+1, we would arrive at the following alternative formulation:

(4.43)





Find uk+1 ∈ H1
g (Ω) and λ

k+1 ∈ L∞(Ω) such that

(∇uk+1,∇v)− (λk+1, v) = (f, v) for all v ∈ H1
0 (Ω) ,

(uk+1, φ)− (uk exp(−αk+1λ
k+1), φ) = (ϕ, φ) for all φ ∈ L2(Ω) .

Although this is equivalent to (4.38) at the continuous level, it will induce a different
Galerkin method; cf. Subsection 4.6. We leave the study of such dual variable proximal
Galerkin methods for future research.

Remark 4.18 (Strict complementarity). Although Theorem 4.13 allows us to
establish arbitrary orders of convergence (see Corollary A.14), it still represents the
worst-case iteration complexity. In particular, our numerical experiments in Subsec-
tion 4.9.2, suggest that an improved result may be possible if the solution u∗ exhibits
strict complementarity.

4.6. Proximal Galerkin. Motivated by Theorem 4.13, it is natural to use finite-
dimensional subspaces Vh ⊂ H1

0 (Ω) and Wh ⊂ L∞(Ω) in order to form a Galerkin
discretization of (4.38). Thus, we arrive at Algorithm 3, which may be seen as a
natural extension of Algorithm 2 to the inhomogeneous obstacle problem.

Algorithm 3: Proximal Galerkin method for the obstacle problem.

Input : Linear subspaces Vh ⊂ H1
0 (Ω) and Wh ⊂ L∞(Ω), initial solution

guess ψ0
h ∈Wh, unsummable sequence of step sizes αk > 0.

Output: Two approximate solutions, uh and ũh = ϕ+ expψh, and an
approximate Lagrange multiplier, λh = (ψk−1

h − ψh)/αk.
Initialize k = 0.
repeat

Solve the following (nonlinear) discrete saddle-point problem:





Find uh ∈ gh + Vh and ψh ∈Wh such that

(αk+1∇uh,∇v) + (ψh, v) = (αk+1f + ψkh, v) for all v ∈ Vh ,
(uh, φ)− (expψh, φ) = (ϕ, φ) for all φ ∈Wh .

(4.44)

Assign ψk+1
h ← ψh and k ← k + 1.

until a convergence test is satisfied

Just like Algorithm 2, we find that Algorithm 3 delivers two distinct approxima-
tions of the exact solution; uh ∈ Vh and ũh ∈ ϕ + exp(Wh). The second of these
approximations is unusual because it is guaranteed to satisfy the inequality ũh > ϕ.
Moreover, like the continuous-level algorithm in Theorem 4.13, it also produces an
approximate Lagrange multiplier,

(4.45) λh = (ψk−1
h − ψkh)/αk ,

where k denotes the final iterate where the abstract convergence test in Algorithm 3
is satisfied.
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Finite element methods typically lead to piece-wise polynomial approximations
of the exact solution. Given that ũh = ϕ + expψh relies on a non-standard type
of exponential function approximation, it is natural ask whether ũh can produce
an accurate approximation of the continuous-level solution u. The following result
provides a partial positive answer to this question. The proof is given in Appendix B.3.

Proposition 4.19 (Approximability). Let u ∈ intL∞
+ (Ω) and define ψ = lnu.

Moreover, let ψh ∈Wh and ũh = expψh. The following identity holds:

(4.46) ∥u− ũh∥L∞(Ω) ≤ ∥u∥L∞(Ω)

(
exp ∥ψ − ψh∥L∞(Ω) − 1

)
.

The next ordinary concern would be the stability of the discretization (4.44). In
the next subsection, we propose stable pairs of finite elements that can be used to
construct Vh and Wh.

4.7. Stable pairs of finite elements I: Discontinuous latent variable.
Subspace pairings determine the stability of finite element methods for saddle-point
problems [33]. Thus, it should come as no surprise that the choice of the subspaces
Vh and Wh is central to the proximal Galerkin method. For simplicity, we focus
on stable pairs of finite elements with discontinuous latent variables ψh, as these
appear to provide the most efficient conforming approximations per degree of freedom.
The elements we propose are defined in (4.48), below. Constructing alternatives
using macroelement partitions (e.g., [185]), various non-conforming approximation
techniques (e.g., [54, 49]), or even spline-based approximation spaces (cf. [103]) all
provide possible alternatives for the design of proximal Galerkin methods. Due to
space in this manuscript and the limitations of our present software, we leave these
and other possible constructions to future studies.

Here and throughout, Th always denotes a shape-regular partition of the domain
Ω ⊂ R2 into finitely many open connected triangular or quadrilateral mesh cells T
with Lipschitz boundaries ∂T such that Ω is the union of the closure of all mesh cells
T in Th. Following convention, h > 0 denotes the mesh size h = maxT∈Th

diam(T ).
Let Pp(T ) denote the space of polynomials of total order up to and including p on
a triangle T . Likewise, let Qp(T ) denote the space of tensor-product polynomials of
order up to and including p on a quadrilateral T [68]. Moreover, for any space X(T ) of
polynomials over an element T ∈ Th, we abuse notation to denote the corresponding
space of “broken” polynomials X(Th) = {φ ∈ L∞(Ω) | φ|T ∈ X(T ) for every T ∈ Th}.

We will require spaces of degree-q polynomials on whose traces on the cell bound-
ary ∂T have lower polynomial degree p < q. To this end, define the sets of so-
called bubble functions in Pq(T ) and Qq(T ) to be P̊q(T ) = {φ ∈ Pq(T ) | φ|∂T = 0}
and Q̊q(T ) = {φ ∈ Qq(T ) | φ|∂T = 0}, respectively. Accordingly, define P̂p(T ) =

Pp(T ) \ P̊p(T ) and Q̂p(T ) = Qp(T ) \ Q̊p(T ). Finally, let

(4.47) Pqp(T ) = P̂p(T )⊕ P̊q(T ) and Qqp(T ) = Q̂p(T )⊕ Q̊q(T ) .

We are now ready to define the finite element spaces, which we chose based on a
priori analysis of a simple linearization of subproblem (4.44). For further details of
the analysis, see Appendix B.

For any integer p ≥ 1, we define the following two pairs of spaces:

Triangular elements. We refer to the following as the (Pp-bubble,Pp−1-broken) pair-
ing:

(4.48a) Vh = Pp+2
p (Th) ∩H1

0 (Ω) , Wh = Pp−1(Th) .
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P1-bubble P0-broken Q1-bubble Q0-broken

Fig. 4.4: Conventional representation of the (P1-bubble,P0-broken) and
(Q1-bubble,Q0-broken) finite elements in two dimensions. The central degree of free-
dom in each element can be understood as the average over the individual mesh cell.

Quadrilateral elements. We refer to the following as the (Qp-bubble,Qp−1-broken)
pairing:

(4.48b) Vh = Qp+1
p (Th) ∩H1

0 (Ω) , Wh = Qp−1(Th) .

Figure 4.4 provides a visual representation of the lowest-order versions of these ele-
ments.

Remark 4.20 (Positive cell average). Assume ϕ = 0. Although the piecewise
polynomials uh that arise from solving the subproblems (4.44) can not be guaranteed
to preserve pointwise positivity, they are guaranteed to have positive cell averages.
Indeed, notice that the subspaces Wh in (4.48) always include piecewise constant
functions. Therefore, we may consider the second equation in (4.44) with φ = 1 in T
and φ = 0 otherwise. Testing with this particular function implies that

(4.49)

∫

T

uh dx =

∫

T

expψh > 0 .

If ϕ ̸= 0, then a similar argument implies that each cell average of uh lies above the
corresponding cell average of ϕ.

Remark 4.21 (Alternative subspaces). Although variable-order spaces like Vh
in (4.48) are supported in some software [61, 74], they may not available in the
preferred software of many users. For this reason, we also recommend the following
alternative pairings:

Alternative triangular elements. We refer to the following as the (Pp+2,Pp−1-broken)
subspaces:

(4.50a) Vh = Pp+2(Th) ∩H1
0 (Ω) , Wh = Pp−1(Th) .

Alternative quadrilateral elements. We refer to the following as the (Qp+1,Qp−1

-broken) subspaces:

(4.50b) Vh = Qp+1(Th) ∩H1
0 (Ω) , Wh = Qp−1(Th) .

Since (4.48) are stable (cf. Lemma B.3), it is a straightforward consequence of the
inclusions Pp+2

p (T ) ⊂ Pp+2(T ) and Qp+1
p (T ) ⊂ Qp+1(T ) that (4.50) are also stable.

For further details, see Remark 4.21.
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4.8. Algorithm. We conducted numerical experiments across two separate
codes, FEniCSx [181] and MFEM [14], and have released our implementations to the
public [111, 113]. The FEniCSx implementation [113] is Python-based and uses the
(Pp-bubble,Pp−1-broken) triangular elements proposed in Subsection 4.7. The MFEM
implementation is written in C++. Because MFEM does not currently support bub-
ble function enrichment, the MFEM implementation [111] uses (Qp+1,Qp−1-broken)
quadrilateral elements (see Remark 4.21) instead of the (Qp-bubble,Qp−1-broken)
elements also proposed in Subsection 4.7.

Algorithm 4 represents the MFEM implementation. Notice that it is a quasi-
Newton algorithm that includes a small modification to the local Hessian. We found
that for small values of ϵ (we used ϵ = 10−6), this made the built-in GMRES solver
more robust and did not strongly affect the convergence rates. Our FEniCSx im-
plementation uses the standard PETSc [19] Newton solver provided by the petsc4py
Python package [57]. This implementation does not involve any modifications to the
local Hessian. Before stating the algorithm, we introduce notation for the element-
wise gradient operator ∇h :

∏
T∈Th

H1(T )→ L2(Ω), which satisfies

(4.51) (∇hv,∇hw) =
∑

T∈Th

∫

T

∇v · ∇w dx .

Remark 4.22 (Practical aspects of the implementation: Stopping criteria). We
use several metrics to design a meaningful stopping criterion for Algorithm 4. The
algorithm uses two loops: an outer loop that updates the parameter αk and adapts
the Bregman term and an inner loop in which the step is calculated using an inexact
Newton iteration. In an ideal setting, the outer loop would stop once the residual of
the optimality conditions for the original problem has a sufficiently small norm. This
is difficult to check in general, e.g., since the H1-projection operator onto the feasible
set is nontrivial/expensive to evaluate. On the other hand, Theorem 4.13 provides a
theoretical convergence rate, which up to a constant could be used to predetermine
a maximum number of step sizes to reach a desired tolerance. Furthermore, if we set
αk = α > 0 for all k, then we may view the outer loop as a globally convergent fixed
point iteration. Since these observations are for the ideal setting, we still should check
for some indication of convergence. For this reason, we can use the distance between
successive iterates as a practical stopping criterion. For the inner iterations, we check
either the norm of the residual of the nonlinear term (see [113]) or the length of the
proposed step (see [111]). The length of the accepted step informs the next inner
iteration tolerance and ensures that more accurate steps are computed as k increases.
Since the residual for the first equation is technically exact, we do not include it in
the inner stopping criterion.

4.9. Numerical experiments. We performed four sets of numerical experi-
ments in order to validate the proximal Galerkin method. The first experiment in-
volves a smooth biactive manufactured solution that allows us to verify the (mesh-
independent) iteration complexity predicted by Theorem 4.13, in addition to high-
order convergence rates with respect to the polynomial order of the finite element
subspaces. In the second experiment, we check the discrete Karush–Kuhn–Tucker
(KKT) conditions on a manufactured solution exhibiting strict complementarity. In
this case, we observe better iteration complexity than predicted by Theorem 4.13.
We conjecture that this improved convergence order holds in general whenever a
strict complementarity condition is satisfied; cf. Remark 4.18. The third experiment
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Algorithm 4: Quasi-Newton proximal Galerkin method for the obstacle
problem.

Input : Piecewise polynomial subspaces Vh ⊂ H1
0 (Ω) and Wh ⊂ L∞(Ω),

initial solution guesses uh ∈ Vh and ψh ∈Wh, unsummable
sequence of step sizes αk > 0, exit tolerance tolexit > 0, and initial
Newton tolerance tolNewton > tolexit.

Output: Two approximate solutions, uh and ũh = ϕ+ expψh, and an
approximate Lagrange multiplier, λh = (ψk−1

h − ψh)/αk.
Initialize k = 0.
repeat

Assign ukh ← uh and ψkh ← ψh.
repeat

Assign wh ← uh.
Reassign uh and δh by solving the following (linearized) discrete
saddle-point problem:





Find uh ∈ Vh and δh ∈Wh such that

(αk+1∇uh,∇v) + (δh, v) = (αk+1f + ψkh − ψh, v) for all v ∈ Vh ,
(uh, φ)− cε(ψh, δh, φ) = (ϕ+ expψh, φ) for all φ ∈Wh ,

where

cε(ψh, δh, φ) =

{
(δh expψh, φ) + ε(δh, φ) if Wh ∈ ker(∇h) ,
(δh expψh, φ) + ε(∇hδh,∇hφ) otherwise.

Assign ψh ← ψh + δh.

until ∥uh − wh∥2L2(Ω) ≤ tol2Newton

Assign tolNewton ← ∥uh − ukh∥L2(Ω) and k ← k + 1.

until tolNewton < tolexit

involves a non-smooth biactive solution and is included to further stress test the prox-
imal Galerkin method. Finally, in our fourth experiment, we consider a benchmark
obstacle problem from the literature and demonstrate our ability solve this problem
with the highest order finite elements currently supported in our MFEM code; i.e.,
we used p = 12.

Each of our experiments were conducted on standard sequences of uniformly re-
fined nested meshes Th, Th/2, Th/4, . . . conforming to unit ball domains in R2. The ex-
periments with the triangular elements (FEniCSx) used an ℓ∞-unit ball (i.e., square)
domain,

(4.52a) Ω∞ = {(x, y) ∈ R2 | max{|x|, |y|} < 1} ⊂ R2 ,

with initial mesh size denoted h = h∞. Meanwhile, the experiments with the quadri-
lateral elements (MFEM) used an ℓ2-unit ball (i.e., circular) domain,

(4.52b) Ω2 = {(x, y) ∈ R2 | x2 + y2 < 1} ⊂ R2 ,

with initial mesh size denoted h = h2, which was uniformly refined using a standard
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Ω∞

2

2

2

Ω2

Fig. 4.5: Initial finite element meshes for computational domains Ω∞ and Ω2. We
denote their mesh sizes h = h∞ and h = h2, respectively. Left: Initial triangu-
lar mesh for the (Pp-bubble,Pp−1-broken) subspace pair on the domain Ω∞ (FEn-
iCSx experiments). Right: Initial five-element curvilinear quadrilateral mesh for the
(Qp+1,Qp−1-broken) subspace pair on the domain Ω2 (MFEM experiments). Across
our experiments, we consider various polynomial orders p ≥ 1 for both of these sub-
space pairs.

transfinite interpolation rule to handle the curvilinear element mappings [82]. The
initial meshes in these sequences are depicted in Figure 4.5.

4.9.1. Experiment 1: Smooth biactive solution. In this experiment, we set
ϕ = 0 and g = u, where u(x, y) is the smooth manufactured solution

(4.53) u(x, y) =

{
0 if x < 0 ,

x4 otherwise,
implied by f(x, y) =

{
0 if x < 0 ,

−12x2 otherwise.

See Figures 4.6 and 4.7 for depictions of the exact solution on Ω∞ and Ω2, respectively.
This problem is specifically chosen to exhibit biactivity ; i.e., both the inequality

constraint u ≥ 0 and the associated Lagrange multiplier are simultaneously equal to
zero on a set of positive measure; i.e., on the set {(x, y) | x < 0}. Such problems
are notoriously difficult to solve for certain classes of algorithms, such as active set
methods. Biactivity, also know as weak activity or lack of strict complementarity, is a
notion from nonlinear optimization that indicates a kind of degenerate nonsmoothness
of the primal-dual system of equations used to calculate the solution. It is often
associated with a lack of stability with respect to perturbations of the data, as well.
We refer the interested reader to any standard text of numerical optimization; see,
e.g., [163, Definition 12.5].

Our first aim is to use this challenging example to illustrate mesh-independence
of the proximal Galerkin method. To this end, we use Table 4.1 to record the values
of the increments ∥ukh − uk−1

h ∥H1(Ω∞) taken from a sequence of refined meshes with
polynomial orders p = 1, 2 from our FEniCSx implementation [113]. The specific
step size rule used to generate this data is chosen based on Corollary A.14 to deliver
superlinear convergence (in iterations), and is given as follows:

(4.54a) α1 = 1 , αk = min
{
max

{
α1, r

qk−1 − αk−1

}
, 1010

}
, k = 2, 3, . . . ,

where r = q = 1.5. Note that, for each iteration k, the increments in Table 4.1
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Progress of the iterates ∥uk
h − uk−1

h ∥H1(Ω∞) for various h and p

Polynomial order p = 1 Polynomial order p = 2

k αk h∞/16 h∞/32 h∞/64 h∞/16 h∞/32

1 1.0 2.10 · 100 2.10 · 100 2.10 · 100 2.10 · 100 2.10 · 100
2 1.0 6.45 · 10−1 6.45 · 10−1 6.45 · 10−1 6.45 · 10−1 6.45 · 10−1

3 1.49 1.73 · 10−1 1.73 · 10−1 1.73 · 10−1 1.73 · 10−1 1.73 · 10−1

4 2.43 1.10 · 10−1 1.10 · 10−1 1.10 · 10−1 1.10 · 10−1 1.10 · 10−1

5 5.35 7.76 · 10−2 7.77 · 10−2 7.77 · 10−2 7.77 · 10−2 7.77 · 10−2

6 1.64 · 101 4.76 · 10−2 4.77 · 10−2 4.77 · 10−2 4.77 · 10−2 4.77 · 10−2

7 8.50 · 101 2.24 · 10−2 2.25 · 10−2 2.25 · 10−2 2.25 · 10−2 2.25 · 10−2

8 9.35 · 102 5.82 · 10−3 5.84 · 10−3 5.85 · 10−3 5.85 · 10−3 5.85 · 10−3

9 3.17 · 104 6.04 · 10−4 6.07 · 10−4 6.07 · 10−4 6.07 · 10−4 6.07 · 10−4

10 5.85 · 106 1.80 · 10−5 1.81 · 10−5 1.81 · 10−5 1.81 · 10−5 1.81 · 10−5

11 1 · 1010 9.41 · 10−8 9.47 · 10−8 9.49 · 10−8 9.50 · 10−8 9.50 · 10−8

12 1 · 1010 2.10 · 10−12 2.00 · 10−12 1.96 · 10−12 1.92 · 10−12 1.95 · 10−10

Tot. linear solves 21 20 19 19 19

Table 4.1: Biactivity. Table of increments ∥ukh − uk−1
h ∥H1(Ω∞) for various mesh

sizes h and polynomial orders p using the triangular element (Pp-bubble,Pp−1-broken)
discretization. The initial degrees of freedom for uh and ψh were set to zero at
the beginning of each run. Between eight and ten Newton iterations performed by
the PETSc Newton solver used for each initial subproblem solve and then only one
Newton solve was used for each of the following subproblems. The convergence of
the increments for each fixed k and the boundedness of the number of linear solves
indicates mesh-independence.

converge to fixed values as the mesh is refined or the polynomial order is raised.
Moreover, the total number of linear equation solves remains bounded. Both of these
characteristics are emblematic of a mesh-independent numerical method.

Our next aim is to verify the convergence orders predicted by Theorem 4.13 and
Corollary A.14. In doing so, we consider the double-exponential step size rule (4.54a)
alongside the geometric rule

(4.54b) αk = rk−1 , k = 1, 2, . . . ,

with r = 2, and the fixed step size rule αk = 1, for all k = 1, 2, . . . The results in
Figure 4.6 agree precisely with the predictions made later on in Corollary A.14. In
particular, notice that the fixed step rule αk = 1 leads to sublinear convergence, the
geometric rule (4.54b) induces linear convergence, and the double-exponential step
size rule (4.54a) delivers superlinear convergence.

The final aim of this experiment is to demonstrate that high-order convergence
rates (with respect to the mesh size h) can be achieved using polynomial orders
p > 1. To this end, we use our high-order MFEM implementation to solve for the
biactive solution (4.53) on the circular domain Ω = Ω2. In Figure 4.7, we plot the
approximation errors of the discrete solutions uh, ũh, and λh. From these results, we
witness that high-order convergence rates can, indeed, be achieved with the proximal
Galerkin method. All results from this experiment can be reproduced by running the
FEniCSx code obstacle.py or the MFEM code obstacle.cpp available at [113].
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Fig. 4.6: Biactivity. Verifying the convergence orders predicted by Corollary A.14
with the (P1-bubble,P0-broken) discretization (FEniCSx). Left: The exact solution.
Right: Plots of the optimization error ∥uh − ukh∥H1(Ω∞) and corresponding step size
αk when h = h∞/16. The blue curve tracks the sublinear convergence induced by the
fixed step size rule αk = 1. Meanwhile, the step size rules (4.54b) and (4.54a) induce
linear (red) and superlinear (green) convergence, respectively. The results are similar
on finer meshes due to mesh-independence; cf. Table 4.1.

4.9.2. Experiment 2: Strict complementarity. In this experiment, we set
ϕ = g = 0 and define

(4.55) f(x, y) = 2π2 sin(πx) sin(πy) .

See Figure 4.8 for a fine mesh (h = h∞/128) solution uh as well as the associated
Lagrange multiplier λh.

When viewed from the perspective of continuum mechanics, the multiplier λ is
a resolvent force. It is therefore rare that we would see biactivity of the type in the
previous experiments on such large domains as it would correspond to contact without
any opposing force resulting from the obstacle.

The first aim of this experiment is to revisit the convergence orders predicted by
Theorem 4.13 and Corollary A.14 and demonstrate that they are overly pessimistic
for this more typical type of problem. Indeed, as demonstrated in Figure 4.8, we see
that linear convergence is achieved using only a fixed step size. In turn, superlinear
convergence can be achieved using any unbounded step size rule. For illustration, we
have added results using the geometric rule (4.54b) with various growth parameters
r ∈ {1.05, 1.1, 2}.

The second aim of this experiment is to check convergence of the discrete so-
lution via the KKT conditions. This is useful to assess a posteriori the optimality
of the discrete solution when the true solution is unknown. To this end, we con-
sider the complementarity condition

∣∣ ∫
Ω
λudx

∣∣ = 0, the primal feasibility condition∫
Ω
max{−u, 0} dx = 0, and the dual feasibility condition

∫
Ω
max{−λ, 0} dx = 0. We

note that the discrete solution ũh = expψh is always feasible by construction, i.e.,
ũh ≥ 0. Therefore, in order to glean more interesting information about the prox-
imal Galerkin solution, we focus on discrete versions of the KKT conditions formu-
lated in terms of the solution variable uh. The discrete KKT conditions that we
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Fig. 4.7: Biactivity. Verifying high-order convergence of the approximation error
with various polynomial order (Qp+1,Qp−1-broken)-discretizations on Ω = Ω2. Top
left: The exact solution. Top right: The approximation error of the discrete solution
uh in the H1-norm. Bottom left: The approximation error of the discrete solution
ũh = expψh in the L2-norm. Bottom right: The approximation error of the Lagrange
multiplier λh in the L2-norm. Notice that each of the convergence rates for this
smooth solution grow with the polynomial order.

checked are recorded in Table 4.2. From the results in this table, we see that dis-
crete primal feasibility,

∫
Ω
max{−uh, 0}dx = 0, is achieved only in the limit h → 0.

However, discrete complementarity,
∣∣ ∫

Ω
λhuh dx

∣∣ = 0, and discrete dual feasibility,∫
Ω
max{−λh, 0} dx = 0, appear to hold for all mesh sizes. The results of this ex-

periment can be reproduced by running the FEniCSx code obstacle.py available at
[113].

4.9.3. Experiment 3: Biactive solution, nonmsooth multiplier. In this
experiment, we set ϕ = 0 and g = u, where u(x, y) is the smooth manufactured
solution

(4.56a) u(x, y) =

{
(1− 4x2 − 4y2)4 if x2 + y2 < 1/4 ,

0 otherwise,

implied by the forcing function

(4.56b) f(x, y) = −∆u(x, y)−
{
1 if x2 + y2 > 3/4 ,

0 otherwise.
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Fig. 4.8: Strict complementarity. Surpassing the convergence orders predicted by
Corollary A.14 with the (P1-bubble,P0-broken) discretization (FEniCSx). Left: A
high-resolution image of the exact solution u and associated Lagrange multiplier λ.
Right: Plots of the primal variable increments ∥ukh−uk−1

h ∥H1(Ω∞) and corresponding

geometric step sizes αk = rk−1 for mesh size h = h∞/16. The results are similar on
all finer meshes due to mesh-independence; cf. Table 4.1. Analogous results can also
be obtained for higher-order and quadrilateral element discretizations (not shown).

h
Complementarity∣∣ ∫

Ω∞
λhuh dx

∣∣ Primal feasibility∫
Ω∞

max{−uh, 0}dx
Dual feasibility∫

Ω∞
max{−λh, 0} dx

h∞

(all less than 10−14)

6.97 · 10−3

(all less than 10−12)

h∞/2 9.09 · 10−3

h∞/4 1.16 · 10−3

h∞/8 1.69 · 10−4

h∞/16 4.08 · 10−5

h∞/32 4.53 · 10−6

Table 4.2: Strict complementarity. Checking the discrete KKT conditions for the
proximal Galerkin solution owing to (4.55). Here, we see that primal feasibility is
achieved in the limit h→ 0. Meanwhile, complementary and dual feasibility holds on
all meshes.

Clearly, this is another solution exhibiting biactivity. In this case, however, the mul-
tiplier,

(4.56c) λ(x, y) =

{
1 if x2 + y2 > 3/4 ,

0 otherwise,

is discontinuous. See Figure 4.9 for a depiction of the exact solution u as well as the
associated Lagrange multiplier λ on the domain Ω = Ω∞.
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Discretization errors

h ∥u− uh∥H1(Ω∞) ∥u− ũh∥L2(Ω∞)

h∞/16 3.102 · 10−1 2.864 · 10−2

h∞/32 1.566 · 10−1 1.405 · 10−2

h∞/64 7.849 · 10−2 6.991 · 10−3

h∞/128 3.927 · 10−2 3.491 · 10−3

Rate 1 1

h ∥u− uh∥L2(Ω∞) ∥λ− λh∥L2(Ω∞)

h∞/16 7.326 · 10−3 2.827 · 10−1

h∞/32 1.875 · 10−3 1.823 · 10−1

h∞/64 4.717 · 10−4 1.121 · 10−1

h∞/128 1.118 · 10−4 8.646 · 10−2

Rate 2 < 1
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Fig. 4.9: Biactive solution, nonsmooth multiplier. Checking the discretization errors
in various standard norms. Notice that the error in the Lagrange multiplier variable
does not decay linearly with respect to the L2-norm.

We use this experiment to inspect the approximation error of the (P1-bubble,
P0-broken) discretization. See Figure 4.9 for our results. As expected, unlike for the
biactive solution studied in Subsection 4.9.1, the L2-error of the Lagrange multiplier
does not decay to zero linearly. We observed no other adverse effects from this non-
smooth manufactured solution. The results of this experiment can be reproduced by
running the FEniCSx code obstacle.py available at [113].

4.9.4. Experiment 4: Spherical obstacle. Our final experiment is motivated
by an exact solution in [86]. Here, we set both f = 0 and g = 0 and define the obstacle
to be the upper surface of a sphere of radius 1/2, namely

(4.57) ϕ(x, y) =
√

1/4− x2 − y2 ,

if
√
x2 + y2 ≤ 1/2, and assume that ϕ is sufficiently negative when

√
x2 + y2 > 1/2

so that no contact happens on that subdomain. Exploiting radial symmetry, the exact
solution on the circular domain Ω = Ω2 is found to be

(4.58) u(x, y) =

{
A ln

√
x2 + y2 if

√
x2 + y2 > a,

ϕ(x, y) otherwise,

where a = exp
(
W−1

( −1
2e2

)
/2 + 1

)
≈ 0.34898, A =

√
1/4− a2/ln a ≈ −0.34012, and

Wj(·) is the j-th branch of the Lambert W-function.
Figure 4.10 presents the very high order (p = 12) proximal Galerkin solutions uh

and ũh to this problem on the coarsest mesh, h = h2, which has only five elements.
This is the highest order discretization of the obstacle problem that we have seen in
the literature. Table 4.3 compares the subproblem error, ∥u−ukh∥H1(Ω2), on a sequence
of uniformly meshes. From this table, we see that if the number of outer iterations k
is held fixed, then the error converges to fixed values as the mesh is refined. This is
another hallmark of mesh-independence. This experiment is an official part of MFEM
4.6; in particular, see MFEM Example 36 [111].

35



Diagram of problem

0

0.1

0.2

0.3

0.4

0.5

0

0.5

Very high order (p = 12) proximal Galerkin
solutions uh (top) and ũh (bottom)

Fig. 4.10: Spherical obstacle. Benchmark obstacle problem from [86]. Left: Diagram
of the problem set-up. Right: Five-element proximal Galerkin solutions uh and ũh.

Primal errors ∥u− uk
h∥H1(Ω2)

for p = 1

k Linear solves h2/8 h2/16 h2/32 h2/64 h2/128

1 3 2.72 · 10−1 2.70 · 10−1 2.70 · 10−1 2.70 · 10−1 2.70 · 10−1

2 1 1.37 · 10−1 1.38 · 10−1 1.38 · 10−1 1.38 · 10−1 1.38 · 10−1

3 1 3.62 · 10−2 3.33 · 10−2 3.31 · 10−2 3.31 · 10−2 3.31 · 10−2

...
...

...
...

...
...

...

Total iterations 11 11 11 11 11

Total linear solves 13 13 13 13 13

Final error 1.98 · 10−2 8.73 · 10−3 3.49 · 10−3 1.18 · 10−3 3.85 · 10−4

Table 4.3: Spherical obstacle. Checking the subproblem error, ∥u − ukh∥H1(Ω2), for
various mesh sizes using the (Q2,Q0-broken) discretization. We used αk = 1 for all
k = 1, . . . and stopped the algorithm when ∥ukh − uk−1

h ∥L2(Ω2) < 10−6.

5. Extensions I: More general bound constraints and variational in-
equalities with an application to enforcing discrete maximum principles.
The purpose of this section is to move beyond the proximal framework developed in
Section 4 for energy principles with pointwise lower bound constraints. To this end,
we aim to answer the following two necessary questions:

1. Can proximal Galerkin be used to simultaneously enforce pointwise upper and
lower bound constraints?

2. Can proximal Galerkin be applied to variational inequalities that do not arise
from an energy minimization principle?

The answer to both of these questions is yes.
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We use our answers to these questions to construct a discrete maximum principle-
preserving proximal Galerkin method for the advection-diffusion equation,

(5.1) − ϵ∆u+ β · ∇u = f in Ω, u = g on ∂Ω ,

where ϵ > 0 and β ∈ Rd are fixed, f ∈ L∞(Ω), and g ∈ H1(Ω) ∩ C(Ω). Along the
way, we introduce the binary entropy (Subsection 5.1), a proximal algorithm for VIs
with non-symmetric coercive bilinear forms (Subsection 5.2), and an alternative type
of proximal Galerkin discretization employing a continuous latent variable (Subsec-
tion 5.3). The section features an implementable algorithm and closes with a brief
survey of numerical experiments.

5.1. Binary entropy. In the previous section, enforcing a pointwise lower bound
on the minimizer of the Dirichlet energy led us to consider a sequence of entropy-
regularized energy minimization problems. We now consider the situation of enforcing
pointwise upper and lower bounds simultaneously. For simplicity, we illustrate the
approach on the so-called double-obstacle problem written in (5.2) below.

Let ϕ1, ϕ2 ∈ H1(Ω)∩L∞(Ω) with ess sup(ϕ2−ϕ1) > 0 and ess sup γ(ϕ1−g) < 0 <
ess inf γ(ϕ2 − g), and consider minimizing the Dirichlet energy under the pointwise
bound constraints ϕ1 ≤ v ≤ ϕ2. More specifically,

(5.2) u∗ = argmin
v∈K

E(v) ,

where E(v) = 1
2

∫
Ω
|∇v|2 dx −

∫
Ω
vf dx and K = {v ∈ H1

g (Ω) | ϕ1 ≤ v ≤ ϕ2}. A
natural way to apply entropy regularization to (5.2) is revealed if we rewrite the
problem with two new variables v1 = v − ϕ1 and v2 = ϕ2 − v. Doing so, we arrive at
the equivalent equality-constrained optimization problem

(5.3) (u∗1, u
∗
2) = argmin

(v1,v2)∈K1×K2

E(v1 + ϕ1) subject to v1 + v2 = ϕ2 − ϕ1 ,

where K1 = {v1 ∈ H1
g−ϕ1

(Ω) | v1 ≥ 0} and K2 = {v2 ∈ H1
ϕ2−g(Ω) | v2 ≥ 0}. It can

be readily verified that u∗1 = u∗ − ϕ1 and u∗2 = ϕ2 − u∗.
Following our treatment of entropy regularization for pointwise non-negativity

constraints in Section 4, it stands to consider the sequence uk = uk1−ϕ1 = ϕ1−uk2 → u∗

defined

(uk1 , u
k
2) = argmin

(v1,v2)∈K1×K2

{
E(v1 + ϕ1) + α−1

k

(
D(v1, u

k−1
1 ) +D(v2, u

k−1
2 )

)}
(5.4a)

subject to v1 + v2 = ϕ2 − ϕ1 .(5.4b)

We may now resubstitute v1 = v − ϕ1 and v2 = ϕ2 − v into (5.4a), which leads to

(5.5) uk = argmin
v∈K

{
E(v) + α−1

k DB(v, u
k−1)

}
,

where

(5.6) DB(v, w) =

∫

Ω

(v − ϕ1) ln
∣∣∣ v − ϕ1
w − ϕ1

∣∣∣+ (ϕ2 − v) ln
∣∣∣ ϕ2 − v
ϕ2 − w

∣∣∣dx,

is the Bregman divergence of the (generalized) binary entropy

(5.7) B(v) =

∫

Ω

(v − ϕ1) ln |v − ϕ1|+ (ϕ2 − v) ln |ϕ2 − v|dx.
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Fig. 5.1: The sigmoid map (∇B)−1(v) = tanh v is a diffeomorphism between the
Banach algebra L∞(Ω) and the L∞(Ω)-unit ball.

The cases (ϕ1, ϕ2) = (0, 1) and (ϕ1, ϕ2) = (−1, 1) are somewhat special for the
binary entropy functional (5.7). In the first of these, (5.7) is usually referred to as
the (negative) Fermi–Dirac or electronic entropy [193]. As these particular upper and
lower bounds will appear prominently later on, we choose to adopt special notation
for the corresponding entropy gradient and its inverse; namely,

(5.8) ∇B(v) = lnit v := ln
v

1− v and (∇B)−1(v) = expit v :=
exp v

exp v + 1
.

The second case, (ϕ1, ϕ2) = (−1, 1), provides a gradient that is an explicit diffeomor-
phism between the L∞(Ω)-unit ball, denoted B∞(Ω) = {v ∈ L∞(Ω) | ∥v∥L∞(Ω) < 1},
and the entire Banach algebra L∞(Ω). More explicitly, we write

(5.9) ∇B(v) = arctanh v and (∇B)−1(v) = tanh v ,

with the diffeomorphism illustrated visually in Figure 5.1. For posterity, we use
the latter case of the binary entropy functional to define a canonical binary-entropic
Poisson equation,

(5.10) −∆u+ arctanhu = f ,

which follows from writing the strong form of the first-order optimality condition
for (5.5) with ϕ1 = −1, ϕ2 = 1, αk = 1, and uk−1 = 0.

5.2. Variational inequalities with non-symmetric bilinear forms. In or-
der to develop a proximal Galerkin method for the advection-diffusion equation (5.1),
we first propose a continuous-level proximal algorithm for non-symmetric bilinear
forms. The approach is based on the proof technique for the classical theorem of
Lions and Stampacchia on the existence of solutions to elliptic variational inequal-
ities with non-symmetric bilinear forms, which can be understood as employing a
“linearized” version of algorithm (4.25).

Assume that H ⊂ L2(Ω) is a real separable Hilbert space and a : H ×H → R is
bilinear, continuous, and coercive. In particular, assume that there exist constants
Ca, ca > 0 such that

(5.11) a(w, v) ≤ Ca∥w∥H∥v∥H and ca∥v∥2H ≤ a(v, v) ,

for all w, v ∈ H. For any nonempty closed convex set K ⊂ H and function f ∈ L2(Ω),
the Lions–Stampacchia theorem [140] states that the following variational inequality
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is well-posed:

(5.12)

{
Find u∗ ∈ K such that

a(u∗, v − u∗) ≥ (f, v − u∗) for all v ∈ K .

The proof works by arguing that for ρ ∈ (0, 2ca/C
2
a), the mapping Qρ : H → K,

defined as the unique solution of the problem

(5.13a)

{
Given u ∈ H, find w ∈ K such that

(w, v − w)V ≥ (u, v − w)V − ρ[a(u, v − w)− (f, v − w)] for all v ∈ K ,

is a contraction. Note that we may equivalently write

(5.13b) Qρ(u) = argmin
v∈K

{
a(u, v)− (f, v) +

1

2ρ
∥v − u∥2H

}
,

which illustrates the following relationship to the proximal operator introduced in Sub-
section 4.4, Qρ(u) = proxρ[a(u,·)−(f,·)](u). Clearly, if we find the fixed point u = Qρ(u),
then (5.13a) reduces to (5.12) and we deduce that u = u∗.

This method of successive approximations,

(5.13c) u0 ∈ H, uk+1 = Qρ(u
k) , k = 0, 1, . . .

is well-known and has been analyzed in, e.g., [195]. However, it is not exactly amenable
to computation because it requires a separate subproblem solver for each of the VIs
(5.13a). Given a set K with appropriate structure, we can circumvent this issue using
the proximal Galerkin methodology.

We begin by regularizing the continuous-level subproblems (5.13a). A first ap-
proach would be to use the Bregman proximal point algorithm (4.28) to solve the
subproblems to an iteration-dependent tolerance tolk > 0. This would result in a
sequence of inexact successive approximations ∥uk+1 −Qρ(uk)∥V ≤ tolk that could
converge to u∗ if the sequence of tolerances decays to zero as k →∞. The potential
drawback of this approach is that it creates an additional nested sequence of itera-
tions. In turn, generating each iterate uk+1 may require numerous individual proximal
point iterations (4.28) for every inexact fixed point iteration uk+1 ≈ Qρ(uk).

Instead of using the Bregman proximal point algorithm as a subproblem solver,
we propose to modify the original fixed point map (5.13b) by adding an additional
Bregman divergence term. More specifically, we propose considering the alternative
fixed-point iteration

(5.14a) u0 ∈ domG′, uk+1 = Qαk+1
ρ (uk) , k = 0, 1, . . .

where G : domG→ R∪{∞} is a strictly convex entropy functional associated to the
feasible set K ⊃ int domG and Qαρ : int domG → int domG is an operator formally
defined for all ρ, α > 0 as follows:

(5.14b) Qαρ (u) = argmin
v∈K

{
a(u, v)− (f, v) +

1

2ρ
∥v − u∥2H +

1

α
DG(v, u)

}
.

Returning to the advection-diffusion problem (5.1), we now assume that 0 ≤
f ≤ 1 a.e., H = H1(Ω), and K = {v ∈ H1

g (Ω) | 0 ≤ v ≤ 1}, where g is such
that and ess sup γ(0 − g) < 0 < ess inf γ(1 − g). Instead of iterating the fixed point
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operator Qρ : H → K for some ρ > 0, we propose to generate a sequence of iterates
{uk} from (5.14) with G = B set to be the binary entropy considered in (5.8). More
explicitly, we choose an appropriate ρ > 0 and a sequence {αk} of positive real
numbers, and then solve the sequence of resulting subproblems
(5.15)



Given uk−1, find uk ∈ H1
g (Ω) ∩ L∞(Ω) such that

αk
ρ
(∇uk,∇v)L2(Ω) + (lnit(uk), v) =

αk
ρ
(∇uk−1,∇v)L2(Ω) + (lnit(uk−1), v)

− αk[a(uk−1, v)− (f, v)] for all v ∈ H1
0 (Ω) .

Once discretized with a slack variable ψh, we arrive at the algorithm written below.

Algorithm 5: A Proximal Galerkin method for advection-diffusion.

Input : Linear subspaces Vh ⊂ H1
0 (Ω) and Wh ⊂ L∞(Ω), initial solution

guesses u0h ∈ Vh, ψ0
h ∈Wh, step sizes αk > 0, ρ > 0.

Output: Two approximate solutions, uh and ũh = expitψh.

Initialize k = 0.
repeat

Solve the following (nonlinear) discrete saddle-point problem:





Find uh ∈ gh + Vh and ψh ∈Wh such that
αk
ρ
(∇uh,∇v) + (ψh, v) = αkL(u

k
h, v) + (ψkh, v) for all v ∈ Vh ,

(uh, φ)− (expitψh, φ) = 0 for all φ ∈Wh .

(5.16)

where

L(u, v) = (1/ρ− ϵ)(∇u,∇v)− (β · ∇u− f, v) .

Assign ψk+1
h ← ψh and k ← k + 1.

until a convergence test is satisfied

5.3. Stable elements II: Continuous latent variable. Constructing a stable
finite element discretization for Algorithm 5 has the same challenges we witnessed in
solving the obstacle problem with Algorithm 3. Namely, we must construct a stable
pair of finite element subspaces Vh and Wh. To this end, Subsection 4.7 introduced
a class of possible pairings based on the requirement that the latent variable ψh be
discontinuous. We could use the same finite elements here because the saddle-point
problem (5.16) has the same structure after linearization as (4.44). Instead, however,
we use this subsection to introduce the following alternative class of equal-order finite
element pairings where ψh is continuous.

For any integer p ≥ 1, we define the following two pairs of spaces:

Triangular elements. We refer to the following as the (Pp,Pp) pairing:

(5.17a) Vh = Pp(Th) ∩H1
0 (Ω) , Wh = Vh .

Quadrilateral elements. We refer to the following as the (Qp,Qp) pairing:

(5.17b) Vh = Qp(Th) ∩H1
0 (Ω) , Wh = Vh .
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P1 P1 Q1 Q1

Fig. 5.2: Conventional representation of the (P1,P1) and (Q1,Q1) subspace pairs in
two dimensions.

Figure 5.2 provides a visual representation of the lowest-order versions of these ele-
ments.

The equal-order finite element subspaces in (5.17) are appealing because they can
be formed from standard C0(Ω)-finite elements that are found in nearly all production
codes. However, due to limitations of the stability proof outlined in Remark 5.2, we
only advocate for using these elements when the mesh sequence {Th} is quasi-uniform
[68, Definition 22.20].

Definition 5.1 (Quasi-uniformity). A shape-regular sequence of meshes is called
quasi-uniform when there exists a mesh-independent constant c > 0 such that hT ≥ ch
for all T ∈ Th and all h > 0 in the index set.

A careful inspection of Appendix B shows that we do not need to place such a restric-
tion on the mesh when using the non-standard elements proposed in Subsection 4.7.

In addition to the quasi-uniformity assumption above, the reader may notice that
the number of degrees of freedom per element pair in (5.17) is larger than that of the
analogous order-p pairs proposed in (4.48). We pause to point out that neither of
these factors preclude using (5.17) in practical applications. Indeed, many practical
applications are solved on quasi-uniform meshes. Moreover, it turns out that the ad-
ditional computational cost can be mitigated via a mass lumping technique described
in Remark 5.3 below.

As also explained in this remark, a particularly interesting consequence of mass
lumping is that it induces a nodally-feasible primal solution uh. Moreover, because
nodal boundedness extends to pointwise boundedness when p = 1, the primal solu-
tion uh will be pointwise-feasible for any lowest-order (P1,P1) or (Q1,Q1) proximal
Galerkin discretization with pointwise box constraints. In contrast, the lowest-order
elements in (4.48) only induce a primal discretization with a feasible cell average;
cf. Remark 4.20.

Remark 5.2 (Stability). As described in Appendix B, uniform stability of the
proximal Galerkin discretization rests on satisfying the Ladyzhenskaya–Babuška–
Brezzi (LBB) condition

(5.18) inf
φ∈Wh

sup
v∈Vh

(φ, v)

∥φ∥H−1(Ω)∥∇v∥L2(Ω)
≥ β0 > 0 ,

with β0 independent of the mesh size h > 0. Verifying this condition is often nontrivial.
However, it reduces to a one-line argument given in (5.20) below if the global L2-
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orthogonal projection Ph : H1
0 (Ω)→ Vh, defined

(5.19a) (Phv, w) = (v, w) for all w ∈ Vh ,
is stable in the (equivalent) H1(Ω)-norm; i.e., if there exists a constant c > 0, inde-
pendent of h, such that

(5.19b) ∥∇(Phv)∥L2(Ω) ≤ c∥∇v∥L2(Ω) ,

for all v ∈ H1
0 (Ω).

As shown in, e.g., [68, Proposition 22.21], quasi-uniformity of the mesh sequence
implies (5.19) for Vh = Pp(Th) ∩H1

0 (Ω) and Vh = Qp(Th) ∩H1
0 (Ω). Therefore, if we

assume {Th} is quasi-uniform and we are using any of the equal-order pairs in (5.17),
then Ph(H1

0 (Ω)) ⊂ Vh = Wh and (5.19) imply that there exists β0 = 1/c > 0 such
that

(5.20) sup
v∈Vh

(φ, v)

∥∇v∥L2

≥ sup
v∈H1

0

(φ,Phv)
∥∇(Phv)∥L2

≥ β0 sup
v∈H1

0

(φ, v)

∥∇v∥L2

= β0∥φ∥H−1 ,

for all φ ∈ Vh, as necessary.
Remark 5.3 (Nodal feasibility). We choose to focus this remark on the saddle-

point problem in Algorithm 5. Yet, similar conclusions could be drawn about Algo-
rithm 3 and, potentially, other future proximal Galerkin algorithms for second-order
elliptic VIs.

Consider the equal-order finite element subspaces in (5.17) and let {φi}Ni=1 be a
basis for Vh = Wh. It follows that there exist coefficients cj , and dj , j = 1, 2, . . . , N ,

such that uh(x) =
∑N
j=1 cjφj(x) and ψh(x) =

∑N
j=1 djφj(x). Substituting these ex-

pressions into the second variational equation in (5.16), setting φ = φi, and replacing

the Lebesgue integral
∫
Ω
φ(x) dx with a global quadrature rule

∑M
l=1 wlφ(xl), where

wl ̸= 0 and xl ∈ Ω for l = 1, 2, . . . ,M , we find that

(5.21)

M∑

l=1

N∑

j=1

wlcjφj(xl)φi(xl) =
M∑

l=1

wl expit

(
N∑

j=1

djφj(xl)

)
φi(xl)

for each index i = 1, . . . , N .
We now employ the nodal quadrature technique [72] that is commonly used in,

e.g., spectral element methods [62]. Namely, if we assume M = N and that φj are
formed from a nodal basis with nodes corresponding to the quadrature points xj
(e.g., a Lagrange basis with Gauss–Lobatto nodes [171]), then φj(xl) = δjl for all
j, l = 1, . . . , N . In turn, we find that (5.21) reduces to

(5.22) ci = expit(di) .

Finally, we note that ci = uh(xi) and di = ψh(xi) since we have assumed the basis
{φi}Ni=1 is nodal. Thus, the primal variable uh is nodally feasible; i.e., 0 ≤ uh(xi) ≤ 1
at all nodes i = 1, . . . , N .

5.4. Numerical experiments. In this set of experiments, we follow [46, Sec-
tion 4.1] and consider the exact solution of a model problem attributed to Eriksson
and Johnson [65]. In particular, we set Ω = (0, 1)2, f = 0, and β = (1, 0)⊤ in (5.1)
and, therefore, write

(5.23) − ϵ
(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂u

∂x
= 0 in Ω, u = g on ∂Ω .
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Exact solution u

0

0.2

0.4

0.6

0.8

11

FEM solution
Proximal Galerkin solution

ũh

Fig. 5.3: The Erikkson–Johnson problem (5.23) for ϵ = 10−2. Left: The exact so-
lution. Middle: A first-order Bubnov–Galerkin numerical solution that clearly vi-
olates the strong maximum principle 0 ≤ u(x) ≤ 1. Right: The corresponding
(Q1,Q1)-proximal Galerkin solution ũh = expit(ψh) satisfies the strong maximum
principle, by construction. These results can be reproduced by running the MFEM
code advection diffusion.cpp available at [113].

Exact solutions of this problem for arbitrary boundary data g can be derived using
the separation of variables technique. We choose to isolate the solutions satisfying
u = 0 where x = 1 and ∇u ·n = 0 where y = 0 and 1. Doing so generates the following
series expansion:

(5.24) u =

∞∑

n=1

Cn
exp(r2(x− 1))− exp(r1(x− 1))

r1 exp(−r2)− r2 exp(−r1)
cos(nπy) ,

where r1,2 = 1±√
1+4ϵλn

2ϵ and λn = n2π2ϵ. Note that the constants Cn can be deter-

mined from the prescribed values of g on {(x, y) ∈ Ω | x = 0} ⊂ ∂Ω. Since we have
not yet prescribed g on this part of the boundary, we define g there to be (5.24) with
C1 = 1 and Cn ̸=1 = 0; i.e, we treat the first mode in this series as a manufactured
solution for (5.23).

Figure 5.3 places the standard FEM solution of this problem for ϵ = 10−2 along-
side the corresponding maximum principle-preserving proximal Galerkin solution ũh.
Here, the proximal Galerkin solution can be found by running only two iterations of
Algorithm 5 with constant values for ρ and αk, and using the standard first-order
FEM solution to provide an initial guess for u0h and ψ0

h. Note that the two discrete
solutions are similar, except the proximal Galerkin solution preseves the maximum
principle 0 ≤ u ≤ 1. We also experimented with using the mass lumping technique
described in Subsection 5.3. The results of this experiment are given in Figure 5.4.
Here, note that both the the primal solution uh and the latent variable solution ũh
are bound-preserving in this case. For further details, or to reproduce the our ex-
periments, the interested reader is directed to our open-source FEniCSx and MFEM
implementations found at [113].

Note that neither of the numerical approximations depicted in Figures 5.3 and 5.4
were obtained with numerical stabilization techniques that are common for this class
of singularly-perturbed problems and usually required to consider smaller values of
ϵ > 0. Just as conventional stabilized finite element methods do not necessarily
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Without lumping:

uh ũh

With lumping:

uh ũh

Fig. 5.4: Comparison of two (Q1,Q1)-proximal Galerkin discretizations of the
Erikkson–Johnson problem (5.23) also considered in Figure 5.3. In the first row,
we see a pair of solutions corresponding to a proximal Galerkin discretization where
standard Gaussian quadrature is used to evaluate every integral. In the second row,
we see a similar pair of solutions obtained from a discretization employing the nodal-
quadrature mass lumping technique described in Remark 5.3. As argued above, the
latter discretization delivers two feasible discrete solutions. These results can be re-
produced by running the FEniCSx code advection diffusion.py available at [113].

preserve maximum principles [69], we find that entropy regularization does not nec-
essarily induce robustness with respect to the diffusion parameter ϵ. Our conclusion
is, therefore, that future work is required to develop robust proximal Galerkin finite
element methods for singularly-perturbed PDEs.

6. Extensions II: Non-convex objective functions and a structure-
preserving algorithm for topology optimization. The variational problems con-
sidered in the sections above share several common features. The most decisive feature
is convexity. This raises the question as to whether entropy regularization can be as
effective in a non-convex infinite-dimensional setting. We investigate this possibility
here by providing a new proximal gradient (entropic mirror descent) framework for
possibly non-convex, bounded-constrained optimization in infinite dimensions. Our
benchmark problem for this setting is a well-known problem in topology optimiza-
tion. As before, the section closes with an explicit algorithm and a brief account
of numerical experiments. In the interest of completeness, we recall several details
from abstract mirror descent methods. Although these methods are widely used in
finite-dimensional convex optimization, and much of our treatment is inspired by the
more recent works [25, 193], it is important to note that Nemirovski and Yudin did
not restrict themselves to finite dimensions in their original works many decades ago

44



[160, 161].

6.1. Mirror descent. Subsection 4.4 introduced a proximal framework that was
applied to solve the obstacle problem. Subsection 5.2 introduced a linearized proximal
framework to solve variational inequalities with non-symmetric bilinear forms. The
purpose of the present subsection is to combine those two approaches into a general
first-order framework for non-convex optimization problems,

(6.1) min
v∈V

F (v) subject to v ∈ K ⊂ V ,

where K is a nonempty, closed convex subset of a Banach space V and F : V → R is
continuously Fréchet differentiable. We closely follow [25, 193] below to provide intu-
ition for the method. In several places, we are purposely vague. This is particularly
the case for the assumption that a Bregman divergence DG induced by the derivative
G′ is available or that int domG is non-empty with respect to the topology on V .

We begin by introducing the Bregman gradient step operator,

(6.2) Pα(w) = argmin
v∈V

{
⟨F ′(w), v⟩+ α−1DG(v, w)

}
, w ∈ int domG ,

where G : domG→ R∪{∞} is strongly convex with derivative G′(w) ∈ V ′. When V
is a Hilbert space and G(v) = 1

2∥v∥2V = 1
2 (v, v)V , the use of the gradient step operator

leads to the standard gradient descent rule. This follows from a straightforward
computation of the first-order optimality criteria, which leads to

(6.3) Pα(w) = w − α∇F (w) ,

where ∇F : V → V is the gradient of F characterized by the variational equation

(6.4) (∇F (w), v)V = ⟨F ′(w), v⟩ for all v ∈ V .

More generally, assuming the minimizer exists and G′ : V → V ′ is invertible, (6.2)
returns the formula

(6.5) Pα(w) = (G′)−1
(
G′(w)− αF ′(w)

)
.

Recalling the classical steepest descent method, see, e.g., [163], it is not surpris-
ingly that iterating (6.2) can generate a convergent algorithm to solve (6.1) when
K = V and an appropriate step size rule for α is available. Indeed, convergence of
this algorithm is illustrated in Figure 6.1 for optimizing the scalar objective function
e(x) = 1

2x
2 + x with the Bregman divergence Ds(x, xk) from the scalar entropy func-

tion s(x) = x lnx − x. This naturally leads to the so-called mirror descent method
[161, 25], which, given a sequence of positive step sizes {αk}, generates a sequence of
iterates {uk} according to the following scheme:

u0 ∈ int domG, uk+1 = Pαk+1
(uk), k = 0, 1, 2 . . .

Nemirovski and Yudin point out that the motion of the iterates {uk}, which takes
place in the primal space V , is a “shadow” or “image”, of the main motion: G′(uk)−
αk+1F

′(uk), which by definition takes place in the dual space; whence the name
“method of mirror descent” [161, p. 88]. This is easily witnessed by introducing a
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x

y

e(x)
e(x0) + e′(x0)(x− x0) +Ds(x, x0)

e(x1) + e′(x1)(x− x1) +Ds(x, x1)

e(x2) + e′(x2)(x− x2) +Ds(x, x2)

x0x1x2

Fig. 6.1: Illustration of convergence to the solution x∗ = 0 for the constrained min-
imization problem minx∈[0,∞) e(x), where e(x) = 1

2x
2 + x, by solving the sequence

of minimization problems xk+1 = argminx∈[0,∞) {e′(xk)x + Ds(x, xk)} starting at
x0 = 1.

dual variable λ := G′(w). Then under the assumptions that G′ is invertible, the new
step in the dual space takes a somewhat more familiar form:

λk+1 = λk − αk+1(F
′ ◦ (G′)−1)(λk).

This important distinction is often lost in finite dimensions and to some extent in the
Hilbert space setting, where G′ and F ′ are often identified with their Riesz represen-
tations in V ; i.e., the gradients ∇G and ∇F , respectively.

6.2. Mirror descent with a linear equality constraint. For constrained
problems, it is essential that G properly captures the geometry of the feasible set,
as was done in the previous sections on the obstacle problem and advection-diffusion
equations. Many problems of interest have the following form:

(6.6) min
v∈K1∩K2

F (v) ,

where K1 and K2 are nonempty, closed convex subsets of V and F is differentiable.
For example, suppose that K = K1 is a nonempty, closed convex set and K2 :=
{v ∈ V | ℓ(v) = c} for some linear functional ℓ ∈ V ′ and constant c ∈ R; i.e., K2 =
ℓ−1({c}). Furthermore, suppose that DG is a Bregman divergence associated with a
distance generating function G, which is a Legendre function whose critical domain
is linked to the properties of K. In this setting, rather than using (6.2), we fix α > 0
and define the operator

Tα(w) := argmin
v∈K∩ℓ−1({c})

{F (w) + ⟨F ′(w), v − w⟩+ α−1DG(v, w)} .

We assume here that DG(·, w) over K ∩ ℓ−1({c}) has all the properties needed to
ensure Tα is single-valued. Using standard optimality theory, e.g., [106], we can argue
that u := Tα(w) satisfies the inclusion

(6.7) 0 ∈ αF ′(w) +G′(u)−G′(w) +NK∩ℓ−1({c})(u),
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where NK∩ℓ−1({c})(u) is the normal cone from convex analysis [106], defined by

NK∩ℓ−1({c})(u) :=
{
λ ∈ V ′ ∣∣ ⟨λ, v − u⟩ ≤ 0 ∀v ∈ K ∩ ℓ−1({c})

}
.

Note that if w = Tα(w), then (6.7) reduces to

0 ∈ αF ′(w) +NK∩ℓ−1({c})(w),

which indicates that w is a first-order stationary point of (6.6).
If we furthermore assume thatK contains a subset B such that ℓ(B) ⊂ (c−ϵ, c+ϵ),

for some ϵ > 0, then {c}− ℓ(K) contains an open neighborhood of 0. This constraint
qualification [106] allows us to rewrite (6.7) as

(6.8) 0 ∈ αF ′(w) +G′(u)−G′(w) +NK(u) +N{c}(ℓ(u)) ◦ ℓ,

where N{c}(ℓ(u)) ◦ ℓ = {µℓ ∈ V ′ |µ ∈ R} provided ℓ(u) = c. Continuing on, we may
assume for the sake of argument that the use of DG forces NK(u) = {0} and u ∈ K.
This happens, for example, if u remains away from the boundary of K. For pointwise
bound constraints in Lp-spaces of the type 0 ≤ u ≤ 1 considered below, we would
also have NK(u) = {0} when 0 < u < 1 almost everywhere, even if the set K does
not have a non-empty interior. The remaining normal cone is trivial to compute and
yields N{c}(ℓ(u)) = R.

These observations justify the following first-order optimality system that char-
acterizes the map w 7→ u := Tα(w): Find (u, µ) ∈ K × R such that

(6.9) u = (G′)−1(G′(w)− αF ′(w) + µℓ) and ℓ(u) = c.

In other words, given w and α, compute the increment λ̃ := G′(w)−αF ′(w) and find
µ ∈ R by solving the equation

ℓ((G′)−1(λ̃+ µℓ)) = c.

Repeating the process

u0 ∈ int domG, uk+1 = Tαk+1
(uk), k = 0, 1, 2 . . .

generates a sequence of dual variables. Indeed, given a sequence of positive step sizes
{αk}, we can generate

{
λk
}
according to Algorithm 6.

Algorithm 6: Half-step mirror descent rule in Banach space

Input : Initial dual variable λ0 ∈ V ′ and sequence of step sizes αk > 0.
Output: Stationary dual variable λ.

Initialize k = 0.
repeat

// Dual space half step (gradient descent)

Assign λk+1/2 ← λk − αk+1(F
′ ◦ (G′)−1)(λk).

// Compute Lagrange multiplier

Solve for µk+1 ∈ R such that ℓ((G′)−1(λk+1/2 + µk+1ℓ)) = c.
// Dual space feasibility correction

Assign λk+1 ← λk+1/2 + µk+1ℓ.
Assign k ← k + 1.

until a convergence test is satisfied
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The pre-image of G′ is tacitly assumed to be contained in K. Therefore, the ab-
stract scheme Algorithm 6 theoretically provides a sequence of feasible primal iterates

uk+1 := (G′)−1(λk+1/2 + µk+1ℓ).

Checking for optimality is rather difficult in general, as the evaluation of the residual of
first-order optimality conditions may require the computation of a projection operator
in non-trivial settings; recall the discussion in Remark 4.11 above. On the other hand,
we demonstrated above that fixed points of Tα are stationary for the original problem.
This motivates the simple stopping rule: ∥Tαk+1

(uk) − uk∥V < tol., with tol. > 0
sufficiently small, or some variant using absolute and relative tolerances. However, in
order to remove the influence of αk, which will typically change with k, we advocate
for rescaling the fixed point residual and also consider the relative quantities

ηk := ∥Tαk+1
(uk)− uk∥V /αk+1 = ∥uk+1 − uk∥V /αk+1.

In the unconstrained, Hilbert-space setting, we have ηk = ∥∇F (uk)∥V . Therefore,
if lim infk ηk → 0, then lim infk ∥∇F (uk)∥V = 0; i.e., we get a limiting stationarity
condition. For example, if {uk+1 − uk} is a null sequence in o(αk) for αk ↓ 0, then
clearly ηk ↓ 0. We therefore also use ηk as a heuristic stopping measure in our
experiments below.

The abstract derivation above yields an iterative scheme in the dual space V ′. Im-
plementing finite-dimensional approximations of negative-order Sobolev spaces can be
challenging. However, the bound-constrained variational problem we have considered
happens to have a substantial degree of useful structure, and entropy regularization
of the associated bound constraints provides us with representations of G′, G′−1 and
ℓ that lead to a latent space reformulation of Algorithm 6 that is readily treated with
finite elements.

6.3. An entropic mirror descent algorithm for topology optimization.
We consider the benchmark topology optimization problem of elastic compliance op-
timization of a cantilever beam; see, e.g., [16]. In particular, we use the two-field
filtered density approach to topology optimization [182, Section 3.1.2] to formulate
the optimal cantilever beam problem.

The purpose of the problem is to find a material density 0 ≤ ρ ≤ 1, where
zero indicates no material, and one indicates the complete presence of material, that
induces a minimal elastic compliance, F̂ (u, ρ) =

∫
Ω
u · f dx. In this expression, the

displacement u = u(ρ) is determined by a variable material density ρ and a fixed
body force f through the classical linear elasticity equation [149], −Div

(
r(ρ̃)σ

)
= f .

In this equation, we are meant to understand that

(6.10a) σ = λ div(u)I + µ(∇u+ (∇u)⊤) ,

with Lamé parameters λ, µ > 0, is the Cauchy stress of a homogeneous, isotropic
material, Div(·) denotes the row-wise divergence operator, ρ̃ is a regularized (filtered)
density function [40, 130], and r(ρ̃) > 0 is a local model for the Young’s modulus.
For our work, we use the well-known (modified) solid isotropic material penalization
(SIMP) model r(ρ̃) = ρ+ ρ̃3(1− ρ), where 0 < ρ≪ 1 is a nominal constant assigned
to void regions in order to prevent the stiffness matrix from becoming singular [16].

The full problem formulation is written as follows:

(6.10b) min
ρ∈L1(Ω)

{
F̂ (u, ρ) =

∫

Ω

u · f dx
}
,
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Fig. 6.2: The design domain Ω for the cantilever beam problem (6.10) with corre-
sponding boundary conditions and three-element initial mesh with length h0 = 1.

subject to the constraints

(6.10c)





−Div
(
r(ρ̃)σ

)
= f in Ω with u = 0 on Γ0 , σn = 0 on ∂Ω \ Γ0 ,

−ϵ2∆ρ̃+ ρ̃ = ρ in Ω with ∇ρ̃ · n = 0 on ∂Ω ,∫

Ω

ρ(x) dx = θ|Ω| , 0 ≤ ρ ≤ 1 , r(ρ̃) = ρ+ ρ̃3(1− ρ) ,

where ϵ > 0 is a length scale and 0 < θ < 1 is the desired volume fraction, which
constrains the amount of the domain Ω occupied by the design. The design domain
Ω and associated boundary conditions are depicted in Figure 6.2. We defer a rigorous
mathematical discussion to the literature and simply note that it can be shown that
u can be understood, via ρ̃, as a differentiable mapping from ρ into an appropriate
regularity space; e.g., a subspace of [H1(Ω)]2. Therefore, we replace the objective
function in (6.10b) by the reduced functional

(6.11a) F (ρ) := F̂ (u(ρ), ρ)

and arrive at the reduced space optimization problem

(6.11b) min
ρ∈L1(Ω)

F (ρ) subject to 0 ≤ ρ ≤ 1 and

∫

Ω

ρ dx = θ|Ω| .

We can now solve this problem with a custom version of Algorithm 6 that employs the
binary entropy-based Bregman divergence for the pointwise bound constraints found
in (6.11b); cf. Subsection 5.1. In particular, the favorable structure of this problem
lends itself nicely to a latent space representation, given below, that makes use of the
transformations

ρk = expit(ψk) ⇐⇒ ψk = lnit(ρk),

as well as the following variational characterization of the gradient ∇F (ρk):

(6.12)

{
Find ∇F (ρk) := w̃ ∈ H1(Ω) such that

ϵ2(∇w̃,∇v) + (w̃, v) = −(r′(ρ̃k)σ(uk) : ∇uk, v) for all v ∈ H1(Ω) .

A visual representation of a single iteration of Algorithm 7 is given in Figure 6.3.

49



Fig. 6.3: Illustration of motion of the primal and latent iterates in Algorithm 7. When
viewed in the primal space, we find that both steps of the progression ρk 7→ ρk+1/2 7→
ρk+1 involve nonlinear transformations of the primal variables. However, when viewed
in the latent space, L∞(Ω), these transformations are simply just translations of the
latent variables; namely, ψk+1/2 = ψk − αk+1∇F (ρk) and ψk+1 = ψk+1/2 + c.

Algorithm 7: Entropic mirror descent for topology optimization.

Input : Initial latent variable ρ0 ∈ L∞(Ω), sequence of step sizes αk > 0,
increment tolerance itol. > 0, and normalized tolerance ntol. > 0.

Output: Optimized material density ρ = expit(ψk).

Initialize k = 0.

while ∥ expit(ψk)− expit(ψk−1)∥L1(Ω) > min{αk ntol., itol.} do
// Latent space gradient descent

Assign ψk+1/2 ← ψk − αk+1∇F (expit(ψk)).
// Compute Lagrange multiplier

Solve for c ∈ R such that
∫
Ω
expit(ψk+1/2 + c) dx = θ|Ω|.

// Latent space feasibility correction

Assign ψk+1 ← ψk+1/2 + c.
Assign k ← k + 1.

6.4. Numerical experiments. In this set of experiments, we estimate the gra-
dients ∇F (ρk) in Algorithm 7 by discretizing (6.12) with C0(Ω)-conforming, quadri-
lateral finite elements of degree p ≥ 1. Likewise, the discrete displacements ukh ≈ uk

and filtered densities, ρ̃kh ≈ ρ̃k, are also computed with conforming finite elements
of degree p. Finally, unlike the physical variables above, the latent variable ψk is
approximated by discontinuous piecewise polynomials ψkh of degree p− 1. Note that
this induces a discontinuous primal variable ρkh := expit(ψkh) satisfying 0 < ρkh < 1;
see also Remark 6.1. We then apply the resulting discretized version of Algorithm 7
to solve (6.10) with ρ = 10−6, λ = µ = 1, θ = 0.5, and ϵ = 0.02. This experiment is
an official part of MFEM 4.6; in particular, see MFEM Example 37 [112]. For sake
of space, we have focused on presenting results with low-order discretizations (i.e.,
p = 1, 2) of the above form and left the exploration of higher-order discretizations to
future work.

A sequence of iterates converging to a discrete solution with mesh size h = h0/128
and polynomial degree p = 1 are depicted in Figure 6.4. From this figure, we observe
typical first-order convergence behavior to a standard truss-like structure. To generate
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Fig. 6.4: Subsequence of material densities ρ̃kh from Algorithm 7 for selected iterations
k. Results obtained with problem parameters ϵ = 2 · 10−2 and θ = 0.5; algorithm
parameters itol. = 10−2, ntol. = 10−5, and αk = 25k; and discretization parameters
h = h0/128 and p = 1.

this figure, we used the heuristic step size sequence αk = 25k and tolerances itol. =
10−2 and ntol. = 10−5. Although the conventional wisdom from finite-dimensional
optimization theory would indicate that αk should tend to zero, or at the very least
be less than the reciprocal of the Lipschitz constant of ∇F , our experiments indicate
that we can moderately increase the step sizes and still obtain satisfactory convergence
behavior. To be fair, “satisfactory” convergence is based on the heuristic stopping
rule given in Algorithm 7.

Future work is needed to develop an adaptive step size selection procedure. In
turn, we include Figure 6.5 to show the different effects the step size sequence can
have on the final solution. Here, we witness that different sequences — e.g., αk = 10k,
αk = 25k, and αk = 50k — can lead Algorithm 7 to converge to significantly different
local optima. This class of non-convex optimization problems is widely known to
exhibit multiple local optima, though procedures are available to compute them [166].
In particular, notice from the two top left images that different final designs are
possible just by changing the step size rule. The suspicious design on the bottom left
is found because the αk = 50k step size rule is too aggressive in the early iterations.
Thereafter, a “design locking” phenomenon that is common in topology optimization
problems keeps the design close to its nearly-binary, early state. To generate the
results in Figure 6.5, we changed the length scale to ϵ = 10−2 because it invokes a
higher parameter sensitivity.

Finally, we return to the case considered in Figure 6.4 (i.e., we again set ϵ = 2·10−2

and αk = 25k) to record the sequence of error indicators ηk = ∥ρkh − ρk−1
h ∥L1(Ω)/αk

with different discretization parameters h ∈ {h0/64, h0/128, h0/256} and p ∈ {1, 2}.
The results are given in Table 6.1. From these results, we see that the number of
iterations required to reach the tolerance ∥ρkh − ρk−1

h ∥L1(Ω)/αk < 10−5 tends to a
fixed value as the mesh is refined or the polynomial order is elevated. Moreover, the
individual values of ηk appear to stabilize as h→ 0, for both p = 1, 2. Both of these
properties suggest mesh-independence of Algorithm 7.

Remark 6.1 (Preserving pointwise bound constraints at the discrete level). No
matter the polynomial degree p ≥ 1, the discrete primal variable ρkh = expit(ψkh) is
guaranteed to satisfy the pointwise bound constraint 0 ≤ ρkh ≤ 1. This is an immediate
consequence of the sigmoid map expit : R → (0, 1) and the decision to discretize the
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Fig. 6.5: An aggressive step size rule can lead to a better convergence rate. However,
if the step size rule is too aggressive, the algorithm may convergence to a sub-optimal
local minimum or even diverge. Left: The final densities ρ̃h and associated compliance
values F (ρh) for step sizes αk = 10k (top), αk = 25k (middle), and αk = 50k
(bottom). Right: The normalized error estimates for the various step size sequences
αk, with k = 1, 2, . . . These results were obtained using the problem parameters
ϵ = 10−2 and θ = 0.5 and the discretization parameters h = h0/128 and p = 1.

Optimization error ∥ρkh − ρk−1
h ∥L1(Ω)/αk for various h and p

Polynomial order p = 1 Polynomial order p = 2

k αk h0/64 h0/128 h0/256 h0/64 h0/128

1 25 2.00 · 10−2 2.06 · 10−2 2.05 · 10−2 2.07 · 10−2 2.05 · 10−2

2 50 5.42 · 10−3 5.80 · 10−3 5.76 · 10−3 5.88 · 10−3 5.74 · 10−3

3 75 2.97 · 10−3 3.30 · 10−3 3.27 · 10−3 3.38 · 10−3 3.25 · 10−3

4 100 1.61 · 10−3 1.87 · 10−3 1.85 · 10−3 1.94 · 10−3 1.83 · 10−3

5 125 1.12 · 10−3 1.30 · 10−3 1.29 · 10−3 1.36 · 10−3 1.28 · 10−3

...
...

...
...

...
...

...

Total iterations 30 29 29 29 29

Final compliance F (ρh) 3.86 · 10−3 4.04 · 10−3 4.02 · 10−3 4.08 · 10−3 4.01 · 10−3

Table 6.1: Table of error estimates ηk = ∥ρkh − ρk−1
h ∥L1(Ω)/αk for various mesh

sizes h and polynomial orders p. The initial density was set to the constant function
ρ0h = θ (i.e., ψ0

h = lnit θ) at the beginning of each run and each run was stopped once
ηk < 10−5. These results were obtained using the problem parameters ϵ = 2 · 10−2

and θ = 0.5.
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latent variable with finite elements. Had we followed the literature and, instead,
directly discretized the primal variable ρk with finite elements, then the property
0 ≤ ρkh ≤ 1 would have to be enforced by introducing discrete-level pointwise bound
constraints. This is a common concern in standard topology optimization approaches
since the number of discrete-level pointwise bound constraints must grow with the
size of the finite element space; cf. Subsection 3.2.

7. Conclusion. We have introduced a new nonlinear finite element method that
hinges on a mathematical technique called entropy regularization. We refer to the
method as the latent variable proximal Galerkin finite element method or, simply,
“proximal Galerkin” for short. The essential feature of the proximal Galerkin method
is to provide robust, high-order, and pointwise bound-preserving discretizations ac-
companied by a built-in, low iteration complexity, mesh-independent solution algo-
rithm. We have derived, analyzed, and implemented proximal Galerkin for the obsta-
cle problem and used the advection-diffusion equation and topology optimization to
motivate our wider vision for the method. Each of our numerical experiments is ac-
companied by an open-source implementation to facilitate reproduction of our results
and broader adoption of the proximal Galerkin method.

The upshot of this work is that computational techniques for variational inequali-
ties, maximum principles, and bound constraints in optimal design can be unified with
a rigorous mathematical framework rooted in nonlinear programming and nonlinear
functional analysis. We hope that the proximal Galerkin methods that arise from
this framework will lead to new challenges and opportunities in optimization theory,
analysis of PDEs, and numerical analysis, as well as provide promising alternatives to
the more classical procedures used in industry for industrial-scale problem solving.

Appendix A. Mathematical results I: Isomorphisms, regularity, char-
acterizations, and convergence. This appendix contains proofs and continuous-
level structural results supporting the main sections of the paper.

A.1. Structural results on the set intL∞
+ (Ω). The following concepts and

results are not commonly used in the finite element literature. Although they can
be derived from diverse sources, such as [51, 35, 75], we assemble them here for the
reader’s convenience.

Definition A.1 (Group of units). Let X be a semiring equipped with two binary
operations: addition ⊕ : X ×X → X and multiplication ⊙ : X ×X → X . An element
u of X is called a unit if there exists an inverse element in X , denoted 1

u , such that
u⊙ 1

u = 1
u ⊙u = 1. The group of units of X , denoted X×, is the set of all units in X .

This work is largely centered around the group of units (L∞
+ (Ω))×. We prove

(L∞
+ (Ω))× = intL∞

+ (Ω), along with several other algebraic/topological identities, at
the end of this subsection; see Proposition A.7.

It is well-known that algebraic and topological structures are often entwined, as
the following definition and result shows.

Definition A.2 (Banach algebra). A Banach algebra is a complete normed
vector space that is closed under multiplication.

Proposition A.3 (Topology of the group of units). For any Banach algebra X ,
its group of units X× is open. Moreover, the inversion map X× → X× : u 7→ 1

u is
continuous.

Proof. See [51, Theorem 2.2, p. 192].
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Notably, this result also implies that intL∞
+ (Ω) is a Banach–Lie group.

Definition A.4 (Banach–Lie group). A Banach manifold is a topological space
M where each point u ∈ M has an open neighborhood that is homeomorphic to an
open set in a Banach space. A set G is a Banach–Lie group if it is a Banach manifold
that is closed under continuous multiplication and inversion operations.

An important property of Lie groups is the existence of a smooth exponential
map, exp: X → G, where X is the associated Lie algebra; cf. [132].

Definition A.5 (Banach–Lie algebra). A Lie algebra X is a vector space en-
dowed with an antisymmetric bilinear form called the Lie bracket [·, ·] : X × X → X
satisfying the Jacobi identity [ψ, [φ, ω]]+[φ, [ω, ψ]]+[ω, [ψ,φ]] = 0 for all ψ,φ, ω ∈ X .
A set X is Banach–Lie algebra if it is both a Lie algebra and a Banach space.

Using well-known results on Nemytskii operators between Lebesgue spaces, we
can argue that L∞(Ω) is the Banach–Lie algebra associated to the Banach–Lie group
intL∞

+ (Ω); cf. Proposition A.7. In particular, as a result of Lemma A.6, the Ne-
mytskii operator generated by the standard exponential function on R provides the
exponential map from L∞(Ω) to intL∞

+ (Ω). Moreover, this map is surjective and,
thus, the inverse of the entropy gradient (∇S)−1 = exp: L∞(Ω) → intL∞

+ (Ω) is a
group isomorphism. Finally, in our setting, intL∞

+ (Ω) is commutative and so the Lie
bracket is trivial; i.e., [ψ,φ] = ψφ− φψ = 0 for all ψ,φ ∈ L∞(Ω).

Lemma A.6. The Nemytskii operator ψ 7→ expψ is infinitely continuously Fréchet
differentiable on L∞(Ω).

Proof. We first observe several crucial properties of the exponential function that
carry over to the Nemytskii operator. Let c > 0 and fix x ∈ [−c, c]. By monotonicity
we have | exp(x)| ≤ exp(c). Hence, for all c > 0, there exists k(c) such that | exp(x)| ≤
k(c) for all x ∈ [−c, c]. By [80, Theorem 1 (iv)], the Nemytskii operator maps L∞

into itself. Similarly, for c, ε > 0 we define δ(c, ε) = ε/ exp(c) and observe that for all
x, y ∈ R such that |x| ≤ c, |y| ≤ c, and |x−y| < δ(c, ε) we have | exp(x)−exp(y)| < ε.
Then by [80, Theorem 5], the Nemytskii operator is continuous from L∞ into itself.
Finally, since exp(x) is infinitely continuously differentiable with exp′(x) = exp(x) for
all x ∈ R these results carry over to the Nemytskii operators defined by the pointwise
derivatives. We may then apply [80, Theorem 7] to argue that the Nemytskii operator
is infinitely continuously Frèchet differentiable from L∞ into itself.

Proposition A.7 summarizes various useful interpretations of the set intL∞
+ (Ω).

See also Remark A.8.

Proposition A.7. Nemytskii operator ψ 7→ expψ is a C1-diffeomorphism be-
tween L∞(Ω) and intL∞

+ (Ω) for which the following definitions are equivalent:
(a) intL∞

+ (Ω) is the set of all positive functions in L∞(Ω) whose reciprocals lie
in L∞(Ω),

(A.1a) intL∞
+ (Ω) = {w ∈ L∞(Ω) | 1/w ∈ L∞(Ω) and w > 0}.

In other words, intL∞
+ (Ω) = (L∞

+ (Ω))× is the group of units in L∞
+ (Ω).

(b) intL∞
+ (Ω) is the set of all functions in L∞(Ω) whose logarithm is bounded in

L∞(Ω),

(A.1b) intL∞
+ (Ω) = ln−1(L∞(Ω)).

(c) intL∞
+ (Ω) is the image of L∞(Ω) under the exponential map,

(A.1c) intL∞
+ (Ω) = exp(L∞(Ω)).
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(d) intL∞
+ (Ω) is the set of all positive functions in L∞(Ω) that are strictly bounded

away from zero,

(A.1d) intL∞
+ (Ω) = {w ∈ L∞(Ω) | there exists ϵ > 0 such that w > ϵ}.

Proof. We begin by proving the equivalence of (A.1a)–(A.1d). We leave off the
dependence on Ω in the following arguments for readability and begin with (A.1d).
If u ∈ L∞ such that there exists ϵ > 0 with u > ϵ a.e. on Ω, then for any w ∈ L∞

such that ∥u − w∥L∞ < ϵ/2 we have ϵ/2 < u − ϵ/2 < w. Thus, w ∈ L∞
+ and,

consequently, u ∈ intL∞
+ . Now suppose u ∈ L∞

+ and for every ϵ > 0, the set Bϵ :=
{x ∈ Ω | 0 < u(x) < ϵ/2} has positive Lebesgue measure. Then for all ϵ > 0, the open
ball {v ∈ L∞ : ∥u− v∥L∞ < ϵ} contains the function v = u− ϵ/2 on Bϵ and v = u on
Ω \ Bϵ, which is clearly not in L∞

+ . Hence, every open ball of radius ϵ > 0 around u
contains a point outside L∞

+ , i.e., u ∈ bdL∞
+ = L∞

+ \ intL∞
+ . This proves (A.1d).

Next, let u ∈ intL∞
+ . By (A.1d) there exists ϵ > 0 such that∞ > ∥u∥L∞ ≥ u > ϵ.

Then, by continuity on R++, the mapping u 7→ 1/u preserves measurability and
1/u ∈ [1/∥u∥L∞ , 1/ϵ]. Hence, u > 0 and 1/u ∈ L∞. Conversely, suppose u ∈ L∞

such that u > 0 and 1/u ∈ L∞. Then 0 < 1/u ≤ ∥1/u∥L∞ and 0 < u ≤ ∥u∥L∞ imply
u ∈ [∥1/u∥−1

L∞ , ∥u∥L∞ ] a.e. on Ω. It follows from (A.1d) that u ∈ intL∞
+ . This proves

(A.1a).
Next, suppose that u ∈ intL∞

+ . Then by (A.1a), we have u ∈ [∥1/u∥−1
L∞ , ∥u∥L∞ ]

a.e. Consequently, the continuity and monotonicity of the natural logarithm on R++

yields lnu ∈ L∞. In other words, u ∈ ln−1(L∞). Conversely, suppose we have u ∈
ln−1(L∞). By definition, u ∈ L∞. Thus, we deduce the bounds m,m ∈ R such that
lnu ∈ [m,m] a.e. Using the fact that the exponential map is positive and monotone,
we infer that u ∈ [exp(m), exp(m)] a.e., u > 0, and 1/u ∈ [exp(−m), exp(−m)] a.e.
Since the reciprocal function is continuous away from zero, u ∈ intL∞

+ . This proves
(A.1b).

The proof of (A.1c) is similar to that of (A.1b). Let v ∈ exp(L∞) and φ ∈ L∞

such that v = expφ. Clearly, we have v > 0 a.e. Since φ is essentially bounded,
there are independent constants m,M ∈ R such that m ≤ φ ≤ M a.e. It follows
then that 1/v = 1/ expφ ∈ [exp(−M), exp(−m)]. Consequently, 1/v is bounded.
Since v is strictly positive and measurable and (·)−1 : R++ → R is continuous, 1/v is
measurable. Therefore, v ∈ intL∞

+ . Conversely, let v ∈ intL∞
+ . Then by definition,

v > 0 a.e. and 1/v ∈ L∞. This implies v ∈ [∥ 1v∥−1
L∞ , ∥v∥L∞ ] a.e. It follows that φ :=

ln v ∈ L∞ and − ln(∥ 1v∥L∞) ≤ φ ≤ ln(∥v∥L∞). As a result, v = expφ ∈ exp(L∞), as
was to be shown. This completes the proof of (A.1c).

Finally, we prove that ψ 7→ expψ is a diffeomorphism. This requires us to check
that for ψ,φ ∈ L∞, exp(ψ + φ) = expψ expφ, which holds by well-known properties
of the exponential map. Furthermore, for u, v ∈ intL∞

+ = exp(L∞), exp−1(uv) =
ln(uv) = lnu + ln v = exp−1(u) + exp−1(v), by well-known properties of logarithms.
We know from Lemma A.6 that ψ 7→ expψ is infinitely differentiable on L∞. For the
inverse mapping, note that for any u ∈ intL∞

+ and sequence {hk} ⊂ L∞ such that
∥hk∥L∞ → 0 we have (pointwise a.e.):

∣∣∣∣ln(u+ hk)− ln(u)− hk
u

∣∣∣∣ =
∣∣∣∣ln(1 +

hk
u
)− ln(1)− hk

u

∣∣∣∣

≤
∣∣∣∣
hk
u

∣∣∣∣
∣∣∣∣
[∫ 1

0

(1 + τhk/u)
−1 dτ − 1

]∣∣∣∣
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≤ ∥hk∥L∞∥ 1
u
∥L∞

∫ 1

0

|(1 + τhk/u)
−1 − 1|dτ

= ∥hk∥L∞∥ 1
u
∥L∞

∫ 1

0

|(1 + u/(τhk))
−1|dτ

≤ ∥hk∥L∞∥ 1
u
∥L∞(∥u∥L∞∥hk∥−1

L∞ − 1)−1.

It follows that ∥∥∥∥ln(u+ hk)− ln(u)− hk
u

∥∥∥∥ = o(∥hk∥)

and, consequently, that the superposition operator lnu is Fréchet differentiable on
intL∞

+ with respect to variations in L∞. To see that 1/u is continuous on intL∞
+ ,

let u ∈ intL∞
+ and {uk} ⊂ L∞ such that uk → u. Since u ∈ intL∞

+ there exists
ε > 0 such that u > ε a.e. Then, for sufficiently large k, we can argue that uk ≥ ε/2
pointwise a.e. This provides a uniform bound on ∥1/uk∥L∞ . Hence,

(A.2) ∥1/uk − 1/u∥L∞ ≤ ∥u−1∥L∞∥u−1
k ∥L∞∥uk − u∥L∞ → 0

as k → +∞. Thus, ψ 7→ expψ is a C1-diffeomorphism, as necessary.

Remark A.8 (Analytic isomorphism). Upon closer inspection, we see that the
differentiability of the nonlinearity ln : intL∞

+ → L∞ can be shown to be much higher
than C1. For example, using the same line of argument as the proof above, we see
that ∣∣∣∣(u+ hk)

−1 − u−1 +
hk
u2

∣∣∣∣ =
∣∣∣∣
−hk

u(u+ hk)
+
hk
u2

∣∣∣∣

≤ ∥hk∥L∞∥1/u∥L∞

∣∣∣∣
1

u
− 1

(u+ hk)

∣∣∣∣ ,

which behaves like o(∥hk∥), in light of the property shown in (A.2). In fact, if we had
defined the original exponential function using its power series, then deeper arguments
can be used to illustrate that exp and ln are even analytic; cf. [75].

It is well-known that W 1,p(Ω)∩L∞(Ω) is a Banach algebra for every 1 ≤ p ≤ ∞;
see, e.g., [38, Proposition 9.4]. The following proposition connects this set to the
Banach–Lie group W 1,p(Ω) ∩ intL∞

+ (Ω).

Proposition A.9. Let Ω be an open subset of Rn and 1 ≤ p ≤ ∞. Then

ln : W 1,p(Ω) ∩ intL∞
+ (Ω)→W 1,p(Ω) ∩ L∞(Ω)

and
exp: W 1,p(Ω) ∩ L∞(Ω)→W 1,p(Ω) ∩ intL∞

+ (Ω)

are isomorphisms. Moreover,

(A.3) ∇ lnu =
1

u
∇u and ∇ expψ = expψ∇ψ ,

for all u ∈W 1,p(Ω) ∩ intL∞
+ (Ω) and ψ ∈W 1,p(Ω) ∩ L∞(Ω).

Proof. We prove ln: W 1,p(Ω) ∩ intL∞
+ (Ω) → W 1,p(Ω) ∩ L∞(Ω) and ∇ lnu =

1/u∇u for the case that Ω is bounded. The corresponding statements for the expo-
nential map are treated similarly.
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Step 0. Let u ∈W 1,p(Ω)∩ intL∞
+ (Ω). By Proposition A.7 we know that lnu ∈ L∞(Ω)

and, moreover, there exists ϵ > 0 such that ϵ ≤ u(x) ≤ 1/ϵ at a.e. x ∈ Ω. We now
follow the proof technique used for [38, Proposition 9.4] to show that lnu ∈W 1,p(Ω).

Step 1. The first step involves constructing a sequence uk ∈ C∞
c (Ω) such that

uk → u in Lp(Ω) and pointwise a.e. in Ω ,(A.4a)

∇uk → ∇u in [Lp(ω)]n for all ω ⊂⊂ Ω .(A.4b)

Furthermore,

(A.4c) ∥uk∥L∞(Ω) ≤ ∥u∥L∞(Ω)

and, for all ω ⊂⊂ Ω, it holds that

(A.4d) ∥1/uk∥L∞(ω) ≤ ∥1/u∥L∞(Ω) ,

once k is sufficiently large. For simplicity, we choose to focus on the case where Ω is
bounded. This step may be modified by multiplying uk with a sequence of smooth
cut-off functions to treat the case where Ω is unbounded; cf. [38, Proof of Theorem 9.2].

Begin by defining

(A.5) u(x) =

{
u(x) if x ∈ Ω ,

0 if x ∈ Ω \ Rn ,

and set uk = ρk ∗u, where ρk ∈ C∞
c (Rn) is a sequence of mollifier functions satisfying

(A.6) supp ρk ⊂ B(0, 1/k) ,

∫

Rn

ρk = 1 , ρk ≥ 0 a.e. in Rn .

Notice that uk(x) ≤ 1/ϵ at a.e. x ∈ Ω since

(A.7) uk(x) =

∫

Rn

u(x− y)ρk(y) dy ≤ ∥u∥L∞(Ω)

∫

Rn

ρk(y) dy ≤
1

ϵ
.

This proves (A.4c).
Now, take ω ⊂⊂ Ω and let δ > 0 be chosen small enough so that the open cover⋃

x∈ω B(x, δ) is contained in Ω. Then, for all k > 1/δ and a.e. x ∈ ω, we have that

(A.8) ϵ =

∫

B(x,δ)

ϵ ρk(y) dy ≤
∫

B(x,δ)

u(x− y)ρk(y) dy = uk(x) .

We have thus shown (A.4d). Properties (A.4a) and (A.4b) are proven for this sequence
in [38, Theorem 9.2].

Step 2. The next step is to consider a test function φ ∈ C1
c (Ω). Observe that

(A.9)

∫

Ω

ln(uk)∇φdx = −
∫

Ω

(1/uk∇uk)φdx .

Let ω = suppφ ⊂⊂ Ω denote the support of φ. Clearly, lnuk(x) → lnu(x) at
a.e. point x ∈ ω. Moreover, it is a straightforward exercise to show that | lnuk(x)| ≤
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max{ln ∥u∥L∞(Ω), ln ∥1/u∥L∞(Ω)} at a.e. x ∈ ω. Therefore, by the dominated conver-
gence theorem, we have that

(A.10) lim
k→∞

∫

Ω

ln(uk)∇φdx =

∫

Ω

ln(u)∇φdx .

To treat the right-hand side of (A.9), we apply a converse of the dominated
convergence theorem to the sequence ∇uk → ∇u given in (A.4b). In particular, by
[38, Theorem 4.9], we know that there exists a subsequence {∇ukl}∞l=1 and a function
h ∈ Lp(ω) such that

(A.11) |∇ukl(x)| ≤ h(x) for all l ≥ 0 and a.e. x ∈ ω .

Next, we use (A.4d) to conclude that |1/uk∇ukl(x)| ≤ ∥1/u∥L∞(Ω)h(x) ∈ Lp(ω). In
turn, dominated convergence theorem implies that

(A.12) lim
l→∞

∫

Ω

(1/ukl∇ukl)φdx =

∫

Ω

(1/u∇u)φdx

because 1/uk∇ukl(x) → 1/u∇u(x) as l → ∞ at a.e. point x ∈ ω. The identity
∇ lnu = 1/u∇u immediately follows from (A.9), (A.10), and (A.12).

A.2. Regularity of the entropy functional. One of the important facts that
arise from Proposition A.7 is that u ∈ intL∞

+ (Ω) implies u ≥ ∥ 1u∥−1
L∞ . Indeed, this

property allows us to differentiate the negative entropy function

(A.13) S(u) =

{ ∫
Ω
u lnu− udx u ∈ L1

+(Ω)
+∞ otherwise,

on the open set intL∞
+ (Ω) with variations in L∞(Ω). We proceed now with a proof

of Theorem 4.1.

Proof of Theorem 4.1. Case 1: 1 ≤ p ≤ ∞. For p = 1, the properties of strict
convexity and lower semicontinuity can be found in the seminal works [35, 22]. Since
Ω ⊂ Rn is bounded, the continuous embedding of Lp(Ω) into L1(Ω) imply these same
properties for all p ∈ (1,∞].

Case 2: 1 < p ≤ ∞. Our proof continues by considering the Nemytskii operator
induced by the real-valued function

ŝ(x) := x ln |x| − x .

We will show that it is a continuous map from Lp(Ω) to L1(Ω) when p > 1. In
doing so, we first note that ŝ is continuous when viewed as a real-valued function
x 7→ x ln |x|−x with x ∈ R and, moreover, for any p > 1, there exists a constant C(p)
such that

(A.14) |ŝ(x)| ≤ C(p) + |x|p .

Note that C(p) exists on the one hand since |ŝ(x)| ≤ 1 for x ∈ [−e, e]. Moreover, for
x ∈ (e,∞) with x→ +∞, we have |ŝ(x)|/xp → 0 for all p ∈ (1,∞). By symmetry, the
same argument holds for x ∈ (−∞, e) with x → −∞. Therefore, by Krasnosel’skii’s
theorem, see e.g. [12, Theorem 2.2], ŝ : Lp(Ω) → L1(Ω) is continuous for p ∈ (1,∞).
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Clearly, if we restrict ŝ to Lp+(Ω), then we have a continuous mapping ŝ|Lp
+(Ω) on

Lp+(Ω). This function coincides with

(A.15) s(x) =





x lnx− x, x > 0,
0, x = 0,

+∞, otherwise,

on Lp+(Ω). Hence, continuity of S on Lp+(Ω) now follows from the continuity of the
Lebesgue integral u 7→

∫
Ω
udx and the fact that the composition of two continuous

functions is also continuous. Finally, suppose {uk} ⊂ L∞
+ (Ω) converges to u in L∞(Ω).

Then {uk} ⊂ Lp+(Ω) for every for every p ∈ (1,∞) and, moreover, uk → u in Lp(Ω)
because Ω is a bounded domain. Consequently, S(uk) → S(u) as k → +∞, as
conjectured.

Case 3: p = ∞. In order to show that S is Fréchet differentiable on intL∞
+ (Ω) with

respect to the L∞(Ω) topology, we will first prove that S is Gâteaux differentiable
on intL∞

+ (Ω) and, subsequently, that the Gâteaux derivative S′
G is continuous on

intL∞
+ (Ω). Fréchet differentiability of S will then follow from [12, Theorem 1.9].
To show that S is Gâteaux differentiable on intL∞

+ (Ω), we must show that for
any fixed u ∈ intL∞

+ (Ω) and v ∈ L∞(Ω),

(A.16) lim
τ→0

∫

Ω

s(u+ τv)− s(u)
τ

dx =

∫

Ω

v ln(u) dx .

First observe that for almost every x ∈ Ω, we have pointwise convergence of the
associated integrands, namely,

(A.17) lim
τ→0

s(u(x) + τv(x))− s(u(x))
τ

= v(x) ln(u(x)) .

Next, we know from the proof of Proposition A.7 that u ≥ ∥ 1u∥−1
L∞ . This implies that

for sufficiently small τ , u+ τv > ∥ 1u∥−1
L∞/2 holds a.e., and we have

(A.18) s(u+ τv)− s(u) =
∫ u+τv

u

lnσ dσ = τv

∫ 1

0

ln(u+ στv) dσ .

The critical step is to see that for the u and v fixed above, we may find w ∈ L∞(Ω)
where

(A.19) v = uw .

As such, for all sufficiently small τ , we may rewrite

(A.20) s(u+ τv)− s(u) = τv
(
lnu+

∫ 1

0

ln(1 + στw) dσ
)
,

and, consequently,

(A.21)

∣∣∣∣
s(u+ τv)− s(u)

τ
− v lnu

∣∣∣∣ =
∣∣∣∣v
∫ 1

0

ln(1 + στw) dσ

∣∣∣∣ ≤ |v|| ln(1 + τw)|.

To arrive at an upper bound that is independent of τ , we use the following well-known
inequality:

(A.22)
x

x+ 1
≤ ln(1 + x) ≤ x.
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In turn, for all |τ | < (2∥w∥L∞)−1,

(A.23) | ln(1 + τw)| ≤ 1 .

The penultimate argument owes to the function |v| belonging to L1(Ω) because Ω is
bounded. Indeed, by (A.17), (A.21), and (A.23), the dominated convergence theorem
provides us with the following well-defined Gâteaux derivative:

(A.24) ⟨S′
G(u), v⟩ = lim

τ→0

∫

Ω

s(u+ τv)− s(u)
τ

dx =

∫

Ω

v lnudx.

It remains to show that S′
G : intL∞

+ (Ω) ⊂ L∞(Ω) → [L∞(Ω)]′ is continuous.
To this end, let u ∈ intL∞

+ (Ω) and consider any sequence {uk} in intL∞
+ (Ω) where

uk → u in L∞(Ω). Consequently, we know there exists C > 0 such that ∥uk∥L∞ ≤ C
and uk(x)→ u(x) for almost every x ∈ Ω. Clearly,

(A.25) |⟨S′
G(u)− S′

G(uk), v⟩| ≤
∫

Ω

|v|| ln |u/uk||dx ≤ ∥v∥L∞

∫

Ω

| ln |u/uk||dx ,

where | ln |u/uk|| ≤ | ln |u||+ | lnC| ∈ L1(Ω). Therefore,

(A.26) ∥S′
G(u)− S′

G(uk)∥[L∞]′ ≤
∫

Ω

| ln |u/uk||dx

and, by the dominated convergence theorem,

(A.27) lim
k→∞

∥S′
G(u)− S′

G(uk)∥[L∞]′ ≤
∫

Ω

lim
k→∞

| ln |u/uk||dx = 0,

as necessary.

Step 3. Let u ∈ intL∞
+ (Ω). By (A.1b) lnu ∈ L∞(Ω). Next, we see that ∥S′(u)∥[L∞]′ ≤

∥ lnu∥L1 , since

(A.28) ⟨S′(u), v⟩ =
∫

Ω

v lnudx ≤ ∥v∥L∞∥ lnu∥L1 .

Moreover,

(A.29) ∥S′(u)∥[L∞]′ ≥
∫
1{lnu>0} lnudx−

∫
1{lnu<0} lnudx = ∥ lnu∥L1 ,

and so ∥S′(u)∥[L∞]′ = ∥ lnu∥L1 .

We complete this subsection with a proof of the gradient representation theorem
for the shifted entropy functional, Sϕ(u) = S(u− ϕ).

Proof of Corollary 4.2. By Theorem 4.1, S is continuous on L∞
+ (Ω). If ϕ ∈

L∞(Ω), then the shift operator Tϕu := u− ϕ is continuous on L∞(Ω) for u ∈ L∞(Ω)
with u ≥ ϕ, as well; continuity of the composition follows.

As argued in Theorem 4.1, S is strictly convex on L∞
+ (Ω). Taking wi ∈ L∞

ϕ,+(Ω),
with i = 1, 2 and w1 ̸= w2, we see that Tϕwi = wi − ϕ ≥ 0 a.e. for i = 1, 2.
Moreover, Tϕw1 = Tϕw2 iff w1 = w2 and for λ ∈ (0, 1) we have Tϕ(λw1+(1−λ)w2) =
λ(w1 − ϕ) + (1− λ)(w2 − ϕ) = λTϕw1 + (1− λ)Tϕw2. Then since Tϕwi ∈ L∞

+ (Ω) for
i = 1, 2, the strict convexity of the composition follows.
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We proceed with the characterization of intL∞
ϕ,+(Ω). First, we can easily show

the elementary properties L∞
ϕ,+(Ω) = ϕ+ L∞

+ (Ω) and

intL∞
ϕ,+(Ω) = int(ϕ+ L∞

+ (Ω)) = ϕ+ intL∞
+ (Ω).

Therefore, w ∈ intL∞
ϕ,+(Ω) implies w−ϕ ∈ intL∞

+ (Ω). By Proposition A.7, w ≥ ϕ and
ess inf(w−ϕ) > 0. Conversely, if w ∈ L∞(Ω) such that w ≥ ϕ and ess inf(w−ϕ) > 0,
then Proposition A.7 implies w − ϕ ∈ intL∞

+ (Ω). Hence, w ∈ intL∞
ϕ,+(Ω)

Let w1 ∈ intL∞
ϕ,+(Ω). Then w1 − ϕ ∈ intL∞

+ (Ω). It follows from Theorem 4.1
that Sϕ is Fréchet differentiable at w1.

The formula for the derivative of S′
ϕ can be viewed as an application of the chain

rule. Indeed, Sϕ = S ◦ Tϕ, S is differentiable with respect to the L∞-norm at Tϕw
with w ∈ intL∞

ϕ,+(Ω) and Tϕ is differentiable with respect to the L∞-norm at (any)
w ∈ L∞ with derivative A′

ϕ(w) given by the identity on L∞. Therefore, we have
(4.9). Since u − ϕ ∈ intL∞

+ (Ω) the rest of the computations for the gradient remain
unchanged; in particular, we obtain (4.10) and (4.11).

A.3. Deriving the entropic Poisson equation. We devote this subsection to
proofs of the characterization theorem and its corollary for non-zero obstacles (i.e.,
Corollary 4.9). This section also includes a short remark about a weak maximum
principle for the entropic Poisson equation that arises from the first of these proofs.

Proof of Theorem 4.7. The proof proceeds in five steps.

Step 1. Show that there exists a unique solution.
The proof of existence is standard. We sketch the main points here; see, e.g., [18,

Chap. 3.2] for details. By [68, Lem. 3.30], we have that

(A.30) ∥v∥L2 −
∫

∂Ω

g dHn−1 ≤ c∥∇v∥L2 , for all v ∈ H1
g (Ω) ,

for some constant c that depends on Ω. Clearly, Aα is finite on K. This yields a
minimizing sequence {uk}. The form of Aα consequently yields the boundedness of
{∥∇uk∥L2}. Combined with (A.30) we deduce boundedness of {uk} in H1(Ω). We
can readily show that Aα is weakly lower-semicontinuous and K weakly sequentially
closed. This yields the existence of a minimizer u ∈ K. The minimizer u is unique
because Aα is strictly convex on K.

Step 2. Show that u ≤ max{∥g∥L∞(∂Ω), exp(∥ lnw + αf∥L∞(Ω))}.
For all N > 1, define the set RN = {x ∈ Ω | u(x) > N}. By way of contradiction,

we assume that |RN | > 0 for all N > 1. Now, consider the following function in L∞:

(A.31) uN (x) = min{N, u(x)} ≥ 0.

We claim that if N > ess supx∈∂Ω g(x) then uN ∈ K. Begin by choosing {um} ⊂
C1(Ω) such that um → u (strongly in H1(Ω)) and define uNm := min{N, um}. The
existence of um follows from the assumption that ∂Ω is Lipschitz; see, e.g., [4, 3.22
Theorem]. Next let v ∈ L∞(∂Ω) and consider that

∫

∂Ω

γ(uNm)v dHn−1 =

∫

{γ(um)≤N}
γ(um)v dHn−1 +N

∫

{γ(um)>N}
v dHn−1 .

Along a subsequence, denoted still by m, γ(um) converges pointwise almost every-
where to γ(u) = g. Then, by hypothesis, the sequence of characteristic functions
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fm := χ{γ(um)>N} → 0 pointwise almost everywhere. It follows from Lebesgue’s
dominated convergence theorem that

N

∫

{γ(um)>N}
v dHn−1 → 0 as m→ +∞.

Continuing, we appeal to the proof of [116, Thm A.1] and, e.g., [133, Cor. 18.4],
to argue that min{N, um} → min{N, u} weakly in H1(Ω) and γ(min{N, um}) →
γ(min{N, u}) strongly in L2(Ω), which in turn yields

lim
m→+∞

∫

{γ(um)≤N}
γ(um)v dHn−1 =

∫

∂Ω

γ(uN )v dHn−1.

Since v is essentially bounded, we have

|γ(um)v − γ(u)v| = |v||γ(um)− γ(u)| ≤ ∥v∥L∞ |γ(um)− γ(u)| .

Hence, γ(um)v converges strongly in L2(∂Ω) to γ(u)v. Similar to the above, we can
argue that f ′m := χ{γ(um)≤N} → χ∂Ω = 1 in L2(∂Ω). It follows that

∫

∂Ω

γ(uN )v dHn−1 =

∫

∂Ω

γ(u)v dHn−1 =

∫

∂Ω

gv dHn−1.

By the density of L∞(∂Ω) in L2(∂Ω) and the fundamental lemma of the calculus
of variations [68, Theorem 1.32], we deduce γ(uN ) = g a.e. on ∂Ω. Consequently,
uN ∈ K and for sufficiently large N , it holds that

(A.32) D(u,w) + αE(u) < D(uN , w) + αE(uN )

because u is the unique global minimizer of Aα over K.
Note, however, that

αE(u)− αE(uN ) = α

∫

RN

1

2
|∇u|2 − (u−N)f dx

and

D(u,w)−D(uN , w) =

∫

RN

u lnu−N lnN − (1 + lnw)(u−N) dx

=

∫

RN

(u−N)

(∫ 1

0

ln(N + t(u−N)) dt− lnw

)
dx.

Combining these observations, we see that

D(u,w) + αE(u)−D(uN , w)− αE(uN ) ≥
α

2
∥∇u∥2L2(RN ) − (αf + lnw − lnN, u−N)L2(RN ).

Therefore, for any N > max{∥g∥L∞(∂Ω), exp(∥αf + lnw∥L∞(Ω))}, we have

(A.33) D(u,w) + αE(u) > D(uN , w) + αE(uN ),

which contradicts the optimality of u. Hence, there exists some N0 > 0 such that
|RN | = 0 for all N > N0, and, in turn, u ∈ L∞ with u ≤ max{∥g∥L∞(∂Ω), exp(∥αf +
lnw∥L∞(Ω))}.
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Step 3. Show that u ≥ min{ess infx∈∂Ω g(x), exp(−∥ ln v + αf∥L∞(Ω))}. Thus, u ∈
H1
g (Ω) ∩ intL∞

+ (Ω).
For all ϵ > 0, define the set Sϵ = {x ∈ Ω | u(x) < ϵ}. By way of contradiction,

we assume that |Sϵ| > 0 for all ϵ > 0. Now, consider the following function in
H1(Ω) ∩ intL∞

+ (Ω):

(A.34) uϵ(x) = max{ϵ, u(x)}.

The fact that uϵ ∈ intL∞
+ follows from Proposition A.7.

Continuing, we can emulate the arguments of Step 2. above to show that if ϵ <
ess infx∈∂Ω g(x), then uϵ ∈ H1

g ∩ intL∞
+ . The steps and justifications are almost

identical and are therefore omitted. In turn, for sufficiently small ϵ > 0, it holds that

(A.35) D(u,w) + αE(u) ≤ D(uϵ, w) + αE(uϵ),

As above, we obtain the lower bound

D(u,w) + αE(u)−D(uϵ, w)− αE(uϵ) ≥
α∥∇u∥2L2(Sϵ)

+ (∥αf + lnw∥L∞ + ln ϵ, u− ϵ)L2(Sϵ)

As a result, once ϵ < exp(−∥αf + lnw∥L∞), we again contradict the optimality
of u. Thus, there exists some ϵ0 > 0 such that |Sϵ| = 0 for all ϵ < ϵ0 and u ∈
H1
g (Ω) ∩ intL∞

+ (Ω) by Proposition A.7.

Step 4. Derive the variational equation.
Let t > 0 and v ∈ K ∩ L∞(Ω). Then, by definition,

αE(u) +D(u,w) ≤ αE(v) +D(v, w).

Clearly, u+ t(v − u) ∈ K, and consequently,

0 ≤ αE(u+ t(v − u))− αE(u)

t
+
D(u+ t(v − u), w)−D(u,w)

t

Since, u ∈ H1(Ω)∩ intL∞
+ (Ω) and v− u ∈ H1(Ω)∩L∞(Ω), Theorem 4.1 allows us to

expand and pass to the limit as t ↓ 0. This yields the variational inequality:

0 ≤ αE′(u)(v − u) + S′(u)(v − u)− (lnw, v − u)L2

for all v ∈ H1
g (Ω) ∩ L∞

+ (Ω). It is readily observed that H1
g (Ω) ∩ intL∞

+ (Ω) ⊂
int
(
H1
g (Ω) ∩ L∞

+ (Ω)
)
. Therefore, as a result of Steps 2. and 3., u is in the H1(Ω) ∩

L∞(Ω) interior of the set K. In other words, for sufficiently small δ > 0, u + v ∈
H1
g (Ω)∩L∞(Ω) and u+v ≥ 0 for any v ∈ H1

0 (Ω)∩L∞(Ω) with ∥v∥H1∩L∞ < δ. In turn,
we obtain the following variational equation with test functions v ∈ H1

0 (Ω) ∩ L∞(Ω)
and ∥v∥H1∩L∞ < δ:

0 = αE′(u)v + S′(u)v − (lnw, v)L2 .

The first summand is equivalent to (α∇u,∇v)L2− (αf, v)L2 and the second and third
summands together have the form (lnu− lnw, v)L2 . Since u,w ∈ intL∞

+ (Ω), the map
v 7→ (lnu− lnw, v)L2 defines a bounded linear functional on H1

0 (Ω). Finally, by virtue
of the inclusion C∞

c (Ω) ⊂ H1
0 (Ω) ∩ L∞(Ω), we deduce

(A.36) (α∇u,∇v)L2 + (lnu, v)L2 = (αf, v)L2 + (lnw, v)L2 for all v ∈ H1
0 (Ω),
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as was to be shown.

Step 5. Prove that the entropic Poisson equation has a unique solution in H1
g (Ω) ∩

intL∞
+ (Ω).
Conversely, suppose u ∈ H1

g (Ω)∩ intL∞
+ (Ω) such that (A.36) holds. Then for any

y ∈ H1
g (Ω) ∩ L∞(Ω), setting v = y − u ∈ H1

0 (Ω) ∩ L∞(Ω) ⊂ H1
0 (Ω) in (A.36) yields

A′
α(u)(y−u) = (α∇u,∇[y−u])L2 +(lnu, y−u)L2−(αf, y−u)L2−(lnw, y−u)L2 = 0.

Since Aα is differentiable at u with respect to variations in H1(Ω)∩L∞(Ω) and convex
on H1

g (Ω), we have

Aα(y) ≥ Aα(u) +A′
α(u)(y − u) = Aα(u) ∀y ∈ H1

g (Ω) ∩ L∞(Ω).

Taking the closure of H1
g (Ω) ∩ L∞(Ω) with respect to the H1-norm, it follows from

the continuity of Aα on H1(Ω) that u is a minimizer of Aα over H1
g (Ω). Uniqueness

follows from strict convexity of Aα.

Remark A.10 (Maximum principle). Inspecting the proof above, we see that

(A.37a) min{gmin, exp(−∥ lnw + αf∥L∞)} ≤ u ≤ max{gmax, exp(∥ lnw + αf∥L∞)},

or, equivalently,

(A.37b) min{ln gmin,−∥ lnw + αf∥L∞} ≤ lnu ≤ max{ln gmax, ∥ lnw + αf∥L∞},

where gmin = ess infx∈∂Ω g(x) and gmax = ess supx∈∂Ω g(x).

Proof of Corollary 4.9. The proof follows that of Theorem 4.7. Here, Corol-
lary 4.2 plays the same role as Theorem 4.1.

Existence and uniqueness follows the homogeneous case in light of the implications
of Corollary 4.2. We only need argue that Kϕ is nonempty. Since g, ϕ ∈ H1(Ω)∩C(Ω)
the function v := max{g, ϕ} = g+max{0, ϕ−g} is inH1(Ω)∩C(Ω) and satisfies v ≥ ϕ.
The trace of w is merely the evaluation on the boundary. Then since ess inf γ(g−ϕ) > 0
on ∂Ω by assumption, we have γ(v) = γ(g) and consequently v ∈ Kϕ.

Setting w̃ = w − ϕ, we can now readily argue that u = ũ + ϕ where ũ is the
solution of

(A.38) min
1

2
∥∇ṽ∥2L2 − (f +∆ϕ, ṽ)L2 + α−1D(ṽ, w̃)

over ṽ ∈ H1
g−ϕ(Ω) subject to ṽ ≥ 0 in Ω .

Theorem 4.7 then guarantees that ũ solves

(α∇ũ,∇v) + (ln ũ, v) = (αf + α∆ϕ, v) + (ln w̃, v) for all v ∈ H1
0 (Ω).

Substituting u− ϕ = ũ and w − ϕ = w̃ yields (4.33).

A.4. Towards an entropic Poisson equation with homogeneous bound-
ary conditions. In this subsection, we contemplate the mathematical meaning of
an entropic Poisson equation with homogeneous boundary conditions. Theorem 4.7
intentionally avoids this setting due to the strict positivity requirement used to argue
that max{ϵ, u} ∈ H1

g (Ω) ∩ intL∞
+ (Ω) in step 3 of the proof. Nevertheless, as the

following result demonstrates, we can still provide important insight into the Dirich-
let free energy minimization problem (4.30) in the situation where g ≡ 0 on ∂Ω by
applying Theorem 4.7 sequentially.
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Theorem A.11. In addition to the assumptions of Theorem 4.7, suppose that
g ≡ ε > 0 and denote the solution of the corresponding entropic Poisson equation by
uε. Denote the unique solution of (4.30) for g ≡ 0 by ū. For any sequence of scalars
εk ↓ 0, the sequence {uk} with uk := uεk satisfies the following properties:

1. uk → ū strongly in H1(Ω);
2. uk → ū weak-∗ in L∞(Ω);
3. γ(uk − ū)→ 0 strongly in L∞(∂Ω).

Proof. According to Remark A.10, we have the bounds

min{εk, exp(−∥ lnw + αf∥L∞)} ≤ uk ≤ max{εk, exp(∥ lnw + αf∥L∞)}.

Therefore, for sufficiently large k, the bounds reduce to εk ≤ uk ≤ exp(∥ lnw +
αf∥L∞). Since L∞(Ω) is the topological dual of a separable Banach space, there exists
a subsequence {kl} and ũ ∈ L∞(Ω) such that ukl → ũ weak-∗ in L∞(Ω). Clearly, ũ
satisfies 0 ≤ ũ ≤ exp(∥ lnw + αf∥L∞) a.e. in Ω.

Continuing on, we note that v = uk − εk ∈ H1(Ω) and γ(v) = 0. Using v as a
test function in (4.31), we deduce that

α(∇uk,∇uk) ≤ |Ω|/ exp(1) + ∥αf + lnw∥L1(Ω) exp(∥ lnw + αf∥L∞(Ω)).

This follows from the fact that (∇uk,∇(uk − εk)) = (∇uk,∇uk),

0 ≤ uk − εk ≤ exp(∥ lnw + αf∥L∞(Ω)),

and

(ln(uk), uk − εk) = (ln(uk − εk + εk), uk − εk) ≥ (ln(uk − εk), uk − εk),

along with x lnx ≥ −1/ exp(1). Consequently, there exists a further subsequence
{klm} such that uklm → ũ weakly in H1(Ω) and we deduce that ũ is feasible to (4.30).

We now demonstrate that ũ = ū. The fact that ū is unique follows from the same
arguments in step 1 of the proof of Theorem 4.7. Defining ūε := max{ε, ū}, we have
ūε ≥ 0 and γ(ūε) = ε. Consider additionally that

1

2
∥∇ūεk∥2L2(Ω) =

1

2

∫

{ū≥εk}
|∇ū|2 dx→ 1

2

∫

Ω

|∇ū|2 dx ,

by monotone convergence and ū ≥ 0. Similarly, we see that ∥ūεk − ū∥2L2(Ω) = O(ε2).
By optimality of uε we have

E(uk) + α−1D(uk, w) ≤ E(ūεk) + α−1D(ūεk , w) .

Using the subsequence {klm}, we pass to the limit inferior on both sides. The previous
observations along with the continuity/weak lower semicontinuity properties of both
the entropy and E imply

E(ũ) + α−1D(ũ, w) ≤ E(ū) + α−1D(ū, w) ,

whence we have ũ = ū. Since ū is unique, it follows from the Urysohn subsequence
property that the entire sequence {uk} converges weakly in H1(Ω).

Strong convergence follows by rearranging terms in the optimality statement and
considering the limit superior. Indeed, we have

(A.39)
1

2
∥∇uεk∥2L2 − 1

2
∥∇ūεk∥2L2 ≤ (f, uεk − ūεk) + α−1D(ūεk , w)− α−1D(uk, w) .
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This indicates that {uk} converges strongly inH1(Ω) by the weak lower semicontinuity
of the term ∥∇ · ∥2L2 on H1(Ω) and the Kadec–Klee property

Finally, we return to the L∞-statements. By the linearity of the trace, we have
γ(uk − ū) = εk, which clearly converges to 0 in L∞(∂Ω). Likewise, if we assume that
uk possess a subsequence that does not weak-∗ converge to ū in L∞(Ω), then we can
find a further subsequence that does, which leads to a contradiction and completes
the proof.

Without a deeper analysis of the properties of ū in Theorem A.11, it is difficult to
say whether a type of entropic Poisson equation can be derived for the fully homoge-
neous case. Nevertheless, we do know that ū is an optimal solution and is, therefore,
feasible. On the active set, ū = 0 is fully determined. Moreover, consider that

(uk, lnuk)− (ū, ln ū) = (uk − ū, lnuk) + (ū, lnuk − ln ū)

= ⟨uk − ū, αf + lnw + α∆uk⟩+ (ū, lnuk − ln ū).

Given uk → ū in H1(Ω) implies ∆uk → ∆ū strongly in H1(Ω)′ as well as S(uk) →
S(ū), it must follow that (ū, lnuk) → (ū, ln ū). This implies a complementarity rela-
tion in the limit; namely,

⟨−α∆ū+ ln ū− αf − lnw, ū⟩ = 0.

It remains to investigate what happens on the inactive set, i.e., where ū > 0. To this
aim, let Iδ := {x ∈ Ω |ū(x) ≥ δ > 0}. By Egorov’s theorem, we can find a subsequence
{ukl} with the property that for every η > 0, there exists a measurable set Bη,δ ⊂ Iδ
with |Iδ\Bη,δ| < η such that ukl → ū uniformly on Bη,δ. This implies that lnukl → ln ū
uniformly on Bη,δ, as well. Consequently, we can localize the entropic Poisson equation
with test functions φ ∈ C∞

c (Bη,δ), leading to

⟨−α∆ukl + lnukl − αf − lnw,φ⟩ = 0.

Passing to the limit, we see that

⟨−α∆ū+ ln ū− αf − lnw,φ⟩ = 0.

This is well-defined due to the restriction to subsets of Iδ. Therefore, up to arbitrarily
small subsets of the strict inactive sets Iδ (for all δ > 0) we have recovered the entropic
Poisson equation −α∆ū+ ln ū = αf + lnw in the sense of distributions.

A.5. Convergence of the latent variable proximal point method. In this
subsection, we establish arbitrary convergence rates for the continuous-level proxi-
mal point algorithm (4.38) to solve the obstacle problem. We begin by proving the
following lemma.

Lemma A.12. Under the assumptions of Theorem 4.7, the second-order problem

(A.40a) Find u ∈ H1
g (Ω) ∩ intL∞

+ (Ω) such that −∆u+ lnu = f in H−1(Ω) ,

is equivalent to the saddle-point problem

(A.40b) Find ũ ∈ H1
g (Ω) and ψ̃ ∈ L∞(Ω) such that

{
−∆ũ+ ψ̃ = f in H−1(Ω) ,

ũ− exp ψ̃ = 0 in L2(Ω) .

More specifically, both problems admit unique solutions that coincide in the sense that
u = ũ and lnu = ψ̃ a.e in Ω.
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Proof. First of all, we know from Theorem 4.7 that there exists a unique solution
to (A.40a). Using Proposition A.7, we know that exp: L∞(Ω) → intL∞

+ (Ω) is an

isomorphism. Thus, ψ̃ = lnu and ũ = u form a solution to (A.40b). Now, assume

that ũ ∈ H1
g (Ω) and ψ̃ ∈ L∞(Ω) form an arbitrary solution to (A.40b). By the second

equation in (A.40b), we know that

(A.41) ũ = exp ψ̃ a.e. in Ω .

Now, by Proposition A.7, we know that exp ψ̃ ∈ intL∞
+ (Ω). Thus, ũ ∈ H1

g (Ω) ∩
intL∞

+ (Ω). Moreover, by applying ln to both sides of (A.41), we find that ψ̃ = ln ũ.
Thus, ũ ∈ H1

g (Ω)∩ intL∞
+ (Ω) solves (A.40a). Since the solution of (A.40a) is unique,

we find that ũ = u and, in turn, ψ̃ = lnu.

We now move on to proving the convergence theorem.

Proof of Theorem 4.13. The proof has three main steps, the first two of which
build off of Lemma A.12. Without loss of generality, we focus on the case where
ϕ = 0. The statement for general obstacles ϕ ̸= 0 can be recovered by making the
change of variables u− ϕ = ũ and w − ϕ = w̃ used in the proof of Corollary 4.9.

Step 0. By Lemma A.12, the sequence of iterates uk coming from (4.38) and

(A.42) (αk+1∇uk+1,∇v) + (lnuk+1, v) = (αk+1f + lnuk, v) for all v ∈ H1
0 (Ω)

are equal a.e. in Ω. We take advantage of this fact throughout the proof below. In
particular, given u0 = expψ0 as in the hypotheses, we suppose that sequence {uk} is
generated by the proximal point method, where each uk solves (A.42), k = 1, 2, . . .
By Theorem 4.7, uk ∈ H1

g (Ω) ∩ intL∞
+ (Ω) for all k = 0, 1, 2, . . . .

Step 1. Inequality (4.39) is proved by exploiting the fact that D(u,w) ≥ 0 with
equality if and only if u = w. In particular,

(A.43)
E(uk+1) ≤ E(uk+1) +D(uk+1, uk)/αk+1

≤ E(uk) +D(uk, uk)/αk+1 = E(uk) .

Step 3. Since uj ∈ H1
g (Ω) ∩ intL∞

+ (Ω) for all j = 1, 2, . . . , k, the definition of D as
a true Bregman distance according to (4.16) is justified and consequently, the three-
points identity (4.20) is as well. This leads to

(A.44) D(w, uj)−D(w, uj−1) +D(uj , uj−1) = ⟨S′(uj)− S′(uj−1), uj − w⟩ ,

where w ∈ H1
g (Ω) such that w ≥ 0 a.e. Next, notice that (A.42) is equivalent to

(A.45) ⟨S′(uj), v⟩ − ⟨S′(uj−1), v⟩ = −αjE′(uj)v for all v ∈ H1
0 (Ω).

Clearly, we have uj − w ∈ H1
0 (Ω). Therefore, (A.45) and the subgradient inequality

for E at uj imply

(A.46) ⟨S′(uj)− S′(uj−1), uj − w⟩ = ⟨αjE′(uj), w − uj⟩ ≤ αjE(w)− αjE(uj) .

Together, (A.44) and (A.46) imply that

(A.47) D(w, uk) +

k∑

j=1

D(uj , uj−1) +

k∑

j=1

αj [E(uj)− E(w)] ≤ D(w, u0) .
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Now, given D(w, uk) ≥ 0, D(uk+1, uk) ≥ 0 for all k and E(uk) ≤ E(uj) for all j ≤ k,
by (4.39), along with (A.47), we deduce the bound

(A.48) E(uk) ≤ E(w) +
D(w, u0)
∑k
j=1 αj

,

for all w ∈ H1
g (Ω) satisfying w ≥ 0. This step is completed by setting w = u∗ in the

inequality above and using strong convexity of E : H1
0 (Ω)→ R. In particular, observe

that

(A.49)

D(u∗, u0)
∑k
j=1 αj

≥ E(uk)− E(u∗) ≥ ⟨E′(u∗), uk − u∗⟩+ 1

2
∥∇u∗ −∇uk∥2L2

≥ 1

2
∥∇u∗ −∇uk∥2L2 ,

where, we have used the first-order optimality condition ⟨E′(u∗), v − u∗⟩ ≥ 0 for all
v ∈ K in the final inequality.

Step 4. Finally, we prove the first equality in (4.41). To this end, consider the two
equations

(A.50a) (∇uk,∇v)− (f, v) = (λk, v) for all v ∈ H1
0 (Ω) ,

and

(A.50b) (∇u∗,∇v)− (f, v) = (λ∗, v) for all v ∈ H1
0 (Ω) .

Combining these two equations, we find that

(A.51) ∥λ∗ − λk∥H−1(Ω) = sup
v∈H1

0 (Ω)

(λ∗ − λk, v)
∥∇v∥L2(Ω)

= sup
v∈H1

0 (Ω)

(∇u∗ −∇uk,∇v)
∥∇v∥L2(Ω)

.

We now find ∥λ∗−λk∥H−1(Ω) ≤ ∥∇u∗−∇uk∥L2(Ω) by applying the triangle inequality

to the numerator of the third expression above. Likewise, we find ∥∇u∗−∇uk∥L2(Ω) ≤
∥λ∗ − λk∥H−1(Ω) by considering the candidate function v = u∗ − uk.

We now turn to studying the iteration complexity of LVPP for various step size se-
quences. To this end, we first recall the standard definitions of Q- and R-convergence.

Definition A.13 (Convergence orders and rates). Let X be a Banach space with
norm ∥ · ∥X . We say that a sequence {xk}∞k=0 ⊂ X converges to x∗ ∈ X with order
q ≥ 1 and rate r ≥ 0 if

(A.52) lim
k→∞

∥xk+1 − x∗∥X
∥xk − x∗∥qX

= r .

If q = 1 and r = 1, then we say xk converges Q-sublinearly to x∗. If q = 1 and
r ∈ (0, 1), then we say xk converges Q-linearly to x∗. If q > 0 or q = 1 and r = 0,
then we say xk converges Q-superlinearly to x∗.

If ∥xk−x∗∥X ≤ ϵk for all k, where ϵk converges Q-sublinearly (linearly, superlin-
early) to zero, then we say that xk converges R-sublinearly (linearly, superlinearly) to
x∗.
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The following corollary establishes convergence orders associated to various step
size sequences.

Corollary A.14 (Prescribed convergence orders). Fix C > 0. Under the as-
sumptions of Theorem 4.13, consider the following candidate sequences of step sizes:

Case 1: Fix m ∈ N and set

(A.53a) αk = Ck(k + 1) · · · (k +m) for all k = 1, 2, . . .

Case 2: Fix µ > 1 and set

(A.53b) αk = Cµk−1 for all k = 1, 2, . . .

Case 3: Set α1 = C and

(A.53c) αk+1 = Ckk! for all k = 1, 2, . . .

Case 4: Fix µ, q, r > 1 and set α1 = r1/(q−1)µ and

(A.53d) αk+1 = r1/(q−1)µq
k − αk for all k = 2, 3, . . .

Then sequence (A.53a) delivers a sublinear R-convergence; sequence (A.53b) delivers
R-linear convergence with rate 1/µ; sequence (A.53c) delivers R-superlinear conver-
gence with order 1 and rate 0; and sequence (A.53d) delivers R-superlinear conver-
gence with order q and rate r.

Proof. Throughout the proof, we use the definition ϵk = D(u∗, u0)/
∑k
j=1 αj .

Case 1: For this case, we can use the hockey-stick identity to show that

(A.54) (m+ 2)

k∑

j=1

j(j + 1) · · · (j +m) = k(k + 1) · · · (k +m+ 1) .

Thus, if αk = Ck(k + 1) · · · (k +m) for all k, then

(A.55)
ϵk+1

ϵk
=

k(k + 1) · · · (k +m)

(k + 1)(k + 2) · · · (k +m+ 1)
=

k

k +m+ 1
→ 1 as k →∞ .

Case 2: For this case, we use the identity

(A.56)

k∑

j=1

µj−1 =
µk − 1

µ− 1
.

Thus, if αk = Cµk−1 for all k, then

(A.57)
ϵk+1

ϵk
=

µk − 1

µk+1 − 1
→ 1

µ
as k →∞ .

Case 3: For this case, we use the identity

(A.58)

k∑

j=1

jj! = (k + 1)!− 1 .
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Thus, if αk = C(k − 1)(k − 1)! for all k ≥ 2 and α1 = C, then

(A.59)
ϵk+1

ϵk
=

k!

(k + 1)!
=

1

k + 1
→ 0 as k →∞ .

Case 4: In this case, we use the fact that
∑k
j=1 αj−1 = αk−1 is a telescoping sum by

design. Thus, if αk+1 = r1/(q−1)µq
k − αk for all k ≥ 1 and α1 = r1/(q−1)µ, then

(A.60)
ϵk+1

ϵqk
=
rq/(q−1)(µq

k−1

)q

r1/(q−1)µqk
= r for all k ≥ 1 .

A.6. The entropic Poisson equation in the zero-temperature limit. We
close this section by showing that the one-parameter family of solutions to the entropic
Poisson equation with “temperature” θ = α−1 converge strongly (in H1(Ω)) to the
solution of the obstacle problem as θ → 0.

Theorem A.15. Assume Ω ⊂ Rn is an open, bounded Lipschitz domain, n ≥ 1,
and let g ∈ H1(Ω)∩C(Ω) such that min g|∂Ω > 0. Let uθ ∈ H1

g (Ω)∩ intL∞
+ (Ω) denote

the solution of the entropic Poisson equation,

(A.61) (∇uθ,∇w) + θ(lnuθ, w) = (f, v) for all w ∈ H1
0 (Ω),

and let

(A.62) u∗ = argmin
u∈H1(Ω)

E(u) subject to u ≥ 0 in Ω and u = g on ∂Ω.

Then uθ → u∗ in H1(Ω) linearly with respect to θ. In particular,

(A.63)
1

2
∥∇u∗ −∇uθ∥2L2(Ω) ≤ θ(S(u∗) + |Ω|).

Proof. For all functions u ∈ L∞
+ (Ω), v, w ∈ intL∞

+ (Ω), the representation theo-
rem, Theorem 4.1, and the three-points identity (4.20), together, give us

(A.64) D(u, v)−D(u,w) +D(v, w) = (∇S(v)−∇S(w), v − u) .

Moreover, the characterization theorem, Theorem 4.7, tell us that (A.61) is equivalent
to

(A.65) S′(uθ) = −
1

θ
E′(uθ) .

Next, notice that ∇S(1) = ln 1 = 0 and, provided u ∈ H1(Ω),

(A.66) ⟨E′(uθ), u− uθ⟩ ≤ E(u)− E(uθ) ,

by convexity. Thus, taking u ∈ H1
g (Ω) ∩ L∞

+ (Ω) and setting v = uθ and w = 1
in (A.64) leads to

D(u, uθ)−D(u, 1) +D(uθ, 1) = (∇S(uθ)−∇S(1), uθ − u)
= ⟨S′(uθ), uθ − u⟩

=
1

θ
⟨E′(uθ), u− uθ⟩
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≤ 1

θ
(E(u)− E(uθ)) .

Rerranging the inequality above and invoking Proposition 4.6, we find that

(A.67) E(uθ)− E(u) ≤ θ(D(u, 1)−D(u, uθ)−D(uθ, 1)) ≤ θD(u, 1) ,

where the second inequality arises because both D(u, uθ) and D(uθ, 1) are non-
negative. The proof is completed by setting u = u∗ and exploiting the strong convexity
of E, as done in (A.49), and noting that D(u, 1) = S(u) + |Ω|.

Appendix B. Mathematical results II: Elementary finite element error
analysis. The purpose of this appendix is to establish certain minor a priori error
analysis results related to the stability of the linearized subproblems encountered
in Algorithm 4. These results are necessary to motivate the finite elements proposed
in (4.48a) and (4.48b). In short, the main outcome of this appendix is that the finite
elements are stable and, therefore, we expect optimal high-order convergence rates
for the solutions of certain linearized subproblems. We intentionally stop short of
providing a full a priori error analysis of the nonlinear subproblems or the complete
proximal Galerkin method. Such analysis is planned for a forthcoming paper in which
we additionally aim to prove that the Proximal Galerkin method is mesh-independent.

B.1. Stability of the linearized subproblems. The first result of this section
is that the linearized subproblems in Algorithm 4 are stable at the continuous level.
In particular, they are uniformly stable with respect to H1(Ω) and H−1(Ω) when
we replace Vh and Wh by H1

0 (Ω) and L2(Ω), respectively. The proof uses standard
Hilbert space arguments for saddle-point problems; cf. [33, Section 4.3].

Theorem B.1. Let ψ ∈ L∞(Ω). Then, for every f ∈ L2(Ω) and ϕ ∈ H1(Ω), the
saddle-point problem

(B.1)

{
(∇u,∇v) + (δ, v) = (f, v) for all v ∈ H1

0 (Ω),

(u, φ)− (δ expψ,φ) = (ϕ, φ) for all φ ∈ L2(Ω),

has a unique solution u ∈ H1
0 (Ω), δ ∈ L2(Ω) that satisfies

(B.2a) ∥∇u∥L2(Ω) ≤ ∥f∥H−1(Ω) + ∥∇ϕ∥L2(Ω) ,

and

(B.2b) ∥δ∥H−1(Ω) ≤ 2∥f∥H−1(Ω) + ∥∇ϕ∥L2(Ω) .

Remark B.2 (Choice of norms). Notice that (B.2b) is independent of ψ. The
corresponding bound of the L2(Ω)-norm of ψ degenerates as ess inf ψ → −∞; cf. (B.4)
Thus, we choose to interpret (B.1) as a singularly-perturbed saddle-point problem and
focus mainly on convergence of the incremental latent variable ψ in the H−1(Ω) norm.

Proof of Theorem B.1. Existence and uniqueness of u ∈ H1
0 (Ω), δ ∈ L2(Ω) fol-

lows readily from the Lax–Milgram theorem. Indeed, notice that (B.1) may be rewrit-
ten as

(B.3) B((u, δ), (v, φ)) = (f, v)− (ϕ, φ) for all v ∈ H1
0 (Ω) and φ ∈ L2(Ω) ,

where B((u, δ), (v, φ)) = (∇u,∇v) + (δ, v) − (u, φ) + (δ expψ,φ). Moreover, it is a
straightforward exercise to check that

(B.4) ∥∇u∥2L2(Ω) + ∥ exp(−ψ)∥−1
L∞(Ω)∥δ∥2L2(Ω) ≤ B((u, δ), (u, δ)) ,
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for all (u, δ) ∈ H1
0 (Ω) × L2(Ω), which establishes the coercivity condition necessary

to apply the theorem.
We now turn to proving (B.2). From the first equation in (B.1), notice that

∥δ∥H−1(Ω) = sup
v∈H1

0 (Ω)

(δ, v)

∥∇v∥L2(Ω)
≤ sup
v∈H1

0 (Ω)

(∇u,∇v)
∥∇v∥L2(Ω)

+ sup
v∈H1

0 (Ω)

(f, v)

∥∇v∥L2(Ω)

= ∥∇u∥L2(Ω) + ∥f∥H−1(Ω) .

Thus, we may focus the remainder of the proof on controlling ∥∇u∥L2(Ω). The re-
maining arguments center on the equation

(B.5) ∥∇u∥2L2(Ω) + (δ expψ, δ) = (f, u)− (ϕ, δ) ,

which follows from setting v = u and φ = δ in (B.3). We now consider the cases ϕ = 0
and f = 0 separately.

Case 1: ϕ = 0. It is straightforward to see that

(B.6) ∥∇u∥2L2(Ω) ≤ (∇u,∇u) + (δ expψ, δ) = (f, u) ≤ ∥f∥H−1(Ω)∥∇u∥L2(Ω) .

Thus, ∥∇u∥L2(Ω) ≤ ∥f∥H−1(Ω).

Case 2: f = 0. Notice that

(B.7) ∥∇u∥2L2(Ω) ≤ (∇u,∇u) + (δ expψ, δ) ≤ ∥∇ϕ∥L2(Ω)∥δ∥H−1(Ω) .

Moreover, observe that

(B.8) ∥∇u∥L2(Ω) = sup
v∈H1

0 (Ω)

(∇u,∇v)
∥∇v∥L2(Ω)

= sup
v∈H1

0 (Ω)

(δ, v)

∥∇v∥L2(Ω)
= ∥δ∥H−1(Ω) ,

where the second equality follows from the first equation in (B.1). Therefore,

(B.9) ∥δ∥H−1(Ω) = ∥∇u∥L2(Ω) ≤ ∥∇ϕ∥L2(Ω) .

Collecting the inequalities above leads to (B.2).

Our next result is that the finite elements (4.48) are uniformly stable in H1(Ω)×
H−1(Ω); i.e., they satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) stability condi-
tion

(B.10) βh := inf
φ∈Wh

sup
v∈Vh

(φ, v)

∥φ∥H−1(Ω)∥∇v∥L2(Ω)
> 0 ,

and, furthermore, βh is strictly bounded away from zero for all mesh sizes h > 0 and
(clearly) independent of ψ. Note that here and throughout, we typically treat the
symbol C > 0 as a generic mesh-independent constant.

Lemma B.3. Assume that Th is a shape-regular sequence of affine meshes covering
Ω =

⋃
T∈Th

T . Let Vh and Wh be the finite element spaces defined in (4.48). Then
there is a constant β0 such that for all h > 0,

(B.11) inf
φ∈Wh

sup
v∈Vh

(φ, v)

∥φ∥H−1(Ω)∥∇v∥L2(Ω)
≥ β0 > 0 .
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Remark B.4 (Idea of the proof). The proof proceeds independently for each
finite element pairing by constructing a so-called Fortin operator Πh : H

1
0 (Ω) → Vh

satisfying

(B.12a) ∥Πhv∥H1(Ω) ≤ C∥v∥H1(Ω) ,

for some h-independent constant C > 0, and

(B.12b) (Πhv, φ) = (v, φ) for all v ∈ H1
0 (Ω) and φ ∈Wh .

It is well-known that the existence of such an operator on a fixed mesh Th implies the
LBB stability condition (B.10); see, e.g., [71] and [33, Proposition 5.4.3]. See also [66,
Theorem 1] for the converse. Likewise, h-independence of the constant C in (B.12a)
implies the existence of the uniform discrete stability constant β0 in (B.11).

We employ a standard technique to construct our Fortin operators that involves
splitting the operator into two terms; cf. [33, Section 5.4.4]. In particular, for each

pair of subspaces (Vh,Wh), we define Πh = Ĩh + Π̃h(I − Ĩh), where Ĩh : H1
0 (Ω)→ Vh

is a quasi-interpolation operator (see, e.g., [68, Section 22.4]) and Π̃h : L
2(Ω)→ Vh is

a linear operator satisfying

(B.12c) (Π̃hv, φ) = (v, φ) for all v ∈ L2(Ω) and φ ∈Wh ,

and ∥Π̃h(I −Ĩh)v∥H1(Ω) ≤ C∥v∥H1(Ω) for all v ∈ H1
0 (Ω). It is easy to check that such

an operator satisfies (B.12a) and (B.12b). Indeed,

(B.13) ∥Πhv∥H1(Ω) ≤ ∥Ĩhv∥H1(Ω) + ∥Π̃h(I − Ĩh)v∥H1(Ω) ≤ C∥v∥H1(Ω) ,

and, moreover,

(B.14) (Πhv, φ) = (Ĩhv, φ) + (Π̃h(I − Ĩh)v, φ) = (Ĩhv, φ) + ((I − Ĩh)v, φ) = (v, φ) ,

where the second equality follows from (B.12c).

Proof of Lemma B.3. Case 1. We first consider the (Pp-bubble,Pp−1-broken) fi-

nite elements defined in (4.48a). In this setting, we define Π̃h satisfying (B.12c)
element-wise by solving the following local variational problem at each element T ∈ Th:

(B.15)

{
Find (Π̃hv)|T := vT ∈ P̊p+2(T ) such that

(vT , φ)T = (v, φ)T for all φ ∈ Pp−1(T ) .

Notice that |̊Pp+2(T )| = p(p + 1)/2 = |Pp−1(T )| and, in turn, each function vT ∈
P̊p+2(T ) is well-defined. It is straightforward to see that the zero extension of vT —
i.e., the function vT = vT on T and 0 otherwise — is a member of

(B.16) Vh = {v ∈ H1
0 (Ω) | v ∈ P̂p(T )⊕ P̊p+2(T ) for all T ∈ Th} .

Thus, we conclude that the operator Π̃h : H
1
0 (Ω) → Vh, given by v 7→ ∑

T∈Th
vT , is

well-defined.
We now analyze Π̃h more closely element-wise. To this end, let {bi} be a basis

for P̊p+2(T ) and {φi} be a basis for Pp−1(T ). Upon writing vT =
∑p(p+1)/2
j=1 cjbj , we

see that the variational problem (B.15) is equivalent to the invertible linear system

(B.17) Mijcj = di , i = 1, 2, . . . , p(p+ 1)/2,
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where Mij = (bj , φi)T , and di = (v, φi)T . Standard scaling arguments (see, e.g., [68,
Proposition 28.5]) can be used to show that ∥M−1∥ℓ2 ≤ C|T |−1. Meanwhile, Hölder’s
inequality can be used to show that

(B.18) di =

∫

T

vφi dx ≤ max
i
∥φi∥L∞(T )|T |1/2∥v∥L2(T ) ,

for each i = 1, 2, . . . , p(p+ 1)/2. Thus, we conclude that

(B.19) ∥c∥ℓ2 ≤ ∥M−1∥ℓ2∥d∥ℓ2 ≤ C|T |−1/2∥v∥L2(T ) .

A similar scaling argument (see, e.g., [68, Lemma 11.7]) implies that

(B.20) |bi|H1(T ) ≤ Ch−1
T |T |1/2 .

Combining (B.19) and (B.20), we find that

(B.21) |Π̃hv|H1(T ) = |vT |H1(T ) ≤ Ch−1
T ∥v∥L2(T ) .

The next step is to specify the quasi-interpolation operator Ĩh : H1
0 (Ω)→ Vh. We

choose to use the operator defined in [67, Equation 6.10], which, by [67, Theorem 6.3],
has the property that

(B.22) ∥(I − Ĩh)v∥L2(T ) ≤ ChT ∥∇v∥L2(ΩT ) for all v ∈ H1
0 (Ω) ,

where ΩT ⊂ Ω is the union of mesh cells neighboring T . We now find that

(B.23) |Π̃h(I − Ĩh)v|H1(T ) ≤ Ch−1
T ∥(I − Ĩh)v∥L2(T ) ≤ C∥∇v∥L2(ΩT ) .

Note that the maximum number of elements in ΩT is bounded uniformly in h owing
to the regularity of the mesh sequence. Likewise, we find that

(B.24) |Π̃h(I − Ĩh)v|2H1(Ω) ≤ C
∑

T∈T
∥∇v∥2L2(ΩT ) ≤ C∥∇v∥2L2(Ω) .

We have succeeded in checking the conditions outlined in Remark B.4 and the proof
is complete.

Case 2. We now consider the (Qp-bubble,Qp−1-broken) finite elements defined

in (4.48b). In this case, we define Π̃hv := vh ∈ Vh element-wise by solving the local
variational problems

(B.25)

{
Find vh|T ∈ Q̊p+1(T ) such that

(vh, φ)T = (v, φ)T for all φ ∈ Qp−1(T ) .

Here, we notice that |Q̊p+1(T )| = p2 = |Qp−1(T )|. In particular, for every element
T ∈ Th, the variational problem (B.25) is equivalent to an invertible p2 × p2 linear

system, and so Π̃hv := vh ∈ Vh is well-posed. The remainder of the proof proceeds as
done in Case 1.

Remark B.5 (Alternative subspaces). Notice that Lemma B.3 implies that the

pairing (Ṽh,Wh) is uniformly stable for any subspace Ṽh ⊂ H1
0 (Ω) containing Vh.

Indeed, observe that

(B.26) sup
v∈Ṽh

(φ, v)

∥∇v∥L2(Ω)
≥ sup
v∈Vh

(φ, v)

∥∇v∥L2(Ω)
≥ β0∥φ∥H−1(Ω) ,

for all φ ∈Wh. Thus, other elements such as the (Qp+1,Qp−1-broken) pair proposed in

Remark 4.21, are also stable owing to the embedding Qp+1
p (T ) = Q̂p(T )⊕ Q̊p+1(T ) ⊂

Qp+1(T ).
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B.2. Convergence of the linearized subproblems. This subsection is de-
voted to a proof that the (Pp-bubble,Pp−1-broken) and (Qp-bubble,Qp−1-broken)
elements defined in (4.48) converge optimally toward the solutions of the linearized
subproblems (B.1).

Theorem B.6. Let uh and δh to be the discrete solutions of the saddle-point
problem

(B.27)





Find uh ∈ Vh and δh ∈Wh such that

(∇uh,∇v) + (δh, v) = (f, v) for all v ∈ Vh ,
(uh, w)− (δh expψ,w) = (ϕ,w) for all w ∈Wh ,

where Vh andWh are the (Pp-bubble,Pp−1-broken) and (Qp-bubble,Qp−1-broken) finite
element spaces defined in (4.48). Likewise, let r ≥ 1 be an integer and assume that
the unique solutions of the continuous-level variational problem

(B.28)





Find u ∈ H1
0 (Ω) and δ ∈ L2(Ω) such that

(∇u,∇v) + (δ, v) = (f, v) for all v ∈ H1
0 (Ω) ,

(u,w)− (δ expψ,w) = (ϕ,w) for all w ∈ L2(Ω) ,

are sufficiently regular that u ∈ Hr+1(Ω) and δ ∈ Hr−1(Ω). Then, if Th is a shape-
regular sequence of affine meshes, it holds that

(B.29) ∥u− uh∥H1(Ω) + ∥δ − δh∥H−1(Ω) ≤ C1h
s
(
|u|Hs+1(Ω) + |δ|Hs−1(Ω)

)
,

for all 1 ≤ s ≤ min{r, p}, where C1 is a mesh-independent constant that remains
bounded as ess inf ψ → −∞. Moreover, if in addition δ ∈ Hr(Ω), then there exists a
mesh-independent constant C2 such that

(B.30) ∥δ − δh∥L2(Ω) ≤ C2h
s
(
|u|Hs+1(Ω) + |δ|Hs(Ω)

)
,

for each 1 ≤ s ≤ min{r, p} above. However, C2 →∞ as ess inf ψ → −∞.

Proof. Most elements of the proof are standard, so we only give a sketch in the
case of the (Pp-bubble,Pp−1-broken) finite elements defined in (4.48a). We refer the
interested reader to [33, Section 5.5] for further details. Let a : H1

0 (Ω)×H1
0 (Ω)→ R

denote the bilinear form a(u, v) = (∇u,∇v). Likewise, define denote b(u, φ) = (u, φ)
and c(δ, φ) = (δ expψ,φ) for all u ∈ H1

0 (Ω) and δ, φ ∈ L2(Ω). Due to the stability of
the linearized discrete subproblem (B.27) given to us by Lemma B.3 and coercivity
of a, we appeal to the standard theory of mixed methods to arrive at the following a
priori estimate:

(B.31) ∥u− uh∥H1(Ω) + ∥δ − δh∥H−1(Ω)

≤ C
(

inf
v∈Vh

∥u− v∥H1(Ω) + inf
φ∈Wh

∥δ − φ∥H−1(Ω)

)
.

For any Banach spaces V and W , let

(B.32) ∥d∥ = sup
v∈V

sup
w∈W

|d(v, w)|
∥v∥V ∥w∥W

denote the norm of a continuous bilinear form d : V ×W → R. A classical analysis
given in, e.g., [33, Section 4.3], shows that C in (B.31) depends at most on ∥a∥, ∥b∥,
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∥c∥, the coercivity constant for a, and β0, and that C remains bounded as ∥c∥ → 0.
It is straightforward to check that ∥a∥, ∥b∥ ≤ 1 and ∥c∥ = ∥ expψ∥L∞(Ω). Finally, we
note that the coercivity constant for a depends only on the Poincaré constant of the
domain Ω and β0 is naturally independent of ψ.

We now bound the two terms on the right-hand side of (B.31). Given that
Pp(Th) ∩ H1

0 (Ω) ⊂ Vh, we may consider the standard order-p nodal interpolation
operator Ih : Hr+1

0 (Ω) → Pp(Th) ∩ H1
0 (Ω); see, e.g., [68, Section 19.3]. By shape-

regularity of the mesh sequence and [68, Corollary 19.8], we have that

(B.33) ∥v − Ihv∥H1(Ω) ≤ Chs|v|Hs+1(Ω) , 1 ≤ s ≤ min{r, p} .

Thus, we find that

(B.34) inf
v∈Vh

∥u− v∥H1(Ω) ≤ ∥u− Ihu∥H1(Ω) ≤ chs|u|Hs+1 .

The second term on the right-hand side of (B.31) is treated with the order-(p−1)
L2(Ω)-orthogonal projection operator Ph : L2(Ω) → Wh = Pp−1(Th), which has the
well-known property

(B.35) ∥φ− Phφ∥L2(Ω) ≤ Cht|φ|Ht(Ω) , 0 ≤ t ≤ min{r − 1, p} .

For further details, see, e.g., [68, Section 18.4]. We now note that δ − Phδ ∈ L2(Ω)
and

(B.36) (δ − Phδ, φh) = 0 for all φh ∈Wh .

Therefore, for any φh ∈Wh, we may write

∥δ − Phδ∥H−1(Ω) = sup
φ∈H1

0 (Ω)

(δ − Phδ, φ)
∥∇φ∥L2(Ω)

= sup
φ∈H1

0 (Ω)

(δ − Phδ, φ− φh)
∥∇φ∥L2(Ω)

.

Taking φh = Phφ and invoking (B.35), we deduce that

∥δ − Phδ∥H−1(Ω) ≤ ∥δ − Phδ∥L2(Ω) sup
φ∈H1

0 (Ω)

∥φ− Phφ∥L2(Ω)

∥∇φ∥L2(Ω)

≤ Chs|δ|Hs−1(Ω) ,

since ∥δ − Phδ∥L2(Ω) ≤ Chs−1|δ|Hs−1(Ω) and ∥φ − Phφ∥L2(Ω) ≤ Ch∥∇φ∥L2(Ω). In-
equality (B.29) now follows by collecting the above bounds.

To prove (B.30), we appeal to Cea’s lemma applied to the bilinear form B in (B.3).
In particular, notice that the coercivity constant in (B.4) vanishes as ess inf ψ → −∞.
Therefore,

(B.37) ∥δ − δh∥L2(Ω) ≤ C
(

inf
v∈Vh

∥u− v∥H1(Ω) + inf
φ∈Wh

∥δ − φ∥L2(Ω)

)
,

where the stability constant blows up, i.e., C → ∞, as ess inf ψ → −∞. The re-
mainder of the inequality (B.30) is determined by invoking (B.34) and noting that
∥δ −Phδ∥L2(Ω) ≤ Chs|δ|Hs(Ω) by allowing 0 ≤ t ≤ min{r, p} in (B.35) because of the
additional regularity assumed on δ.
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B.3. Nonlinear approximability. We finish this appendix with a proof of
Proposition 4.19.

Proof of Proposition 4.19. Recall that u = expψ and, therefore,

ũh − u = expψh − expψ =

∫ ψh

ψ

exp sds(B.38)

= (ψh − ψ)
∫ 1

0

exp(ψ + s(ψh − ψ)) ds(B.39)

= (ψh − ψ) expψ
∫ 1

0

(exp(ψh − ψ))s ds.(B.40)

As such, it holds that

∥u− ũh∥L∞ ≤ ∥ψ − ψh∥L∞∥ expψ∥L∞

∫ 1

0

(exp ∥ψ − ψh∥L∞)s ds(B.41)

= ∥ expψ∥L∞(exp ∥ψ − ψh∥L∞ − 1),(B.42)

where the last line follows from the identity
∫ 1

0
as ds = (a− 1)/ ln a.

Extended dedication from B. Keith. Feynman once said that calculus is
“the language God talks” [206]. Expanding on this mystical statement, Strogatz has
suggested that all physical laws are “sentences” in this “language of the universe”
[186]. From my perspective, if the above is true, it must be the case that God has
written his sentences in variational form.

The present work deals centrally with variational methods and a seemingly divine
entropy functional that has never failed to surprise me since the day I began this
project with Thomas. In turn, I have frequently been reminded of von Neumann’s
famous quote to Shannon: “No one knows what entropy really is” [196]. Reflecting
back on Feynman and Strogatz’s perspectives, it is helpful to think that at least God
knows, even if we do not. As such, and on the occasion of his 70th birthday, it feels
only fitting that I dedicate this work to Leszek Demkowicz; the kind and deeply religious
man who not so long ago taught me a variational perspective on the universe.
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[85] O. Güler, On the convergence of the proximal point algorithm for convex minimization,
SIAM journal on control and optimization, 29 (1991), pp. 403–419.

[86] T. Gustafsson, R. Stenberg, and J. Videman, On finite element formulations for the ob-
stacle problem–mixed and stabilised methods, Computational Methods in Applied Math-
ematics, 17 (2017), pp. 413–429.

[87] W. Hackbusch and H. Mittelmann, On multi-grid methods for variational inequalities,
Numerische Mathematik, 42 (1983), pp. 65–76.

[88] M. Hairer, Solving the KPZ equation, Annals of mathematics, (2013), pp. 559–664.
[89] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computa-

tional Physics, 49 (1983), pp. 357–393.
[90] A. Harten, P. D. Lax, and B. v. Leer, On upstream differencing and Godunov-type schemes

for hyperbolic conservation laws, SIAM review, 25 (1983), pp. 35–61.
[91] M. Heinkenschloss and D. Ridzal, A matrix-free trust-region SQP method for equality

constrained optimization, SIAM Journal on Optimization, 24 (2014), pp. 1507–1541.
[92] M. Hintermüller and M. Hinze, Moreau–Yosida regularization in state constrained elliptic

control problems: Error estimates and parameter adjustment, SIAM Journal on Numeri-
cal Analysis, 47 (2009), pp. 1666–1683.

[93] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semis-
mooth Newton method, SIAM Journal on Optimization, 13 (2002), pp. 865–888.

[94] M. Hintermüller and K. Kunisch, Feasible and noninterior path-following in constrained
minimization with low multiplier regularity, SIAM Journal on Control and Optimization,
45 (2006), pp. 1198–1221.

[95] M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained mini-
mization problems in function space, SIAM Journal on Optimization, 17 (2006), pp. 159–
187.

[96] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE constraints,
vol. 23 of Mathematical Modelling: Theory and Applications, Springer, New York, 2009.

[97] M. Hinze and A. Schiela, Discretization of interior point methods for state constrained
elliptic optimal control problems: Optimal error estimates and parameter adjustment,
Computational Optimization and Applications, 48 (2009), pp. 581–600.

[98] E. Hopf, The partial differential equation ut + uux = uxx, Communications on Pure and
Applied Mathematics, 3 (1950), pp. 201–230.

[99] R. H. W. Hoppe, Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal.,
24 (1987), pp. 1046–1065.
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