
33

Acrobats and Safety Nets: Problematizing Large-Scale Agile

Software Development

KNUT H. ROLLAND , University of Oslo, Norway

BRIAN FITZGERALD , University of Limerick and Lero, Ireland

TORGEIR DINGSØYR , Norwegian University of Science and Technology and SimulaMet, Norway

KLAAS-JAN STOL , University College Cork and Lero, Ireland, and SINTEF, Norway

Agile development methods have become a standard in the software industry, including in large-scale
projects. These methods share a set of underlying assumptions that distinguish them from more traditional
plan-driven approaches. In this article, we adopt Alvesson and Sandberg’s problematization approach to chal-
lenge three key assumptions that are prevalent in the large-scale agile literature: (1) agile and plan-driven

methods are mutually exclusive; (2) self-managing and hierarchically organized teams are mutually exclu-
sive; and (3) agile methods can scale through simple linear composition. Using a longitudinal case study of
large-scale agile development, we describe a series of trigger events and episodes whereby the agile approach

was tailored to address the needs of the large-scale development context, which was very much at odds with

these fundamental assumptions. We develop a set of new underlying assumptions which suggest that agile
and plan-driven practices are mutually enabling and necessary for coordination and scaling in large-scale
agile projects. We develop nine propositions for large-scale agile projects based on these new alternative
underlying assumptions. Finally, we summarize our theoretical contribution in a generic process model of
continuously adjusting agile and plan-driven practices in order to accommodate process challenges in large-
scale agile projects.

CCS Concepts: • Software and its engineering → Agile software development ; Software development

process management ; Collaboration in software development;

Additional Key Words and Phrases: Large-scale agile, problematization, assumptions, literature review, case
study, software architecture, requirements engineering, multiteam project management

This publication was financially supported by Science Foundation Ireland under grant nos. 13/RC/2094_P2 and
15/SIRG/3293, and by the competence-building project Agile 2.0, supported by the Research Council of Norway through
grant no. 236759 and by the companies DNV GL, Equinor, Kantega, Kongsberg Defence & Aerospace, Sopra Steria, and
Sticos. For the purpose of Open Access, the authors have applied a CC-BY public copyright license to any Author Accepted
Manuscript version arising from this submission.
Authors’ addresses: K. H. Rolland, Department of Informatics, University of Oslo, Ole-Johan Dahls hus Gaustadalléen
23B, 0373 Oslo; B. Fitzgerald, Lero—the Science Foundation Ireland Research Centre for Software, Tierney Building, De-
partment of Computer Science and Information Systems, University of Limerick, Limerick, V94 NYD Ireland; e-mail:
brian.fitzgerald@lero.ie; T. Dingsøyr, Department of Computer Science, Norwegian University of Science and Technology
(NTNU), Center for Effective Digitalization of the Public Sector, SimulaMet, IT Building, Sem Sælandsvei 9, Gløshaugen,
7491 Trondheim, Norway; e-mail: torgeir.dingsoyr@ntnu.no; K.-J. Stol, School of Computer Science and Information Tech-
nology, Western Gateway Building, University College Cork, Western Road, Cork, Lero—the Science Foundation Ireland
Research Centre for Software, Cork, T12 XF62 Ireland, and SINTEF, Strindvegen 4, Department of IT Management, P.O.
Box 134, 1325 Lysaker, Norway; e-mail: k.stol@ucc.ie.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
1049-331X/2023/12-ART33
https://doi.org/10.1145/3617169

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

https://orcid.org/0000-0002-4007-9425
https://orcid.org/0000-0001-9193-2863
https://orcid.org/0000-0003-0725-345X
https://orcid.org/0000-0002-1038-5050
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3617169
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617169&domain=pdf&date_stamp=2023-12-23

33:2 K. H. Rolland et al.

ACM Reference format:

Knut H. Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol. 2023. Acrobats and Safety Nets:
Problematizing Large-Scale Agile Software Development. ACM Trans. Softw. Eng. Methodol. 33, 2, Article 33
(December 2023), 45 pages.
https://doi.org/10.1145/3617169

1

d

t

2

m

[

[

d

o

2

t

S

[

a

a

t

a

i

t

t

m

w

s

t

r

f

1

w

A

 INTRODUCTION

The Acrobat’s Pole and Safety Net
Picture a circus acrobat on a tightrope; two elements are obvious. One, a long pole
which twitches as the acrobat wobbles in maintaining balance on the tightrope —
this local flexibility is vital to maintain overall stability. The second, a safety net, is
also crucial, but for a completely different reason. The acrobat could practice close
to the ground but in order to scale to greater heights (and survive the process), the
safety net is required — just as the brakes in a car permit faster driving, the safety

net permits the acrobat to scale to greater heights.
Inspired by Bateson [1972] and Farjoun [2010]

Agile methods continue to increase in popularity and are by far the dominant mode of software
evelopment today [State of Agile 2022]. Agile methods were initially suggested to be best suited
o (a) small projects with (b) co-located teams, and (c) non-critical projects [Abrahamsson et al.
009 ; Williams and Cockburn 2003]. These constraints have been challenged and there are now
any successful exemplars of the use of agile methods in distributed environments (e.g., Moe et al.

 2014]), as well as the use of agile in safety-critical and regulated domains, including aerospace
Hanssen et al. 2017], automotive [Hilt et al. 2016], life-sciences [Fitzgerald et al. 2013], medical
evices [McCaffery et al. 2016], and railway [Stålhane et al. 2012]. However, the successful use
f agile methods in large projects remains an outstanding challenge [Booch 2015 ; Dingsøyr et al.
019 ; Edison et al. 2021].

To assist organizations in ‘scaling up’ agile principles to large-scale projects, a multitude of solu-
ions have been proposed. These methods include Water-Scrum-Fall, Large-Scale Scrum (LeSS), the
caled Agile Framework (SAFe), Disciplined Agile Delivery (DAD), Nexus, and hybrid processes
Edison et al. 2021 ; Conboy and Carroll 2019 ; Dingsøyr et al. 2019 ; Šmite et al. 2019]. However,
s we illustrate in this article, these solutions apply the fundamental assumptions underpinning
gile methods in large-scale development settings, without critically questioning or challenging
hem. This, we argue, contributes to an over-reliance on principles and practices as encoded in
gile methods in contexts where those no longer apply, leading to confusion and misunderstand-
ng, including a misplaced insistence that plan-driven practices are somehow ‘undesirable’ and
hat to be ‘agile,’ all practices must be compliant with the Agile Manifesto. While some litera-
ure acknowledges the potential co-existence of agile and plan-driven methods [Boehm 2002], and
ore recently hybrid approaches [Kuhrmann et al. 2018 ; Kuhrmann 2021], we argue that prior
ork falls short on providing any theoretical foundation to help understand and explain the ten-

ions between these different approaches. To allow for a deeper understanding and to help resolve
he perceived tensions between plan-driven and agile methods, we (a) propose to reposition this
elationship as a duality rather than a dualism , 1 and (b) develop new theory to guide the field
urther.
 Summarizing briefly, dualism views paired concepts as separable, whereas duality views paired concepts as interdependent
hich cannot exist independently from each other [Giddens 1979 ; Jackson 1999].

CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

https://doi.org/10.1145/3617169

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:3

D

p

t

o

t

‘

a

s

c

c

p

w

2

i

s

t

l

t

s

t

n

p

t

a

r

o

a

o

a

o

a

r

s

s

l

o

p

t

s

W

2

A

t
Given that large-scale agile appears to be the ‘final frontier’ for agile methods [Booch 2015 ;
ingsøyr et al. 2019] and that the complexity and scale of such development projects have been
erceived as requiring a plan-driven approach, we are particularly interested in challenging
he fundamental assumptions underpinning large-scale agile development. Agile methods were
riginally positioned as lightweight methods in response to plan-driven approaches that were
he industry norm up to the 1990s and which were characterized as ‘documentation-heavy’ and
rigid’ (phase-based) approaches [Boehm 2002]. Over the years, there has been an increased
cknowledgment that even for large-scale projects, traditional plan-driven approaches no longer
uffice (e.g., Ambler and Lines [2012]; West et al. [2011]). The need for agility is driven by
hanging market trends; organizations that cannot respond quickly to market demands will suffer
onsequences. Even behemoths such as Microsoft, which traditionally followed a document-heavy
rocess [Cusumano and Selby 1997] have adopted agile methods, and organizations around the
orld seek to tailor agile methods to large-scale projects [Berntzen et al. 2023 ; Kuhrmann et al.

021 ; Russo 2021].
Although reporting a successful case of scaling up agile methods to large projects in itself is

nteresting, our goal is to go beyond this. Through a systematic analysis of the literature on large-
cale agile, we observe a set of recurring patterns, namely, a set of assumptions in relation to
he use of agile methods in large-scale projects. We adopt Alvesson and Sandberg’s [2011] prob-
ematization methodology to identify fundamental assumptions in prior research on this topic. We
hen challenge these assumptions and, drawing on an in-depth and longitudinal case study of a
uccessful large-scale agile project, we propose a set of revised assumptions that provide a better
heoretical foundation to capture the duality between agile and plan-driven practices. Using this
ew set of assumptions, we theorize on the specific balanced combinations of such practices to
rovide better insights regarding the scaling up of agile methods. To the best of our knowledge,
his is the first attempt to theorize large-scale agile methods.

In this article, we take an alternative approach to the more common practice of gap spotting and
dopt a problematization approach. This approach is not widely used within software engineering
esearch. Hence, this article is also structured in an unconventional way (see Figure 1), consisting
f two major phases. In Section 2 , we outline Alvesson and Sandberg’s problematization method
nd its relevance for software engineering and agile software development. In particular, we draw
n the framework of Farjoun [2010], which was originally designed to distinguish between dualism
nd duality, to help understand how agile and plan-driven methods are traditionally positioned as
pposites. The first phase of our research approach is a systematic review of the large-scale liter-
ture through which we identify three major assumptions—Section 3 presents the details of this
eview. We then shift to the second phase of our research, which is a longitudinal case study of a
uccessful large-scale agile software development project. Section 4 presents the design of the case
tudy. Section 5 presents the results of our analysis, which comprises a series of ‘episodes’ that il-
ustrate in detail how the three assumptions were challenged, and how agile and plan-driven meth-
ds were successfully combined. We then revisit the framework of Farjoun [2010] in Section 6 to
osition and reflect on our observations, and propose a process model [Newman and Robey 1992]
hat explains the dynamics in large-scale agile software projects. We develop a set of alternative as-
umptions and further develop theory by deriving a series of propositions to guide future research.
e conclude in Section 7 with an outlook on how our propositions might inform future work.

 PROBLEMATIZING FUNDAMENTAL ASSUMPTIONS IN LARGE-SCALE AGILE

SOFTWARE DEVELOPMENT

lvesson and Sandberg [2011 , 2013] propose the problematization of both conventional assump-
ions and the consensus in prevailing theoretical perspectives. They point out that the typical mode
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:4 K. H. Rolland et al.

Fig. 1. Structure of this article.

o

g

R

a

t

s

“

S

t

S

a

a

a

l

r

r

s

e

r

s

t

A

f framing research is to identify research questions through spotting gaps (or even ‘constructing’
aps) in current theories or empirical studies—what they have termed the gap-spotting approach .
esearch in software engineering and in many other scientific fields is expected to draw from,
nd build upon, established bodies of research. Researchers often construct their research ques-
ions through finding ‘gaps’ in an existing body of literature. In the context of large-scale agile
oftware development, Paasivaara et al. [2012 , p. 236] identified a ‘gap’ in the research literature:
[We] found only three research articles briefly reporting experiences from projects with more than ten
crum teams.” By pointing out the scarcity of research on Scrum projects that involve more than
en teams, the authors identified a gap upon which they position and legitimate their research on
crum-of-Scrums.

The literature on agile software development offers several examples of consensus building
round important research challenges [Gregory et al. 2016], complemented by special issues on
gile systems development (e.g., Abrahamsson et al. [2009]). Most of these initiatives can be char-
cterized as ‘gap identifying,’ with gaps being uncovered in prior research or gaps between the
iterature and industry needs.

While gap-spotting is clearly a useful approach that has led to significant contributions in most
esearch fields, a fundamental problem with the gap-spotting approach is that it can result in
einforcing existing theories rather than challenging them. By adopting the assumptions from prior
tudies without critical reflection, these assumptions are amplified. Researchers tend to then build
ntirely from the premises of prior literature without challenging the consensus.

As a primarily practitioner-driven phenomenon, agile methods have been viewed as having
elatively weak theoretical grounding [Abrahamsson et al. 2009 ; Conboy 2009]. Rather than ‘con-
tructing’ a gap in the current large-scale agile literature, we adopt a problematization approach
hat challenges the prevalent assumptions in that literature to form an alternative perspective that
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:5

Table 1. Typology of Assumptions [Alvesson and Sandberg 2011]

Assumption Type Description Examples Related to Agile Literature

In-house
assumption

Assumptions that are shared by
subgroups of researchers within an area
of research and which affect how they
conceptualize or measure a particular
subject matter. Each agile method can be
seen as a ‘school of thought,’ including
Scrum and XP.

The role of Product Owner within Scrum

as a surrogate for the customer, and who
is assumed to know the business
requirements.

Root metaphor
assumptions

Assumptions that signify a deeper
aspect of the subject matter by using
conceptual images to understand the
topic of study.

“Waterfall” as a metaphor for the software
development process, with strictly
unidirectional phases separated by ‘stage
gates.’

Paradigmatic
assumptions

Assumptions concerned with the
underlying epistemological and
ontological views of the research in the
dominant literature. These views may
relate to the research paradigm (e.g.,
positivist vs. constructivist research, or
qualitative vs. quantitative), and also the
theoretical paradigm.

Overemphasis on success stories and case
studies which are typically analyzed from

a positivistic viewpoint [Paasivaara et al.
2012].

Ideological
assumptions

Ideological assumptions include those
that relate to political, moral, and
gender-related issues.

‘Agile Manifesto’ as an ideological
statement: the term ‘manifesto’ is
commonly used as a declaration or
statement of intent in politics (e.g.,
“Communist Manifesto”).

Field assumptions Field assumptions can be identified
within several different branches of a
field of study.

The assumption that agile methods are
best suited to small projects, with

co-located teams, and for non-critical
development contexts. These assumptions
have long been held for all agile methods,
but these have been challenged (e.g.,
Hanssen et al. [2017]).

c

d

a

o

r

s

S

l

an help us understand the dilemma between agility and rigidity seemingly inherent in large-scale
evelopment.
Alvesson and Sandberg [2011] provide methodological guidance in the form of a typology of

ssumptions and a series of ‘principles’ for identifying and challenging assumptions. The typol-
gy defines five types of assumptions (see Table 1). This typology provides useful prompts for
esearchers to identify candidate assumptions that can subsequently be further studied. In our
tudy, we used this taxonomy to increase our sensitivity while reviewing prior agile literature (see
ection 3).

The second part of the methodological guidance is a set of principles for identifying and prob-
ematizing assumptions (Alvesson and Sandberg 2011 , p. 260]:

(1) Identify a domain of literature: What main bodies of literature and key texts make up the
domain?

(2) Identify and articulate assumptions: What major assumptions underlie the literature
within the identified domain?

(3) Evaluate articulated assumptions: Are the identified assumptions worthy of being
challenged?

(4) Develop alternative assumptions: What alternative assumptions can be developed?
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:6 K. H. Rolland et al.

Fig. 2. Stability and change as mechanisms and outcomes to characterize plan-driven versus agile software

development (based on Farjoun [2010]).

r

s

w

l

a

t

a

m

a

a

m

w

o

i

d

T

c

C

a

b

A

(5) Relate assumptions to audience: What major audiences hold the challenged assumptions?
(6) Evaluate alternative assumptions: Are the alternative assumptions likely to generate a

theory that will be regarded as interesting by the audiences targeted?

In this article, we focus on the literature on large-scale agile software development specifically,
ather than the agile literature more broadly (Step 1 above). We identify and articulate major as-
umptions in this body of literature (Step 2), and we argue in the same section that these are
orthy of being challenged (Step 3), and demonstrate that these are prevalent in many papers on

arge-scale agile (Step 5). Through a longitudinal case study (Sections 4 and 5), we illustrate these
ssumptions and develop a set of alternative assumptions (Step 4) in Section 6 . We seek to develop
heory by deriving a series of propositions (Step 6) and discuss the implications of our alternative
ssumptions (Section 6).

To start our investigation, we draw on Farjoun [2010] to position plan-driven software develop-
ent and agile methods (Figure 2). Farjoun proposes two key dimensions — namely, mechanisms

nd outcomes — both of which may feature stability or change. Mechanisms are the processes
nd practices that people employ, whereas outcomes are the objectives that people enacting those
echanisms seek to achieve. This conceptualization is especially relevant to, and resonates well
ith, the traditional positioning of plan-driven and agile approaches to software development.
The waterfall approach emerged as a reaction to the “software crisis” identified in the early years

f the software field [Naur and Randell 1968] whereby most software development projects ended
n failure to meet user needs. However, plan-driven, waterfall approaches led to lengthy, multi-year
evelopment times [Taylor and Standish 1982] without resulting in software that met user needs.
his issue led to the emergence of the Agile Manifesto, which sought to address these issues.
Plan-driven approaches to software development were first and foremost seen as a way of se-

uring a development process that is stable, predictable, and produces low variance [Boehm 2002 ;
ho 2009 ; Humphrey 1989 ; Vinekar et al. 2006]. For example, Figure 2 suggests that the waterfall
pproach, as a series of consecutive steps in the software development lifecycle that are separated
y stage gates, is such a plan-driven mechanism. Another plan-driven mechanism (or practice) is
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:7

t

s

i

r

a

t

D

t

i

s

m

m

o

2

i

3

I

l

o

w

A

O

v

n

a

a

i

a

s

d

r

m

t

l

q

e

a

c

a

o

r

t

m

M

o organize teams hierarchically, each responsible for a specific part (component) of the overall
oftware system. Each of these software components is carefully planned and analyzed, resulting
n a detailed set of fixed requirements before development starts. These are ‘stable’ mechanisms,
ather than ‘change’ mechanisms, and traditionally have been thought to lead to stability, and
ssociated attributes, such as predictability [Humphrey 1989 ; Vinekar et al. 2006].

In contrast, agile practices and processes are often seen as a way of achieving flexibility, innova-
ive solutions, and adaptability [Conboy 2009]. Figure 2 suggests that agile practices such as no Big
esign Up Front (BDUF), self-organizing teams, and backlog refinement are change mechanisms

hat lead to change outcomes, and associated attributes such as adaptability. From the start, ag-
le and plan-driven approaches have been positioned as opposites, whereby plan-driven methods
uggest the use of stable mechanisms leading to stable outcomes, and agile methods offer flexible
echanisms leading to changeable outcomes [Nerur et al. 2005 ; Vinekar et al. 2006].
As the figure suggests, this dichotomous positioning suggests that both plan-driven and agile
ethods are ‘extreme’ opposites. A number of empirical studies show that large-scale agile meth-

ds rely on a variety of underlying mechanisms, ways of organizing, and roles [Dingsøyr et al.
018 ; Paasivaara and Lassenius 2014]. However, these studies tend to draw on the same underly-
ng assumptions as small-scale agile projects [Rolland et al. 2016], as we discuss in the next section.

 PREVAILING ASSUMPTIONS IN LARGE-SCALE AGILE LITERATURE

n the first step of our research, we conducted a systematic review of the relevant literature on
arge-scale agile development to identify the assumptions underpinning prior research. The goal
f the literature review was to investigate common assumptions in this body of work which
ere specifically related to the nature of large-scale software development using agile methods.
ppendix A presents the protocol for this literature review and describes details of our analysis.
ur review comprised 67 relevant papers. This number is consistent with a recent systematic re-
iew of large-scale agile [Edison et al. 2021]; our number of papers is slightly lower as we did
ot include experience reports, but only empirical studies. The reading of the papers was divided
mong the author team. During the review process, we met at regular intervals, both in person
nd at online meetings. We also conducted several in-person full-day workshops that allowed for
n-depth discussions. As each paper was read and discussed by the author team, we continuously
sked: ‘ what assumption does the paper make in relation to the use of agile methods in large-scale
ettings?’ For each paper, we kept short notes in temporary memos, which were subsequently
iscussed among the team. During the iterative analysis process, we identified three central and
ecurring assumptions that are key to large-scale software development: (1) agile and plan-driven
ethods are perceived to be mutually exclusive; (2) self-managing and hierarchically organized

eams are perceived to be mutually exclusive; and (3) scaling of agile methods is seen as a simple
inear composition.

Table 2 presents a fragment of the full table (Table A.1) in the appendix that captures relevant
uotes in relation to these three assumptions that emerged during our analysis. For example, Bick
t al. [2016] suggest: “Top-down planning refers to a mechanistic, centralized approach. Bottom-up
djustment, on the on the other hand, is largely organic and decentralized.” This clearly dichotomizes
oordination approaches as seen from agile and plan-driven perspectives, thus emphasizing the
ssumption that self-organization and hierarchical coordination are mutually exclusive. Several
ther studies make similar observations that suggest the same assumption. Likewise, two of the
eferences in Table 2 provide evidence for Assumption 3, namely, that agile methods can be scaled
hrough “simple” linear composition. For example, Cho et al. [2006] suggest that the Scrum cere-
ony can be scaled up linearly by conducting a “Scrum of Scrums” (SoS), a meeting among Scrum
asters from different Scrum teams.
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:8 K. H. Rolland et al.

Table 2. Quotes from Selected Sources that Exhibit Existence of Assumptions

Reference

Assumption 1: Agile
and plan-driven

methods are perceived

to be mutually

exclusive.

Assumption 2:
Self-organization and

hierarchical coordination

are perceived to be
mutually exclusive.

Assumption 3: Scaling
of agile methods is

seen as a linear
composition.

Bick et al.
[2016]

Top-down planning refers to a
mechanistic, centralized
approach. Bottom-up
adjustment, on the other hand,
is largely organic and
decentralized.

Scaling via Iterative
Proxy Collaboration —
CPO, SoS, central
architecture team.

Cao et al. [2004] Agile methods lack of
up-front design and
documentation.

We didn’t have layers and
layers of management. We got
rid of those. Decentralizing
development-oriented
decision-making is critical for
a successful agile — push

decision-making down,
empower the people who are
actually doing the work.

Cho et al. [2006] The daily Scrum of
Scrums is a daily meeting
for SMs from multiple
Scrum teams.

Costa et al.
[2014]

In opposition to the previous
methodologies, agile
development processes are
based on self-organized teams
resolving their problems.

Table 3. Frequency of Observed Assumptions in the Sample of Reviewed Papers (see Appendix

Table A.1 for References to Papers)

Assumption

Number of
papers

Assumption 1: Agile and Plan-driven Methods as Mutually Exclusive 40

Assumption 2: Self-Organization and Hierarchical Coordination as Mutually
Exclusive

33

Assumption 3: Scaling through Simple Linear Composition 37

o

r

w

m

3

F

w

(

e

A

As mentioned, Table A.1 in the appendix presents extracted text from all 67 papers included in
ur review. Table 3 summarizes the frequency of observations of these three assumptions in the
eviewed papers. Taken together, these quotes provide evidence that these three assumptions are
idespread throughout the large-scale agile literature. We now discuss these core assumptions in
ore detail to explain what they mean and how they manifest in the literature.

.1 Assumption 1: Agile and Plan-Driven Methods are Mutually Exclusive

rom the outset, agile methods were positioned to be in contrast to so-called plan-driven methods
hich followed a waterfall life-cycle (Beck and Boehm 2003 ; Boehm and Turner 2003]. Table A.1

see appendix, column 2) lists several such claims that contrast agile and plan-driven methods; for
xample, Cao et al. [2004] wrote: “Agile methods lack up-front design and documentation.”
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:9

t

t

t

e

E

a

e

m

t

m

b

w

w

2

s

[
N
t

f

A

c

b

a

r

o

p

u

p

p

3

O

“

s

m

e

m

“

t

f

t

p

b

w
Agile advocates argued that all too often development processes were ‘plan-oriented’ rather
han ‘reality oriented’ in that the software produced by traditional processes failed to meet ac-
ual business needs, despite significant and formal up-front planning. This view is captured in
he acronyms BDUF (Big Design Up Front) and YAGNI (You Ain’t Gonna Need It) [Abrahamsson
t al. 2010]. Agile is characterized as avoiding this ineffective planning, with the assumption in
xtreme Programming (XP) that a system metaphor can be sufficient to guide development. The
gile approach is thus positioned as a reaction against traditional ‘relay-style’ development with
xhaustive up-front planning and design [Hannay and Benestad 2010]. Being adaptable to change
ay be seen to be in contradiction to planning [Gunyho and Gutiérrez Plaza 2011]. The fundamen-

al assumption behind traditional methods is that systems are fully specifiable and built through
eticulous and extensive planning. Agile methods, on the other hand, assume that systems can be

uilt from scratch through continuous design, improvement, and testing based on rapid feedback
hile responding to changing requirements [Nerur et al. 2005 ; Dingsøyr et al. 2018].
Several researchers have suggested ‘decision rules’ to determine whether an agile method

ould be more appropriate than a plan-driven approach [cf. Boehm 2002 ; Boehm and Turner
003 ; Hobbs and Petit 2017]. However, when transitioning to agile, Weiss and Brune [2017]
uggested staying “as close as possible to pre-defined agile practices,” citing Boehm and Turner’s
 2003] rationale that it is more effective to “build up processes rather than tailoring them down.”
ote that studies of “small scale” development suggest that methods are “adopted and adapted”

o suit the context of development [Dittrich et al. 2020] and there are often deviations between
ormal descriptions of methods and “methods-in-action” [Fitzgerald 1996].

The Agile Manifesto suggests that the nature of planning in agile projects is emergent (e.g.,
dikari et al. [2009]; Bjarnason et al. [2011]; Ernst and Murphy [2012]; Ramesh et al. [2012]). The

eremony of ‘backlog refinement’ further illustrates the assumption of emergent planning. The
acklog reflects the requirements as they are known and prioritized, and the assumption is that, as
dditional learning occurs during development, the backlog planning estimates can be updated or
efined in preparation for development. The fact that requirements inevitably change (or become
bsolete), allied to the cost of design carry-through from earlier stages, mitigates against upfront
lanning [Elshamy and Elssamadisy 2006]. At best, “a little design up front approach” might be
sed, for example, an ‘architecture spike’ might be considered to establish an initial architectural
latform, but overall, these spikes are acknowledged as exceptions which are counter to agile
rinciples [Alsaqaf et al. 2017].

.2 Assumption 2: Self-managing Teams and Hierarchically-organized Teams are

Mutually Exclusive

ne of the key ideas in agile software development lies in the Agile Manifesto principle that the
best architectures, requirements, and designs emerge from self-organizing teams.” The notion of
elf-managing teams is certainly a fundamental assumption for early influential advocates of agile
ethods [Fowler and Highsmith 2001], and is a key aspect in Scrum [Deemer et al. 2010 ; Hoda

t al. 2013]. Table A.1 (see appendix, column 3) lists the claims in several papers that contrast self-
anagement and traditional top-down organization. For example, Bass and Haxby [2019] wrote:

Self-organizing teams relinquish some autonomy toward an architecture board or design authority
hat determines common policies and approaches.” This assumption is also present in large-scale
rameworks such as Large-Scale Scrum (LeSS) and the Scaled Agile Framework (SAFe) which state
hat a team should be a “self-organizing, self-managing, and cross-functional group of five to nine
eople” [Leffingwell 2016]. Eckstein [2016] states that while some believe that a large team cannot
e self-organized, establishing a hierarchy for control “is often understood as a sign of mistrust,
hich has negative effects on morale.” A particular challenge when migrating to agile methods is
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:10 K. H. Rolland et al.

t

t

o

W

t

d

t

m

a

c

c

s

s

a

s

a

c

n

D

g

t

g

o

2

t

i

c

i

R

o

3

T

p

i

‘

o

s

t

o

t

i

s

i

A

he change from a hierarchically-oriented organization with heavy specialization to self-managing
eams. The roots of self-organization in software development have been traced back to research
n complex adaptive systems and complexity theory [Nerur at al. 2010 ; Vidgen and Wang 2009].
ith self-management, the focus is “more on adding value to the team’s primary objectives rather

han on their job functions alone” [Nerur et al. 2010].
Maruping et al. [2009] suggest that autonomy can be both beneficial and detrimental in an agile

evelopment context. However, we did not identify any studies on large-scale agile development
hat directly challenge the role of autonomy. On the contrary, current research tends to take self-
anaged teams for granted, even as the scale increases [Gustavsson 2018]. For example, Paasivaara

nd Lassenius [2019] argue that “the whole development organization [can form] a single empowered
ommunity,” suggesting that empowerment can be driven by self-organization. Schwaber [2013]
autions that traditional coordination practices can suffocate team autonomy and thus restrict
elf-management.

Hoda and Murugesan [2016] identify several challenges that arise from self-management. They
uggest that self-management will be problematic in trying to establish cross-functional teams,
s there will be a natural tendency in self-managing teams to choose specializations that suit the
kills and preferences of team members. Šablis and Šmite [2016] contrast the bottom-up ‘empower
nd reflect’ style of team management with the top-down command and control style, and asso-
iate the former with the agile concept of ‘team autonomy.’ However, some studies identify the
eed for boundaries on autonomy and flexibility. For example, Hannay and Benestad [2010] and
ingsøyr et al. [2018] report restrictions on autonomy in order to provide control in large pro-
rams. Likewise, Bass and Haxby [2019] identify the need for restrictions on team self-governance
o ensure compliance with standards and guidelines. For example, the agile concept of ‘emer-
ent architecture’ may lead to noncompliance with architectural standards and rules set within an
rganization.
It has been suggested that scaling of self-managing teams should be organic [Tessem and Maurer

007] with the addition of specialist roles (e.g., a champion to elicit top management support for
eam self-management [Hoda and Murugesan 2016]). A significant facilitator of self-organization
s the notion of direct face-to-face communication, also a core theme of agile methods. Direct
ommunication facilitates timely feedback and reflection on activities that have taken place. This,
n turn, facilitates continuous improvement [Batra et al. 2011], which is the goal of the Sprint
etrospective ceremony in Scrum, for example. In large projects with distributed teams, distortion
f communication can occur across organizational layers [Dingsøyr et al. 2014].

.3 Assumption 3: Linear Composition versus Multi-faceted Scaling

here are several examples which illustrate the assumption that agile activities can be scaled un-
roblematically in a straightforward linear fashion. The Scrum of Scrums concept [Arseni 2016]
s a clear example of this, with all Scrum Masters meeting for a higher-level Scrum meeting,
metascrum’ [Dingsøyr et al. 2017], or ‘forum of forums’ [Šāblis and Šmite 2016], or even ‘Scrum-
f-Scrum-of-Scrums (SoSoS)’ [Paasivaara et al. 2012]. Gupta et al. [2017] propose a linear temporal
cale of daily, weekly, and bi-weekly Scrum of Scrums. Even in terms of organizing the transforma-
ion from plan-driven to agile, Laanti [2017] suggests that work should be arranged into “backlogs
f smaller batches” as opposed to the traditional model, again based on the assumption that reduc-
ionism is possible in transforming from a large plan to a scaled-down version.

Linear composition is also evident in how roles are amalgamated across teams. For example,
n relation to the Product Owner role in Scrum, both Gustavsson [2017] and Putta et al. [2018]
uggest the role of Area Product Owner who would report to the Chief Product Owner, a role also
dentified by Bick et al. [2016]. Similarly, Gupta et al. [2017] identify Chief Product Owner and
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:11

C

A

w

a

d

t

3

I

i

b

[

d

T

o

i

4

I

2

o

s

c

u

s

t

p

T

H

o

d

a

4

T

i

C

l

t

t

p

i

t

t

e
hief Scrum Master roles, who lead teams of Product Owners and Scrum Masters, respectively.
rseni [2016] suggest a “product owner team” to manage the product backlog.
This linear scaling also appears in the assumption that complex requirements and features,

hich may be expressed in epics, can be broken down into smaller tasks or user stories that can be
ccomplished by small teams over a shorter time period [Sekitoleko et al. 2014]. However, breaking
own development work in this manner serves to mask interdependencies which may spill across
eams [Crowston et al. 2016].

.4 Summary

n summary, the fundamental assumptions underpinning agile tend to be treated as sacrosanct
n the literature, to the extent that some approaches suggest restructuring the organization and
reaking it down into smaller units rather than altering the basic tenets of the agile methodology
Crowston et al. 2016]. These fundamental assumptions are important because they guide how
evelopers and other stakeholders respond to the typical process challenges in large-scale agile.
hese mutually exclusive assumptions also tend to be seen as a dualism , in that it is one or the
ther. However, as we will argue subsequently, these assumptions are better conceived as a duality
n that they mutually reinforce each other.

 CASE STUDY METHOD

n the second step of this research, we carried out a longitudinal case study [Runeson and Höst
009] between September 2014 and December 2019 of a successful large-scale agile software devel-
pment project in a governmental organization (hereafter referred to as ‘NorTran’) in the transport
ector with 7,000 employees across 70 locations. The project was business critical and involved a
ore legacy system which had been running for many years. The focus of the case study was to
nderstand changes in the development process during the project. This was one of three cases
tudied in the research project Agile 2.0 [Dingsøyr et al. 2018 , Dingsøyr et al. 2023] where one key
opic was “large-scale agile development.”

NorTran signed a contract for this project with a major consulting company, ConsultCorp (a
seudonym). ConsultCorp had experience with large-scale agile at another government agency.
he project was a large agile project, involving more than 120 participants over a 4-year period.
ence, the selection of this case gave us a unique opportunity to study the adaptation and scaling
f agile methods in a large project in a complex organizational setting. The project is further
escribed in Section 5.1 . In the following, we present the information on data sources and data
nalysis procedures.

.1 Data Collection

he case study draws on multiple data sources (see Table 4). The main source of empirical data
s 27 in-depth semi-structured interviews with participants from both the customer and Consult-
orp, conducted by the first and third authors. Participants were carefully selected based on their

evel of participation and knowledge of the project. We interviewed informants across all roles in
he project, including project managers, designers, architects, developers, testers, and Scrum Mas-
ers. In addition, we interviewed participants on the customer-side of the project — including the
roject manager, test manager, project architects, user representatives, and domain experts. The
nterviews ranged from 60 to 90 minutes and were transcribed. The interviews were done towards
he end and after project completion.

The semi-structured nature of the interviews encouraged participants to speak freely, to share
heir insights and interpretations, and to steer the topics of discussion as they saw fit. How-
ver, a checklist of topics was used to guide the interviews and included the agile and non-agile
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:12 K. H. Rolland et al.

Table 4. Summary of Data Sources for the Longitudinal Case Study

Interviews Workshops and Meetings Supplementary Sources

27 interviews with informants
from both NorTran and
ConsultCorp, conducted over a
period of 24 months, including:
• Project managers
• Designers
• Architects
• Developers
• Testers
• Scrum Masters
• Test manager
• Project architects
• User representatives
• Domain experts

Eleven meetings with

ConsultCorp to discuss
historical and contextual
insights on the project,
organizational aspects, agile
practices preferred by
consultants, commercial and
competence aspects.

Two workshops focusing on

specific issues identified by
participants as important for
project outcome.

Unrestricted access to project
documentation, including issue
tracker, internal wiki containing
material on user stories, contract
documents, and other project
management documentation.

p

l

a

o

t

h

a

w

t

t

a

d

a

t

4

F

o

t

i

c

r

a

c

o

a

t

t

r

t

t

‘

A

ractices being used, team coordination, scaling of practices and organizing, integration chal-
enges, and collaboration with customers and stakeholders. As the interviews were conducted over
 prolonged period, the checklist was refined over time in order to cover emerging themes. A sec-
nd source of data was a series of 11 meetings with ConsultCorp. We used the information from
hese meetings to inform further in-depth interviews. These meetings also provided important
istorical and contextual insights on the project, the initial assumptions behind its organization,
nd the agile practices preferred by the consultants. A third important source of data was two
orkshops, which focused on specific issues the participants identified as especially important for

he outcomes of the project at different phases in the process. Finally, a fourth data source was
he project documentation to which we had unrestricted access, including the issue tracker and
n internal wiki containing material comprising all user stories, contract documents, and other
ocumentation used by project management. This triangulation of data sources, as well as the tri-
ngulation among researchers, were two tactics that helped us to better establish the credibility of
his study [Lincoln and Guba 1985].

.2 Data Analysis

irst, drawing on the guidelines by Miles and Huberman [1994], we conducted an extensive process
f descriptive coding over three iterations of the transcribed interviews emphasizing characteris-
ics of practices, processes, and major events such as deliverables, changes in organizing, and roles
n the project. The dominant data source was the interview material. Examples of such descriptive
odes included method adaptation, integration team, refactoring, ready-to-sprint process, champion
oles, architect, and developer. A total of 58 descriptive codes were used. As recommended by Miles
nd Huberman [1994], some of these were defined upfront as ‘seed codes.’ Some initial codes were
hanged in later iterations, and a substantial number of codes were added during the first iteration
f descriptive coding. We used the software package HyperResearch to support the qualitative
nalysis. Second, we linked the relevant descriptive categories to the assumptions that we iden-
ified in the literature review. For example, the information coded as ‘champion roles’ was linked
o the issue of ‘self-managing teams versus hierarchically organized teams’ since the champion
ole is an example of how teams became less self-managing as they needed to relate to how other
eams worked and solved similar problems. Consequently, it does not fit the underlying assump-
ion in the agile literature. Similarly, the ‘ready-to-sprint process’ code was linked to the theme of
agile versus plan-driven’ as it can be characterized as a plan-driven activity that was added with
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:13

t

e

r

m

t

t

s

a

o

e

s

e

t

s

s

e

p

a

t

l

u

[

r

T

t

s

d

5

W

p

t

r

i

5

T

e

i

a

y

a

w

a

t

w
he aim of making each individual team more agile, thus illustrating that it is not a question of
ither agile or plan-driven practices, but rather how they are combined . Finally, we also linked the
elevant descriptive codes to the identified theme of ‘simple linear composition versus complex
ulti-faceted scaling.’ One example of this is the ‘code architect.’ This was used to tag informa-

ion regarding how the architect role was practiced and how it changed over time in the project
o facilitate scaling of the project in a non-linear fashion.

In order to focus the analysis on tension points that arise in a large-scale agile development
etting and how these tensions unfold over time, we drew on the social process model of Newman
nd Robey [1992]. We used the temporal bracketing strategy [Langley 1999 ; Langley et al. 2013] in
rder to focus on specific, critical phases in the project. This strategy helps to decompose critical
vents in a “stream of longitudinal data” and “are constructed as progressions of events and activities
eparated by identifiable discontinuities in the temporal flow” [Langley et al. 2013]. Temporal brack-
ting is frequently used to identify phases or stages; in this study, we also identified critical events
hat caused “discontinuities” in how the project was run. Our focus is not on demonstrating a strict
equence of events or identifying phases or stages, but instead on the shifts that took place that
eparate the “before” from the “after.” For this reason, unlike many other studies using this strategy,
.g., Sabherwal et al. [2001], we do not present a timeline of events to identify phases or stages.

We drew primarily on interview data and on information from the two workshops at which the
articipants identified the major events in the project. Workshops were used to check preliminary
nalysis results with informants as a form of member checking [Lincoln and Guba 1985]. We iden-
ified six episodes that were triggered by the tensions represented in the three assumptions in the
iterature. This ‘process approach’ complements a ‘factor approach’ that has been more commonly
sed in other studies, which have focused on ‘success factors’ for large-scale agile transformations
Dikert et al. 2016 ; Russo 2021]. The latter focuses on identifying conditions or predictors that give
ise to a certain outcome, but the process by which this outcome is achieved remains a ‘black box.’
he process approach that we followed, on the other hand, opens up that black box by identifying

he antecedents and the sequence of events that led to a particular outcome. The process approach
eeks to identify ‘triggering events’ that challenge existing ways of organizing development and
evelopment practices, along with episodes in which the project responds to those challenges.

 CASE STUDY RESULTS

e first provide a brief history of the case project. Then, using a process analysis approach, we
resent the findings according to the three broad assumptions identified in the literature (see Sec-
ion 3) and illustrate through six episodes how these assumptions were challenged. This is summa-
ized in Table 5 and discussed in detail below. Apart from these six episodes, several others were
dentified, which are summarized in Appendix B .

.1 The Project

he project used a delivery model based on the Scrum development framework with four differ-
nt deliverables involving sets of new features to be put into production at the same time. The
ncorporation of agile methods was chosen by NorTran in order to “maximize flexibility, and to
void specifying all details up front,” as the NorTran project manager pointed out. In our case anal-
sis, we refer to the first two deliverables as the first phase (Episodes 1 and 2) and the final two
s the second phase (Episodes 3 to 6) because of the differences in the development process that
as used in these two phases. From NorTran’s perspective, the first phase was a failure overall,

s they only developed around 75% of the expected scope. During this phase, it became evident
o NorTran that they lacked the competence and experience to implement large-scale agile soft-
are development projects. This had unfortunate consequences for the capability of the project
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:14 K. H. Rolland et al.

Table 5. Dominant Assumptions from Literature on Large-Scale Agile Software Development Identified

in Episodes of the Case Study

Dominant
assumption Episode description Challenging the assumption

Agile and
Plan-Driven

Methods Are
Perceived to be
Mutually Exclusive

Episode 1: Establishing “Tornado meetings”
In response to initial challenges with the
agile approach to tackle architectural issues,
a plan-driven practice called the “Tornado
meeting” was introduced as an arena for
solving problems related to architecture and
developing better user stories. This practice
also increased common understanding across
teams and roles.

Plan-driven practice: Tornado
meetings as stage-gate to up-front
planning, which also served as a
means to coordinate a common

solution across teams. This
stage-gate helped to resolve issues,
allowing the agile development
process to proceed more smoothly.

Episode 2: Establishing “Ready-to-sprint
process”
Triggered by increasing complexity and
interdependencies across teams, a new

plan-driven practice referred to as
“ready-to-sprint process” was established.
This improved the capability to recognize
important interdependencies. In turn, this
reinforced agile practices within teams.

Plan-driven practice: Ready-to-
sprint as a stage-gate prior to sprint
planning. Allowed teams to be
more flexible and reduced need for
coordination.

Plan-driven practice: Definition of
Prepared to ensure greater
standardization and agreement
across development teams.

Self-managing
Teams and
Hierarchically
Organized Teams
Are Perceived to be
Mutually Exclusive

Episode 3: Reorganizing the project
Triggered by problems due to distribution of
integration tasks across all teams,
management decided to reorganize the
project. The project was reorganized from

generic feature teams into more specialized
teams. One “integration team” was
established as a means for reducing
interdependencies across teams. This both

reduced and increased the teams’ level of
self-management.

Plan-driven practice: Central
integration team as ‘control
structure’ to take ownership of
integration; this additional
top-down mechanism took away
some level of management but also
helped teams to self-organize; thus,
self-management and hierarchical
organization are not mutually
exclusive.

Episode 4: Introducing cross-team roles and
task forces
A bottom-up initiative to establish “champion

roles” for specific technology areas for
supporting all teams. Also introducing
temporary “task forces” to solve specific
problems that were show-stoppers for work
within the teams. This both reduced and
increased the teams’ level of
self-management.

Agile practice: Cross-team

champions who set standards and
provided advice to others. Task
forces as multi-skilled and
self-organizing teams to address
emergent technical problems,
which were dissolved after a
problem was resolved.

Scaling through

Simple Linear
Composition

Episode 5: Scaling across complex
interdependencies and multiple actors
Triggered by the complexity of multiple
actors and systems to be integrated in the
project, architect roles and meetings were
scaled. Architect roles and architecture
meetings were added in order to deal with

continuously reoccurring architectural
challenges. Plan-driven practices were also
needed for coordinating activities with

external actors and projects.

Plan-driven practice: Additional
meetings among architects to
facilitate more fine-grained
coordination.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:15

Table 5. Continued

Dominant
assumption Episode description Challenging the assumption

Agile practice: Architect role
shifted from setting the
architecture to more informal roles
of ‘facilitator’ and ‘knowledge
broker’; this contradicts the
concept of ‘linear composition’
where architects would become
‘supervisors.’

Episode 6: Downscaling
Toward the end of the project, it became
essential to reduce the number of teams and
developers without reducing quality and
productivity. Some developers were given a
“freelance role” outside teams.

Agile practice: New ‘freelance role’
to take on work outside teams to
work on issues that required more
personnel. Scaling down was just
not the reverse of “scaling up,” not
merely taking people off the
project, but rather through a more
flexible process to ensure quality.

t

t

t

d

o

s

E

w

m

(

a

o

a

F

t

m

5

R

p

t
o scale. In turn, this was one of the main causes for the failure of the first phase. According to
he contractual agreement, ConsultCorp established a project with four teams consisting of more
han 50 participants working full-time. However, NorTran, who hired ConsultCorp, had only four
edicated participants. This imbalance in staff numbers became evident when the customer side
f the project struggled to develop user stories, with dependencies identified, in time for the next
print. A NorTran architect described the situation as follows:

“It is hard to follow the supplier [ConsultCorp] and answer their requests. They

want to work in an iterative and agile manner, and expect to have two or three
domain experts in each team. We were never able to deliver those resources — we
were not organized for that.” (Software Architect, NorTran)

The typical Scrum team in the project consisted of around 12 people — 7 developers, one User-
xperience (UX) designer, one technical architect, one functional architect, one domain expert
ho served as a customer proxy representative, and one Scrum Master who also served in the
ore traditional role of team lead.
The project was organized as a matrix organization, similar to other large-scale agile projects

e.g., [Dingsøyr et al. 2018]), implying that a person would be a member of a specific team as well as
 member of an organizational unit for Business, Architecture, Development, Maintenance, Test,
r Infrastructure. The organizing structure was partly replicated for both the customer (NorTran)
nd the consultancy company (see Figure 3).

The Scrum-based delivery model involved splitting this large project into a set of deliverables.
or each deliverable, the process involved first defining user stories on a low level, then archi-
ectural design, overall user experience (UX) design, and refinement of user stories — but with
inimal effort in order to refrain from too much up-front planning.

.2 Combining Agile and Plan-driven Practices

ather than viewing agile and plan-driven approaches as mutually exclusive (Assumption 1), the
roject drew upon both agile and plan-driven practices in combination . In fact, these different prac-
ices were interdependent and strengthened each other: plan-driven practices increased the agility
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:16 K. H. Rolland et al.

Fig. 3. Project organization.

o

p

a

g

p

s

t

f

p

q

t

t

d

R

n

s

l

A

f the teams; in turn, the agile mindset of bottom-up process innovation helped establish new
lan-driven practices. The combination of these practices was triggered by challenging situations
nd events in the project.

5.2.1 Episode 1: Establishing “Tornado meetings”. During the first phase, this episode was trig-
ered by the initial challenge of handling complex architectural issues while using an agile ap-
roach with iterative short sprints. After the first phase, the project was almost a year behind
chedule. The project ran into considerable difficulties related to the initial software architecture,
echnical issues concerning integration with other systems, and scaling the project with additional
eature teams and customer representatives. One of the most pressing issues was that the initial
lan for delivering the architecture with standard off-the-shelf components did not meet the re-
uirements of the project. Hence, there was also a considerable scope creep in this phase.
In order to ensure discovery of such major obstacles at an earlier stage, a new ceremony referred

o as the “Tornado meeting” was established prior to starting work on any future deliverable. This
erm was used because six groups would ‘throw around’ user stories without a set agenda and the
iscussions could take unexpected directions. This practice added a stage in up-front planning.
epresentatives from NorTran and ConsultCorp would meet, including functional architects, tech-
ical architects, testers, and the graphical user interface designer. One of the pressing problems
olved in the Tornado meeting was an architectural issue with off-the-shelf components:

“This problem with off-the-shelf architectural products emerged particularly dur-
ing the Tornado meetings. We were supposed to use off-the-shelf products, but
these turned out not to meet user needs. We realized that it was too complicated

to solve with standardized products. It was less costly to develop everything our-
selves. This made integration easier.” (Technical Architect, ConsultCorp)

Hence, in this episode, the failure to deliver according to plan that resulted from the prob-
ems of integrating different off-the-shelf products triggered the need for better planning and
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:17

p

p

d

m

n

n

t

a

d

a

o

p
T

m

a

n

i

n

o

t

c

u

T

t

p

a

w

S

o

D

w

t

t

a

o

s

i
roblem-solving across teams. The new practice that emerged can be characterized as primarily
lan driven because it introduced a new type of meeting that sought to establish a plan for further
evelopment but also because issues were identified, analyzed, and solved during these Tornado
eetings rather than letting these issues emerge during development and dealing with them as
eeded. This, in turn, allowed the agile development process to proceed more smoothly. Recog-
izing that the introduction of new plan-driven practices was “in conflict” with the agile approach
hat NorTran sought to follow, a functional architect described Tornado meetings as “a pestilence
nd plague, but one of the smartest things we introduced.” Despite being seen as “non-agile,” it was
eemed highly necessary and successful by participants, illustrating that plan-driven practices and
gile methods are not mutually exclusive. The new Tornado meetings facilitated the coordination
f a common solution across teams. Because of this new practice, the upfront architectural design
rocess was completely redesigned, and was described as “extreme service-oriented architecture.”
he ‘extreme’ prefix was chosen to reflect the agility of responding rapidly to the architecture not
eeting the actual user needs. In addition to agile practices such as refactoring, short iterations,

nd prototyping, more plan-driven activities were introduced. These plan-driven practices were
ot a substitute for agile practices; rather, they were complementary practices.

5.2.2 Episode 2: Establishing “Ready-to-sprint process”. As the project progressed, it increas-
ngly faced challenges arising from interdependencies between different teams. This triggered a
eed for more comprehensive coordination prior to commencing the regular cadence of devel-
pment sprints. An additional up-front planning step called the ‘ready-to-sprint process’ was es-
ablished. This was a formal meeting which was practiced frequently during sprints, not to be
onfused with the ‘Sprint 0’ concept that takes place once, prior to commencing the sprint sched-
le. The ready-to-sprint process was introduced in order to optimize completion of user stories.
hus, similar to, but more extensive than the continuous agile practice of ‘backlog refinement,’

his practice involved more people and was done in a three-day seminar, making it a stage-gate
rior to sprint planning.
Before commencing work on user stories, the solution description was discussed by technical

nd functional architects from both customer and provider to that ensure the main design decisions
ere fully discussed and that work would not be delayed when assigned to an actual development

crum team. This practice was described as ensuring agreement on what was called the ‘Definition
f Prepared’ (Functional Architect, ConsultCorp), mirroring the agile practice of ‘Definition of
one.’ This practice ensured greater standardization and agreement across development teams.
Again, this plan-driven practice of ‘ready-to-sprint’ was not in conflict (or mutually exclusive)

ith agile practices already in use, but rather complementary, in that it increased the flexibility of
he teams as less coordination was necessary during subsequent sprints. A team leader described
his process as “key to ensuring good quality of user stories and flow of tasks” (Development Man-
ger, ConsultCorp). Such plan-driven practices also meant that the teams had a better overview
f what to expect in the upcoming sprint. This, in turn, allowed developers and UX designers to
elect more appropriate agile practices, such as prototyping:

“We had a team of customer representatives and developers. However, identifying

how a solution should work is not necessarily trivial. It is hard to know if we really

had a common understanding of new functionality. Although the ready-to-sprint
process helped in that respect, there were misunderstandings. Thus, I started to

develop prototypes.” (Developer, ConsultCorp.)

In this way, the agile practice of introducing prototypes helped to improve communication and
dentify functional requirements. In contrast to the dominant assumption of agile and plan-driven
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:18 K. H. Rolland et al.

p

m

5

S

f

t

o

a

z

d

p

a

l

e

e

m

g

o

a

a

t

c

w

c

v

r

O

A

ractices being mutually exclusive, the introduction of plan-driven practices seemed to enable
ore agile practices such as prototyping, thus creating a positive outcome for the project.

.3 Combining Hierarchical Organizing and Self-organizing

elf-management is a fundamental principle in agile development, in contrast to more hierarchical
orms of management. Self-management is associated with benefits such as flexibility in solving
asks and increased employee satisfaction. In the project, there was a mixture of hierarchical ways
f organizing and a degree of self-management within teams.

5.3.1 Episode 3: Reorganizing the Project. As described in Episode 1, the project experienced
 major setback in the second deliverable, which led to a project reorganization. This reorgani-
ation was triggered by the complexity of integration tasks. All four teams were initially doing
evelopment work involving integration across external projects and systems. In particular, the
roject was supposed to follow the ‘extreme service-oriented-architecture’ practice as explained
bove. Consequently, all teams strove to implement integration through the architecture, but this
ed to misunderstandings and increased workload in coordination across teams. One developer
xplained how this was addressed through the forming of an integration team:

“In the beginning we had purely generic teams where each team had their own

modules. All teams were supposed to have the competence to do everything. But
we soon realized that the scope was too large for any single team, so we established

an integration team. They were responsible for connecting the different systems
and making things function as a whole. Those who were interested in working on

integration were then moved to the integration team.” (Developer, ConsultCorp)

Project management reorganized the project based on competence and interest in doing back-
nd integration work, thereby reducing the self-management of the teams and increasing an ele-
ent of hierarchical organization by management. However, later in the project, when the inte-

ration team had existed for some months, the distinction between the integration team and the
ther teams became more ‘fluid’:

“During sprints there were several teams that worked on the same domain. We
distributed the task among us. We got the integration part, but also helped some
of the other teams.” (Developer, ConsultCorp)

The self-organization now took place within the structures that were imposed from the top (such
s the integration team mentioned above). These findings suggest that self-organization and hier-
rchical management are not mutually exclusive, and positioning these as opposing approaches is
oo simplistic. Rather, self-organization can still happen even within hierarchical management.

5.3.2 Episode 4: Introducing Cross-Team Roles and Task Forces. Triggered by the lack of specific
ompetence or problem-solving capabilities within each team, new roles that cut across teams
ere introduced in Episode 4. The project introduced more than a dozen ‘Champion’ roles. These

hampions were individuals with specialized skills in a specific technology such as databases, ser-
ice integration, GUI-related skills, and information security. The champions provided advice and
eviewed solutions. At technical kick-offs for sprints, champions presented standards and ‘recipes.’
ne informant explained:

“The JavaScript Champion set the standard. He was the most skilled developer
and taught others how to work with JavaScript across teams. He had a mandate to

provide advice and tips on the internal chat-channel, to do code reviews.” (Devel-
opment Manager, ConsultCorp).
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:19

r

s

t

C

t

n

i

a

t

t

i

u

n

5

T

—

s

i

p

s

a

m

c

t

t

o

a

c

n

d

t

s

r

t
Many challenges identified throughout the project required solutions involving multiple project
oles across different teams. One example related to the technical issue of combining thousands of
ource code components into a working software product. The project established a ‘task force’
hat included people from the Operations department, from the customer, and from the Consult-
orp teams. Such a task force would work for “a week or two” (Developer, ConsultCorp) to solve

echnical problems in the automatic build process. Another task force was established to solve tech-
ical problems with the service bus, a component which should offer increased flexibility when

ntegrating the new system with legacy systems.
The ‘task force’ practice was an agile reaction that involved the rapid and ad hoc creation of

 multi-skilled and self-organizing team to address an emergent technical problem, which would
hen provide future stability for the overall development process to proceed as planned. After a
ask force had solved a problem, it was dissolved. While this practice provided a flexible solution,
t did involve a form of role assignment, thus reducing teams’ level of self-management that is
ncharacteristic of cross-functional, agile teams. In this case, the level of expertise necessary was
ot always present in teams, requiring a more cross-team solution.

.4 Scaling as a Complex Sociotechnical and Ongoing Process

he literature on agile software development suggests that scaling is achieved in a linear fashion
for example, through establishing Scrum-of-Scrums as a coordinating mechanism, or by more

ophisticated Communities-of-Practice [Paasivaara and Lassenius 2014]. In the project, scaling
nvolved much more than setting up Scrum-of-Scrums. Importantly, scaling also involved changing
ractices and applying a new configuration of both agile and plan-driven practices in tandem. Our
tudy revealed two specific episodes of scaling.

5.4.1 Episode 5: Scaling Across Complex Interdependencies and Actors. As noted in Episode 1
bove, the Tornado meetings improved the development process by adding a crucial coordination
echanism for planning across teams. In these meetings, problems concerning the upfront ar-

hitecture were resolved. However, the problems associated with scaling in terms of negotiating
he more fine-grained details could not be solved indefinitely, but presented an ongoing challenge
hroughout the project. One architect stated that:

“A significant challenge was how to manage transactions in the system, this was
a discussion between architects and the chief architect. ... all teams worked on the
same development and test servers. And if there were things causing problems
— sometimes the servers would go down when introducing new code ... this was
handled by coordinating amongst architects across the development teams.” (De-
veloper, ConsultCorp)

In order to scale the architecture, a new meeting among architects was established at the end
f Deliverable 1 to enable coordination and communication of details of the software architecture
cross different teams. Over time, the frequency and importance of these architecture meetings in-
reased, as the different feature teams needed to use many of the same services when developing
ew features. Although each feature team was responsible for a specific domain, the interdepen-
encies between domains increased, which made coordination and communication of these in-
erdependencies increasingly important. Large-scale systems cannot simply be decomposed into
maller-scale components and features that are delivered by feature teams. Instead, the scaling
equires considerable fine-grained coordination to identify and resolve key interdependencies.

The architect role also shifted in focus. While initially focused on the overall software architec-
ure to ensure a maintainable, efficient, and evolvable architecture, the architect role evolved into
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:20 K. H. Rolland et al.

a

r

t

m

s

[

f

d

d

s

p

d

m

o

f

t

a

c

t

f

t

o

T

a

i

s

A

A

 translator role between the feature teams and the rest of the project. As one architect noted: “our
ole became a facilitator, a kind of front-end for developers” (Developer, ConsultCorp). In this sense,
he architects provided an important new coordination mechanism across the different develop-
ent teams that increased stability and predictability.
The architect role was also very important in establishing contact and communicating with

takeholders outside the project. In this sense, architects became key ‘knowledge brokers’
Pawlowski and Robey 2004]. Through their knowledge broker role, architects became essential
or scaling and coordinating across complex interdependencies in the project by bridging across
ifferent stakeholders, such as user groups, system owners, and external actors. One informant
escribed the complex interdependencies as follows:

“When one other system under development was down, it almost stopped the en-
tire project. There was a tight coupling between this other system and our project,
which we had not accounted for initially. We realized that this system needed to

follow the same production schedule as our project — although they were not part
of the official project.” (Technical Architect, NorTran)

This situation was particularly frustrating as it caused requirements to be unstable in ongoing
prints. Tight coupling between systems implied the need to have a common overall production
lan. Hence, again, this situation triggered a more plan-driven practice for coordinating this:

“We took responsibility for coordinating all the different projects and their pro-
duction schedules, simply because we were absolutely dependent upon them. At
first, the steering committee was only concerned with the current project, so I had

to explain to them that we were equally dependent on other projects finishing — if
not, we would not be able to put the project into production.” (Technical Architect,
NorTran)

This shows how both agile and plan-driven practices were essential for scaling the project. Plan-
riven practices seemed necessar y for preser ving the stability of the project while adding new team
embers, integrating with an increasing number of systems, and involving an increasing number

f stakeholders. Agile practices, in terms of the architects relying on more informal practices of
acilitating and knowledge brokering across actors, were equally important. Again, this illustrates
hat large-scale agile projects are not simply scaled in a linear fashion or decomposed in a ‘divide
nd conquer’ fashion, but rather that the complexity of large projects must be addressed by a
ombination of both fine-grained coordination of interdependencies on the one hand, and new
ypes of roles that facilitate knowledge sharing.

5.4.2 Episode 6: Downscaling. As the project progressed towards its final stages during the
ourth deliverable, the need for resources to develop new features declined. Hence, down-scaling
he number of developers and certain competencies became a crucial issue to reduce cost. Because
f the pressure to deliver high quality software on time, balancing this was particularly difficult.
his was solved not by simply taking developers off the project, but instead releasing some of them
s ‘freelancers’ who were given a flexible role outside the teams to be able to help with pressing
ssues across all teams. This allowed management the flexibility to use extra personnel in critical
ituations where the customer wanted improvements in quality, testing, and small modifications.
 project manager explained how these issues were related:

“The big issue was downscaling. During a test phase you produce a backlog of
items that need bug fixing. And it was the production of this backlog which was
the bottleneck, not correcting the bugs. . . So, we had a situation where instead of
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:21

Table 6. Old and New Assumptions of Large-Scale Agile Software Development

Old Assumption New Assumption

Agile and plan-driven processes are perceived to be
in conflict or mutually exclusive.

Agile and plan-driven practices are mutually
enabling.

Hierarchical organizing and self-organizing teams
are perceived to be in conflict or mutually exclusive.

Hierarchical organization and self-organization

have reciprocal impact on teams.

Scaling of agile practices is seen as linear (e.g.,
Scrum of Scrums), implying that scaling can be
conducted through just adding more participants
and increasing the scope without changing
practices.

Scaling requires both stability and change
simultaneously, and also involves downscaling.

c

‘

b

t

“

t

i

b

d

fl

6

W

n

[

a

p

m

6

A

v

i

t

r

(

e

i

j

o

e

getting rid of developers, we freed them to do other productive work.” (Project
Manager Deliverable 3, ConsultCorp)

Again, this illustrates how the arrangement of different practices needed to change. The project
ould not downscale by just inverting the sequence of the upscaling. Instead, it relied on the new
freelancer role’ to ensure that the backlog with bug fixes was well managed while addressing all
ugs. We characterize this as an agile practice: rather than planning which personnel are to be
aken off the project, which is very difficult to do, some were now unassigned, allowing them to
roam” and take on work in a fashion that resembles self-organization and self-selection of tasks
hat is more typical of agile methods.

These last two episodes illustrate how scaling is not simply linear. Both upscaling and downscal-
ng require flexible resources: when upscaling, a simple decomposition approach is not sufficient,
ut instead, flexible and informal roles are necessary to facilitate and share knowledge. When
ownscaling, developers are not simply taken off a project, but the resources can again be set free,
exibly and informally, in order to address emergent needs and challenges.

 DISCUSSION AND THEORY DEVELOPMENT

e now revisit the underlying assumptions identified in our literature review, formulate alter-
ative assumptions based on the case study findings, and then revisit the framework of Farjoun
 2010] to develop a set of propositions on how plan-driven practices enable flexibility and agility,
nd how agile practices mitigate failure and increase predictability. In Section 6.4 , we propose a
rocess model for large-scale agile software development (see Figure 5). Finally, we discuss the
ain limitations of this study and present a set of research directions based on our propositions.

.1 New Assumptions for Large-Scale Agile

 primary aim of this article was to uncover and problematize assumptions that underpin pre-
ious research on large-scale agile software development. These assumptions have far-reaching
mplications for how software engineering researchers frame their research, what research ques-
ions they ask, and subsequently what insights their research offers to practitioners. Our literature
eview identified three assumptions that are widespread in previous research on large-scale agile
Table 6). As described in the case study, these assumptions were not in accordance with stakehold-
rs’ responses to the process challenges in our case study. The case study provides detailed insight
nto how responses to different process challenges required the project teams to continuously ad-
ust their practices and ways of working. Based on our case study, we suggest an alternative set
f assumptions that more readily accommodate the paradox that the introduction of plan-driven
lements appeared to make the project more agile.
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:22 K. H. Rolland et al.

Fig. 4. Stability and change as mechanisms and outcomes (based on Farjoun [2010]).

f

p

c

a

d

n

a

r

a

T

t

a

f

s

t

t

i

t

a

r

m

s

b

o

a

a

A

We anchor these alternative assumptions on large-scale agile development in Figure 4 , which
urther elaborates the framework of Farjoun [2010] presented in Figure 2 earlier. We suggest that
revious research on large-scale agile has operated on the dualistic assumption that agile pro-
esses and plan-driven processes are in opposition and incompatible; that hierarchical organizing
nd self-organizing teams are in opposition; and, finally, that scaling an agile project can simply be
one in a linear fashion, without having to change practices regarding collaboration and commu-
ication. In contrast, we suggest that large-scale agile software development is better understood
nd explained through the notion of duality . Duality is similar to dualism in that it describes the
elationship between two entities. However, if the relationship is a duality, then the two entities
re interdependent, and both contradictor y and complementar y at the same time [Farjoun 2010].
his distinction is essential as it conceptualizes stability and change as mutually enabling rather

han mutually exclusive . As the opening vignette of this article illustrates, in a duality, the acrobat’s
gility is enabled by the pole, but also fundamentally by the safety-net which provides the stability
or the entire process.

Farjoun [2010] suggests that stability and change can be complementary in that stability is as-
ociated with low variance, predictability, and reliability and can produce change, and that change
ypically associated with innovation and flexibility is necessary for producing stability. Moreover,
hey can also be conflicting in the sense that practices that promote change provide less stabil-
ty, and vice versa. Looking at the relationship as a duality affords more nuanced and balanced
heorizations of seemingly paradoxical conditions and mechanisms that produce certain changes
nd forms of stability in complex organizational settings. Thus, we argue that this lens is highly
elevant for understanding large-scale agile, as such processes typically involve a different arrange-
ent of both agile and plan-driven mechanisms and practices to succeed [Rolland et al. 2016].
The notion of duality is not new, but we adopt it here specifically for understanding how large-

cale agile software development is different from small-scale agile and that such processes need
oth plan-driven as well as agile practices in combination to succeed. It also underscores that in
rder for something to change in the first place, other parts need to be kept stable. Hence, scaling
 small project to a large one does not solely rest on either agile or plan-driven practices — but
lways on a combination of both. We now revisit Figure 2 and populate two further quadrants
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:23

t

o

h

s

o

6

A

p

a

N

o

q

a

o

a

W

t

o

a

[

d

b

n

W

p

c

o

d

“

n

w

l

p

‘

t

5

a

t

o reflect this duality perspective in Figure 4 . Henceforth, in the subsections below, we elaborate
n: (1) how plan-driven practices enable flexibility and agility (Quadrant 3 in Figure 4); and (2)
ow agile practices mitigate failure and increase predictability (Quadrant 2). At the end of this
ection, we summarize how new alternative assumptions support a more nuanced understanding
f large-scale agile, and how such complex processes can succeed.

.2 Plan-Driven Practices Enabling Flexibility and Agility

ll six episodes presented in Section 5 refer to events resulting from the large-scale nature of the
roject; the characteristics of large-scale projects led to a need for teams to coordinate, frequently
fter unexpected events caused problems for teams to solve. It is clear from prior literature that
orTran is not the only project that suffers from such issues. Batra et al. [2010] present a series
f challenges that resulted from the characteristics of a large-scale project, including changing re-
uirements, changing schedule, conflicting goals, and communication breakdowns. Previous liter-
ture reviews on this topic also reported numerous challenges in relation to the large-scale nature
f projects, including communication and interfaces between teams, issues in relation to managers,
nd the tension between long-term and short-term planning [Edison et al. 2021 ; Dikert et al. 2016].
hile there have been numerous studies of large-scale agile projects, it is perhaps surprising that

hese studies frequently report challenges as unanticipated outcomes. Thus, we embrace the obvi-
us in our first proposition:

Proposition 1: Large-scale agile projects have characteristics that lead to tension points.

While previous studies of large-scale agile projects have suggested that a mix of plan-driven and
gile methods is necessary (e.g., Batra et al. [2010]), often invoking the term ‘hybrid approaches’
Kuhrmann et al. 2018 ; Kuhrmann et al. 2021], to the best of our knowledge, none of these studies
evelops theory that explains how and precisely why this is necessary. For example, the survey
y Kuhrmann et al. [2018] of European organizations reports several motivations as to why orga-
izations adopt hybrid approaches, including ‘improving stability,’ a need to integrate ‘high-level
aterfall-like and low-level Agile approaches,’ and pragmatism. However, whereas previous work

ositions “agile transformations” as singular events (e.g., Russo [2021]), which potentially may last
onsiderable time, the various episodes in our study emphasize that large-scale agile processes not
nly require a mix of plan-driven and agile practices but also that the development process evolves
uring the project in response to a stream of tension points that emerge over time, rather than
one-off” events. Henceforth, we theorize that:

Proposition 2: To resolve the tension points in large-scale agile projects, emergent responses are
eeded to adjust and re-adjust development practices and processes.

Building on our longitudinal case study of NorTran, we saw that agile and plan-driven practices
ere used in combination and that this contributed to reducing the coordination and scaling chal-

enges threatening to undermine the entire project. We observed that a combination of upfront
lanning practices and agile practices was often mutually enabling. For instance, in Episode 2, the

ready-to-sprint’ process established a common understanding that made it easier for individual
eams to conduct prototyping to improve customer communication and collaboration. In Episode
, the plan-driven practice of architecture meetings improved coordination across different teams
nd enabled scaling. Hence, we propose that:

Proposition 3: In large-scale agile development projects, agile and plan-driven practices are mu-
ually enabling.
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:24 K. H. Rolland et al.

t

a

a

a

o

C

c

p

p

a

M

i

i

w

p

p

t

a

p

p

a

e

t

E

i

t

c

t

6

A

p

r

t

r

o

s

a

A

c

m

A

In contrast to underlying assumptions about large-scale agile, we suggest that plan-driven prac-
ices are an important mechanism for producing flexibility and agility in the process of large-scale
gile software development. In general, plan-driven approaches to software development are seen
s a way of establishing a development process that is stable, predictable, and produces low vari-
nce (e.g., Humphrey [1989]). In contrast, agile practices and processes are often seen as a way
f ensuring flexibility, innovative solutions, and adaptability (e.g., Baham and Hirschheim [2022];
onboy [2009]). Henceforth, the traditional view is that these practices and processes are in direct
onflict, or at least partly conflicting. In problematizing this view, we suggest that a more nuanced
osition would be to view these as complementary and interdependent. Thus, we consider agile
ractices and processes as distinctly different from plan-driven practices and processes, but they
re complementary in that one requires the other in order to produce both stability and change.
ore concretely, this position holds that plan-driven practices (in addition to agile practices) are

mportant for providing flexibility and agility in large-scale agile development. This is an important
nsight, because this directly opposes the view of many agile advocates that plan-driven practices
ould reduce the agility in a project.
Drawing on the case study of NorTran, we can identify several examples of situations in which

lan-driven practices enabled agility during the development process. In Episode 1, the plan-driven
ractice of “Tornado meetings” reduced some of the main obstacles, with a deliverable early on
hat helped to establish stability, thereby allowing individual teams to experiment without cre-
ting problems for other teams. As illustrated in Episode 2, this was strengthened through the
lan-driven practice of “Ready-to-sprint” that was initiated by project management. Moreover,
lan-based decisions to reorganize the tasks of the teams so that integration work was done by
 single team in Episode 3, also increased the flexibility for all teams. The integration team could
xperiment to find the optimal ways to integrate with various external systems, and the other
eams could spend their efforts on experimenting with all other aspects of the design. Finally, in
pisode 6, the plan-driven initiative to establish regular architectural meetings afforded possibil-

ties to scale the project in an evolutionary manner. Hence, a plan-driven practice made agile in
he large possible. Based on these insights, we posit the following propositions:

Proposition 4a: Plan-driven practices can increase internal flexibility of development teams in a
ontext of multiple teams.

Proposition 4b: Plan-driven practices can improve coordination across teams and other actors in
he project, necessary for scaling agile software development.

.3 Agile Practices Mitigating Failure and Increasing Predictability

ccording to a duality perspective, change can also enable stability. Likewise, we theorize that agile
ractices, self-organizing teams, and non-linear scaling are all important mechanisms for ensuring
eliability and predictability in large-scale agile projects. Increasing reliability and predictability is
ypically associated with plan-driven practices and processes, but increased experimentation and
edundancy is also necessary for such outcomes to materialize. As such, agile practices and self-
rganizing teams utilize experimentation and redundancy as mechanisms for achieving greater
tability.

First, in contrast to the prevalent dualistic perspective found in the literature, we theorize that
gile practices and self-organizing teams are fundamental to mitigate failure in large-scale agile.
s seen in Episode 4, the situated and bottom-up initiative of establishing ‘task forces’ solved

rucial problems typically related to compliance with nonfunctional requirements such as perfor-
ance issues. In this regard, the task forces were an agile response to increase the reliability of
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:25

Fig. 5. Process model with propositions based on our study.

d

u

c

v

c

F

b

i

l

w

l

6

I

a

s

d

l

i

a

a

t

p

a

p

r

i

c

a
eliverables, and especially to mitigate potential failure of the delivered products. Hence, this leads
s to the following proposition:

Proposition 5a: Agile practices allow for quick responses to problems involving complex so-
iotechnical interdependencies so that failures are mitigated.

Second, rather than seeing moderately overlapping responsibilities of agile teams and indi-
iduals as a threat to reliability and effectiveness in large-scale agile software development pro-
esses, we recognize that this can be a resource and a mechanism facilitating it. Again, drawing on
arjoun [2010], this underscores how agile practices and processes contribute to increasing sta-
ility in large-scale software development. Empirically, a typical illustration of this was evident
n Episode 6, in which individual developers and testers were taken out of their teams to operate
ike ‘freelancers.’ This experiment succeeded in producing a controlled downscaling of the project
hile preserving crucial competence. Hence, we suggest the following:

Proposition 5b: Agile practices can be a mechanism for increasing predictability in all phases of
arge-scale agile processes.

.4 A Process Model for Large-Scale Agile Software Development

n this article, we problematize large-scale agile, and draw on the concept of duality, leading to
 number of contributions which are summarized in the process model presented in Figure 5 . As
uch, large-scale agile has some characteristics that typically imply increasing process challenges
ue to utilizing the same agile practices in the context of large projects as in small projects [Rol-
and et al. 2016], difficulties and lack of inter-team coordination [Bick et al. 2018], and difficulties
n scaling through simply adding more teams [Paasivaara et al. 2012]. However, new alternative
ssumptions backed by a duality lens (as opposed to a dualism lens) suggest that plan-driven and
gile practices are not necessary in conflict but can be mutually enabling. As seen in Figure 5 , we
heorize that responses that are based on this tend to reduce the specific process challenges around
reserving the flexibility in feature teams, establishing coordination mechanisms across teams and
ctors, and managing scaling in large-scale agile projects. As such, novel combinations of agile and
lan-driven practices, as seen in the NorTran case, can greatly reduce process challenges typically
elated to coordination across teams and various stakeholders, as well as scaling and downscaling
n large-scale agile projects. Thus, we theorize that:

Proposition 6: Novel combinations of agile and plan-driven practices can collectively reduce pro-
ess challenges in large-scale agile development projects.

Finally, we do not claim that all process problems will be solved at once by combining agile
nd plan-driven practices as exemplified in the six episodes. Rather, we suggest that this as a
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:26 K. H. Rolland et al.

c

r

c

c

t

t

b

A

n

p

6

G

r

i

b

K

R

l

a

r

t

m

e

c

i

t

p

t

s

f

t

w

r

W

f

n

l

c

n

i

F

t

fi

A

ontinuous process in which novel combinations can solve some of the challenges, potentially
educing process challenges. Each of the six episodes described an emergent response to some
hallenge, which ultimately reduced the process challenge at hand, but new tensions would arise;
ontinuing perturbations would lead to new tensions within a large-scale agile project. These per-
urbations may originate from within the project, or externally, when the environment in which
he project sits changes. Examples of these include changing regulations, a reduction in project
udget as decided by upper-level management, or global events such as the COVID-19 pandemic.
ny type of event may lead to tensions within a large-scale agile project; these, in turn, will require
ew emergent responses. We capture this in the final proposition:

Proposition 7: Internal or external perturbations in large-scale agile projects lead to tension
oints.

.5 Limitations

iven that this was a complex research study with several components, i.e., systematic literature
eview, problematization, and a longitudinal case study, there was a potential for threats to valid-
ty from a methodological perspective. For the problematization, we followed the steps described
y Alvesson and Sandberg [2011]. For the systematic literature review, we followed guidelines by
itchenham and Charters [2007]. For the case study, we drew on recommendations suggested by
uneson and Höst [2009]. In terms of identifying the fundamental assumptions in the literature on

arge-scale agile development, one could ask whether we really have captured core fundamental
ssumptions. While there are many thousands of articles published on agile development, we were
eassured that our identification of 197 papers on large-scale agile is consistent with the recent sys-
ematic review by Edison et al. [2021], which identified 191 studies on large-scale agile develop-
ent. As part of narrowing down our set of studies to 67 studies, we eliminated those which were

xperience reports, as we sought to focus on papers that would provide a strong research and con-
eptual foundation, thereby ensuring that any assumptions were grounded in the research. Could
t be that underlying assumptions were expressed in articles as a part of an argument for a con-
ribution or a research gap, and that the assumptions were not truly held by the authors of these
apers? This might be the case in some sources, but our analysis in Sections 3.1 to 3.3 suggests
hat the identified assumptions are held by authors of the selected articles. Hence, we argue our
et of studies should be sufficient to identify the widely held assumptions in the literature.

One could further question how we evaluated the articulated assumptions to select the three
undamental assumptions presented in Section 3 . We held several discussions within the research
eam to use our knowledge of relevant prior research in order to focus on assumptions which
ere relevant, common, and fundamental to the further development of the research field. Other

esearchers could have made other choices, and we acknowledge that this is a matter of judgment.
e have sought to explain why the three selected assumptions are fundamental in Section 3 .
Given that our overall research approach was qualitative, the traditional validity criteria used

or quantitative studies —namely, construct validity, internal validity and external validity— are
ot the most appropriate. Rather, we draw on Lincoln and Guba [1985], who proposed the fol-

owing alternative criteria for qualitative research: credibility, dependability, transferability, and
onfirmability.

Credibility refers to the extent to which the findings make sense and can be believed or recog-
ized by participants or readers. We drew on a number of techniques that can help achieve this,

ncluding prolonged engagement, participant observation, member-checking, and peer-debriefing.
irstly, the research was conducted over a period of several years. A member-checking process
ook place whereby the interviewees in the case study participated in two workshops at which
ndings were presented and discussed. This meant that there were several opportunities for
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:27

p

w

d

c

s

s

d

i

s

o

t

i

o

s

e

d

s

a

i

p

t

7

T

l

p

s

s

t

b

m

o

c

a

S

a

t

a

t

s

R

b

e

o

s
articipants to reflect on our analysis and suggest changes if necessary. Peer review occurred
hen preliminary findings were presented at a conference [Rolland et al. 2016].
Dependability refers to the extent to which the research process is logical, traceable, clearly

ocumented, and can be repeated. In this case, data-coding followed a coherent and traceable pro-
ess, and was undertaken by multiple researchers who performed both hand-coding and software-
upported coding (HyperResearch). Intermediate coding results were extensively discussed and
crutinized through a dedicated workshop and subsequent virtual discussion. This process pro-
uced an ‘audit trail’ that documented the research process from data collection through to draw-
ng of conclusions.

Transferability is concerned with how the findings could be applicable to other contexts and is
imilar to the notions of generalizability and external validity in quantitative research. While proof
f transferability cannot be shown, the richness of the findings can help indicate to what extent
he research can apply in other contexts. Here we sought to get a rich picture of the situation as
t applied in one real development context. Indeed, we are heartened by the ver y apt obser vation
f Mintzberg [1979 , p. 583]: ‘what, for example, is wrong with samples of one?’ The goal of the case
tudy research was not to draw generalizable conclusions, but rather to understand how processes
volve in a large-scale agile project, which could then help us to develop new theory.

Finally, confirmability is concerned with establishing that findings are clearly derived from the
ata. Our methodological discussion above provides evidence for this. Lincoln and Guba [1985]
uggest that confirmability can be established by successfully achieving credibility, transferability,
nd dependability. Nowell et al. [2017] recommend providing a clear methodological and theoret-
cal rationale, which they suggest is useful to help ensure confirmability. Here we have sought to
rovide such a rationale and have gathered our findings into a theoretical model which can be
ested and evolved in further research.

 CONCLUSIONS AND FU T URE WORK

he aim of this article has been to challenge some of the fundamental assumptions in the current
iterature on large-scale agile to provide new practical and theoretical avenues for researchers and
ractitioners to follow. The article draws on both a systematic literature review on large-scale agile
oftware development and a longitudinal case study of a successful large-scale agile project. This
tudy provides three distinct contributions. First, we contribute by providing a systematic litera-
ure review of large-scale agile software development. While a systematic review of the topic has
een published before Edison et al. [2021], this article additionally utilizes Alvesson and Sandberg’s
ethod for problematizing fundamental assumptions in large-scale agile. We identified three basic

verarching assumptions relating to (1) how agile and plan-driven processes are perceived as in
onflict or mutually exclusive; (2) hierarchical organizing and self-organizing teams are perceived
s in conflict or mutually exclusive; and (3) how scaling of agile practices is seen as linear (e.g.,
crum of Scrums), implying that scaling can be conducted through just adding more participants
nd increasing the scope without changing practices. Based on this, we concluded that the litera-
ure on large-scale agile software development seems to reinforce the same underlying principles
s in small-scale agile software development with a few co-located teams. Against this backdrop,
he second main contribution of this article is the presentation of a longitudinal case study on a
uccessful large-scale agile project. A novel aspect of our case study is the use of Newman and
obey’s process model as an analytical approach, which to the best of our knowledge has not
een used in software engineering research before. This approach proved effective to capture key
vents (“episodes”) that occurred during our study. The empirical findings from our case study
f successful large-scale agile development were at odds with the underlying assumptions in the
ystematic literature review. Consequently, based on our analysis of the case study, we developed
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:28 K. H. Rolland et al.

Table 7. Propositions and Suggestions for Future Work

Proposition Research directions

Proposition 1 . Large-scale agile projects have
characteristics that lead to tension points.

What is the range of relevant characteristics of
large-scale agile software development that may
lead to tension points?

How do types of characteristics vary by the scale of
their impact?

Proposition 2 . To resolve the tension points in

large-scale agile projects, emergent responses
are needed to adjust and readjust development
practices and processes.

Given the limited research on large-scale over time,
future research should cover longitudinal and
evolutionary studies of agile practices.

Influence of changes in project context on agile
methods, such as contemporary trends including
Digital Transformation, AI, cost-cutting programs,
staffing-related issues, and technology changes.

Proposition 3 . In large-scale agile development
projects, agile and plan-driven practices are
mutually enabling.

How do agile practices support plan-driven practices,
and vice versa?

How do agile and plan-driven practices interact?
What are attributes of plan-driven practices vs. agile

practices, and how do these attributes vary?

Proposition 4a . Plan-driven practices can

increase internal flexibility of development
teams in a context of multiple teams.

How do plan-driven practices influence cognitive load
of a development team?

How do plan-driven practices influence teamwork
effectiveness?

Are plan-driven practices perceived as offering stability
or as a barrier to team autonomy and
self-organization?

Proposition 4b . Plan-driven practices can

improve coordination across teams and other
actors in the project, necessary for scaling agile
software development.

What role do plan-driven practices have as a mediator
of inter-team and intra-team coordination?

Proposition 5a . Agile practices allow for quick
responses to problems involving complex
socio-technical interdependencies so that
failures are mitigated.

How do methods influence decision-making regarding
critical issues such as providing business value from

the project?

Proposition 5b . Agile practices can be a
mechanism for increasing predictability in all
phases of large-scale agile processes.

How do agile practices influence predictability in the
various phases of a project?

Proposition 6 . Novel combinations of agile and
plan-driven practices can collectively reduce
process challenges in large-scale agile
development projects.

What type of plan-driven and agile practices are good
combinations?

Proposition 7 . Internal or external
perturbations in large-scale agile projects lead to
tension points.

What is the range of perturbations that can cause
tensions in large-scale agile software development?

How does the impact of perturbations vary by their
source, i.e., whether they are internal or external?

How do perturbations vary, i.e., by the size of the
impact?

t

t

a

r

A

hree alternative assumptions for large-scale agile. Thirdly, based on the new underlying assump-
ions and the empirical evidence from the NorTran case, we derived nine theoretical propositions
nd a new process model.

Table 7 suggests a number of research directions based on this set of propositions. Rather than
eemphasizing and reiterating the distinctions between agile and plan-driven methods, we argue
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:29

t

i

v

s

f

a

d

a

n

n

a

A

A

T

d

S

l

[

a
hat it is more important to let go of initial characterizations of agile methods, and discover and
nvestigate emergent properties of these methods when applied in large-scale settings.

Our study has uncovered fundamental assumptions in the literature on large-scale agile de-
elopment, which we have argued are not suited to solve some of the pressing coordination and
caling challenges in large-scale agile development. Given the criticality of large software projects
or society today, we hope the perspectives developed in this article will lead to more relevant
nd theoretically robust studies, which better reflect the characteristics of complex and large-scale
evelopment efforts. Evoking our metaphor of acrobats and safety-nets, we suggest that, just like
n acrobat, agile approaches in large-scale contexts need some level of stability, akin to a safety
et, in order to sustain flexibility over time. On the other hand, there would be no need for a safety
et, i.e., plan-driven practices, if the acrobats were not seeking to overcome challenges requiring
gility and flexibility.

PPENDICES

 SYSTEMATIC LITERATURE REVIEW PROCEDURE

he first step of our study comprised a systematic literature review (SLR) to identify studies that
iscuss the use of agile methods for large-scale projects (see Figure A.1). We conducted searches in
COPUS and the AIS e-library of studies published until and including 2019. Prior to the systematic
iterature review, we developed a review protocol as recommended by Kitchenham and Charters
 2007]. We created the following search string for use in SCOPUS:

TITLE((“extreme programming” OR scrum OR (agile AND software) OR “agile
development” OR “agile project*” OR “agile team*” OR “agile method*” OR “ag-
ile approach*” OR “agile practice*”)) AND TITLE (“large-scale” OR “large scale”
OR (large* OR big* OR huge OR multi*) AND (organization* OR organisation* OR

project* OR team*))

The first step identified 132 papers. We conducted a systematic process to identify all relevant
rticles in multiple steps, summarized in Figure A.1 . The selection was based on a clearly defined
Fig. A.1. The study selection process of the systematic literature review.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:30 K. H. Rolland et al.

Table A.1. Quotes from Selected Papers Illustrating the Three Assumptions

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Arseni
[2016]

Decision-making can stall when
visibility and transparency are
limited. Creating a design
authority can help to avoid these
problems and maximize
opportunities.

Product owner team (POT)
multi-users team in charge to
manage Product Backlog.

Baca et al.
[2015]

Scrum of Scrums meeting an
important technique in scaling
to large project teams.

Security group includes
security manager, security
architect, security master.

Badampudi
et al. [2013]

Misalignment of need for
predictability and
dependability with agile.

Every scrum group would have
their own priorities to finish
their tasks.

Dedicated integration team.

Barlow et al.
[2011]

Plan-driven assumes that
project interdependencies
are mostly sequential.
Agile assumes the opposite,
they de-emphasize formal,
upfront planning.

Empowering developers to make
important decisions makes
development faster. Projects
would still include a full
up-front design phase while
allowing programmers to make
decisions during coding and
testing phases.

Bass [2015] Product owner team identifies
new functions that allow

teams to scale up. Nine
functions within the product
owner role are identified.

Bass [2016] Programme Governance
Groups, Product Owner Teams
or Scrum of Scrums meetings
to overcome challenges to the
expansion of agile methods to
large-scale development.

Bass [2014] Scrum of scrums help scale
agile methods to large
programs. Further, scrum

masters can specialize by
assigning these activities
within a scrum master group.

Bass and
Haxby [2019]

Self-organizing teams relinquish
some autonomy toward an
architecture board or design
authority that determines
common policies and
approaches.

Product-owner (PO) role
tailoring in which the role is
no longer performed by a
single individual but by a
product-owner team (POT).

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:31

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Berger and
Benyon-Davies
[2009]

Development by small joint
development teams, in which
decision-making is empowered
and consequently speedy.

Batra et al.
[2011]

Lightweight agile software
development methods have
emerged as alternatives to
process-heavy plan- based
methodologies.

Scrum can be managed as a
hierarchy of Scrum of Scrums.

Batra et al.
[2010]

A concern that the project
would lose discipline if an
agile approach were
instituted.

Principles that were not
supported include the best
architectures, requirements, and
designs emerge from

self-organizing teams.
Individuals were empowered,
but management had no issues
confronting ego-centric
individuals.

Bick et al.
[2016]

Top-down planning refers to a
mechanistic, centralized
approach. Bottom-up
adjustment, on the other hand,
is largely organic and
decentralised.

Scaling via Iterative Proxy
Collaboration — CPO, SoS,
central architecture team.

Cao et al.
[2004]

Agile methods lack of
up-front design and
documentation.

We didn’t have layers and layers
of management. We got rid of
those. Decentralizing
development-oriented
decision-making is critical for a
successful agile — push
decision-making down,
empower the people who are
actually doing the work.

Cho et al.
[2006]

The daily Scrum of Scrums is a
daily meeting for SMs from

multiple Scrum teams.

Costa et al.
[2014]

In opposition to the previous
methodologies, agile
development processes are
based on self-organized teams
resolving their problems.

Dingsøyr et al.
[2014]

Coordination of teams can be
achieved in a new forum, such
as a Scrum of Scrums forum.
Several forums are needed for
coordination, such as multiple
Scrum of Scrums.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:32 K. H. Rolland et al.

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Dingsøyr et al.
[2017]

Program management met
twice a week in a forum —
“Metascrum.” The Metascrum

included managers from the
main projects and the central
program management.

Dingsøyr et al.
[2018]

The fundamental
assumption behind
traditional methods is that
systems are fully
specifiable and built
through meticulous and
extensive planning. Agile
methods, on the other
hand, assume that systems
can be built through
continuous design,
improvement, and testing
based on rapid feedback
and change.

Eckstein [2016] Sociocracy enables
self-organization. . . scaling agile
requires also scaling
self-organization.

Elshamy and
Elssamadisy
[2006]

We have the non-agile
solution to this problem,
which is design upfront.

Elshamy and
Elssamadisy
[2007]

Sub-teams will have their own
stand-ups. To ensure
information exchange between
teams everyday, a member of
each sub-team should attend
another team stand-up.

Fægri and Moe
[2015]

People need to apply their own
judgment in when they need to
seek information. . . Project
culture and project management
promoted face-to-face
communication and rejected
written reports.

Farmer [2004] Management let us find our own
way, rather than forcing process
on us from above.

Fruhling and
DeVreede
[2006]

To address plan-driven
methodology
shortcomings, new

development models were
proposed, such as agile.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:33

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Goh et al.
[2013]

Formal outcome control and the
“freedom” given to the project
manager to implement many of
the requirements (informal
self-control).

Gunyho and
Gutiérrez Plaza
[2011]

Being adaptable to change
may be seen in
contradiction with
planning.

Gupta et al.
[2017]

Is your team self-organizing,
rather than functioning in
command and control. . .
participatory decision-making,
rather than bending to
authoritarian decision-making
. . . team decisions consensus
driven, rather than leader
driven.

Chief Scrum Master, Chief PO,
Scrum Master-cum-Part
Product Owner (SMPO).

Gustavsson
[2018]

Fundamental principle in agile is
to allow autonomy to the team.
This autonomy is a major reason
for success in agile development.

Hannay and
Benestad
[2010]

Vendors want to work
agile, and now we’re
suddenly supposed to work
Waterfall.

The combination of autonomous
teams and the necessity for
overall organizational control
structure may lead to conflicts.

Heikkila et al.
[2013a]

ScrumBut: We use Scrum,
but we can’t build a piece
of functionality in a month,
so our Sprints are 6 weeks
long (which is like a
Waterfall).

Area Product Owner (APO)
and Chief Product Owner
(CPO).

Heikkilä et al.
[2013b]

PO team consisted of a Chief
Product Owner (Chief PO) and
ten Proxy Product Owners
(PPOs).

Hobbs and
Petit [2017]

Both the traditional and the
agile methodologies
co-exist in separate
subunits.

Hoda and
Murugesan
[2016]

Self-organizing agile teams take
ownership of management
responsibilities which were
hitherto limited to project
managers.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:34 K. H. Rolland et al.

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Jørgensen
[2019]

Some software
professionals believe less in
working fully agile when
projects get large. . . it is
possible to argue in favour
of both agile and more
plan-driven, non-agile
methods.

Kähkönen
[2004]

Communities-of-Practice,
Integration Camp.

Kettunen and
Laanti [2008]

Project team should first be
empowered to gain the full
benefits of the agile.

Ktata and
Lévesque
[2009]

Agile development has
legalized what was
forbidden by traditional
plan-driven development.

Laanti [2008] Program Content Backlog
containing Program, Scrum,
and Sprint backlogs, Program

PO, Team PO.

Laanti [2017] Best-in-class agile is
empowered, self-controlled
adaptive organisation.

Lagerberg et al.
[2013]

Project A (Agile) and
Project B (Plan-driven)
differ sufficiently in their
ways of working and are
sufficiently similar in other
aspects that the impact of
using agile practices can be
studied by comparing the
two projects.

Cross-functional team includes
system analysts, designers and
testers, as well as a Scrum

Master and a Product Owner.

Lindsjørn et al.
[2018]

Large projects need stronger
mechanisms to control cost and
time schedules.

Scrum of Scrums.

Martini et al.
[2013]

(Agile) trend of defining small
self-sufficient teams. If a team

doesn’t have all the knowledge,
they may have to wait for the
expert to be available.

Moe et al.
[2018]

Principles and work structures
emerge during the project and
are not predetermined. . .
complex agile projects need
more flexible forms of
management . . . rather than pure
top-down approaches to
governance.

Metascrum, SoS.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:35

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Moe et al.
[2014]

Technical Area Responsible
(TAR) role on
Cross-Functional teams
(XFTs), Operative Product
Owner (OPO), Area Product
Owner (APO), System Owner.

Nyfjord et al.
[2014]

The best way to coordinate the
teams is to ask them how they
want to be managed. . . A

manager should accept a certain
amount of chaos in the
development process. . . should
not try to control everything.

Paasivaara
et al. [2008]

Weekly Scrum-of-Scrums,
Synchronized 4-week sprints.

Paasivaara and
Lassenius
[2016]

Increases the need for
formal documentation and
thus reduces agility.

Scrum-of-Scrums, Area PO.

Paasivaara and
Lassenius
[2014]

Transformation from a
traditional plan-driven
organization to lean and
agile.

Feature Coordination CoPs,
Coaching CoPs, Developer
CoPs.

Paasivaara and
Lassenius
[2011]

Area Product Owners (APOs)
for scaling the Product Owner
role, Global Scrum-of-Scrums.

Paasivaara
et al. [2012]

Scrum-of-Scrum-of-Scrums
(SoSoS).

Qureshi [2012] Extended XP to include
stable requirements, strong
architecture, and risk
management plan.

Read and
Briggs [2012]

HyperEpic — a structured
collection of closely related
HyperStories.

Rolland et al.
[2015]

Emergent nature of
requirements. . . notoriously
difficult to establish a
stable and complete set of
requirements early on in
the process.

Rolland et al.
[2016]

Task forces were not initiated by
management, but grew out of a
need recognized by developers.

Champion roles were
implemented working across
teams.

Šablis and
Šmite [2016]

When there are many teams,
should they be governed or
autonomous?

Forum of forums.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:36 K. H. Rolland et al.

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Scheerer and
Kude [2014]

Organic structure of teams. Scrum-of-Scrums.

Sekitoleko
et al. [2014]

The shift towards agile is
difficult for companies that
are used to heav y weight
sequential processes.

Scrum-of-Scrums (SoS),
cross-functional teams (XFT).

Søvik and
Forfang M.
[2010]

Started with a
waterfall-like methodology
and then adopted Scrum

after less than a year.

Stettina and
Smit [2016]

We designed the Team

Portfolio Scrum (TPS) practice
and the Team Portfolio Owner
(TPO) role to support the
implementation of portfolio
management.

Sundararajan
et al. [2014]

“process-centric, command and
control” v. “people-centric,
self-organising. . . make sites
self-managing, introduce team

empowerment.

Tessem and
Maurer [2007]

This way of working gives the
developer significant autonomy
in the daily work.

A concept like “Scrum of
Scrums” is useful for making
larger teams agile.

Uludağ et al.
[2019]

Squads are self-organizing and
autonomous teams that have all
the skills to design, develop, test,
and release for production.

All teams are part of an agile
release train (ART), a team of
teams that delivers a
continuous flow of
incremental releases.

Wale-Kolade
[2015]

“Follow the leader” approach
versus the “individualistic”
approach to encourage people to
think for themselves and not be
so rigid in following your leader.

Scrum of Scrums model . . . a
technique for scaling Scrum

practices, thus enabling
inter-team coordination and
consensus.

van
Waardenburg
and van Vliet
[2013]

The agile process is often
preceded by traditional
requirements elicitation
and analysis phases.

The hierarchical, centralized
decision-making in plan-driven
methods versus the
empowerment of agile
developers to make their own
decisions.

Combining product backlogs
of teams that depend on one
another helps teams plan and
align dependent work items.

Vlietland and
van Vliet
[2015]

Even though Agile
principles aim to introduce
flexibility, the need for
plans and structure
remains.

An interdependent chain of
Scrum team. Scrum of Scrums;
For managing more than seven
Scrum teams, an intermediate
organizational layer is
suggested between the product
teams and Scrum teams to
cater for the necessary
coordination.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:37

Table A.1. Continued

Reference

Assumption 1: Agile and

Plan-driven Methods
perceived to be Mutually

Exclusive

Assumption 2:
Self-Organization and

Hierarchical Coordination

are perceived to be Mutually

Exclusive

Assumption 3: Scaling agile
methods is seen as a Simple

Linear Composition

Weiss and
Brune [2017]

The interface between agile
development teams and
plan-driven release
management is critical and
challenging.

Teams should receive enough
freedom to adapt agile methods
to their specific needs.

Zheng et al.
[2011]

Managing carefully the
balance between flexibility
and rigour.

Tension between the deliberate
action of planning and the
uncontrolled processes of
drifting.

s

o

f

e

f

l

S

s

s

w

S

s

r

t

o

a

et of inclusion and exclusion criteria which are described here. In step 2, we examined article titles
nly. If the decision whether or not to include a paper was not straightforward, it was included for
urther assessment in step 3. Overall, we selected a total of 99 articles in step 2. During step 3, we
xamined the abstract. Again, where no definitive decision could be made, articles were retained
or the next step. A total of 62 articles were included at this point.

After this search and selection of results from SCOPUS, we conducted a search in the AIS e-
ibrary, using a simplified search string as its search capabilities are not as extensive as those of
COPUS. We used the following simplified string:

title: (“extreme programming” OR scrum OR (agile AND software) OR “agile de-
velopment” OR “agile project*” OR “agile team*” OR “agile method*” OR “agile
approach*” OR “agile practice*”)

While this simplified string is less specific — and, therefore, likely to include more irrelevant
earch results —the total number of search results was relatively low (n = 197). We followed the
ame systematic selection process to identify relevant papers in this initial set of 197, through
hich we identified 5 papers that were not already included in the selection identified through

COPUS. The total search process therefore resulted in 67 papers (62 following the initial SCOPUS
earch and 5 additional papers from the AIS e-library).

We used the following inclusion and exclusion criteria during the paper selection process for the
eview. Inclusion criteria are explicit statements or guidelines that prompt the inclusion of an ar-
icle, whereas exclusion criteria are explicit statements or guidelines that lead to the non-selection
f an article. As the selection progressed, criteria were further clarified as needed to remove any
mbiguities. These criteria were employed during steps 2 and 3 in the process (see Figure A.1).

Inclusion Criteria

• Articles that present studies of the use of any agile methods for large projects.
• Articles that present studies of the use of agile methods in “large organizations.”

Exclusion Criteria

• Any article not written in English.
• Any article that uses the terms “large” or “big” in other contexts than “large projects,” for

example, “Big Data.”
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:38 K. H. Rolland et al.

A

n

o

o

l

w

o

a

r

B

B

a

D

b

A

• Any article that does not have a focus on the use of agile methods in a large software devel-
opment project context, but instead on another topic of interest within the setting of large-
scale projects, e.g., quality attributes or motivation, or user experience (UX) in large-scale
agile projects, or project estimation, or the use of agile for general change management
outside the context of software development.

• Any article that refers to “distributed projects” or “distributed organizations” exclusively,
without any mention of “large scale projects.”

• Any article that discusses “large-scale agile transformations”; the focus of these articles is
organizations that are transitioning to using agile methods, rather than the use of agile
methods employed in large-scale projects.

• Any article that discusses multi-project scrum teams; these are scrum teams which work
on multiple projects at the same time.

• Any document that is not a peer reviewed article, such as books, editorials, presentation
summaries, abstracts or briefings.

• Literature reviews of large-scale agile.

In order to identify the assumptions from this body of literature, we read all papers in full.
ll authors were involved in this process. It became clear during this process that there were a
umber of common assumptions that appeared in multiple papers. The analysis was conducted
ver an extensive period of several months and involved numerous meetings, both in-person and
nline, as well as a number of dedicated workshops. During the analysis, we identified three high-
evel assumptions which were recurrent across the selection of papers. These three assumptions
ere as follows: (1) Agile and plan-driven methods are perceived to be mutually exclusive; (2) Self-
rganization and hierarchical coordination are perceived to be mutually exclusive; and (3) Scaling
gile methods is seen as a simple linear composition. Table A.1 lists all 67 papers included in the
eview and identifies how the assumptions were manifest in each of the papers.

 AUXILIARY EPISODES

esides the episodes discussed above, we identified several others that challenged the three key
ssumptions we identified (see Table B.1). Some of the entities we identified, such as Solution
escription and Blurred Boundaries, are also featured in a different large-scale project reported
y Dingsøyr et al. [2018].
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:39

Table B.1. Summary of Additional Episodes

Dominant assumption Episode description Challenging the assumption

Agile and Plan-Driven Methods
are perceived to be Mutually
Exclusive

Introduction of Solution
Description (SD) as ‘big design
up front’ style process, but one
that allowed a flexibility in terms
of the amount of detail. The SD

represents an iterative process
that afforded a pragmatic
approach to “just-in-time” design.

The Solution Description was not a
plan-driven style design document,
but rather a flexible, more agile
approach to an evolving design
document that allowed an incremental
process of detailing, thus combining a
plan-driven and agile approach.

Blurred boundaries: the
boundaries between development
process phases such as “analysis
of needs” and “solution
description” phases blurred over
time.

The large-scale nature of the project
required some type of phased
approach to establish milestones, such
as “analysis of needs” and the
“solution description” phases, the
boundaries between different phases
blurred over time as the people in the
development and architecture teams
were close in proximity. A more
holistic orientation emerged that
allowed people to consider
requirements and how these could be
satisfied in a solution description.

Self-managing Teams and
Hierarchically organized Teams
are perceived to be Mutually
Exclusive

From the start, roles were
imposed on team members, such
as team lead, test responsible,
technical architect, and
functional architect, while teams
as a whole remained responsible
for their sprint backlogs.

Traditionally, agile teams as a whole
have a joint responsibility to deliver
software, whereas the traditional
plan-driven approach would assign
specific roles and responsibilities to
individuals. At NorTran, a
combination was used whereby the
team as a whole remained responsible,
yet roles were imposed on individual
team members.

Scaling through Simple Linear
Composition

Exponential increase in
coordination mechanisms as
project grew in size.

Scaling up a project cannot be simply
done by adding additional layers of
coordination, such as the
Scrum-of-Scrums activity. Instead, a
more dramatic exponential increase,
rather than a linear increase, in
coordination mechanisms may be
necessary.

Physical co-location of project
with an open work area enabled
efficient direct one-to-one
dialogue as participants had
become aware of others’ work
tasks, responsibilities, and
background knowledge.

Scaling up of projects doesn’t
necessarily need more coordination
mechanisms: additional teams could
also benefit from being co-located,
leveraging unplanned interactions.

A

I

d

CKNOWLEDGMENTS

n loving memory of our friend, colleague, and co-author Knut Rolland, who sadly passed away
uring this project.
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

33:40 K. H. Rolland et al.

R

P

P

S

W

M

M
S

G

D

D

C

J

J

J

J

J

G
D

D

K
H

M

S

S

E

A

EFERENCES

. Abrahamsson, M. A. Babar, and P. Kruchten. 2010. Agility and architecture: Can they coexist? Introduction. IEEE Software

27, 2 (2010), 16–22.
. Abrahamsson, K. Conboy, and X. Wang. 2009. ‘Lots Done, More to Do’: The current state of agile systems development

research. European Journal of Information Systems 18, 4 (2009), 281–284.
. Adikari, C. McDonald, and J. Campbell. 2009. Little design up-front: A design science approach to integrating usability

into agile requirements engineering. In: Human-Computer Interaction. New Trends. HCI 2009 , J. A. Jacko (Eds.). Lecture
Notes in Computer Science , Vol. 5610. Springer, Berlin, 549–558.

. Alsaqaf, M. Daneva, and R. Wieringa. 2017. Quality requirements in large-scale distributed agile projects–a systematic
literature review. In International Working Conference on Requirements Engineering: Foundation for Software Quality .
Springer, Cham. 219–234.

. Alvesson and J. Sandberg. 2011. Generating research questions through problematization. Academy of Management

Review 36, 2 (2011), 247–271.
. Alvesson and J. Sandberg. 2013. Constructing Research Questions: Doing Interesting Research . Sage.

. W. Ambler and M. Lines. 2012. Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software Delivery in the Enterprise .
IBM Press, Upper Saddle River, NJ.

. Arseni. 2016. Role of the design authority in large scrum of scrum multi-team-based programs. In Proceedings of 4th

International Conference in Software Engineering for Defence Applications, Advances in Intelligent Systems and Computing ,
P. Ciancarini (Ed.), 422.

. Baca, M. Boldt, B. Carlsson, and A. Jacobsson. 2015. A novel security-enhanced agile software development process
applied in an industrial setting. Proceedings of the 10th International Conference on Availability, Reliability and Security .
11–19.

. Badampudi, S. A. Fricker, and A. M. Moreno. 2013. Perspectives on productivity and delays in large-scale agile projects.
Proceedings of the International Conference on Agile Software Development . 180–194.

. Baham and R. Hirschheim. 2022. Issues, challenges, and a proposed theoretical core of agile software development
research. Information Systems Journal 32, 1 (2022).

. B. Barlow, J. S. Giboney, M. J. Keith, D. W. Wilson, R. M. Schuetzler, P. B. Lowry, and A. Vance. 2011. Overview and
guidance on agile development in large organizations. Communications of the Association for Information Systems 29, 2
(2011), 25–44.

. M. Bass. 2014. Scrum master activities: Process tailoring in large enterprise projects. Proceedings of the International

Conference on Global Software Engineering (ICGSE) .
. M. Bass. 2015. How product owner teams scale agile methods to large distributed enterprises. Empirical Software Engi-

neering 20, 6 (2015), 1525–1557.
. M. Bass. 2016. Artefacts and agile method tailoring in large-scale offshore software development programmes. Information

and Software Technology 75 (2016), 1–16.
. M. Bass and A. Haxby. 2019. Tailoring product ownership in large-scale agile projects: Managing scale, distance, and

governance. IEEE Software 36, 2 (2019), 58–63.
. Bateson. 1972. Steps to an Ecology of Mind . Ballantine, New York.
. Batra, D. Vandermeer, and K. Dutta. 2011. Extending agile principles to larger, dynamic software projects: A theoretical

assessment. Journal of Database Management 22, 4 (2011), 73–92.
. Batra, W. Xia, D. Vandermeer, and K. Dutta. 2010. Balancing agile and structured development approaches to success-

fully manage large distributed software projects: A case study from the cruise line industry. Communications of the

Association for Information Systems 27, 1 (2010), 379–394.
. Beck and B. Boehm. 2003. Agility through discipline: A Debate. IEEE Software 36, 6 (2003), 44–46.
. Berger and P. Beynon-Davies. 2009. The utility of rapid application development in large-scale, complex projects. Infor-

mation Systems Journal 19 (2009), 549–570.
. Berntzen, R. Hoda, N. B. Moe, and V. Stray. 2023. A taxonomy of inter-team coordination mechanisms in large-scale

agile. IEEE Transactions on Software Engineering 49, 2 (2023), 699–718. https://doi.org/10.1109/TSE.2022.3160873 https:
//ieeexplore.ieee.org/abstract/document/9739868 " >

. Bick, A. Scheerer, and K. Spohrer. 2016. Inter-team coordination in large agile software development settings: Five ways
of practicing agile at scale. Proceedings of the Scientific Workshop Proceedings of XP2016 . ACM , p. 4.

. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl. 2018. Coordination challenges in large-scale software development:
A case study of planning misalignment in hybrid settings. IEEE Transactions on Software Engineering 44, 10 (2018), 932–
950.

. Bjarnason, K. Wnuk, and B. Regnell. 2011. A case study on benefits and side effects of agile practices in large-scale
requirements engineering. Proceedings of the 1st Workshop on Agile Requirements Engineering .
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

https://doi.org/10.1109/TSE.2022.3160873
https://ieeexplore.ieee.org/abstract/document/9739868
https://ieeexplore.ieee.org/abstract/document/9739868

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:41

B

B

G

L

J

J

K

K

N

K

M
P

K

T

T

T

T

T

Y

H

J

A

A

N

T
. Boehm. 2002. Get ready for agile methods, with care. IEEE Computer 35, 1 (2002), 64–69. https://ieeexplore.ieee.org/
document/976920

. Boehm and R. Turner. 2003. Using risk to balance agile and plan-driven methods. IEEE Computer 36, 6 (2003), 57–66.
https://ieeexplore.ieee.org/document/976920

. Booch. 2015. Keynote at the 37th International Conference on Software Engineering: The Future of Software Engineer-
ing. Retrieved August 26, 2023 from https://w w w.youtube.com/watch?v=h1TGJJ- F- fE

. Cao, K. Mohan, P. Xu, and B. Ramesh. 2004. How extreme does extreme programming have to Be? Adapting XP Practices
to Large-Scale Projects. Proceedings of the Hawaii International Conference on System Sciences , R.H. Sprague Jr (Ed.), Big
Island, HI. 1335–1344.

. Cho. 2009. A hybrid software development method for large-scale projects: Rational unified process with scrum. Issues

in Information Systems 10, 2 (2009), 340–348.
. Cho, Y. Kim, and D. Olsen. 2006. A case study on the applicability and effectiveness of scrum software development in

mission-critical and large-scale projects. Proceedings of the Americas Conference on Information Systems . Paper 445.
. Conboy. 2009. Agility from first principles: Reconstructing the concept of agility in information systems development.

Information Systems Research 20, 3 (2009), 329–354.
. Conboy and N. Carroll. 2019. Implementing large-scale agile frameworks: Challenges and recommendations. IEEE Soft-

ware 36, 2 (2019), 44–50.
. Costa, N. Santos, N. Ferreira, and R. J. Machado. 2014. Delivering user stories for implementing logical software ar-

chitectures by multiple scrum teams. Proceedings of the 14th International Conference on Computational Science and Its

Applications, Lecture Notes in Computer Science , Vol. 8581. Springer, Berlin, 747–762.
. Crowston, K. Chudoba, M. B. Watson-Manheim, and P. Rahmati. 2016. Inter-team coordination in large-scale agile de-

velopment: A test of organizational discontinuity theory. Proceedings of the Scientific Workshop Proceedings of XP2016 .
1–5.

. A. Cusumano and R. W. Selby. 1997. How Microsoft builds software. Communications of the ACM 40, 6 (1997), 53–61.
. Deemer, G. Benefield, C. Larman, and B. Vodde, 2010. The scrum primer . Retrieved August 26, 2023 from http://w w w.

goodagile.com/scrumprimer/scrumprimer.pdf
. Dikert, M. Paasivaara, and C. Lassenius. 2016. Challenges and success factors for large-scale agile transformations: A

systematic literature review. Journal of Systems and Software 119 (2016), 87–108
. Dingsøyr, F. O. Bjørnson, J. Schrof, and T. Sporsem. 2023. A longitudinal explanatory case study of coordination in a

very large development programme: The impact of transitioning from a first- to a second-generation large-scale agile
development method. Empirical Software Engineering 28, 1 (2023), 1–49.

. Dingsøyr, D. Falessi, and K. Power. 2019. Agile development at scale: The next frontier. IEEE Software 36, 2 (2019), 30–38.

. Dingsøyr, T. Fægri, and J. Itkonen. 2014. What is large in large-scale? A taxonomy of scale for agile software development.
In: Product-Focused Software Process Improvement, Lecture Notes in Computer Science, Vol. 8892, A. Jedlitschka, P. Kuvaja,
M. Kuhrmann, T. Männistö, J. Münch, and M. Raatikainen (Eds.). Springer International Publishing, 273–276.

. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim. 2018. Exploring software development at the very large-scale: A
revelatory case study and research agenda for agile method adaptation. Empirical Software Engineering 23 (2018), 490–
520.

. Dingsøyr, K. Rolland, N. Moe, and E. Seim. 2017. Coordination in multi-team programmes: An investigation of the group
mode in large-scale agile software development. Procedia Computer Science 121 (2017), 123–128.

. Dittrich, C. B. Michelsen, P. Tell, P. Lous, and A. Ebdrup. 2020. Exploring the evolution of software practices. In Proceed-

ings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering . 493–504.
. Edison, X. Wang, and K. C.. 2021. Comparing methods for large-scale agile software development: A systematic literature

review. IEEE Transactions on Software Engineering 48, 8 (2021), 2709–2731.
. Eckstein. 2016. Sociocracy – An organization model for large-scale agile development. Proceedings of XP2016 Workshops ,

Edinburgh, Scotland, UK.
. Elshamy and A. Elssamadisy. 2006. Divide After You Conquer: An agile software development practice for large projects.

Proceedings of the 7th International Conference on Extreme Programming and Agile Processes in Software Engineering, XP

2006 , Lecture Notes in Computer Science, Vol. 4044. Springer, Oulu, Finland.
. Elshamy and A. Elssamadisy. 2007. Applying agile to large projects: New agile software development practices for

large projects. Proceedings of the 8th International Conference on Agile Processes in Software Engineering and eXtreme

Programming, XP 2007 , Lecture Notes in Computer Science, Vol. 4536. Springer, Como, Italy, 46–53.
. A. Ernst and G. C. Murphy. 2012. Case studies in just-in-time requirements analysis. Proceedings of the 2nd IEEE Inter-

national Workshop on Empirical Requirements Engineering . 25–32.
. E. Fægri and N. B. Moe. 2015. Re-conceptualizing requirements engineering: Findings from a large-scale, agile project.

Proceedings of XP 2015 Workshops . Helsinki, Finland.
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

https://ieeexplore.ieee.org/document/976920
https://ieeexplore.ieee.org/document/976920
https://ieeexplore.ieee.org/document/976920
https://www.youtube.com/watch?v=h1TGJJ-F-fE
http://www.goodagile.com/scrumprimer/scrumprimer.pdf
http://www.goodagile.com/scrumprimer/scrumprimer.pdf

33:42 K. H. Rolland et al.

M

M

B

B

M
A

A

J

P

G

R

T

T

J

G

V

V

M

B

R

R

W
W

M

T

P

B

O

A

. Farjoun. 2010. Beyond dualism: Stability and change as a duality. Academy of Management Review 35, 2 (2010), 202–225.

. Farmer. 2004. DecisionSpace Infrastructure: Agile development in a large, distributed team. Proceedings of the Agile

Development Conference . IEEE Computer Society.
. Fitzgerald. 1996. Formalized systems development methodologies: A critical perspective. Information Systems Journal 6,

1 (1996), 3–23.
. Fitzgerald, K. J. Stol, R. O’Sullivan, and D. O’Brien. 2013. Scaling agile methods to regulated environments: An industry

case study. Proceedings of the International Conference on Software Engineering . San Francisco, CA, USA.
. Fowler and J. Highsmith. 2001. The agile manifesto. Software Development 9, 8 (2001), 28–35.
. Fruhling and G. J. De Vreede. 2006. Field experiences with eXtreme programming: Developing an emergency response

system. Journal of Management Information Systems 22, 4 (2006), 39–68.
. Giddens. 1979. Central Problems in Social Theory: Action, Structure and Contradictions in Social Analysis , University of

California Press, Berkeley, CA.
. C. L. Goh, S. L. Pan, and M. Zuo. 2013. Developing the agile IS development practices in large-scale IT projects: The trust-

mediated organizational controls and IT project team capabilities perspectives. Journal of the Association for Information

Systems 14, 12 (2013), 722–756.
. Gregory, L. Barroca, H. Sharp, A. Deshpande, and K. Taylor. 2016. The challenges that challenge: Engaging with agile

practitioners’ concerns. Information and Software Technology 77 (2016), 92–104.
. Gunyho and J. Gutiérrez Plaza. 2011. Evolution of longer-term planning in a large scale agile project — F-Secure’s

experience. In: Lecture Notes in Business Information Processing . Springer, Cham, 306–315.
 Gupta, P. Manikreddy, and K. Arya. 2017. Pragmatic scrum transformation: Challenges, practices & impacts during the

journey a case study in a multi-location legacy software product development team. Proceedings of the 10th Innovations

in Software Engineering Conference . 147–156.
. Gustavsson. 2017. Assigned roles for Inter-team coordination in Large-Scale Agile Development: A literature review.

Proceedings of the XP2017 Scientific Workshops . ACM, 15.
. Gustavsson. 2018. Impacts on team performance in large-scale agile software development. Proceedings of the 17th Busi-

ness Informatics Research Short Papers, BIR-WS 2018, CEUR-WS . 421–431.
. E. Hannay and H. C. Benestad. 2010. Perceived productivity threats in large agile development projects. Proceedings of

the 4th International Symposium on Empirical Software Engineering and Measurement . Bolzano-Bozen.
. Hanssen, G. Wedzinga, and M. Stupid. 2017. An assessment of avionics software development Practice: Justifications for

an agile development process. International Conference on Agile Software Development . Springer.
. T. Heikkilä, M. Paasivaara, and C. Lassenius. 2013a. Scrumbut, but Does It Matter? A mixed-method study of the planning

process of a multi-team scrum organization. Proceedings of the ACM /IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM 2013 . Baltimore, MD, 85–94.
. T. Heikkilä, M. Paasivaara, C. Lassenius, and C. Engblom. 2013b. Continuous release planning in a large-scale scrum

development organization at Ericsson. Proceedings XP 2013, Lecture Notes in Business Information Processing , Vol. 149.
Springer, Cham, 195–209.

. J. Hilt, D. Wagner, V. Osterlehner, and A. Kampker. 2016. Agile predevelopment of production technologies for electric
energy systems – A case study in the automotive industry. Procedia CIRP 50 (2016), 88–93.

. Hobbs and Y. Petit. 2017. Agile methods on large projects in large organizations. Project Management Journal 48, 3 (2017),
3–19.

. Hoda and L. K. Murugesan. 2016. Multi-level agile project management challenges: A self-organizing team perspective.
Journal of Systems and Software 117 (2016), 245–257.

. Hoda, J. Noble, and S. Marshall. 2013. Self-organizing roles on agile software development teams. IEEE Transactions on

Software Engineering 39, 3 (2013), 422–444.
. S. Humphrey. 1989. Managing the Software Process . Addison-Wesley Longman Publishing Co., Inc.
. A. Jackson. 1999. Dualism, duality and the complexity of economic institutions. International Journal of Social Economics

26, 4 (1999), 545–558.
. Jørgensen. 2019. Relationships between project size, agile practices, and successful software development: Results and

analysis. IEEE Software 36, 2 (2019), 39–43.
. Kähkönen. 2004. Agile methods for large organizations — building communities of practice. Proceedings of the Agile

Development Conference, ADC 2004 . Salt Lake City, UT, 2–10.
. Kettunen and M. Laanti. 2008. Combining agile software projects and large-scale organizational agility. Software Process

Improvement and Practice 13, 2 (2008), 183–193.
. A. Kitchenham and S. Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering ,

EBSE Technical Report EBSE-2007-01, Version 2.3.
. Ktata and G. Lévesque. 2009. Agile development: Issues and avenues requiring a substantial enhancement of the business

perspective in large projects. Proceedings of the 2nd Canadian Conference on Computer Science and Software Engineering .
59–66
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:43

M

M

M

M

L

A
A

D

Y
Y

A

L

F

M
H
N

N

P

S

S

M

L

J

M

M
. Kuhrmann, P. Diebold, J. Munch, P. Tell, K. Trektere, F. McCaffery, V. Garousi, M. Felderer, O. Linssen, E. Hanser, and
C. R. Prause. 2018. Hybrid software development approaches in practice: A European perspective. IEEE Software 36, 4
(2018), 20–31.

. Kuhrmann, P. Tell, R. Hebig, J. Klünder, J. Münch, O. Linssen, D. Pfahl, M. Felderer, C. Prause, S. MacDonell, J.
Nakatumba-Nabende, D. Raffo, S. Beecham, E. Tüzün, G. López, N. Paez, D. Fontdevila, S. Licorish, S. Küpper, G.
Ruhe, E. Knauss, O. Özcan-Top, P. Clarke, F. H. McCaffery, M. Genero, A. Vizcaino, M. Piattini, M. Kalinowski, T.
Conte, R. Prikladnicki, S. Krusche, A. Coşkunçay, E. Scott, F. Calefato, S. Pimonova, R.-H. Pfeiffer, U. P. Schultz, R.
Heldal, M. Fazal-Baqaie, C. Anslow, M. Nayebi, K. Schneider, S. Sauer, D. Winkler, S. Biffl, M. C. Bastarrica, and
I. Richardson. 2021. What makes agile software development agile. IEEE Transactions on Software Engineering 48,
9 (2021), 3523–3539. https://ieeexplore.ieee.org/abstract/document/9496156?casa _ token=we2ekchAcWIAAAAA:bzvX-
FupYfThpIr3scDGl9pxoDvH5ZuBuiawmAGzt76UDwYUIcDsDDZ1mIg _ FELVv-7uxMDaDw

. Laanti. 2008. Implementing program model with agile principles in a large software development organization. Proceed-

ings of the Annual IEEE International Computer Software and Applications Conference . 1383–1391.
. Laanti. 2017. Agile transformation model for large software development organizations. Proceedings of the XP2017. ACM,

19.
. Lagerberg, T. Skude, P. Emanuelsson, K. Sandahl, and D. Stahl. 2013. The impact of agile principles and practices on

large-scale software development projects. Proceedings of the ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement . 348–356.
. Langley. 1999. Strategies for theorizing from process data. Academy of Management Review 24, 4 (1999), 691–710.
. Langley, C. Smallman, H. Tsoukas, and A. H. Van de Ven. 2013. Process studies of change in organization and manage-

ment: Unveiling temporality, activity, and flow. Academy of Management Journal 56, 1 (2013), 1–13.
. Leffingwell. 2016. SAFe 4.0 Reference Guide: Scaled Agile Framework for Lean Software and Systems Engineering . Addison-

Wesley Professional.
. Lincoln and E. G. Guba. 1985. Naturalistic Inquiry . Sage, Newbury Park, CA.
. Lindsjørn, G. R. Bergersen, T. Dingsøyr, and D. I. K. Sjøberg. 2018. Teamwork quality and team performance: Exploring

differences between small and large agile projects. Proceedings of XP2018 . Porto, Portugal, 267–274.
. Martini, L. Pareto, and J. Bosch. 2013. Improving businesses success by managing interactions among agile teams in

large organizations. In Software Business. From Physical Products to Software Services and Solutions: 4th International

Conference (ICSOB’13, Potsdam, Germany, June 11-14, 2013. Proceedings 4) , Springer Berlin Heidelberg, 60–72.
. M. Maruping, V. Venkatesh, and R. Agarwal. 2009. A control theory perspective on agile methodology use and changing

user requirements. Information Systems Research 20, 3 (2009), 377–399.
. McCaffery, M. Lepmets, K. Trektere, O. Özcan-Top, and M. Pikkarainen. 2016. Agile medical device software development:

Introducing agile practices into MDevSPICE. International Journal on Advances in Life Sciences 8, 1-2 (2016), 133–142.
. B. Miles and A. M. Huberman. 1994. Qualitative Data Analysis: An Expanded Sourcebook (2nd Ed.). Sage.
. Mintzberg. 1979. The Structuring of Organisations . Prentice-Hall, Englewood Cliffs, NJ.
. B. Moe, T. Dingsøyr, and K. Rolland. 2018. To schedule or not to schedule? An investigation of meetings as an inter-

team coordination mechanism in large-scale agile software development. International Journal of Information Systems

and Project Management 6, 3 (2018), 45–59.
. B. Moe, D. Šmite, A. Šblis, A. L. Börjesson, and P. Andréasson. 2014. Networking in a large-scale distributed agile project.

Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement .
. Naur and B. Randell. (Eds.). (1968) Software Engineering: A Report on a Conference Sponsored by the NATO Science Com-

mittee . Scientific Affairs Division, NATO, Brussels.
. Nerur, A. Cannon, V. Balijepally, and P. Bond. 2010. Towards an understanding of the conceptual underpinnings of agile

development methodologies. In Agile Software Development , T. Dingsøyr, T. Dybå, and N. B. Moe, (Eds.). Springer, Berlin
Heidelberg, 15–29.

. Nerur, R. Mahapatra, and G. Mangalaraj. 2005. Challenges of migrating to agile methodologies. Communications of the

ACM 48, 5 (2005), 72–78.
. Newman and D. Robey. 1992. A social process model of user-analyst relationships. MIS Quarterly 16, 2 (1992), 249–266.

. S. Nowell, J. M. Norris, D. E. White, and N. J. Moules. 2017. Thematic analysis: Striving to meet the trustworthiness
criteria. International Journal of Qualitative Methods 16, 1 (2017).

. Nyfjord, S. Baathallath, and H. Kjellin. 2014. Conventions for coordinating large agile projects. Proceedings of XP 2014

Workshops, Lecture Notes in Business Information Processing , Vol. 199. Springer, Cham, 58–72.
. Paasivaara, S. Durasiewicz, and C. Lassenius. 2008. Distributed agile development: Using scrum in a large project.

Proceedings of the IEEE International Conference on Global Software Engineering . IEEE Computer Society. 87–95.
. Paasivaara and C. Lassenius. 2011. Scaling scrum in a large distributed project. Proceedings of the International Sympo-

sium on Empirical Software Engineering and Measurement .
ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

https://ieeexplore.ieee.org/abstract/document/9496156?casa_token$=$we2ekchAcWIAAAAA:bzvX-FupYfThpIr3scDGl9pxoDvH5ZuBuiawmAGzt76UDwYUIcDsDDZ1mIg_FELVv-7uxMDaDw
https://ieeexplore.ieee.org/abstract/document/9496156?casa_token$=$we2ekchAcWIAAAAA:bzvX-FupYfThpIr3scDGl9pxoDvH5ZuBuiawmAGzt76UDwYUIcDsDDZ1mIg_FELVv-7uxMDaDw

33:44 K. H. Rolland et al.

M

M

M

M

S

A

M

B

A

K

K

K

P

D

R

A

K

A

N

D

H

S

T

C

S

A

. Paasivaara and C. Lassenius. 2014. Communities of practice in a large distributed agile software development
organization—Case Ericsson. Information and Software Technology 56, 12 (2014), 1556–1577.

. Paasivaara and C. Lassenius. 2016. Scaling scrum in a large globally distributed organization: A case study. Proceedings

of IEEE 11th International Conference on Global Software Engineering . IEEE Computer Society. 74–83.
. Paasivaara and C. Lassenius. 2019. Empower your agile organization: Community-based decision making in large-scale

agile development at Ericsson. IEEE Software 36, 2 (2019), 64–69.
. Paasivaara, C. Lassenius, and V. T. Heikkilä. 2012. Inter-team coordination in large-scale globally distributed scrum:

Do Scrum-of-Scrums really work?. Proceedings of the 6th ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM 2012 . Lund, 235–238.
. D. Pawlowski and D. Robey. 2004. Bridging user organizations: Knowledge brokering and the work of information

technology professionals. MIS Quarterly 28, 4 (2004), 645–672.
. Putta, M. Paasivaara, and C. Lassenius. 2018. Benefits and challenges of adopting the scaled agile framework (SAFe):

Preliminary results from a multivocal literature review. Proceedings of the International Conference on Product-Focused

Software Process Improvement . Springer, Cham, 334–351.
. R. J. Qureshi. 2012. Agile software development methodology for medium and large projects. IET Software 6, 4 (2012),

358–363.
. Ramesh, K. Mohan, and L. Cao. 2012. Ambidexterity in agile distributed development: An empirical investigation. Infor-

mation Systems Research 23, 2 (2012), 323–339.
. Read and R. O. Briggs. 2012. The many lives of an agile story: Design processes, design products, and understandings

in a large-scale agile development project. Proceedings of the 45th Hawaii International Conference on System Sciences .
Maui, HI, USA.

. H. Rolland, B. Fitzgerald, T. Dingsøyr, and K.-J. Stol. 2016. Problematizing agile in the large: Alternative assumptions for
large-scale agile development. Proceedings of the International Conference on Information Systems . Dublin, Ireland.

. H. Rolland, G. Ghinea, and T. Gronli. 2015. Ambidextrous enterprise architecting: Betting on the future and hacking
path-dependencies. Proceedings of the European Conference on Information Systems .

. H. Rolland, V. Mikkelsen, and A. Næss. 2016. Tailoring agile in the large: Experience and reflections from a large-scale
agile software development project. Proceedings XP 2016, Lecture Notes in Business Information Processing , Vol. 251,
Springer, Cham, 244–251.

. Runeson and M. Höst. Guidelines for conducting and reporting case study research in software engineering. Empirical

Software Engineering 14 (2009), 131–164.
. Russo. 2021. The Agile success model: A mixed-methods study of a large-scale agile transformation. ACM Transactions

on Software Engineering and Methodology 30, 4 (2021), 1–46.
. Sabherwal, R. Hirschheim, and T. Goles, 2001. The dynamics of alignment: Insights from a punctuated equilibrium model.

Organization Science 12, 2 (2001), 179–197.
. Šāblis and D. Šmite. 2016. Agile teams in large-scale distributed context: Isolated or connected?. Proceedings of the

Scientific Workshop Proceedings of XP2016 . ACM, 10.
. Schwaber. 2013. unSAFe at Any Speed. Ken Schwaber’s Blog: Telling it like it is. Retrieved August 26, 2023 from https:

//kenschwaber.wordpress.com/2013/08/06/unsafe- atany- speed/
. Scheerer and T. Kude. 2014. Exploring coordination in large-scale agile software development: A multiteam systems

perspective. In 35th International Conference on Information Systems . Auckland, New Zealand.
. Sekitoleko, F. Evbota, E. Knauss, A. Sandberg, M. Chaudron, and H. H. Olsson. 2014. Technical dependency challenges

in large-scale agile software development. In Proceedings of the International Conference on Agile Software Development:

Agile Processes in Software Engineering and Extreme Programming . Springer, Rome, Italy.
. Šmite, N. B. Moe, G. Levinta, and M. Floryan. 2019. Spotify Guilds: How to succeed with knowledge sharing in large-scale

agile organizations. IEEE Software 36, 2 (2019), 51–57.
. Søvik and M. Forfang. 2010. Tech challenges in a large-scale agile project. Proceedings XP2010, Lecture Notes in Business

Information Processing , Vol. 48 (2010), 353–361.
tate of Agile, State of Agile Report. 2022. 16th Annual State of Agile Report. Retrieved August 26, 2023 from https://

stateofagile.com/#
. Stålhane, T. Myklebust, and G. K. Hanssen. 2012. The application of safe scrum to IEC61508 certifiable software. Pro-

ceedings of the 11th International Probabilistic Safety Assessment and Management Conference and the Annual European

Safety and Reliability Conference . Helsinki, Finland.
. J. Stettina and M. N. Smit. 2016. Team portfolio scrum: An action research on multitasking in multi-project scrum teams.

Proceedings of the International Conference on Agile Software Development . Springer, Cham. 79–91.
. Sundararajan, M. Bhasi, and P. K. Vijayaraghavan. 2014. Case study on risk management practice in large offshore-

outsourced agile software projects. IET Software 8, 6 (2014), 245–257.
CM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

https://kenschwaber.wordpress.com/2013/08/06/unsafe-atany-speed/
https://kenschwaber.wordpress.com/2013/08/06/unsafe-atany-speed/
https://stateofagile.com/#
https://stateofagile.com/#

Acrobats and Safety Nets: Problematizing Large-Scale Agile Software Development 33:45

T

B

Ö

G

R

V

J

A

S

D

L

Y

R

. Taylor and T. Standish. 1982. Initial thoughts on rapid prototyping techniques. ACM SIGSOFT Software Engineering Notes

7, 5 (1982), 160–166.
. Tessem and F. Maurer. 2007. Job satisfaction and motivation in a large agile team. Proceedings of the International Con-

ference on Extreme Programming and Agile Processes in Software Engineering . 54–61.
. Uludağ, M. Kleehaus, S. Ercelik, and F. Matthes. 2019. Using social network analysis to investigate the collaboration

between architects and agile teams: A case study of a large-scale agile development program in a German consumer
electronics company. Proceedings of XP2019, Lecture Notes in Business Information Processing , Vol. 355 (2019), Springer,
Cham, 137–153.

. van Waardenburg and H. van Vliet. 2013. When agile meets the enterprise. Information and Software Technology 55
(2013), 2154–2171.

. Vidgen and X. Wang. 2009. Coevolving systems and the organization of agile software development. Information Systems

Research 20, 3 (2009).
. Vinekar, C. W. Slinkman, and S. Nerur. 2006. Can agile and traditional systems development approaches coexist? An

ambidextrous view. Information Systems Management 23, 3 (2006), 31–42.
. Vlietland and H. van Vliet. 2015. Towards a governance framework for chains of scrum teams. Information and Software

Technology 57 (2015), 52–65.
. Y. Wale-Kolade. 2015. Integrating usability work into a large inter-organisational agile development project: Tactics

developed by usability designers. Journal of Systems and Software 100 (2015), 54–66.
. K. Weiss and P. Brune. 2017. Crossing the boundaries–agile methods in large-scale, plan-driven organizations: A case

study from the financial services industry. Proceedings of the International Conference on Advanced Information Systems

Engineering . Springer, Cham. 380–393.
. West, M. Gilpin, T. Grant, and A. Anderson. 2011. Water-scrum-fall is the reality of agile for most organizations today.

Forrester Research (2011).
. Williams and A. Cockburn. 2003. Agile software development: It’s about feedback and change. IEEE Computer 36, 6

(2003), 39–43.
. Zheng, W. Venter, and T. Cornford. 2011. Collective agility, paradox and organizational improvisation: The development

of a particle physics grid. Information Systems Journal 21, 4 (2001), 303–333.
eceived 5 May 2022; revised 27 June 2023; accepted 3 August 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 33. Pub. date: December 2023.

	1 INTRODUCTION
	2 PROBLEMATIZING FUNDAMENTAL ASSUMPTIONS IN LARGE-SCALE AGILE SOFTWARE DEVELOPMENT
	3 PREVAILING ASSUMPTIONS IN LARGE-SCALE AGILE LITERATURE
	3.1 Assumption 1: Agile and Plan-Driven Methods are Mutually Exclusive
	3.2 Assumption 2: Self-managing Teams and Hierarchically-organized Teams are Mutually Exclusive
	3.3 Assumption 3: Linear Composition versus Multi-faceted Scaling
	3.4 Summary

	4 CASE STUDY METHOD
	4.1 Data Collection
	4.2 Data Analysis

	5 CASE STUDY RESULTS
	5.1 The Project
	5.2 Combining Agile and Plan-driven Practices
	5.3 Combining Hierarchical Organizing and Self-organizing
	5.4 Scaling as a Complex Sociotechnical and Ongoing Process

	6 DISCUSSION AND THEORY DEVELOPMENT
	6.1 New Assumptions for Large-Scale Agile
	6.2 Plan-Driven Practices Enabling Flexibility and Agility
	6.3 Agile Practices Mitigating Failure and Increasing Predictability
	6.4 A Process Model for Large-Scale Agile Software Development
	6.5 Limitations

	7 CONCLUSIONS AND FUTURE WORK
	8 APPENDICES
	9 SYSTEMATIC LITERATURE REVIEW PROCEDURE
	10 AUXILIARY EPISODES
	11 ACKNOWLEDGMENTS
	REFERENCESendgraf

