
1

ReMAV: Reward Modeling of Autonomous
Vehicles for Finding Likely Failure Events

Aizaz Sharif and Dusica Marijan

Abstract—Autonomous vehicles are advanced driving systems
that are well known to be vulnerable to various adversarial
attacks, compromising vehicle safety and posing a risk to other
road users. Rather than actively training complex adversaries
by interacting with the environment, there is a need to first
intelligently find and reduce the search space to only those states
where autonomous vehicles are found to be less confident. In
this paper, we propose a black-box testing framework ReMAV
that uses offline trajectories first to analyze the existing behavior
of autonomous vehicles and determine appropriate thresholds to
find the probability of failure events. To this end, we introduce a
three-step methodology which i) uses offline state action pairs of
any autonomous vehicle under test, ii) builds an abstract behavior
representation using our designed reward modeling technique to
analyze states with uncertain driving decisions, and iii) uses a
disturbance model for minimal perturbation attacks where the
driving decisions are less confident. Our reward modeling tech-
nique helps in creating a behavior representation that allows us to
highlight regions of likely uncertain behavior even when the stan-
dard autonomous vehicle performs well. This approach allows
for more efficient testing without the need for computational and
inefficient active adversarial learning techniques. We perform our
experiments in a high-fidelity urban driving environment using
three different driving scenarios containing single- and multi-
agent interactions. Our experiment shows an increase in 35%,
23%, 48%, and 50% in the occurrences of vehicle collision, road
object collision, pedestrian collision, and offroad steering events,
respectively by the autonomous vehicle under test, demonstrating
a significant increase in failure events. We compare ReMAV with
two baselines and show that ReMAV demonstrates significantly
better effectiveness in generating failure events compared to
the baselines in all evaluation metrics. We also perform an
additional analysis with prior testing frameworks and show that
they underperform in terms of training-testing efficiency, finding
total infractions, and simulation steps to identify the first failure
compared to our approach. The results show that the proposed
framework can be used to understand the existing weaknesses of
the autonomous vehicles under test to only attack those regions,
starting with the simplistic perturbation models. We demonstrate
that our approach is capable of finding failure events in terms
of increased collision and offroad steering errors compared to
standard AV driving behavior.

Index Terms—Autonomous Vehicle Testing, Deep Reinforce-
ment Learning, Behavior Modeling, Inverse Reinforcement
Learning

I. INTRODUCTION

Autonomous Vehicles (AVs), also known as self-driving
cars, are complex technologies that are susceptible to fail-
ure [1]. The development of deep learning-based AVs is a
challenging problem [2], [3] due to the numerous available
architectures. Software for AVs is based on artificial intelli-
gence (AI) models, which have seen significant progress in

recent years [4], [5]. However, the validation of autonomous
systems remains a challenging area despite the advances made.

One of the main techniques for validating AVs is to use
adversarial noise attacks [6], [7], [8], [9], [10] to test the ro-
bustness and reliability of AV software. These attacks involve
malicious actors adding noise or distortion to the inputs of
AV models. In the context of AVs, they could cause the vehi-
cle’s object detection and control systems to misinterpret the
environment, leading to potentially dangerous situations. The
application of these attacks helps to identify vulnerabilities and
weak points in AV systems, thus improving their safety and
performance. By mimicking real-world scenarios, adversarial
attacks allow us to evaluate how software might behave under
various unpredictable conditions, contributing to the overall
objective of software engineering to build efficient, reliable,
and secure systems.

While testing single-agent AVs is challenging, the problem
is even more complex in the presence of other agents [11]. AV
testing in a multi-agent setting is a complex problem since it
is hard to find which states of interactions will most likely
lead AVs to fail. In simulation-based testing and validation of
AVs, we usually perform many simulation scenarios, and if
the AVs are trained in the same environment, they are likely
to drive well. The idea of adversarial testing for exposing
faults in AVs works because, in a collaborative as well as
the competitive driving world, not all agents are perfect, so
we need adversarial agents within multi-agent interactions.
For adversarial testing, there are also several works in the
field of creating adversary-driving and non-playable character
(NPC) agents within the same environments [6], [7]. Such
adversarial agent behaviors are also missing while training
AVs with online/offline datasets [12], [13].

For training adversarial agents with the goal of producing
possible failure scenarios, they are trained in a black-box
2-player zero-sum game [14] or transformed into existing
NPC agents around the AV as aggressive collaborative /
competitive adversaries [7], [15], [16]. Such adversaries are
usually trained against a known AV in a two-player game
with a hand-made reward function [17] and hence are very
restrictive in approach. Therefore, this method cannot be
scaled and a lot of training computation is required to make
the adversary efficient. In case we retrain our AVs using
the missing adversarial examples [18], the adversary must
be modified as a zero-sum game. In a multi-agent scenario,
deciding how many adversaries, if adversaries are also driving
and NPC agents to train, and which type of adversary to
train are some of the critical decisions to be made. Without
first identifying the existing weaknesses of the AV under test,

ar
X

iv
:s

ub
m

it/
53

23
32

5
 [

cs
.A

I]
 3

0
D

ec
 2

02
3

2

this approach is highly computationally inefficient and time
consuming. Another challenge in testing AVs using adversaries
is that the search space for AV systems is high-dimensional
and stochastic [19], and it is not possible to cover all possible
states. Therefore, we need to narrow down the search space to
only those interactions in which autonomous vehicles are less
confident in taking the correct control actions. The question
arises: Can we simply utilize the existing simulation data of
AVs and use those trajectories to find those likely failure
events?

All the limitations mentioned above lack behavior repre-
sentation of a state-action-only distribution. This helps us to
understand and reduce the search space for the most likely
failure states to plan minimal required attacks [20]. There is
a need for a scalable black-box testing approach to test any
AV whether using input perturbation or transforming NPCs
into adversaries on the spot. Once we identify the uncertain
behavior of the AV, we can prove that the existing simplistic
methods of noise disturbance as adversarial attacks might just
be a good start for validating the safety of AVs instead of
training complex adversarial models.

To address these challenges, in this paper, we propose a
framework Reward Modeling of Autonomous Vehicles (Re-
MAV) for Finding Likely Failure Events which is a novel
approach for testing AVs. We design this framework as a
black-box approach where any sort of autonomous driving
agent’s offline data can be used for testing AVs. In our case, we
are designing this framework as a black-box method that only
deals with state action pairs, either collected recently or stored
in the past through normal simulation testing. Regardless of
whether AVs are trained on reinforcement learning (RL) or
other deep learning based algorithms, we treat them as a
black-box, and only consider their action distributions and
decision-making. This provides scalability and flexibility to
any kind of testing simulation environment. Once we have
offline trajectories, we utilize inverse reinforcement learning
(IRL) to obtain a reward model for the autonomous vehicles
under test. IRL has been applied mainly for transfer learning
of expert policies, but has not yet been used for behavior
representation in testing autonomous vehicles.

In our work, we start by using the baseline IRL algorithm
and modifying it to represent the behavior of AVs as a reward
modeling technique in three driving scenarios for evaluation.
Our novel contribution is the use of IRL in behavior rep-
resentation for testing and validating autonomous vehicles,
which to the best of our knowledge has not been performed
before. Rather than actively training adversaries by interacting
with the environment, our approach uses offline trajectories
collected within the standard simulation to first analyze the
state of the AV and then determine appropriate thresholds
for finding the probability of failure events. This approach
allows for more efficient testing without the need for active
adversarial training. We can use the reward model to quantify
the behavior of AVs in various driving scenarios to assess
their robustness. By analyzing this model, we can understand
driving behavior and identify weak driving events to confirm
their resilience.

The key research contributions in this paper are as follows:

• We introduce a novel testing framework to model abstract
unsupervised reward functions by utilizing the collected
offline trajectories of AVs in a scenario.

• We design a reward modeling technique using inverse
reinforcement learning to find the probability of failure
events.

• We experimentally show that reward modeling allows one
to understand the behavior of AVs under test by analyzing
their behavior distribution.

• We demonstrate that using a disturbance model for mini-
mal perturbation attacks on input sensor data and existing
NPCs creates challenging adversarial events for the same
AVs for testing.

• We perform an extensive evaluation to show that the
ReMAV methodology outperforms the baselines in all
evaluation metrics in three driving scenarios.

• We also compare the failure detection efficiency of our
framework with existing relevant frameworks.

II. PROBLEM SETUP

In our work, we design a black-box testing framework
to test the robustness of the AVs under test. We do so by
modeling their behavior representation to first identify states
that might lead to likely failure events. Once identified, we
use the disturbance model to add minimal perturbations. In
this section, we define the scope and set assumptions before
explaining the methodology of our framework.

A. Failure Definition

In a black-box safety validation approach, our task is to
identify the subset of trajectories that are most likely to cause
the AV under test to experience failure events. Assuming x ∈
R defines a disturbance input (such as perturbation attacks on
AV input sensor data or existing NPC actions) to a sequential
black-box system under test and y ∈ {0, 1} is a boolean output
of the failure event, we can formally define the estimation of
failure probability as:

Pfailure = Ep(x)1(y ̸= 0).

In a multi-agent environment where cars and pedestrians
interact, failure can be defined as the occurrence of collisions
and offroad steering errors. A collision occurs when the path
of a car intersects the path of a pedestrian and the car and
pedestrian come into contact. A collision within vehicles can
be defined as the occurrence of two or more agents occupying
the same physical space at the same time. The same can
be said for collisions made with any road object. Offroad
steering errors occur when a car deviates from its intended
path and goes offroad, potentially endangering pedestrians and
other driving agents. To determine failure in this multi-agent
environment, we can monitor collision and offroad steering
events in our scope of work and consider them as failure states.

B. AV under test

We also need to specify the properties of AV under test in
order to define the scope of our work.

3

1) Markov Decision Processes (MDPs) based Deep Rein-
forcement Learning (DRL) approach: Our testing framework
is designed to evaluate the performance of AVs using of-
fline data. We consider AVs as a black-box model, and our
framework only requires access to the input state observations
and output actions of AV models stored as offline trajectories.
We used an existing multi-agent urban driving framework to
facilitate training DRL-based AV policies. This allowed us to
train standard AV driving agents with an MDP-based DRL
approach.

2) Vision-based driving models: Our framework trains and
tests AVs as a vision-based driving model in urban driving
scenarios. Each AV in a simulation receives 3D input sensor
information and using an end-to-end approach, the models
output an action that is passed to the simulator. Every agent’s
action returns a reward and a next input state that is based on
the same AV models as a sequential MDP approach.

3) Non communicating model-free RL agents: AV policies
based on DRL are trained using a model-free assumption and
a Partially Observable Markov Decision Process (POMDP)
approach. In a multi-agent driving environment, AVs are
considered independent and competitive players who do not
communicate with one another. This implies that they do not
have access to each other’s input state or shared information
on weight parameters.

C. Reward Modeling Definition

Let τi = (s, a) be the trajectories of pairs of state actions
of the AV under test. We define a reward model Rψ that uses
offline trajectories and creates a function that represents the
behavior of the AV under test. The objective of Rψ can thus
be defined as

Rψ = max
R

N∑
i=1

log p(τi|R),

where p(τi|R) is the probability of trajectory τi under the
actual reward function R. Our goal is to use the learned reward
model to obtain the AV behavior representation to identify
thresholds β. The threshold hence can be used in simulation
testing with the help of minimal perturbation attacks in order
to find the most likely failures.

III. REMAV FRAMEWORK

In the following section, we utilize these concepts to present
the proposed framework named ReMAV and the methodology
for testing AVs using reward modeling and behavior represen-
tation. An overview of the three-step methodology using the
ReMAV framework is illustrated in Figure 1.

In ReMAV, we consider DRL-based AV under test in a
vision-based urban driving environment. As a first step of our
framework, we use existing AVs to collect offline state-action
pairs to record multiple trajectories using normal simulation. In
the second step, we train the inverse reward modeling approach
to learn an abstract unsupervised reward function. The learned
reward model is used to record AV behavior in order to go
through statistical analysis to find thresholds beyond where AV

might go into a failure state. In the last step of the framework,
we perform simulation testing using the threshold per scenario
and add minimal perturbation attacks in order to see whether
AV leads to a failure event or not.

A. Step 1: Collecting Trajectories of AVs

Our framework can be used to test any AV model, since we
have designed it in a black-box approach. Our methodology
starts with collecting offline trajectories of the AV policy
πAC under test, which is pre-trained in an online or offline
simulation setting using any AI-based approach. For this work,
we also train a vision-based AV in a competitive multi-agent
environment before collecting its offline state-action pairs.

1) AV Architecture details:
a) PPO for AV driving policy: Our standard AV agent

utilizes the PPO algorithm [21] as a policy gradient method
to acquire a driving policy, πAC , through interactions with
a simulated environment during each training episode. This
approach enables on-policy learning within the simulation,
rather than relying on a dataset (replay buffer) for learning.
PPO also offers the ability to update the policy in a stable
manner during the learning process, even when faced with
changes in data distributions. Furthermore, PPO addresses the
challenge of initializing a large hyperparameter space during
the learning process.

b) Deep Neural Network Model: A visual description of
the DRL architecture for AV, including the input, hidden, and
output layers, is shown in Figure 2. The DRL architecture
consists of the input layer that receives a partial observation
of 168×168×3 pixel images captured by cameras mounted in
front of the driving model. These images are processed through
hidden and convolutional layers before reaching the output
layer, which generates control commands. The AV driving
agent has nine discrete values available at the output layer
to make control decisions. These values can be grouped into
three main actions named Steer, Throttle, and Brake, which
are passed to the driving simulator.

c) Reward Function for AV: The AV agent follows the
MDP formulation and therefore, at each time step, the driving
models collect trajectories of (S,R,A). R is the reward gained
in return for the actions chosen by the driving car policy
function, given the input observations.

AV policies are trained with the goal of reaching the desired
destination safely as close as possible. The AV agent’s reward
can be described as:

RAV = α1∆(Dt) + α2(Yt)− α3(CVt + COt)− α4(OSt),

where ∆Dt is the distance covered, Yt is the forward
speed of the agent, CVt and COt are the Boolean values that
indicate whether there is any collision with other vehicles and
objects in the environment, and OSt refers to driving offroad
represented as boolean. α are the coefficients with α1=1,
α2=1, α3=100, and α4=0.5. The coefficient values are selected
judiciously in order to train the AV agent. The equation above
shows that AV driving policies are greatly affected by steering
errors and collisions that occur off the road.

4

Observation

β

Rψ

Reward Model

Failure Threshold
Action

Simulation Environment

Offline
Trajectories

1. Collecting Offline Trajectories

Observation Action

Simulation Environment

2. AC Reward Modeling
and behavior analysis

βRψ

Observation Action,
<

ε
Disturbance Model

3. Simulation Testing
For Finding Failure Events

Yes

Offline Trajectories

Fig. 1. Illustration of ReMAV framework architecture for testing the robustness of AV driving policies in a multi-agent environment. The framework is divided
into three steps: The left represents the first step where we use the AV under test to obtain its offline trajectories in different driving scenarios. The middle
represents the phase where offline trajectories are used to obtain a behavior representation with the help of a reward model Rψ . The same reward model is
used to collect {state, action, reward} pairs to collect the required thresholds β for testing. Last, the right side of the architecture shows the AV testing phase,
where noise perturbations are added only to those state-action interactions where AV feels uncertain even when their driving behavior seems normal.

PPO Deep RL Model

Simulation Environment

Observations

Action
Steer

Throttle Discrete (9)

Brake

Fig. 2. End-to-end AV Driving using DRL for AV agents. AV receives an
input image of 168×168×3 which is passed to the PPO based DRL model.
The actions are selected in the output layer of the AV agent and performed in
the next time step of the simulation to obtain a reward and a new observation
state.

2) Offline Trajectories: When it comes to testing AVs
in our methodology, the first step is to collect state-action
trajectories. These trajectories are essentially a record of the
car’s behavior in different scenarios, and they are crucial for
training and testing machine learning algorithms that power
the AV’s decision-making processes.

We collect state-action trajectories by running normal sim-
ulation episodes. These simulations involve running the car
through three scenarios in a controlled environment. By care-
fully controlling the conditions of these scenarios, we collect
data on how the car behaves in different situations, such as
when it encounters obstacles, changes lanes, or interacts with
other vehicles on the road. To collect state-action trajectories,
we must record both the AV’s state (such as its vision-based
observational state per timestep) and the actions it takes (such
as accelerating, braking, or turning).

In DRL, a trajectory is a sequence of state-action pairs that
an agent encounters as it interacts with the environment. Let
us define a trajectory as τ = [(s1, a1), (s2, a2), ..., (sT , aT)],

where st is the state in step t and at is the action taken by
the AV policy at time-step t, and T is the final step of the
trajectory. To collect pairs of state-action trajectories, we use
the AV policy πAV , which is a mapping from states to actions.
At each timestep, t, the AV agent selects an action at according
to the policy πAV , and the environment transitions to a new
state st+1.

The process of collecting state-action pairs of trajectories
can be defined as follows:

1) Initialize an empty set of trajectories D = {}.
2) For each episode:

a) Initialize an empty trajectory τ = [(s1, a1)].
b) Observe the initial state s1.
c) Select an action at according to the policy πAV .
d) Observe the next state st+1 and the reward rt ∈

RAV.
e) Append the state-action pair (st, at) to the trajec-

tory τ .
f) Append the trajectory τ to the set of trajectories

D.
3) Repeat for each time-step t until the end of the episode:
4) Return the set of trajectories D.
Collecting state-action pairs of trajectories enables our next

step in the methodology where an IRL-based agent learns
from its interactions with the environment for the behavior
representation of AV.

B. Step 2: Reward modeling for AV behavior representation

Once we have offline trajectories of the AV under test,
we perform the second step in the framework where we
learn a reward model using the inverse reinforcement learning
technique. Learning a reward model will help us obtain the
behavior representation of the same AV in order to analyze its
driving behavior in different scenarios.

Here we first give a brief overview of the adversarial inverse
reinforcement learning (AIRL) algorithm [22]. Afterwards, we

5

present the technical choices of the proposed testing method-
ology. AIRL is an inverse reinforcement learning algorithm
that aims to learn a reward function from a set of expert
trajectories. The learned reward function can then be used to
train a policy that mimics the behavior of the expert.

1) AIRL in our methodology: Since our goal is to validate
the safety and robustness of AV, we formulate this problem by
considering AV as non-experts. Despite many advancements
made in the AIRL research, we find the baseline AIRL
algorithm suitable for our framework since we aim to learn
a reward model out of a single non-expert driving agent that
is part of a multi-agent environment. We also modify AIRL for
training reward function in a multi-agent based complex urban
driving environment. Additionally, we also implement AIRL
specifically for our case in order to handle high-dimensional
vision-based tensors by adding a feature extraction layer. We
use the reward function to obtain an abstract distribution of
the driving behavior of AV in a particular environment for
further analysis. We also use this to quantify the behavior of
AV to compare AV decision-making in different situations in
the third step of our framework methodology.

To formalize the problem, let us consider an MDP with a
state space S, an action space A, and a discount factor γ. The
objective is to learn a policy πG that maximizes the expected
sum of discounted rewards:

E ∗ τ ∼ πG[R(τ)] = E ∗ τ ∼ πG[

∞∑
t=0

γtr(st, at)]

where τ = {(st, at)} is a trajectory, r(st, at) is the reward
function and E∗τ ∼ πG denotes the expectation taken over the
trajectory generated by the policy πG. Let us denote the true
reward function by R(τ), and the learned reward function as
Rψ . The goal of AIRL is to learn the parameters θ of Rψ such
that the policy that maximizes the expected sum of discounted
rewards under Rψ is similar to the expert policy.

The optimization problem of AIRL can be formulated as a
two-player minimax game where the first player is the policy
πG and the second player is a discriminator Dψ that tries to
distinguish between expert trajectories and generated trajecto-
ries. The objective of the policy is to generate trajectories that
are indistinguishable from expert trajectories, while the objec-
tive of the discriminator is to correctly classify the trajectories.
The discriminator is trained to maximize this objective, while
the policy πG is trained to minimize it. The discriminator in
the AIRL algorithm is a binary classifier that distinguishes
between expert and novice trajectories. Specifically, it is
a function of the state-action pairs, denoted by Dψ(s, a).
The discriminator is trained to maximize the probability of
correctly classifying the expert and novice trajectories. This
is accomplished by minimizing the binary cross-entropy loss
function:

LDψ =

T∑
t=0

−Eτ∼πAV [log(Dψ(s, a))]

− Eτ∼πG [log(1−Dψ(s, a))],

where LDψ gives a loss between expert demonstrations from
πAV and generated samples from πG.

The reward Rψ is therefore calculated using the following
function:

Rψ = log(Dψ(s, a)− log(1−Dψ(s, a))] (1)

Finally, the optimal policy, πG∗, is obtained by maximizing
the expected reward value Rψ .

π∗
G = EπG

T∑
t=0

[Rψ].

Thus, the discriminator in AIRL is optimized to distinguish
between expert and novice trajectories and is used to learn a
reward model that guides the agent toward generating expert-
like behavior. This is accomplished without the need for
explicit reward values. The algorithm for AIRL to learn Rψ
in our framework can be presented in Algorithm 1.

Algorithm 1 Reward Modeling from AV Offline Trajectories
Require: Reward Model Rψ .

1: Obtain expert trajectories τACi
2: Initialize policy πG and discriminator Dψ .
3: for each t ∈ {1, . . . ,N} do
4: Collect trajectories τi = (s0, a0, . . . , sT , aT) by

executing πG.
5: Train Dψ via binary logistic regression to classify

expert data τACi from samples τi.
6: Update reward Rψ (s, a, s′) ← logDψ (s, a) −

log (1−Dψ (s, a))
7: Update πG with respect to Rψ .
8: end for

a) AIRL Architecture Design: An overview of the reward
modeling process can be illustrated in Figure 3. The offline
trajectories collected in the first step of the framework are
sampled with the dimension 168 × 168 × 3 and passed
through the VGG-16 model [23] to reduce the dimensions of
the input to 12800 as well as to obtain high-quality feature
space. At the same time, the PPO-based generator policy πG
takes some action against the observations of the simulation,
and these state-action pairs are also passed through a VGG-
16 layer to obtain a feature space of 12800. Both AV and
πG based state-action pairs are passed in batches through a
discriminator neural network which tries to classify AV data
as real and πG based actions as false. The prediction from
the discriminator is converted into a reward value as Rψ . Rψ
also recovers the advantage A(s, a), which is used in the loss
to update the generator agent. After updating the πG policy,
sampling is performed in order to train the generator policy
before repeating the same steps.

We use a three-layer ReLU network with 20 units in the
πG input layer and the hidden layer. The input layer receives
a state observation, while the output layer is a 9-unit action
space, which assigns probabilities to each action using the
softmax activation function. For Dψ , we use a fully connected
four-layer deep architecture. The input layer has 100 units, the
first hidden layer has 50 units, and the second hidden layer

6

,O A

,O A

D
isc

rim
in

at
or

 (D
ψ)

Rψ

VGG-16

AC rollouts

Generator Agent
rollouts

G
enerator A

gent (π
G)Simulation Environment

Offline Trajectories

Fig. 3. Illustration of the AIRL design as part of the ReMAV framework.
Both AV offline trajectories and Generator rollouts are first passed through
a VGG-16 layer in order to reduce dimensions to only important features.
The Discriminator tries to classify between real (non-expert AV) and fake
state-action pairs. The prediction is then transformed into a reward value Rψ
that is also used to calculate the advantage function to improve the generator
agent policy. The generator agent finally trains on a few samples to take better
actions in the simulation environment in the next loop.

has 20 units. The last layer outputs the probability using the
sigmoid activation function. The value of the Dψ output is
then used as the Rψ value to update the weights of both Dψ

and πG.
2) AV Standard Performance using Rψ: Once we are able

to learn Rψ using offline data and AIRL, we add an additional
step of collecting Rψ = (s, a) as part of our contribution to
testing AVs. By doing so over several simulation episodes,
we obtain a behavior representation of the AV under test to
perform a few statistical analysis.

3) Statistical analysis of Rψ for finding threshold β:
By performing statistical analysis, we try to find confidence
intervals to locate a minimum threshold β per scenario. This
threshold value will determine which state-action pairs are
found in uncertain action behaviors of AVs.

Frequency-based distribution is a statistical concept that
refers to the occurrence of values in a given real-world
dataset. While normal or known distributions follow a specific
pattern or shape, frequency-based distributions do not have
any distinct pattern or shape. When dealing with a frequency
distribution, it is often useful to calculate the mean µ, standard
deviation σ, and confidence interval. In our case, we use
approximately 95% of the data that fall within two standard
deviations of the mean, whether the reward behavior distribu-
tion is normal or skewed. Instead of using both sides of the
interval, we are interested in the left side of the distribution to
calculate the β values per scenario. This can be denoted as:

β = µ− 2σ (2)

where β represents the threshold per reward distribution of a
scenario. This threshold is utilized in the next and final step
of the methodology to find the most likely failure events out
of the normal-driven AV under test.

C. Step 3: Simulation testing using Rψ

In the third and final step of our framework, we perform
simulation tests using Rψ and β to find the probability of

failure states. As part of our framework, we propose to perform
testing by first identifying the states that will most likely cause
the AV to fail. Doing so strategically reduces the search space
to uncertain events for existing AVs and then we can perform
perturbation attacks as explained in Section III-C1. The steps
performed per scenario can be shown as the Algorithm 2.

Algorithm 2 ReMAV Simulation testing using Rψ and β

Require: Set of trajectories D = s, a, r.
1: Initialize an empty set of trajectories D = {}.
2: for each episode do
3: Initialize an empty trajectory τ = [(s1, a1)].
4: Observe the initial state s1.
5: Select an action at according to the policy πAV (at|st).
6: Observe the reward using Rψt to obtain the reward

rψt.
7: if rψt < β then
8: apply noise disturbance {ϵ1, ϵ2}.
9: end if

10: Append the state-action pair (st, at, rψt) to the trajec-
tory τ .

11: Append the trajectory τ to the set of trajectories D.
12: end for
13: Repeat for each timestep t until the end of the episode.
14: Return the set of trajectories D.

1) Disturbance Model: ReMAV’s main motivation is to
demonstrate that once we have an overview of the standard
AV driving behavior and its uncertain driving states, we can
start with minimal noise attacks instead of learning complex
adversarial attacking methods.

a) Input Sensor Noise Perturbation: One approach to
generating noise perturbation to attack AVs in uncertain state
events is using the Gaussian distribution. Our goal is to use
this disturbance model to add minimal sampled noise to the
AV’s input image where the behavior of the AV is performed
below a desired threshold.

When adding Gaussian noise as an adversarial attack to an
AV under test, it is imperative to take a strategic approach.
Rather than randomly adding noise throughout the episode,
a more effective approach is to selectively add noise based
on the uncertainty of the self-driving car. This methodology
can make a significant difference in the results. Randomly
adding noise throughout the episode may not be as effective
in deceiving the model, as it may not be targeted toward the
specific areas of the input that the model is most sensitive to.
However, selectively adding noise based on the uncertainty
of the self-driving car can be more effective, as it can target
the areas of the input that the model is most uncertain about.
For example, if the model is uncertain about the distance of an
object in front of the car, adding noise to that specific area can
cause the model to make incorrect decisions, such as braking
too early or too late. However, if noise is added randomly
across the entire episode, the model may not be as affected as
it may not be sensitive to all areas equally.

To generate Gaussian noise, a random number generator is
used to generate a set of values following a normal distribution.
The generated noise values can then be added to the sensor

7

readings or control signals of the autonomous agent system,
causing it to make incorrect decisions or take inappropriate
actions. One advantage of using Gaussian noise to attack
autonomous agents is that it can simulate realistic noise
conditions that the system may encounter in its environment.
Additionally, Gaussian noise is additive and can be easily
incorporated into the system without requiring knowledge
of the system’s internal workings. The probability density
function of the Gaussian distribution for sampling noise ϵ1
is given by:

ϵ1 ∼ N (µ, σ2)

where µ is the mean and σ is the standard deviation. The
attacker can use this distribution to generate noise by sampling
its values. The amount of noise injected into the agent’s per-
ception or action space is controlled by the standard deviation
of the distribution. In our experiments, we keep σ=0.001 in
order to have a minimal perturbation under uncertain states.

In order to test the robustness of an AV agent, it is often
necessary to introduce noise into the input data to simulate
real-world conditions. Let xt be the three-dimensional input
data for the AV agent and yt be the output decision made
by the agent based on xt. Let ϵ1 be the 3-dimensional noise
added to xt+1 resulting in x̂t+1 based on the reward value
lower than the threshold value. Once the behavior of the AV
under test crosses the threshold of β, we can add noise to the
image as:

x̂t+1 = xt+1 + ϵ1

x̂t+1 should be such that the added noise ϵ1 is representative
of real world conditions and does not significantly alter the
decision made by the AV agent.

b) NPC Action Perturbation: Another way to add mini-
mal perturbation noise attacks within the testing simulations is
to add noise within the action outputs of the NPCs (pedestrians
and driving agents) in a multi-agent scenario. The uniform
distribution is another commonly used probability distribution
for generating noise. It is a continuous probability distribution
where the probability of an event is equally likely over the
range of possible values. The probability density function of
the uniform distribution for the sampling noise ϵ2 is given by:

ϵ2 =

{
1
b−a if a ≤ x ≤ b

0 otherwise

where x is the random variable and a and b are the lower and
upper bounds of the distribution, respectively. The attacker can
use this distribution to generate noise by uniformly sampling
values from the range [a, b]. The amount of noise injected
into the agent’s perception or action space is controlled by
the range of the distribution. In our experiments, we keep a =
0.0 and b = 0.001 to have a minimal perturbation in uncertain
states.

Let yt be the action output of the NPC agent. Let ϵ2 be
the noise added to yt+1 as ŷt+1. Once the behavior of the AV
under test crosses the threshold of β, we can add noise to the
NPC actions as:

ŷt+1 = yt+1 + ϵ2

ŷt+1 should be such that the added noise ϵ2 is representative
of real world conditions and does not significantly alter the
decision made by the autonomous agent (AV under test in our
case).

IV. EXPERIMENTAL EVALUATION

The experiments aim to demonstrate the effectiveness of
the proposed framework for testing driving policies in a
multi-agent car environment. To this end, we first train AV
policies in multiple driving scenarios to collect their state-
action trajectories dataset. Next, we design a reward modeling
technique by implementing the AIRL algorithm in order to
learn a reward model Rψ that represents the behavior of the
AV under test. The same reward function is passed through
statistical analysis to find threshold values β under which
we assume AV to behave with uncertainty. Lastly, we run
simulation testing and find rare failure scenarios using our
threshold to add perturbation using our disturbance model.
For evaluation, we perform ReMAV’s comparison with two
baselines. Furthermore, we compare ReMAV with prior re-
search based on Bayesian optimization and adaptive stress-
based adversarial testing techniques.

A. Research Questions

During our experimental results and analysis, we ask the
following research questions:

RQ1: Can we observe uncertain states by only observing
the reward distribution of an AV?

RQ2: Can our framework effectively create challenging and
unknown scenarios compared to baselines for the same AVs
for testing?

RQ3: Does the reward function help reduce the search space
for finding edge cases compared to the baseline approaches?

RQ4: How does ReMAV perform compared to the existing
AV testing frameworks?

By first observing uncertain states with reward modeling
in RQ1, we thoroughly compare ReMAV in RQ2 and RQ3
with baselines defined in Section IV-C2. Comparison with
baselines is made for all six evaluation metrics defined in
Section IV-B. As for RQ4, we additionally compare with two
prior methods using three additional metrics such as training-
testing efficiency, total infractions detected, and simulation
steps to find the first failure event.

B. Evaluation Metrics

We evaluate the driving performance of the AVs under test
using the following metrics:

1) CV: rate of collision with another vehicle
2) CO: rate of collision with any other road objects
3) CP: rate of collision with any other pedestrians
4) OS: rate of offroad steering errors
5) TTFC: the time it takes to have the first collision
6) TTFO: the time it takes to have the first offroad occur-

rences

8

We evaluate the ReMAV’s ability to detect failure states in
AVs by comparing its performance under noise disturbances to
its standard performance. We calculate the percentage of error
for each test episode using four metrics (CV, CO, CP, and OS),
with 1500 simulation steps per episode and 50 episodes per
scenario. Then we computed the average error rate for each
metric on all episodes. Additionally, we measure the time in
seconds that it takes for the ReMAV to detect the first collision
(TTFC) and the first offroad occurrence (TTFO) in each test
episode.

C. Experimental Setup
We use Town 3 scenario provided by the Python Carla

API [24] in our partially observable urban-based driving
environment.

1) Driving Scenarios: Our experiments are configured for
testing AVs in single- and multi-agent scenarios. The details of
the training and testing configurations for our experiments are
mentioned in Section IV-D. First, we provide brief descriptions
of the driving scenario shown in Figure 4.

a) Driving Scenarios 1 (Straight): : We use a straight
road from the Town03 map. The driving setting is simple but
suitable, especially for validating single-agent AV policies in
order to see their lane-keeping capability.

b) Driving Scenarios 2 (Pedestrian): : We use the pedes-
trian crossing scenario from the Town03 map. The driving
setting is perfect for validating multi-agent AV policies in a
scenario where pedestrians are faced.

c) Driving Scenarios 3 (Three-Way): : The scenario has
independent non-communicating agents spawned close to the
three-way intersection throughout the testing scenarios. The
choice of a three-way intersection as a driving scenario is
based on its higher complexity for an AV agent.

The three driving scenarios described here are good choices
for evaluating the behavior of AVs due to their diversity and
complexity. The straight scenario is simple but important,
as driving in a straight line is a fundamental capability
of any vehicle. The pedestrian scenario adds an additional
level of complexity by introducing a dynamic agent that the
autonomous vehicle must detect and respond to in real time.
Finally, the three-way scenario is even more complex, as it
involves multiple agents interacting with each other in a more
dynamic environment. By evaluating autonomous vehicles in
these diverse and challenging scenarios, we can gain a better
understanding of their capabilities and limitations.

2) Comparisons with Baselines: Since ReMAV is a care-
fully designed algorithm for the specific methodology, we
established and implemented two comparison baselines for
evaluation: a Random Testing strategy (RT) and a Stress
Testing strategy (ST). These strategies allow us to thoroughly
assess how AVs perform under random or continuous stress
testing conditions, unlike our method, which only introduces
noise perturbations when the AV is predicted to be in a state of
uncertainty. Once we observe uncertain states using the reward
distribution of an AV in RQ1, we compare ReMAV with RT
and ST in RQ2 and RQ3 as mentioned in Section IV-A.

RT randomly selects a state within the testing episode to
add image or NPC noise attacks. This approach provides a

Fig. 4. Illustration of Town03 Carla urban driving environment. The upper
left subfigure represents the first driving scenario (Straight) and top right rep-
resents the second driving scenario (Pedestrian). Lastly, the bottom subfigure
shows our third and final driving scenario (three-way) for the experimental
evaluation of AVs under test.

more realistic assessment of an AV’s performance in everyday
scenarios, often characterized by random, unforeseen events.
The steps performed by the RT baseline can be shown as an
Algorithm 3.

Algorithm 3 Simulation testing using RT
Require: Set of trajectories D = s, a, r.

1: Initialize an empty set of trajectories D = {}.
2: for each episode do
3: Initialize an empty trajectory τ = [(s1, a1)].
4: Observe the initial state s1.
5: Select an action at according to the policy πAV (at|st).
6: Select a boolean value rand = [(True, False)].
7: if rand == True then
8: apply noise disturbance {ϵ1, ϵ2}.
9: end if

10: Append the state-action pair (st, at) to the trajectory
τ .

11: Append the trajectory τ to the set of trajectories D.
12: end for
13: Repeat for each time-step t until the end of the episode:
14: Return the set of trajectories D.

ST, on the other hand, performs stress testing across all
states of the episode using image or NPC noise attacks. Stress
testing pushes an AV to its maximum using the same distur-
bance model to find any weak points. The steps performed by
the ST baseline can be displayed as an Algorithm 4.

3) Evaluation against Existing Frameworks: We also com-
pare our results with two well-known adversarial testing
methodologies, namely BayesOpt [25] and AST-BA [16].

BayesOpt is an adversarial testing approach based on a
Bayesian optimization algorithm that attacks AVs by drawing
physical lines on the road. BayesOpt simultaneously looks for

9

Algorithm 4 Simulation testing using ST
Require: Set of trajectories D = s, a, r.

1: Initialize an empty set of trajectories D = {}.
2: for each episode do
3: Initialize an empty trajectory τ = [(s1, a1)].
4: Observe the initial state s1.
5: Select an action at according to the policy πAV (at|st).
6: Apply noise disturbance {ϵ1, ϵ2}.
7: Append the state-action pair (st, at) to the trajectory

τ .
8: Append the trajectory τ to the set of trajectories D.
9: end for

10: Repeat for each time-step t until the end of the episode:
11: Return the set of trajectories D.

failure events per training iteration to adversarially optimize
its algorithm for the best solution. AST [17] on the other
hand, is an adaptive stress testing formulation that uses the
MDP approach to find failures by attacking the simulation
environment AV using RL in a low-fidelity environment.
It then transfers its learning to a high-fidelity environment
using the Backward algorithm (BA), which learns from expert
demonstrations. AST-BA, similar to BayesOpt, trains and finds
failure scenarios per training iteration. AST-BA has been
evaluated on the Nvidia Drivesim urban driving simulator. On
the contrary, ReMAV first trains on offline trajectories without
the notion of adversarial attacks. Then, it uses the behavior
representation to find failure events.

a) Rationale behind the comparison and choices of algo-
rithms: We selected the mentioned algorithms for comparison
on the basis of the following rationale.

1) Both algorithms were tested in similar vision-based
urban driving environments, such as Carla and Drivesim.

2) Important evaluation metrics are included for compari-
son along with an in-depth analysis of other hyperpa-
rameters involved.

While there have been numerous testing methodologies
proposed in recent years for AV validation (as mentioned later
in Section VII), we are constrained by certain technical limi-
tations discussed in VI-D, which hinder an open comparison.
Additionally, the lack of standard benchmarks also makes it
challenging to select specific testing frameworks as state-of-
the-art.

D. ReMAV Experimental Steps

Step 1: Training AV Hyperparameters and Offline Data
Collection

The details of the hyperparameters selected for the training
of the AV driving agents are given in Table I. The bottom rows
of the table also provide information about offline trajectories
collected once the AV standard behavior is available.

Standard AV behavior can be visualized in a top-down view
using Figure 5. Each row shows episodic examples of the AV
in three driving scenarios. Their behavior with respect to the
evaluation metrics is discussed in depth in Section V.

TABLE I
HYPERPARAMETERS FOR THE PPO BASED AV MODEL.

Stage Hyperparameter Value

Replay Buffer
Minibatch Range 64
Epochs per Minibatch 8
Batch Mode Complete Episodes

Updating AV Policy

Discount factor (γ) 0.99
Clipping (ϵ) 0.3
KL Target 0.03
KL initialization 0.3
Entropy Regularizer 0.01
Value Loss Coefficient 1.0

Other AV Training Hyparameters

Total Training Steps 1002016
Total Training Episodes 910
Learning Rate 0.0006
Batch Size 128
Optimizer Adam [26]

Offline Trajectories using AV

Total Driving scenarios 3
Number of episodes 150 (50 per scenario)
Number of steps per episode 2000
State space dimensions (12800,)
Action space dimensions (8,)
Trajectory collection cost 4 hours

(a) (b)
Straight

(c) (d)
Pedestrian

(f) (g)
Three-way

Fig. 5. 2D visualization of the AV standard driving coordinates in all three
scenarios.

Step 2: Training AIRL Hyperparameters and Gathering
AV Behavior Data

Once we have offline data of state-action pairs from the
first step of ReMAV, we perform the AIRL algorithm to train
Rψ as part of the discriminator network. The details of the
AIRL algorithm can be seen in Table II. The bottom rows of

10

the table represent the part where we utilize Rψ to obtain AV
behavior and their reward values.

TABLE II
HYPERPARAMETERS FOR THE AIRL ALGORITHM.

Stage Hyperparameter Value

Updating G Policy

gen replay buffer capacity 128
Clipping (ϵ) 0.2
KL Target 0.03
KL initialization 0.3
Entropy Regularizer 0.01

Updating D Policy
Discount factor (γ) 0.99
n disc updates per round 4
Training Frequency 32

Other Hyparameters

Number of steps per episode 2000
Total Training Episodes 500
Learning Rate 0.0006
Batch Size 128
Optimizer Adam [26]

Collecting AV Performance Using Rψ

Total Driving scenarios 3
Number of episodes 60 (20 per scenario)
Number of steps per episode 2000
State space dimensions (12800,)
Action space dimensions (8,)
Reward dimensions (1,)

Figure 6 represents the distribution of Rψ per each driving
scenario for standard AV performance. Overall, AV performs
better in the pedestrian scenario, while its actions are the least
confident in the three-way scenario.

Once we have the data with the values Rψ from the
previous step as standard AV, we perform the third step of the
framework to first obtain β for each scenario and use it for
simulation testing under selective disturbance perturbations.

Step 3: Hyperparameters for Simulation Testing using
Rψ and β

Table III provides the details of the number of episodes used
in testing image or NPC action-based perturbations, as well
as the number of steps per episode.

Straight Pedestrian Three Way

15

10

5

0

5

10

15

Re
w

ar
d

Va
lu

es

Fig. 6. Boxplot for Rψ value distribution across three driving scenarios.
The red lines in the boxplots represent the minimum and maximum expected
values beyond which we see some outliers’ reward values. The standard AV
driving model performs comparatively better in a pedestrian scenario with a
positive mean above Rψ values.

TABLE III
HYPERPARAMETERS FOR THE TESTING PHASE IN REMAV

Hyperparameter Value

Total Testing Episodes for Image Noise Testing per scenario 50
Total Testing Episodes for NPC Action Perturbation per scenario 50
Number of steps per episode 1500

E. Simulation Setup

We utilize RLlib [27] from the Ray framework to im-
plement advanced AV driving policies. Our training, testing,
and validation of AVs are performed using the urban driving
simulation framework Carla [28]. Both RLlib and Carla are
integrated by an existing open source platform [29] which
also provides OpenAI’s Gym toolkit for a multi-agent urban
driving environment. Our DRL-based model architectures are
created using TensorFlow [30] version 2.1.0, as part of the
RLlib library.

V. RESULTS AND ANALYSIS

In this section, we analyze the results collected in Section IV
using our desired research questions.

A. RQ1: Can we observe uncertain states by only observing
the reward distribution of an AV?

To observe uncertain regions, we look at the reward values
predicted using Rψ for every pair of state-actions in simula-
tion. This will be considered standard behavior for AV before
we compare it with testing under noise perturbations.

Figure 7 represents multivariate graphs for states with re-
ward and actions with reward, respectively. The graphs for all
three scenarios between state and reward describe the overall
driving behavior of the AV and the regions of interest where
they were either confident or uncertain. From the top row
graphs in the figure, we can clearly see some states for straight
driving scenarios where Rψ gave the lowest reward values. For
the pedestrian scenario, we see good driving conditions with
only a few states visually lying as outliers. As for the state-
reward representation for a three-way scenario, the driving
behavior distribution mainly lies more on the negative-reward
end, giving us a hint of the most likely failures we can get.

The bottom row of Figure 7 shows the reward values of the
standard AV model concerning the action space. We can see
a similar behavior as in the state-reward representation shown
in the top row of the figure for all scenarios. For a straight
scenario, only a few actions influenced more in the driving
decision-making of AV while in the pedestrian and three-way
scenario, we see that almost all of the actions in the discrete
action space contribute to the AV driving behavior.

As discussed in Section III, our goal is to use the distribution
Rψ and analyze it to define the threshold. A threshold β will
be different for all scenarios given the Rψ value calculated by
given state-actions as input. The process can be illustrated in
Figure 8 where the graphs represent the distribution Rψ against
the states-action pairs as AV. Rψ in a straight environment
is skewed in the right direction, and the driving behavior of

11

(a) (b) (c)

(d) (e) (f)0 1 2 3 4 5 6 7 8

Straight

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
wa

rd
s

0 1 2 3 4 5 6 7 8

Pedestrian

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
wa

rd
s

0 1 2 3 4 5 6 7 8

Three-Way

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
wa

rd
s

Fig. 7. Multivariate graph representation of the reward distributions of Rψ for the state distributions (top row) and action distributions (bottom row). (a) (d)
is directed towards AV driving performance in a straight scenario, (b) (e) for pedestrians, and (c) (f) for a three-way. (a) and (b) show standard positive AV
behavior that shows confident driving decisions compared to (c) where the reward values lie mostly in a negative direction while visiting states. We observe
some outlier reward values in a negative direction in (a) and (b) scenarios, while it is hard to observe such outliers when visualizing (c). In the bottom row,
we see an equal distribution of actions in (e) and (f) contributing to AV overall behavior as opposed to in (d) where only a few actions are taken the most
throughout the single-agent straight scenario.

AV as a single agent is very promising. For the pedestrian
scenario shown in the middle figure, we can clearly see that
the distribution is close to the normal distribution. As for the
three-way, it is more skewed toward the left values of the Rψ ,
showing that the threshold might just not cover many areas,
but we might be able to find failure scenarios.

The vertical red line in each of the Rψ distributions in
the figure describes our estimated threshold β for all three
scenarios. As described in Section III-B2, we use a confidence
interval of 95% and use the left boundary of the interval as
β. In straight, pedestrian, and three-way scenarios, we obtain
β=[-12.05, -3.847, -10.92] respectively within our experimen-
tal setup.

In summary, RQ1 discusses the observation of uncertain
states in an AV by analyzing the reward distributions. Mul-
tivariate graphs are used to represent driving behavior and

regions of interest. We also explain the process of defining
a threshold β based on the reward distribution and present the
estimated thresholds for different scenarios.

B. RQ2: Can our framework effectively create challenging
and unknown scenarios compared to baselines for the same
AVs for testing?

After obtaining β values in RQ1, our objective is to utilize
them to answer RQ2. For our experiments, as mentioned in
Step 3 of Section IV-D, we used 50 episodes to test the AVs.

Table IV provides a comparison of the standard behavior
of the AV versus its performance under image noise and NPC
action perturbations. We use 4 of the 6 evaluation metrics
defined in IV-B where a value closer to 0 means a low
percentage of error found, while values near 1 show more
occurrences of failure events within the testing phase. For the

12

0 1 2 3 4 5 6 7 8

(a) Straight

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
wa

rd
s

0 1 2 3 4 5 6 7 8

(b) Pedestrian

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
wa

rd
s

0 1 2 3 4 5 6 7 8

(c) Three-Way

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Re
wa

rd
s

Fig. 8. Rψ distribution in all driving scenarios to model standard AV performance. The red line represents the threshold β for the simulation testing phase
calculated using 95% of the confidence interval. In straight, pedestrian, and three-way scenarios, we obtain β=[-12.05, -3.847, -10.92] respectively during our
experiments. According to Rψ , the standard AV has an overall decent performance in the straight (a) and pedestrian (b) scenarios compared to the three-way
(c) scenario.

straight scenario, we only use CO and OS as evaluation metrics
since there are no pedestrian and driving NPCs involved,
whereas, in a pedestrian scenario, we use CO, CP, and OS
as metrics as we exclude CV due to the non-presence of NPC
driving agents. In the end, three-way scenarios are evaluated
using CV, CO, and OS with no pedestrian information to
record as CP.

As a standard performance without testing involved, the
AV performs perfectly with no collision or offroad steering
errors in the straight scenario. It almost performs similarly
in pedestrian and three-way scenarios with rare collision and
offroad steering occurrences. As we move towards the testing
phase, we start by using minimal image noise perturbations
with our disturbance model defined in Section III-C1. RT
and ST baseline failed to find any failure events in a straight
scenario in the testing phase. As for the ReMAV, we can see
that our disturbance attacks are not enough to force AV in
a straight single-agent scenario even where we were able to
identify few state-action representations below the required
threshold. AV behaved well under test with no road collisions
but faced a minute increase in the offraod steering errors.
This shows that although the default AV driving appeared
to have visible driving states with lower reward values, the
overall performance of the AV using Rψ was positively
distributed, resulting in better performance. We can visualize
the performance of the AV under test in a straight scenario
using Figure 9. We can see that even under the influence of the
image perturbations, the AV was able to recover at the start and
end of the episodes, resulting in driving mostly straight with
no collision on both sides of the road. It faces minor offroad
steering errors using ReMAV but in a single agent situation,
it was able to recover back to normal driving behavior hence
performing mostly above the threshold value.

As we move one step towards a multi-agent interaction, we
start by first using RT to randomly add noise in the testing
episodes of a pedestrian scenario. RT was ineffective when
adding image perturbations and was only able to observe rare
failure instances. The same can be said when RT was applied
for NPC noise perturbations in front of AV under test, where
RT again only observed rare failure events. This time with
RT we also observed some collisions with road objects. ST
performs similarly to RT with few instances of offroad steering
errors, pedestrian collisions, and no road object collisions,
despite continuous perturbation attacks. Compared to ReMAV
simulation testing, the AV under test starts to fail under image
and NPC attacks. From the table we see a huge increase in the
collision rate in terms of both road and pedestrian. We also
see a similar effect regarding the increase in offroad driving
events under both noise attacks. In terms of image noise
attacks within uncertain states, we observe a 16% increase
in road collisions, while it gets to 23% road collision events
once we also produce challenging scenarios by perturbing the
movement of NPC pedestrians within episodes. Furthermore,
we show that the average collision rate in all episodes with
pedestrians themselves tends to increase by 32 and 48% under
ϵ1 and ϵ2 noise. Due to the increase in collisions, in general,
we see its side effect in the average increase in offroad
steering errors by 13%. This can be better explained when
visualized in Figure 10 whereas in comparison to Figure 5
the performance declines, putting safety threads in pedestrian-
facing scenarios. Although AV was able to perform well in a
straight scenario, we were able to face failure events with a
pedestrian scenario using our proposed testing methodology.
A common variable in all of the episodes is the lack of
braking capability as an action when faced with perturbations
in uncertain situations. This led to collisions with pedestrians

13

TABLE IV
COMPARISON OF THE BEHAVIOR OF AV UNDER TEST BEFORE AND AFTER ADDING NOISE IN THE TESTING PHASE, IN TERMS OF CV, CO, CP, AND OS

METRICS, AVERAGED ACROSS 50 EPISODES. USING REMAV, AVS HAVE MORE COLLISIONS AND OFFROAD STEERING ERRORS IN THE PRESENCE OF
MINIMAL DISTURBANCE ATTACKS WHEN THEIR DRIVING BEHAVIOR IS FOUND UNCERTAIN.

Straight Pedestrian Three-Way
CO (%) OS (%) CO (%) CP (%) OS (%) CV (%) CO (%) OS (%)

AV standard behavior 0.0 0.0 0.0 0.008 ± 0.0018 0.214 ± 0.002 0.0542 ± 0.0013 0.0354 ± 0.0010 0.1887 ± 0.0022

RT AV under image noise attack ϵ1 0.0 0.0 0.0 0.0594 ± 0.0013 0.1 ± 0.002 0.129 ± 0.0019 0.0 0.192 ± 0.0022
AV under NPC noise attack ϵ2 - - 0.04 ± 0.0012 0.13 ± 0.0028 0.19 ± 0.002 0.1112 ± 0.0018 0.0153 ± 0.0007 0.133 ± 0.0019

ST AV under image noise attack ϵ1 0.0 0.0 0.0 0.068 ± 0.0014 0.1377 ± 0.0019 0.145 ± 0.002 0.0 0.123 ± 0.0019
AV under NPC noise attack ϵ2 - - 0.0 0.2 ± 0.0026 0.0 0.0 0.0 0.01 ± 0.001

ReMAV AV under image noise attack ϵ1 0.0 0.12 ± 0.018 0.160 ± 0.0004 0.328 ± 0.001 0.341 ± 0.0024 0.375 ± 0.0021 0.249 ± 0.0008 0.69826 ± 0.0022
AV under NPC action attack ϵ2 - - 0.238 ± 0.0012 0.4883 ± 0.0026 0.3428 ± 0.0027 0.411 ± 0.0018 0.2153 ± 0.0007 0.49826 ± 0.0019

(a) (b) (c)

(d) (e) (f)

Fig. 9. Top-down visualization of the AV driving coordinates while testing the AV agent in the presence of disturbance attacks. The testing is performed
in a straight driving scenario. (c), (e), and (f) represent the perfect driving episodes where the AV under test was still able to perform well. Whereas we see
offroad steering errors observed in either starting phase like (a) and (b) when faced with image perturbation attacks, but the AV agent was able to recover in
the rest of the episodic run. We also observe some offroad steering instances as in (a) and (d) at the end of the testing episodes.

and offroad steering failures.
We go through the same testing phase for AV in a three-way

scenario where more than one NPC driving cars are faced in
multi-agent interaction. With RT and ST testing, we found a
small number of timesteps in which AV under test went offroad
steering and collided with other NPC vehicles. Although RT
was able to force AV to crash onto road objects, ST was
unable to do the same. As discussed in RQ1, the AV standard
driving behavior in three-way was expected to be the weakest
among all driving scenarios, but neither RT nor ST were able
to find many likely failure events. For ReMAV in comparison,
similar to the pedestrian-based scenario, we also experience
AV with failure events in the testing episodes. Compared to
standard performance, the collision with NPC agents increased
to 32 and 35% when faced with image and NPC agent-
based noise attacks. Similarly, we see a significant increase

in AV collisions with road objects, with approximately 21 and
17% occurrences of failure events. Compared to all scenarios,
the AV under test faced the highest rate of offroad steering
events discovered at an increasing rate of 50 and 30% for
testing under image and NPC noise attacks. The results show
that AV in a complex multi-agent environment performed the
worst compared to its standard AV performance by a large
margin. We see supportive results by visualizing the driving
behavior of the AV under test in Figure 11. As we observed in
RQ1, the threshold value deducted from the three-way was an
initial indicator of the vulnerability of AV within the three-way
scenario. AV performed well as discussed in Figure 5 but by
using the threshold we were able to add minimal noise values
to the same AV and it resulted in exposing driving behavior
because the agent was least confident in certain states of
driving interaction. Figure 11 depicts all types of failure events

14

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Top-down visualization of the AV driving coordinates while testing AVs in the presence of disturbance attacks. The testing is performed in a
pedestrian driving scenario. (a) and (b) describe the testing episodes in which we observe the collision of the pedestrian with the AV under perturbations of
the image noise. To avoid collision, AV steers offroad as shown in (c), (d), (f), and (g). We also find failure events in which the AV collides with road objects
while trying to avoid pedestrian collision using extreme offroad steering mistakes as shown in (e) and (h).

observed in the testing phase of the framework, especially
when the AV was closer to the three-way intersection. As seen
in the pedestrian scenario, one of the outcomes of this testing
was exposing the AV’s incapability to hit brakes under noise
perturbation in weak states in most of the episodes. In a three-
way scenario, however, we also see that the AV under test
was still able to hit the brakes before crossing the intersection
point and the agent slowed down but within the episode steps
it became confused about the next driving decisions, hence
going off-road to stay out of collisions. This is the reason why
we see higher offroad steering events in Table IV compared
to all types of collisions.

In summary, we analyze the driving behavior of the AV
under test while answering RQ2 in depth. We conclude that
the AV under test performs better in single-agent than multi-
agent scenarios. We observed a significant rate of collision and
offroad instances within the testing phase when AV dealt with
noise under uncertain driving conditions and, unlike in the sin-
gle agent scenario, they were unable to recover to drive well.
Lastly, we show that ReMAV performs significantly better in
all scenarios compared to baselines in finding collision and
offroad steering failure states. We conclude that both types of
noise attack from our disturbance model were only effective
with ReMAV in generating driving situations to find the most
likely failure events.

C. RQ3: Does the reward function help reduce the search
space for finding edge cases compared to baseline ap-
proaches?

Once we have analyzed Rψ and the required thresholds, we
can answer RQ3 using Table V. The table makes a comparison
between two components; i) the time in seconds it takes to add

the first attack, and ii) the average time in seconds to observe
the first failure event.

As described in Section III-C, by using Rψ and β as thresh-
olds per scenario, we simulated AV under test and searched
for state-action pairs that provide a reward value below the
desired threshold. For the straight driving scenario, which is
a single agent driving situation with no NPCs and pedestrians
involved, we only attack using the image disturbance model
with minimal perturbation noise ϵ1 sampled from the Gaussian
distribution. For the pedestrian scenario, the AV under test is
facing a pedestrian crossing a road and therefore we use not
only ϵ1 but also ϵ2 as the minimal noise perturbed within the
actions of the pedestrian as NPC. Similarly to this, we use ϵ1
and ϵ2 for noise attacks on the AV under test in the three-way
scenario.

Since RT attacks by selecting random states per timestep,
it usually adds the first image or NPC actions noise within 2
seconds of the testing episodes. Similarly, ST stress tests each
state space of timestep in the testing phase and therefore starts
adding the first noise in less than a second. As for ReMAV, in
terms of seconds, we see that the AV in the straight scenario
was mostly less confident at the start of the episodes, therefore,
the noise has been added by ReMAV earlier while Rψ crossed
the threshold β negatively. However, in the pedestrian scenario,
it takes ≈ 128 seconds for the image noise and ≈ 55 seconds
for NPC action noise to be added to the simulation testing.
Whereas in the three-way, the testing phase takes ≈ 27 and
≈ 36 seconds for each noise perturbation on average to attack
the AV under test.

To measure the robustness of AV according to their driving
scene, we look at the bottom results of Table V for a clear
picture. AV under test appears to perform well in a single-
agent straight scenario where it does not collide with any

15

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Top-down visualization of the AV driving coordinates while testing AV in the presence of disturbance attacks. The testing is performed in a three-way
driving scenario. We display (f) as the episode with only an NPC collision event and (b), (e), (g), and (h) as the episodes with only offroad steering events.
We observe many episodes like (a), (b), (c), and (d) where we face both collision and offroad steering errors when AV faces perturbation attacks.

road objects. Instead, we see offroad steering errors that occur
primarily in the starting and ending phases of the testing
episodes, which were only found during the ReMAV testing
phase.

A single episode while testing AVs takes around 200
seconds. As we go one level above for testing AV driving
complexity by adding a pedestrian, we do observe AV under
ReMAV colliding with pedestrians and road objects in the
testing episodes. Near the end of the episodes, we also see
an offroad steering error being performed by AV under test.
RT on the other hand takes around the end of the episode
to detect the first collision and also takes multiple episodes
to observe the first offroad steering error state. ST performs
worse in comparison by taking multiple episodes to observe
the first collision and more than 30 minutes of the testing
phase to detect the first offroad steering error.

Finally, we evaluate the robustness of AVs by going a level
up as in three-way driving. From the table, we see that AVs
under ReMAV testing go into their first collision in the first
quarter of the episode run, while they also face first offroad
steering errors while reaching half of the episodic runs. RT
takes ≈ 45 and 33 minutes of the testing episodes to observe
the first collision and offroad steering state respectively. ST
takes similarly ≈ 24 and 60 minutes to detect the first failure
scenario.

In summary, Table V conveys that AVs will be attacked at
different times on average under different driving conditions
based on their least confident interactions during testing. We
also show that ReMAV compared to both baselines takes a
shorter time to observe the first failure states.

We can also visualize the average amount of noise on
average (both in image and NPC action) perturbated within all
three driving scenarios versus the average number of failure
states discovered. According to Figure 12, ReMAV performs

much better by attacking only 9.8% of the states during the
simulation testing phase. In return, it detects 34.3% failure
events. Compared to baselines, RT and ST on average attack
49.8% and 100% of the testing phase whereas they only detect
11% and 11. 2% failure driving states, respectively.

We also address RQ3 by showing the noise distribution
within the testing phase in Figure 13. Each row corresponds
to the three scenarios that we have used in our experiments.
The figures in each row display the reward values with the
states visited. The red dots in the figures highlight the state in
which the noise was added. The figures on the left show the
simulation tests performed by ReMAV where the blue dots are
normal states with Rψ values above their respective thresholds.

0.0 0.2 0.4 0.6 0.8 1.0
Total States per Episode (%)

Re
M

AV
RT

ST

Average no. of states perturbated
Average no. of failure states detected

Fig. 12. Comparison of the behavior of AVs under test in three scenarios.
The top bar against each testing technique defines the amount of noise
perturbed within all three driving scenarios. The bottom bar for the comparison
technique shows the average number of likely failures detected.

16

TABLE V
COMPARISON OF THE BEHAVIOR OF AVS UNDER TEST IN THREE SCENARIOS. THE TOP ROW SHOWS THE AVERAGE TIME IN SECONDS IT TAKES TO ADD
THE FIRST ATTACK. THE TWO BOTTOM ROWS IN THE TABLE REPRESENT THE TIME IN SECONDS TO OBSERVE THE FIRST FAILURE EVENT. THE DOUBLE

DASHED (- -) SHOWS THE TESTING PHASE IN WHICH THE FAILURE EVENT WAS NOT OBSERVED BY THE TESTING TECHNIQUES.

Straight Pedestrian Three-Way

ReMAV Average Time to add fist image noise (seconds) 2.01 128.64 27.604
Average Time to add the first NPC noise (seconds) - 55.476 36.716

RT Average Time to add fist image noise (seconds) 1.05 2.0 2.05
Average Time to add fist NPC noise (seconds) - 1.0 2.5

ST Average Time to add fist image noise (seconds) 0.5 0.5 0.5
Average Time to add the first NPC noise (seconds) - 0.5 0.5

ReMAV TTFC (seconds) - - 132.258 47.436
TTFO (seconds) 16.08 176.21 82.812

RT TTFC (seconds) - - 180.5 2706.5
TTFO (seconds) - - 1830.0 1997.0

ST TTFC (seconds) - - 428.19 1483.43
TTFO (seconds) - - 658.141 3606.744

We see that in the straight scenario, the noise was added the
most compared to the other two scenarios, but the AV under
test performed well by showing resilience to such attacks.
Whereas in multi-agent scenarios as discussed in Figure 12
very low amount of noise has been added in the testing phase.
By first detecting uncertain areas of the AV under test, we
were able to highlight more failure events even with such a
lower amount of strategic noise perturbations. Inversely, RT
in the middle figures targets almost half of the states, whereas
ST adds noise to each state in an episode.

In short, we can visualize the reduction in the search space
for testing using a simplistic noise disturbance model as in
our framework to find failure states. As discussed in our
methodology, a key contribution of our work is to minimize the
number of adversarial attacks to find any failure event by first
identifying the existing flaws of the AV under test. The amount
of noise required for the validation of the robustness of AV
after ReMAV identifies the states under uncertainty is reduced
a lot. As extensively shown in Table V and Figure 12, ReMAV
performs better than the baseline methods when it comes to
finding the first failure state as well as finding the most likely
failure events with the least amount of noise required.

D. How does ReMAV perform compared to the existing AV
testing frameworks?

Here we delve into the comparative analysis of ReMAV
with two existing works.

1) Training and testing efficiency:
First, we compare the computational efficiency of train-

ing and testing between our proposed method, ReMAV, and
BayesOpt. Table VI shows a comparison of the iterations
required by ReMAV and BayesOpt to train and evaluate
AVs in a straight scenario. We see that BayesOpt needs 400
iterations to learn to attack AVs in a straight-driving scenario,
while ReMAV needs ≈166 training iterations to capture the

(a) (b) (c)
Straight

(d) (e) (f)
Pedestrian

(g) (h) (i)
Three-Way

Fig. 13. Visualizations of Rψ values with respect to the noise added in
the respective state space using ReMAV, RT, and ST. For all three rows as
scenarios, red dots are the ones where noise is added using our disturbance
model. (a), (d), and (g) shows the least amount of noise attacks by ReMAV
during the testing phase.

17

AV’s straight-scenario behavior. We also see that ReMAV
takes a total of 500 training iterations to learn three driving
scenarios before attacking AVs. ReMAV’s total testing phase
is performed using 150 iterations with 50 iteration episodes
per scenario. This shows that, without actively looking for
adversarial attacks while training the algorithm, ReMAV first
uses offline data to understand the driving behavior of the AV
in each scenario.

TABLE VI
COMPARISON OF THE TRAINING AND TESTING COMPUTATIONAL

EFFICIENCY OF REMAV AGAINST BAYESOPT. THE COMPARISON IS
CARRIED OUT WITHIN A STRAIGHT DRIVING SCENARIO.

Training Testing

BayesOpt (iterations) 400 -
ReMAV (iterations) 166 50

2) Total infractions detected: We compare ReMAV and
BayesOpt using a three-way intersection scenario to evalu-
ate the number of infractions detected by each algorithm.
Table VII compares these algorithms using CO and OS as
evaluation metrics. We observe significant differences in de-
tecting collision and offroad steering errors when comparing
them side by side.

TABLE VII
COMPARISON OF REMAV AND BAYESOPT WITH RESPECT TO THE TOTAL

NUMBER OF INFRACTION SCENARIOS DETECTED DURING THREE-WAY
INTERSECTION SCENARIO.

of infractions

BayesOpt 2.5% CO in 600 episodes
2.5% OS in 600 episodes

ReMAV 24.9% CO in 50 episodes
69.8% OS in 50 episodes

BayesOpt performs 600 testing iterations to observe 2.5% of
the infractions of the AV under test. On the contrary, ReMAV
detects 24. 9% of collisions with objects and 69.8% of offroad
steering events in just 50 testing iterations using image noise
attacks ϵ1. Therefore, we demonstrate that by first modeling
the reward representation of the AV under test, we can identify
uncertain states and maximize the chances of finding failure
events using image noise attacks.

3) Simulation steps to find first failure event: Finally, we
compare our results with the AST-BA algorithm. The goal
of both ReMAV and AST-BA is to find events in which
the AV under test fails to perform normal driving. AST-
BA adds noise to the movement of the pedestrian NPC, as
also done by ReMAV using ϵ2. As described in III, ReMAV
learns the reward model of the AV first and then analyzes
the distributions to plan strategic attacks, unlike many testing
optimization algorithms.

In Figure 14, we represent the time it takes to find the
first failure event in a pedestrian driving scenario. AST-BA

AST-BA ReMAV
0

2

4

6

8

10

Tr
ai

ni
ng

 T
im

e
(H

ou
rs

)

(a)

AST-BA ReMAV
0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
to

 d
et

ec
t f

irs
t f

ai
lu

re
 (s

te
ps

)

(b)

Fig. 14. Comparison of the ReMAV and AST-BA testing frameworks in terms
of training hours and the time to detect the first pedestrian AV collision.

takes up to 10 hours of training to find the first failure
event. On the other hand, ReMAV’s overall training takes
up to 8 hours, where ≈2.6 hours are captured by the offline
trajectories of pedestrian scenarios. We also show that in terms
of simulation timesteps, AST-BA reports 4060 steps to observe
the first pedestrian collision with an AV under test after
exhaustive training. ReMAV identifies the first collision event
in 925 simulation steps (approximately 55 seconds) during
its testing phase. On the basis of this comparison, we show
that ReMAV performs better in attacking AV within complex
driving situations such as pedestrian crossings.

In conclusion, ReMAV’s efficiency in training and testing
is compared to BayesOpt. ReMAV is found to require signif-
icantly fewer iterations to capture the autonomous vehicle’s
driving behavior. Additionally, when subjected to image noise
attacks in a three-way intersection scenario, ReMAV detects
more infractions than BayesOpt. Finally, ReMAV is compared
to the AST-BA algorithm, in which it is found to perform
better in attacking AVs within complex driving situations such
as pedestrian crossings. Overall, ReMAV is demonstrated to
be an effective method for attacking autonomous vehicles.

Despite having comparisons discussed above, it is important
to mention that both existing frameworks cannot be equally
compared due to the following reasons:

1) Proposing a novel testing framework as a prior step to
existing adversarial techniques has not been done before,
limiting any direct comparison.

2) Each methodology depends on different sets of objective
goals for the training and evaluation of the proposed
testing frameworks.

Instead, we compare them based on common grounds avail-
able, such as driving scenarios for experimentation, metrics
used for evaluation, and training-testing performance.

VI. THREATS TO VALIDITY

This section discusses potential threats to the validity of the
findings presented in this study.

18

A. Internal

We might have introduced errors in the implementation of
the ReMAV methodology, from collecting offline trajectories
to reward modeling of AV under test as well as the simulation
testing phase. To mitigate this threat, we used the widely-used
TensorFlow and Rllib frameworks within the Carla simulator
for algorithm development and carefully examined the imple-
mentation. Furthermore, the implementation of ReMAV 1 will
be publicly available for inspection and use as an open source
project after acceptance on paper. The second threat to validity
is the quality of the offline trajectory dataset used in ReMAV
training. We collected offline trajectories of state-action pairs
within the driving simulator where the AV has been trained.
To mitigate the threat of bias in the ReMAV training phase, we
performed our experiments in three different driving scenarios
for added diversity. Third, hyperparameter tuning plays an
important role in achieving good model performance. In our
work, as mentioned in Section IV-D, we describe hyperpa-
rameters in depth, from the AV standard behavior training to
the ReMAV algorithm training and simulation testing setup.
Using different hyperparameters may lead to different results.
However, we experimented with many different configurations
while training ReMAV and selected the best-performing set of
hyperparameters.

B. External

Threats to external validity relate to the generalization of
the proposed ReMAV framework for testing AVs. Our study
focused on specific driving scenarios based on tackling varied
complexity (from single-agent to multi-agent with NPC cars
and pedestrians) and diversity in scenarios (straight road, T-
intersection), which might not fully represent the range of
situations encountered in overall driving situations. Therefore,
the performance of ReMAV observed in our study might not
necessarily reflect its performance in all possible scenarios.
Moreover, our work requires the testing of image-based AVs in
a multi-agent simulation environment. Such a software archi-
tecture has been recently proposed, and thus limits the usage
of ReMAV for directly importing existing AVs trained in the
Carla simulator by the open-source community. However, our
proposed work is designed in a way where the methodology is
independent of the simulator, and thus making ReMAV more
modular to be used for AV testing is planned for future work.

C. Construct

For our experiments, we used a DRL-based AV policy
under test. As an extension, we aim to target other types of
AV architecture under test to further validate our approach.
Furthermore, we used six evaluation metrics to gather our
results. In different environments and case studies, a different
set of evaluation metrics and statistical analysis could be
relevant. We will consider both threats as a future direction.

1https://github.com/T3AS/ReMAV

D. Conclusion

Despite our comparison to different testing techniques as
discussed in Section V-D, our work is still bound by certain
technical limitations that present significant challenges when
making direct comparisons to the rest of the published ideas.
These limitations encompass factors beyond our control, such
as the difference in experimental setup for training and eval-
uation, evaluation metrics used by the testing frameworks,
driving model of AV under test and its input modality, and
a complex multi-agent-based driving simulation environment.
It is crucial to acknowledge these differences, as they are
commonly encountered in the field of autonomous driving
research [31].

VII. RELATED WORK

In this section, we summarize the literature for testing
AVs and explain how our work differs from relevant related
approaches. The main limitation of existing work is the lack
of focus on first extracting the behavior representation of AV
under test in order to find likely failure events without the
need for expensive testing strategies. We present a learning
algorithm in a black-box manner using inverse reinforcement
learning on existing offline AV data.

A. Reward Modeling for Testing AVs

In general, IRL has played an important role in the advance-
ment of autonomous system technologies. Its main application
has been to model and replicate human driving behaviors [32],
[33], as well as to plan behavior and motion [34], [35].
Moreover, IRL has also been crucial in transferring knowledge
to create new autonomous systems [36], [37].

While IRL has been applied mainly to model behavior and
transfer learning of expert policies, it has not yet been used
for behavior representation in the testing of AVs. ReMAV’s
novel contribution is the use of IRL (especially AIRL [22])
in behavior representation for testing and validating AVs,
which to the best of our knowledge has not been performed
before. We first utilize offline AV data to plan and attack
noise perturbations purely based on the decision-making and
behavior distribution on AV under test.

B. Multi-agent testing using perturbation attacks

Zhang et al. [38] used GANs and metamorphic testing
in DeepRoad to test autonomous driving systems, producing
synthetic images for model robustness checks. Similarly, Deng
et al. [39] used metamorphic testing in natural language
processing to identify errors. DeepTest [40] evaluates DNN-
based AV models, generating real-world test cases, and ap-
plying transformations within the Udacity simulator. Haq et
al. [41] presented a case study comparing the effectiveness of
offline and online testing for deep learning-based AV models.
Offline testing focuses on prediction errors against a dataset,
while online testing looks for safety violations in driving
scenarios. The study uses a pretrained driving model from
the Udacity car simulator. As a limitation, the work needs an
extension of multi-agent testing configurations within online

19

and offline driving scenarios to observe which method will be
more beneficial for multi-agent testing. Despite achieving great
results, these methods are limited as they only test single-agent
environments and overlook multi-agent testing.

BayesOpt [25] uses Bayesian optimization for autonomous
vehicle testing, using Carla-based urban driving simulations
by adding physical lines to create adversarial scenarios. Gan-
gopadhyay et al. [42] also use Bayesian optimization to
generate test cases for AVs. The method involves learning
parameters by analyzing the system’s output to create test sce-
narios that result in the AV failing. AutoFuzz [43] introduced a
grammar-based fuzzing technique that uses the simulator API
specification to generate semantically valid test scenarios for
autonomous vehicle controllers. They compared their results
with certain baselines, including AV-FUZZER [44] using four
different driving scenarios. AV-FUZZER also uses the fuzzing
technique by first incorporating scene descriptions and then
applying a failure-coverage fuzzing algorithm to find scenarios
that can violate different assertion statements. The proposed
methods focus on generating semantically and temporally valid
complex driving scenarios, but do not address all possible
corner cases involving interactions with multiple independent
agents.

In a related study, reinforcement learning is applied to
assess the robustness of AV in a simulated environment
using adaptive stress testing (AST) [17]. Another study by
Koren et al. [16] extends the idea of RL stress testing by
introducing a backward algorithm to find failure scenarios
in a high-fidelity environment using expert demonstrations.
This approach increases the search space and helps identify
failure cases in AV driving policies. A different study by
Wachi et al. [7] used adversarial reinforcement learning to
test a multi-agent driving simulation. This involves training
multiple adversarial agents to compete against a single rule-
based driving model. Although the results seem encouraging,
the methods are only limited to rule-based driving systems
within their experiments. DeepCollision [45] as a recent
work proposes a similar approach to AST and BayesOpt by
learning how to configure their operating environment using
reinforcement learning. They formalize it as an MDP and use
deep Q-networks as the solution to test AI-based advanced
AV systems. Compared to our work, we first utilize offline
AV data to plan and attack minimal noise perturbations purely
based on the decision-making on the AV under test.

C. Behavior analysis for reducing search space

Advsim [46] proposed a framework that generates worst-
case scenarios for autonomous systems using an adversarial
approach. This framework simulates plausible failure cases by
perturbing sensor LiDAR data. Yulong et al. [47] utilized a
GAN model to produce adversarial objects that can be used
to attack LiDAR-based driving systems. Similarly, Delecki et
al. [48] proposed a methodology to perform stress tests on
LiDAR-based perception using a real-world driving dataset
and various weather conditions to evaluate the performance
of autonomous driving systems. Christian et al. [49] addresses
the limitations of existing methods for testing perception

software, particularly LiDAR-based perception systems, by
introducing a novel approach that generates realistic and
diverse test cases through mutations while preserving realism
invariants. As a limitation, they acknowledge the lack of
AV behavior as part of the testing framework as approached
in our work. LiRTest [50] on the other hand introduced a
LiDAR-based AV testing tool that addresses the limitations
of conventional testing techniques. LiRTest implements AV-
specific metamorphic relations and transformation operators
to simulate various environmental factors and evaluate the
performance of 3D object detection models under different
driving conditions, effectively detecting erroneous behaviors
and improving object detection precision. Ding et al. [51]
proposed a framework for generating traffic scenarios by
sampling from joint distributions of autoregressive building
blocks. They develop an algorithm that uses the task algorithm
to guide the generation module for creating safety-critical
scenarios. The authors perform sequential-based adversarial
attacks which is time-consuming. The proposed ideas also do
not take into account the computational cost of finding failure
scenarios, especially in a complex multi-agent environment.
We first investigate the existing state-action distribution of AV
under test by building a reward model in an MDP manner
before generating any sort of adversarial attack.

Gambi et al. [19] described using a technique called search-
based testing to generate difficult virtual scenarios to test self-
driving cars. These scenarios are used to examine the perfor-
mance of AI driving models such as DeepDriving [52] and
to systematically test lane-keeping systems. Song et al. [53]
similarly proposed an end-to-end approach with a combination
of various tools to identify critical states in two AV driving
scenarios. DriveFuzz [54] focused on holistic testing of au-
tonomous driving systems by generating and mutating driving
scenarios to uncover potential vulnerabilities, resulting in the
discovery of new bugs in various layers of autonomous driving
systems. DriveFuzz has successfully discovered new bugs in
various layers of two autonomous driving systems. However,
similar to most feedback-driven fuzzers that register a specific
fitness function as feedback, DriveFuzz can have a local
optima problem in the search space as a result of feedback
guidance and ends up missing other potential bugs that are
less related to the feedback. These methods do not incorporate
reward modeling as a central part of their methodology. Also,
these techniques may not specifically focus on narrowing down
the search space for potential failures, potentially leading to
a wide but less targeted testing scope. In contrast, ReMAV
addresses AV as a multi-agent problem and adopts an MDP
approach while learning the reward model using offline tra-
jectories. This approach considers the complex dynamics of
AVs and their interactions, enabling more effective decision-
making in dynamic environments.

VIII. CONCLUSION

This paper presents a new testing framework for au-
tonomous vehicles that uses offline data to analyze their be-
havior and set appropriate thresholds to detect the probability
of failure events. The framework consists of three steps:

20

first, it uses offline state-action pairs to build an abstract
behavior model and identify states with uncertain driving
decisions. Second, it employs a reward modeling technique to
create a behavior representation that helps highlight regions
of likely uncertain behavior, even when the standard au-
tonomous vehicle performs well. Finally, the framework uses
a disturbance model to test the vehicle’s performance under
minimal perturbation attacks, where driving decisions are less
confident. Our framework finds an increase in failure events
concerning vehicles, road objects, pedestrian collisions, and
offroad steering incidents by the AVs under test. Compared
to the two baselines, ReMAV is significantly more effective
in generating these failure events in all metrics. An additional
analysis with previous testing frameworks reveals that they
need to improve the efficiency of training and testing, the total
discovery of infractions, and the number of simulation steps to
detect the first failure, compared to our method. In general, this
framework provides a powerful tool for analyzing the behavior
of autonomous vehicles and detecting potential failure events.
Our study indicates that by using the proposed framework,
it is possible to identify the vulnerabilities of autonomous
vehicles and concentrate on attacking those areas, beginning
with the basic perturbation models. We illustrate that our
approach successfully detected failure events in the form of
higher collision and steering errors compared to baselines.

Essentially, ReMAV addresses the problem of expensive
adversarial testing approaches that are performed without first
analyzing AV’s existing behavior. ReMAV also addresses the
problem of finding and reducing the search space to only those
states where AVs are less confident. Put simply, our testing
framework proposes that once we can identify states with low
reward values, we should only attack in those regions rather
than attacking AVs from start to end of the simulation testing.

We believe that this testing framework can help in the
fast adaptation of autonomous vehicles in the real world
by providing a powerful tool to analyze their behavior and
identify potential failure events.

REFERENCES

[1] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, Chen, and Q. Alfred,
“A comprehensive study of autonomous vehicle bugs,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ser. ICSE ’20, 2020.

[2] V. Riccio, G. Jahangirova, and A. e. a. Stocco, “Testing machine learning
based systems: a systematic mapping,” Empir Software Eng, p. 5193,
2020.

[3] D. Marijan and A. Gotlieb, “Software testing for machine learning,”
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[4] K. L. Tan, Y. Esfandiari, X. Y. Lee, Aakanksha, and S. Sarkar, “Ro-
bustifying reinforcement learning agents via action space adversarial
training,” in ACC, 2020.

[5] X. Y. Lee, Y. Esfandiari, K. L. Tan, and S. Sarkar, “Query-based targeted
action-space adversarial policies on deep reinforcement learning agents,”
in ACM/IEEE 12th International Conference on Cyber-Physical Systems
(ICCPS), 2021.

[6] B. Chalaki, L. E. Beaver, B. Remer, K. Jang, E. Vinitsky, A. M. Bayen,
and A. A. Malikopoulos, “Zero-shot autonomous vehicle policy transfer:
From simulation to real-world via adversarial learning,” in ICCA, 2020.

[7] A. Wachi, “Failure-scenario maker for rule-based agent using multi-
agent adversarial reinforcement learning and its application to au-
tonomous driving,” in IJCAI, 2019.

[8] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating ad-
versarial driving scenarios in high-fidelity simulators,” in ICRA, 2019.

[9] J. Yang, A. Boloor, A. Chakrabarti, X. Zhang, and Y. Vorobeychik,
“Finding physical adversarial examples for autonomous driving with
fast and differentiable image compositing,” in arXiv, 2020.

[10] M. Uřičář, P. Křı́žek, D. Hurych, I. Sobh, S. Yogamani, and P. Denny,
“Yes, we gan: Applying adversarial techniques for autonomous driving,”
in Society for Imaging Science and Technology, 2019.

[11] K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. A. Malikopou-
los, and A. Bayen, “Simulation to scaled city: Zero-shot policy transfer
for traffic control via autonomous vehicles,” in 10th ACM/IEEE ICCPS,
2019.

[12] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy, “On offline
evaluation of vision-based driving models,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 236–251.

[13] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the
limitations of behavior cloning for autonomous driving,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019.

[14] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell,
“Adversarial policies: Attacking deep reinforcement learning,” in ICLR,
2020.

[15] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adap-
tive stress testing with reward augmentation for autonomous vehicle
validation,” in ITSC, 2019.

[16] M. Koren, A. Nassar, and M. J. Kochenderfer, “Finding failures in
high-fidelity simulation using adaptive stress testing and the backward
algorithm,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

[17] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, “Adaptive
stress testing for autonomous vehicles,” in IEEE Intelligent Vehicles
Symposium (IV), 2018.

[18] A. Sharif and D. Marijan, “Adversarial deep reinforcement learning for
improving the robustness of multi-agent autonomous driving policies,”
in 2022 29th Asia-Pacific Software Engineering Conference (APSEC),
2022.

[19] A. Gambi, M. Mueller, and G. Fraser, Automatically Testing Self-Driving
Cars with Search-Based Procedural Content Generation, 2019.

[20] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,”
arXiv preprint arXiv:1703.06748, 2017.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, 2017.

[22] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv preprint arXiv:1710.11248, 2017.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] “3rd maps and navigation,” 2021. [Online]. Available: https://carla.
readthedocs.io/en/latest/core map/

[25] “Attacking vision-based perception in end-to-end autonomous driving
models,” in Journal of Systems Architecture, 2020.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

[27] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
W. Paul, M. I. Jordan, and I. Stoica, “Ray: A distributed framework
for emerging AI applications,” CoRR, 2017.

[28] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in CoRL, 2017.

[29] A. Sharif and D. Marijan, “Evaluating the robustness of deep reinforce-
ment learning for autonomous policies in a multi-agent urban driving
environment,” in 2022 IEEE 22nd International Conference on Software
Quality, Reliability and Security (QRS), 2022.

[30] “TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org.

[31] Y. Zhou, Y. Sun, Y. Tang, Y. Chen, J. Sun, C. M. Poskitt, Y. Liu, and
Z. Yang, “Specification-based autonomous driving system testing,” IEEE
Transactions on Software Engineering, 2023.

[32] T. Phan-Minh, F. Howington, T.-S. Chu, M. S. Tomov, R. E. Beaudoin,
S. U. Lee, N. Li, C. Dicle, S. Findler, F. Suarez-Ruiz, B. Yang, S. Omari,
and E. M. Wolff, “Driveirl: Drive in real life with inverse reinforcement
learning,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023.

[33] Z. Wu, L. Sun, W. Zhan, C. Yang, and M. Tomizuka, “Efficient
sampling-based maximum entropy inverse reinforcement learning with
application to autonomous driving,” IEEE Robotics and Automation
Letters, 2020.

[34] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-purpose
planning for automated driving,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2019.

https://carla.readthedocs.io/en/latest/core_map/
https://carla.readthedocs.io/en/latest/core_map/

21

[35] Z. Huang, H. Liu, J. Wu, and C. Lv, “Conditional predictive behavior
planning with inverse reinforcement learning for human-like autonomous
driving,” IEEE Transactions on Intelligent Transportation Systems, 2023.

[36] J. Mendez, S. Shivkumar, and E. Eaton, “Lifelong inverse reinforcement
learning,” Advances in neural information processing systems, 2018.

[37] A. K. Tanwani and A. Billard, “Transfer in inverse reinforcement learn-
ing for multiple strategies,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2013.

[38] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, DeepRoad:
GAN-Based Metamorphic Testing and Input Validation Framework for
Autonomous Driving Systems, 2018.

[39] Y. Deng, X. Zheng, T. Zhang, H. Liu, G. Lou, M. Kim, and T. Y. Chen,
“A declarative metamorphic testing framework for autonomous driving,”
IEEE Transactions on Software Engineering, 2023.

[40] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering, 2018.

[41] F. Haq, D. Shin, S. Nejati, and L. C. Briand, “Comparing offline
and online testing of deep neural networks: An autonomous car case
study,” in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), 2020.

[42] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and
P. Jennings, “Identification of test cases for automated driving systems
using bayesian optimization,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019.

[43] Z. Zhong, G. Kaiser, and B. Ray, “Neural network guided evolutionary
fuzzing for finding traffic violations of autonomous vehicles,” IEEE
Transactions on Software Engineering, 2022.

[44] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), 2020.

[45] C. Lu, Y. Shi, H. Zhang, M. Zhang, T. Wang, T. Yue, and S. Ali, “Learn-
ing configurations of operating environment of autonomous vehicles to
maximize their collisions,” IEEE Transactions on Software Engineering,
vol. 49, no. 1, pp. 384–402, 2022.

[46] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren,
and R. Urtasun, “Advsim: Generating safety-critical scenarios for self-
driving vehicles,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 9909–9918.

[47] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. D. Liu, and B. Li,
“Adversarial objects against lidar-based autonomous driving systems,”
in arXiv, 2019.

[48] H. Delecki, M. Itkina, B. Lange, R. Senanayake, and M. J. Kochenderfer,
“How do we fail? stress testing perception in autonomous vehicles,”
2022.

[49] G. Christian, T. Woodlief, and S. Elbaum, “Generating realistic and
diverse tests for lidar-based perception systems,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE).

[50] A. Guo, Y. Feng, and Z. Chen, “Lirtest: augmenting lidar point clouds
for automated testing of autonomous driving systems,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2022.

[51] W. Ding, B. Chen, M. Xu, and D. Zhao, “Learning to collide: An
adaptive safety-critical scenarios generating method,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020.

[52] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE international conference on computer vision, 2015.

[53] Q. Song, K. Tan, P. Runeson, and S. Persson, “Critical scenario iden-
tification for realistic testing of autonomous driving systems,” Software
Quality Journal, 2022.

[54] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim,
“DriveFuzz: Discovering Autonomous Driving Bugs through Driving
Quality-Guided Fuzzing,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022.

	Introduction
	Problem Setup
	Failure Definition
	AV under test
	Markov Decision Processes (MDPs) based Deep Reinforcement Learning (DRL) approach
	Vision-based driving models
	Non communicating model-free RL agents

	Reward Modeling Definition

	ReMAV Framework
	Step 1: Collecting Trajectories of AVs
	AV Architecture details
	Offline Trajectories

	Step 2: Reward modeling for AV behavior representation
	AIRL in our methodology
	AV Standard Performance using R
	Statistical analysis of R for finding threshold

	Step 3: Simulation testing using R
	Disturbance Model

	EXPERIMENTAL EVALUATION
	Research Questions
	Evaluation Metrics
	Experimental Setup
	Driving Scenarios
	Comparisons with Baselines
	Evaluation against Existing Frameworks

	ReMAV Experimental Steps
	Simulation Setup

	Results and Analysis
	RQ1: Can we observe uncertain states by only observing the reward distribution of an AV?
	RQ2: Can our framework effectively create challenging and unknown scenarios compared to baselines for the same AVs for testing?
	RQ3: Does the reward function help reduce the search space for finding edge cases compared to baseline approaches?
	How does ReMAV perform compared to the existing AV testing frameworks?
	Training and testing efficiency
	Total infractions detected
	Simulation steps to find first failure event

	Threats to Validity
	Internal
	External
	Construct
	Conclusion

	Related Work
	Reward Modeling for Testing AVs
	Multi-agent testing using perturbation attacks
	Behavior analysis for reducing search space

	Conclusion
	References

