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Abstract. At present, smart contracts cannot guarantee absolute secu-
rity, and they have exposed many security issues and caused incalculable
losses. Due to the existence of these security vulnerabilities, researchers
have designed many detection and classification tools to identify and
discover them. In this article, we present a classification of smart con-
tract security vulnerabilities based on a large number of detailed arti-
cles. Then, we introduce the latest smart contract vulnerability detection
methods, summarize the process model of detection tools based on ar-
tificial intelligence methods, and compare and analyze various detection
tools. Finally, we provide an outlook on future research directions based
on the current status of smart contract security.
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1 Introduction

Smart contracts are a special protocol used in the development of contracts
within the blockchain. It allows for trusted transactions without a third party
and ensures that these transactions are traceable and irreversible. The idea of
Smart Contracts were introduced and defined by Nick Szabo [1] . Although smart
contracts have a high level of security, there are still unscrupulous individuals
who exploit the vulnerabilities of smart contracts to gain illegal benefits. For ex-
ample,there is a case of an attack in 2021, Hackers have stolen some $600 million
in cryptocurrency from the decentralized finance platform Poly Network5. This
study explores the latest methods and tools for blockchain-based smart contract
vulnerability detection. In addition, we analyze the features of these detection
tools and compare them. Finally, based on the analysis, we discuss the research
directions about the future security of smart contracts.

⋆ Corresponding author: Fa Fu
5 Poly Network: https://edition.cnn.com/2021/08/11/tech/crypto-hack/index.html.
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2 Security Issues

2.1 Smart Contract Platform Vulnerability

Oracle Oracle’s security problem lies in the fact that its nodes are responsible
for critical data stored securely on the blockchain. However, Oracle nodes are
the only source of real data and are susceptible to attacks, manipulation, and
compromise, so it is also a security issue for smart contracts [2].

IOTA (Internet of Things Application) is a distributed ledger technology (DLT)
specifically designed for the Internet of Things (IoT). But it still carries the risk of
being attacked, as well as its custom hashing algorithms. Some researchers found
that there were collision issues with it. Bitcoin has Transaction malleability, and
other popular platforms will be attacked as they get more activity [3].

2.2 Smart Contract Code Vulnerability

Unchecked Return Value In solidity language, some functions will generate
unreasonable return values when executed or called, and these wrong return
values will lead to logical errors in the operation of smart contracts.

tx.origin It is a solidity global variable that contains the address of the origina-
tor of the current transaction. However, using tx.origin may pose security issues.
One potential security threat is spoofing smart contracts by spoofing the sender
address of a transaction. If the smart contract relies on tx.origin to determine the
sender of the transaction, this vulnerability can be exploited by the attacker [4].

Integer Overflow and Underflow Integer overflows are relatively common
security vulnerability. If the integer variable exceeds the valid range during oper-
ation, an integer overflow error will occur. Among them, arithmetic, truncation,
and signed overflow are the main problems of smart contracts [5].

2.3 Blockchain Vulnerability

Reentrancy Vulnerability It is a type of security vulnerability that can occur
in smart contracts. It happens when an attacker exploits a contract’s method
that calls another contract without completing its own internal processing [6].

Timestamp Dependency Miners can manipulate the timestamps of trans-
actions to exploit vulnerabilities. In order to benefit from transactions, miners
can change the timestamps that are most favorable to their operations, so the
different benefits for miners can lead to security issues [7].
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Time Constraints In general, time constraints are implemented through times-
tamps, which require the consent of all miners. At the same time, all transactions
within a block share the same timestamp. This mechanism enables all contracts
to maintain a consistent state, but it also risks being attacked. Because the miner
creating a new block can choose either timestamp, when the miner holds shares
[8].

Generating Randomness Generating random numbers are intended to in-
crease the security of smart contracts, but even then, there are still some prob-
lems of security vulnerabilities. The security issue of generating random numbers
in smart contracts is of great importance, because the predictability of random
numbers may leave vulnerabilities for hacking attacks [9].

3 Security Vulnerability Analysis Tools in Smart
Contracts

The tamper-evident nature of smart contracts has both advantages and disad-
vantages. We analyze the security vulnerability analysis tools of smart contracts
into two categories, static analysis methods [10–20] and dynamic analysis meth-
ods [21–29]. In addition, this paper also analyzes the dynamic static combined
detection tool [30] was analyzed in this paper. The latest detection results are
also summarized and analyzed according to this classification.

3.1 Static Analysis

Traditional smart contract vulnerability detection tools are basically based
on fixed inspection rules [12], at the same time, traditional detection tools also
have numerous problems. Therefore, in following search, a large proportion of
tools using deep learning methods for vulnerability detection which can avoid
this problem.

Xuesen Zhang et al. proposed a Bi-LSTM (Bi-directional Long Short-Term
Memory) neural network based approach [10]. This method vectorizes the code
of the smart contract and uses it as input for vulnerability detection. As LSTM
is a forward network, the authors add backpropagation operators to obtain Bi-
LSTM neural network operators. However, for new types of defects, the neural
network needs to be retrained. On the other hand, Huiwen Yang et al. proposed a
detection method [11] which is based on abstract syntax trees (AST). It extracts
the features of smart contracts from AST, divides an AST into multiple ASTs
based on the types of functions, state variables, and function modifiers, and then
trains the model to detect vulnerabilities in smart contracts.

An approach to use graph neural networks (GNN) for smart contract vul-
nerability detection is suggested by Yuan Zhuang et al. [12], they proposed a
degree-free graph convolutional neural network (DR-GCN) and a new temporal
message propagation function (TMP) that learns from the normalized graph to
vulnerability detection.



4 Jingqi Zhang et al.

In contrast, Ziling Wang et al. proposed the GVD-net (Graph embedding-
based Machine Learning Model for Smart Contract Vulnerability Detection)
model [13] to detect vulnerabilities in smart contracts. The whole GVD-net is
divided into a preprocessing part, a backbone network and a detection part. But
it can only detect three types of vulnerabilities, namely arithmetic problems,
access control and asset freezing.

There are still some methods proposed by researchers. Ran Guo et al. pro-
posed a model based on twin networks (SCVSN) [14] for smart contract vul-
nerability detection. SCVSN combines twin networks with deep learning models
and has a high level of accuracy for reentrant vulnerabilities. But it only uses
reentrant vulnerabilities as case study, and it does not have the ability to detect
integer overflow vulnerabilities and timestamp vulnerabilities.

Lejun Zhang et al. proposed a serial-parallel convolutional bidirectional gated
recurrent network model (SPCBIG-EC) fusion integrated classifier [15] that can
show excellent performance advantages in multi-task vulnerability detection.
Meanwhile, the authors propose a CNN structure, string-parallel CNN (SPCNN),
applicable to the above serial hybrid model. However, when the vulnerabilities
are mixed, the accuracy is lower and the sensitivity is bad. They also proposed
a hybrid model-based model called CBGRU [16], which combines different word
embeddings and different deep learning methods to detect smart contract vulner-
abilities. In the experiments, CBGRU performed excellent in detecting infinite
loop vulnerabilities and so on. But the accuracy of the model in detecting smart
contract vulnerabilities with obvious features is significantly higher than that of
vulnerabilities with less obvious features.

Zhipeng Gao proposed a deep learning method called SmartEmbed [17] for
detecting vulnerabilities in smart contracts, which detects code clones and prob-
lem points in smart contracts. In SmartEmbed, the information retrieval process
has been accelerated in matrix computation, code embedding, and database ac-
cess.

In Ethereum and some blockchain networks, the gas in smart contracts acts
as an indicator to measure the computational effort and resource consumption.
It ensures fair compensation for miners and helps maintain network security
and efficiency. Asem Ghaleb et al. proposed a bytecode-based taint tracking
detection tool, eTainter [18], which is a static analyzer that specifically targets
gas-related vulnerabilities in smart contracts. But this tool has some limitations,
as it cannot detect unbounded loop vulnerabilities that depend on data items,
and some contracts have timeout issues.

Clara Schneidewind et al. proposed a tool called eThor [19], the first well-
established automated static analyzer based on EVM (Ethereum Virtual Ma-
chine) bytecode. eThor takes as input the bytecode and contract-parameterized
HoRSt specification, which is a framework for the specification and implementa-
tion of static analyses based on Horn clause resolution. And later goes through
several stages of analysis to measure vulnerabilities.

Weimin Chen proposed a semantic-awareness-based tool, SADPonzi [20], to
identify Ponzi schemes in Ether smart contracts. It uses a heuristic-guided sym-
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bolic execution technique. Experimental tests show that SADPonzi outperforms
the current so method with 100% accuracy and recall, but it also has the limita-
tion that it cannot be used to detect new Ponzi smart contracts or less popular
Ponzi schemes.

3.2 Dynamic Analysis

Dynamic analysis is used to detect, track, and analyze the running kind of
smart contracts to understand their behavior, performance, and security. Com-
mon dynamic vulnerability detection methods are mainly dynamic symbolic ex-
ecution, fuzzy testing, dynamic taint, etc. In recent years, with the development
of deep learning, tools for detecting smart contract vulnerabilities using ma-
chine learning have also gradually emerged. In the following research, we will
analyze and introduce several common dynamic detection tools as well as the
latest detection tools.

A tool called Oyente is proposed by Loi Luuet al. [21], which uses symbolic
execution for the detection of smart contract security vulnerabilities. This tool
follows a modular design, which consists of four main components, CFGbuilder
(Control Flow Graph), Explorer, CoreAnalysis, and Validator. It does not fully
mimic the execution environment of Ether, so it does not yet reach the expected
level.

Bo Jiang et al. proposed a tool called ContractFuzzer [22], which is the tool
that first uses fuzzy testing to test the security vulnerabilities of Ethernet smart
contracts. Compared with the Oyente, this tool can detect 7 types of vulnera-
bilities and its leakage rate is relatively reduced.

Another tool called EasyFlow [23] is a smart contract vulnerability detection
tool based on taint analysis proposed by Jianbo Gao et al. It focuses on such
vulnerabilities as integer overflows. It can not only classify smart contracts into
secure contracts and contracts with overflows, but also automatically generate
transactions that trigger overflows.

Besides, Yuhe Huang et al. proposed a tool called EOSFuzzer [24], a generic
black-box fuzz testing framework, which is the first fuzzing framework for de-
tecting vulnerabilities in EOSIO (Enterprise Operation System Input Output)
smart contracts.

Mojtaba Eshghie et al. proposed a monitoring framework Dynamit, which is
a tool that first uses machine learning to analyze the dynamic execution of smart
contracts [25]. The tool consists of a monitor and a detector, where the monitor
is used to collect information about the transaction and to discern whether the
transaction is harmful or not. As the same time, Mengjie Ding et al. proposed
HFContractFuzzer [26], a tool based on fuzzy technique for testing Hyperledger
Fabric smart contracts. HFContractFuzzer is effective, but it still has drawbacks
and limitations, such as performance degradation problems, inability to verify
its superiority, etc.

Except for all the tools mentioned above, a novel reinforcement learning-
based vulnerability guided fuzzifier RLF [27] was proposed by Jianzhong Su
et al. , which is used to motivate vulnerable transaction sequences to detect
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vulnerabilities in smart contracts. Meanwhile, the Park [28], a tool first using
general framework for parallel forked symbolic execution of smart contracts, was
proposed by Peilin Zheng et al. It proposes the use of multiple CPU cores to
improve symbol execution efficiency based on symbol tools. And WASAI [29],
a new concolic fuzzer for discovering vulnerabilities in Wasm (WebAssembly)
smart contracts proposed by Weimin Chen et al. has been tested as a state-of-
the-art tool, but it still has some shortcomings, such as the trade-off between
scalability and efficiency, the seeds chosen by WASAI are not the most suitable,
the benchmarks need to be improved, etc.

3.3 Dynamic and Static Combined Analysis

Currently, there are few tools that can combine static analysis with dynamic
analysis, but HFCCT (Hyperledger Fabric Chaincodes Test) [30] is one of them.
Peiru Li et al. proposed HFCCT, a vulnerability detection tool that combines dy-
namic symbolic execution and static abstract syntax trees for detecting Golang
chain code vulnerabilities. After testing, HFCCT is significantly more efficient
than HFContractFuzzer. HFCCT can detect more vulnerabilities compared to
HFContractFuzzer, but it still has two kinds of vulnerabilities that cannot be
detected, they are Reified Object Addresses and Cross Channel Chaincode In-
vocation. Besides, further optimization is needed to be improved.

3.4 Comprehensive Comparison

We conducted a comparative analysis of the detection tools mentioned above
and found that the use of deep learning methods for smart contract security
vulnerability detection has been increasing in recent years, and we summarized
all the tools.

About 70% of the static analysis tools in our survey are based on machine
learning or deep learning. We summarize the model of smart contract vulnerabil-
ity detection tools using artificial intelligence technology, as shown in Figure 1.
And we summarize the data of AI-based detection tools. All data are compared
with the reentrancy vulnerability as the detection object, and the detection in-
dicators include: Accuracy, Precision, Recall, and F1 as shown in Table 1.

First, these methods using artificial intelligence technology clean the source
code of smart contracts, segment words, and convert the code into vectors to
build a dataset. Then, the dataset is divided into training set and test set by
labeling. Finally, the training set was used to train the constructed model, and
the test set was used to obtain the analysis report.

[11, 13] improved the part of converting the code into vectors. Detection
based on AST [11] improved the word embedding. The AST is divided into
state variables, function modifiers, and functions, and all of them are converted
into vectors for model training to obtain better training results. GVD-net [13] is
an improvement on word embedding. The authors treat the variables and rela-
tionships of solidity code as a non-Euclidean graph, and use the Node2Vec [31]
algorithm to construct vectors.
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Table 1. Experimental data based on artificial intelligence detectors

Tool Analysis Method Accuracy Precision Recall F1

Detection based on
Bi-LSTM Neural
Network [10]

Machine Learning 81.4% 100% 41.% 58.3%

Detection based on
Abstract Syntax

Tree [11]

Abstract Syntax
Tree (AST)

99.6 % 98.8% 90.4% 94.4%

Detection Using Graph
Neural Networks [12]

Machine Learning 84.4% 74.1% 82.6% 78.1%

SCVSN [14] Deep Learning 96.0 % 94.2% 96.0% 94.8%

SPCBIG-EC [15] Deep Learning 96.7% 94.6% - 96.74%

CBGRU [16] Deep Learning 93.3 % 96.3% 86.0% 90.9%

Dynamit [25] Machine Learning 94.0% - 94.0% 93.0%

[10, 14, 15, 17] improved the detection part. The Detection based on Bi-LSTM
Neural Network [10] built their model based on Bi-LSTM network. SCVSN [14]
improves the network structure and combines two networks to train the model.
The SCVSN Siamese network structure is the combination of Siamese network
and LSTM neural network. SPCBIG-EC [15] improves the network structure,
combines the serial hybrid model of CNN and RNN, and combines the feature
extraction advantages of CNN and the characteristics of RNN emphasizing the
time dimension. In the detection part of the network, SmartEmbed [17] uses deep
learning and similarity checking technology to unify clone detection and bug
detection efficiently and accurately, so as to improve the efficiency and accuracy.

[12, 16] have improved the overall model. Detection Using Graph Neural Net-
works [12] made changes to word embeddings, The authors use a graph gener-
ation phase, which extracts the control flow and data flow semantics from the
source code and explicitly models the fallback mechanism. Besides, they use a
graph normalization phase inspired by k-partite graph. At the same time, they
use graph neural networks for vulnerability detection to replace traditional neu-
ral networks such as CNNs. CBGRU [16] improves both the word embedding
model and the detection model. The word embedding model uses Word2Vec
and FastText, and the detection model combines five deep models CNN, LSTM,
GRU, BiGRU and BiLSTM for detection, making full use of the advantages of
five networks to improve its vulnerability detection ability.

In terms of dynamic analysis tools [21–23, 25, 27, 28], there is no unified pro-
cess. The dynamic analysis method detects the contract in the execution process,
so some dynamic analysis methods do not require source code [25]. EOSIO is
a typical public blockchain platform. WASAI [29] and EOSFuzzer [24] analyzed
EOSIO.

HFContractFuzzer [26] HFCCT [30] is aimed at Hyperledger Fabric platform
for vulnerability detection, and HFCCT adopts the way of dynamic and static
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collection. In HFCCT, the authors used 15 chain codes to compare with HFCon-
tractFuzzer. The test results show that the vulnerability detection efficiency of
HFCCT is higher than that of HFContractFuzzer, and the display of errors is
clearer. We can see that the dynamic and static analysis method is more efficient
than the single analysis method.

Solidity 
source 
code

Data 
cleaning

Word 
dividing

Word
Embeddings

Smart contact processing

Label 
dataset

Dataset

Detect

Evaluation

Classification
Feature 

extraction

Vulnerabilities detector

Training set

Testing set

Fig. 1. Model of smart contract vulnerability detection tools using artificial intelligence

4 Development Direction

From the perspective of whether to run the contract, we divide all smart
contract vulnerability detection tools into three categories. Through analysis
and comparison, we draw the following conclusions:

4.1 Deep Learning

At present, machine learning and deep learning are increasingly used in vul-
nerability detection. In the future, Chat-GPT may be a powerful assistant for
future smart contract vulnerability detection. However, a common drawback of
these detection tools [13–15, 17] is that they detect fewer kinds of vulnerabilities,
which may be related to the small number of existing large standard datasets.

4.2 Combination of Static and Dynamic Analysis

When the contract is complex, dynamic analysis has more advantages than
static analysis, because the relationship between many vulnerabilities is complex,
which can not be easily analyzed by simply inspecting the code files. Moreover,
the coverage of dynamic analysis tools is not high. Therefore, how to improve
the coverage of dynamic analysis tools is a big problem.
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4.3 Platform and Language

Most of the current detection tools are aimed at the Ethereum platform and
Solidity language. The running platform such as EOS, Hyperledger Fabric, etc.,
and the programming language such as Vyper language, etc. The smart contract
security vulnerability of these platforms and languages are less studied, so it is
also the direction of future research.

5 Conclusion

In the era when blockchain is more popular, smart contracts provide security
for blockchain, but security of vulnerabilities in smart contracts cannot be ig-
nored. We hope that the re-classification and summary of security vulnerabilities
can also make people have a better understanding of the security issues in smart
contracts. Through the analysis and comparison of detection tools, we believe
that the security detection technology of smart contracts will become more and
more mature, and they can also have higher efficiency and better vulnerability
detection ability. Therefore, with the update and progress of technology, the
security problem of blockchain will be more and more guaranteed.
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