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A new trend in processor architecture design is the packaging of thousands of small
processor cores into a singledevice,where there is nodevice-level sharedmemorybut
each core has its own local memory. Thus, both the work and data of an application
codeneed to be carefully distributed among the small cores, also termed as tiles. In this
paper, we investigate how numerical computations that involve unstructured meshes
can be efficiently parallelized and executed on a massively tiled architecture.
Graphcore IPUs are chosen as the target hardware platform, to which we port an
existing monodomain solver that simulates cardiac electrophysiology over realistic 3D
irregular heart geometries. There are two computational kernels in this simulator,
where a 3D diffusion equation is discretized over an unstructured mesh and
numerically approximated by repeatedly executing sparse matrix-vector
multiplications (SpMVs), whereas an individual system of ordinary differential
equations (ODEs) is explicitly integrated per mesh cell. We demonstrate how a new
style of programming that uses Poplar/C++ can be used to port these commonly
encountered computational tasks to Graphcore IPUs. In particular, we describe a per-
tile data structure that is adapted to facilitate the inter-tile data exchange needed for
parallelizing the SpMVs. We also study the achievable performance of the ODE solver
that heavily depends on special mathematical functions, as well as their accuracy on
Graphcore IPUs. Moreover, topics related to using multiple IPUs and performance
analysis are addressed. In addition to demonstrating an impressive level of
performance that can be achieved by IPUs for monodomain simulation, we also
provide a discussionon the generic themeof parallelizing andexecuting unstructured-
mesh multiphysics computations on massively tiled hardware.
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1 Introduction

Real-world problems of computational physics often involve irregularly shaped solution
domains, which require unstructured computational meshes [1] to accurately resolve them.
The resulting numerical couplings between the entities of an unstructured mesh are
irregular; thus, during the implementation of unstructured-mesh computations, irregular
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and indirectly-indexed accesses to arrays of numerical values are
unavoidable. With respect to performance, there arise several
challenges. First, irregular and indirect accesses to array entries
are prohibitive for achieving the full speed of a standard memory
system [2]. Second, for using a distributed-memory parallel
platform, explicit partitioning of an unstructured mesh is
required, which is considerably more difficult than partitioning a
structured mesh [3]. Third, there currently exists no universal
solution that ensures perfect quality of the partitioned sub-
meshes. One specific problem inside the latter challenge is
associated with the so-called halo regions. That is, the sub-
meshes that arise from non-overlapping decomposition need to
be expanded with one or several extra layers of mesh entities, which
constitute a halo region of each sub-mesh. These halo regions will be
used for facilitating the necessary information exchange between the
sub-meshes. However, most of the partitioning strategies are
incapable of producing an even distribution of the halo regions
leading to imbalanced volumes of communication between the sub-
meshes and different memory footprints of the sub-meshes.

One particular trend of the latest hardware development
requires new attention to the abovementioned challenges.
Namely, we have recently seen the arrival of processors with a
huge number of small cores sharing no device-level memory. The
most prominent examples are the wafer-scale engine (WSE) from
Cerebras [4] and the intelligence processing unit (IPU) from
Graphcore [5]. For example, the second-generation WSE-2 is a
chip that consists of 2.6 trillion transistors and houses 850,000 cores.
The MK2 GC200 IPU is smaller in scale, but still has 59.4 billion
transistors and 1,472 cores. A common design theme of these
processors is that there is no device-level memory that is shared
among the cores. Instead, each core has its private SRAM and the
aggregate on-chip memory bandwidth is staggeringly high at
20 PB/s for WSE-2 [4] and 47.5 TB/s for MK2 GC200 IPU [5].
Although these processors are primarily designed for AI workloads,
the available aggregate memory bandwidth is appealing to many
tasks of scientific computing for which the performance relies on the
speed of moving data in and out of the memory system. Storing data
directly in the SRAM can avoid many “data locality problems” that
are typically associated with the multi-leveled caching system found
on standard processor architectures. However, we need to remember
that a core with its private SRAM, termed as a tile, constitutes the
basic work unit onWSE-2 or IPU. This leads to higher requirements
related to partitioning unstructured-mesh computations, both due
to the huge number of available tiles and because all the data needed
by each tile must fit into its limited local SRAM. In addition,
enabling necessary communication and coordination between the
sub-meshes (i.e., the tiles) requires a new way of programming,
unlike using the standard MPI library [6].

Motivated by the extreme computing power that theoretically
can be delivered by the massively tiled AI processors, researchers
have recently started applying these AI processors to “traditional”
computational science. For example, Graphcore IPUs have been
used for particle physics [7], computer vision [8], and graph
processing [9, 10]. Regarding mesh-based computations for
numerically solving partial differential equations (PDEs), the
current research effort is limited to porting stencil methods that
are based on uniform meshes and finite difference discretization.
This limitation applies to both Cerebras WSE [11, 12] and

Graphcore IPUs [13, 14]. To the best of our knowledge, the
subject of porting unstructured-mesh computation to massively
tiled processors has not yet been addressed.

This paper aims to investigate how to program massively tiled
processors for unstructured mesh computations. The Graphcore
IPU, which is a relatively mature AI processor, is adopted as the
hardware testbed. Specifically, we study the performance impact of
partitioning an unstructured mesh into huge numbers of sub-
meshes, as well as how to facilitate communication between the
sub-meshes through special IPU programming. Another topic of
generic characteristic to study in this paper is the achievable
performance and accuracy of evaluating special mathematical
functions, such as exp, log, and sqrt, on the IPU. As a real-
world application of computational physics, we port an existing code
that simulates the electrophysiology inside the heart ventricles,
which need to be resolved by high-resolution 3D unstructured
meshes. Our work, thus, makes the following contributions:

• We present a new programming scheme, based on
Graphcore’s Poplar software stack, for implementing
parallel sparse matrix-vector multiply (SpMV) operations
that arise from partitioning unstructured meshes.

• We study the impact of mesh partitioning on the size of halo
regions and the associated memory footprints, as well as the
performance loss due to the communication overhead. These
will be investigated for both single- and multi-IPU scenarios.

• We benchmark, in detail, the achievable accuracy and speed of
some chosen mathematical functions on IPUs using single
precision.

• We demonstrate how a real-world application of computational
physics, namely, simulating cardiac electrophysiology on 3D
unstructured meshes, can utilize the computing power of IPUs.

• We also address the subject of performance analysis of
unstructured-mesh computations on IPUs.

It is remarked that the chosen existing code numerically solves a
widely used mathematical model in computational
electrophysiology. The choice is also motivated by the fact that
the performance of the code on GPUs has been carefully optimized
and studied in [15], thus providing a comparison baseline for this
paper where one of the research subjects is the achievable
performance of unstructured mesh computations on IPUs. No
new numerical algorithm will be introduced in this paper.
Specifically, cell-centered finite volume discretization in space
and explicit integration in time (used by the existing code, and
more details can be found in Section 3) will continue to be used. The
readers will recognize two familiar computational kernels, namely,
parallel SpMV operations arising from unstructured meshes, and
explicit integration of systems of non-linear ordinary differential
equations (ODEs). The findings of this paper, regarding both the
programming details needed to enable inter-tile communication on
IPUs and the achievable performance, will thus be applicable beyond
the domain of computational electrophysiology.

The remainder of this paper is organized as follows. Section 2
gives a brief introduction to the mathematical model considered,
whereas Section 3 explains the numerical strategy and parallelization
of the existing simulator. Section 4 focuses on the new programming
details required for using the IPU. Numerical accuracy is considered

Frontiers in Physics frontiersin.org02

Burchard et al. 10.3389/fphy.2023.979699

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.979699


in Sections 5 and 6. The former measures the general floating-point
accuracy of the IPU, while the latter tests the fidelity of the
simulation using an established benchmark. Section 7 presents
the measured performance of our IPU implementation, together
with a comparison with the GPU counterpart. The impact of
imbalanced halo region distribution is also investigated. Section 8
concludes the paper.

2 Monodomain model of cardiac
electrophysiology

The increase in computing power over the past decades has
facilitated the use of computer simulations to better understand
cardiac pathologies. One of the most important cardiac processes is
the propagation of the electrical signals, which triggers the
contraction of the heart muscle. This process of
electrophysiology, in its simplest form, can be mathematically
described as a reaction–diffusion system using the following
monodomain model (see, e.g., [16]):

zv

zt
+ χIion t, v, �s( ) � ∇ · M∇v( ). (1)

In the above model, v (x, y, z, t) denotes the transmembrane
potential and is mathematically considered as a time-dependent 3D
field, M (x, y, z) is a conductivity tensor field describing the space-
varying cardiac muscle structure, χ is the ratio of the cell membrane
area to the cell volume, and Iion(t, v, �s) denotes the total ionic
current across the cell membrane. Here, �s(t) denotes a vector of
state variables (apart from v) that also contributes to the evolvement
of Iion at each spatial point, where the evolution of �s is governed by a
system of ODEs (see below).

Despite its simplicity, the monodomain model (1) is frequently
used by researchers to capture the main features of the signal
propagation, especially over the entire heart. Numerically, this
reaction–diffusion system is often solved using an operator
splitting method to decouple the reaction term, χIion(t, v, �s), from
the diffusion term, ∇ · (M∇v). The reaction part of the monodomain
model is then formulated as a system of non-linear ODEs.

dv
dt

� −χIion t, v, �s( ), (2)
d �s
dt

� �f t, v, �s( ). (3)

This ODE system needs to be individually solved on each mesh
entity of a computational grid. The diffusion part of the
monodomain model is, thus, a linear 3D PDE as follows:

zv

zt
� ∇ · M∇v( ). (4)

This PDE needs to be solved involving all the discrete v values in
a computational grid.

In this paper, the ten Tusscher–Panfilov model (TP06, see [17])
is used for modeling Iion, where the entire ODE system (2–3)
involves v and 18 state variables. These state variables include
various ionic currents and the so-called gating variables. Special
math functions, such as exp, are heavily used in the ODEs. The
source code of a straightforward implementation of the specific ODE

system can be found in [18]. Furthermore, the TP06 model
prescribes different parameters for three types of cardiac cells
located in the epicardium (outer layer), the myocardium (middle
layer), and the endocardium (inner layer) of the muscle wall in the
cardiac ventricles.

3 Numerical strategy and distributed-
memory parallelization

3.1 Unstructured tetrahedral meshes

To sufficiently resolve the irregular shapes inside a heart, we
adopt unstructured tetrahedral meshes. The adopted bi-ventricular
meshes are based on the dataset published by Martinez–Navarro
et al. (see [19]) and the LDRB algorithm (see [20]) for determining
muscle fiber directions. We have used transversely isotropic
conductivity tensors such that the conductivity only depends on
the longitudinal fiber direction, that is, parallel to the muscle fibers.
Two realistic bi-ventricular meshes have been used for the numerical
experiments to be presented later in this paper. The heart04mesh
has, in total, 3,031,704 tetrahedrons and a characteristic length of
0.4 mm, whereas the finer heart05 mesh has, in total,
7,205,076 tetrahedrons and a characteristic length of 0.3 mm.
Figure 1 shows a simulated activation map of heart04 where a
stimulus is applied initially to the apex of the left ventricle.

3.2 Discretization of the ODE systems

The non-linear ODE system (2–3) needs to be individually
solved per tetrahedron. We follow previous studies [21, 22] in
using an augmented forward Euler scheme, where one of the
state variables (the so-called m gate) is integrated using the
Rush–Larsen method [23] for improved numerical stability. That
is, the other 17 state variables and v are explicitly integrated by the
standard forward Euler scheme. In order to obtain sufficient
accuracy, we use a time step ΔtODE = 20 µs for the ODE
system (2–3).

3.3 Discretization of the diffusion equation

The numerical solver for the diffusion equation (4) is based on
cell-centered finite volume discretization in space and explicit
integration in time [24, 25]. There exist other numerical
strategies that are based on finite element discretization in space
and/or implicit integration in time. We will provide a discussion in
Section 8. The resulting computational stencil from the cell-centered
finite volume discretization covers the four direct neighboring
tetrahedrons plus the 12 second-tier neighbors such that the
computational formula per tetrahedron depends on its
16 neighbors in addition to itself. This can be expressed
straightforwardly as an SpMV operation:

�vn+1 � Z �vn, (5)
where the vectors �vn+1 and �vn contain the numerical solutions at t =
(n + 1)ΔtPDE and t = nΔtPDE, respectively. Each value of vectors �vn+1
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or �vn is the numerical approximation of the transmembrane
potential v at the center of a tetrahedron (which will also be
called a cell in the remaining text). The matrix Z has a dense
diagonal, and each row, corresponding to a specific tetrahedron, has
up to 16 off-diagonal non-zero entries. The column positions of
these non-zero entries are irregular due to the unstructured
tetrahedral mesh.

The number of tetrahedrons of the 3D unstructured mesh is
denoted by N. The diagonal of Z is stored as a separate 1D array, D,
of length N, whereas the off-diagonal entries are stored in the
ELLPACK format (see [26]) with 16 values per row. This results
in two 2D arrays each with N × 16 entries: A contains the non-zero
floating-point values in the off-diagonal part of matrix Z, and I
contains the corresponding column indices.

As is common for explicit methods, the entries of Z impose a
limit on how large the PDE time step ΔtPDE can be chosen without
giving rise to numerical instability. When the criterion on ΔtPDE is
much stricter than that on the ODE time step ΔtODE, we use multi-
stepping, meaning that p PDE steps with ΔtPDE � ΔtODE

p are executed
for each ODE step. Otherwise, if the accuracy-determined value of
ΔtODE is roughly the same as the stability-determined value ofΔtPDE,
the minimum of the two is used for solving both parts of the
monodomain model.

3.4 Distributed-memory parallelization

On distributed-memory architectures, we need to partition the
unstructured tetrahedral mesh in such a manner that the
computation is evenly distributed among the hardware units, for
example, the GPUs on a cluster or the tiles within an IPU.
Furthermore, partitioning should ideally lead to a minimal
communication volume to allow for scaling of the parallelized
simulator. Specifically, we first construct an undirected graph
based on the cell connectivity of the tetrahedral mesh and then
use a graph partitioner (e.g., from theMETIS library [27]) to create a
partition that attempts to minimize the total communication
volume within the constraints of a given maximal work
imbalance ratio.

With respect to parallelizing the SpMV operation (5) that
constitutes the computation of each PDE step, the non-
overlapping sub-meshes that are produced by the graph
partitioner dictate how the rows of the sparse matrix Z are
distributed among the hardware units (such as the tiles within an
IPU). Also, the input vector �vn that is to be multiplied with Z needs
to be partitioned accordingly. On each hardware unit, besides its
non-overlapping partition of �vn, additional halo values of �vn need to
be included. These halo values represent the needed contributions
from the neighboring partitions; see Section 1. Before a distributed-
memory parallel SpMV is executed, the halo values must be
communicated from the neighbors. In return, some values within
each non-overlapping partition of �vn are needed as halo values on
the neighbors, so these values must be communicated to the
neighbors.

4 Porting to the Graphcore IPU

We have chosen an existing code as the starting point, which is
described in [15, 24, 25], for simulating the monodomain model.
The numerical strategy of the existing monodomain simulator is
described in Section 3. The same distributed-memory parallelization
will also be used with the exception of how halo-data exchanges are
enabled.

4.1 Halo-data exchanges

Before describing the communication details, we need to
introduce some definitions first. The cells of each non-
overlapping partition are of two types: the interior and separator
cells, where the interior cells are not needed by any other partition,
whereas each separator cell is needed by at least one neighboring
partition. Therefore, the interior cells are not included in any
communication. The values of the separator cells are computed
on the owner partition but need to be communicated outward to the
requiring partition(s). On the receiving partition(s), the
corresponding cells are called halo cells.

FIGURE 1
Activationmap for a realistic bi-ventricular mesh, named heart04, with a stimulus applied initially to the apex of the left ventricle (darkest blue). The
panels show two different viewing angles of the same mesh.
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On each sub-mesh, the interior and separator cells are
identified on the basis of the non-overlapping partitioning
result produced by the graph partitioner (see Section 3.4). The
needed addition of halo cells uses the same partitioning result.
However, the cells and their dependencies arise from a 3D
geometry that is represented in a 1D memory. Therefore, the
separator cells on each partition may not be rearranged in such a
way that the “outgoing” data to different neighbors appear as
non-overlapping memory ranges.

Suppose destination partitions A, B, C all require some values
from the same source partition, where A requires cells {1, 2}, B
requires {2, 3}, and C requires {1, 3}. Since the “outgoing” data
from the source partition to the destinations A, B, C have
overlapping values, it is impossible to arrange the separator
cell values in the memory of the source partition as three non-
overlapping ranges.

Consequently, if each outgoing data sequence must be marked
by a contiguous range, using one start position and one end position
in the memory, such as required to enable inter-tile data exchanges
on the IPU (Supplementary Section 2.4), the destination partitions
may have to receive some “unwanted” data together with the needed
data. This issue is particularly important for using the IPU because
Poplar programming (see Supplementary Section 2.4) does not
provide explicit communication, such as sending and receiving
messages in the MPI standard. Instead, the need for inter-tile
data exchange is automatically identified and arranged by the
popc compiler during compilation, based on shared data ranges
between the tiles.

We thus reorder the separator cells in each partition such that
the data range for each destination partition contains minimal
unused values. An alternative approach would be to generate many
tiny ranges for each cell in each location. However, this fine-
grained mapping would generate many communication programs,
which will require a significant amount of program memory.
Therefore, we consider three separator division schemes that
are responsible for reordering the separator cells and generating
outgoing ranges over segments of the memory, as shown in

Figure 2. An algorithmic description is provided in
Supplementary Section 1.

4.1.1 Full separator communication
The simplest form of separator reordering and outgoing range

determination is to declare the full separator region as the outbound
region for all neighbors. This has the advantage that the compiler may
optimize the internal exchanges to use broadcast operations, having fewer
data transmissions on the exchange fabric. The downside is that thewhole
separator contains values that are not needed for all neighbors. Since the
memory is a scarce resource on the IPU, a concern is about the unused
values included in these exchanges, as theywill also increase the size of the
halo region on the receiving partitions.

4.1.2 Ranged separator communication
The ranged separator communication scheme creates one

outgoing range from a source tile to each of its destination tiles.
Instead of using the whole separator, we can use the smallest range
for each destination tile as the outgoing memory region range, which
contains all values that must be transferred. As the values cannot be
sorted, such that ranges do not overlap, we still transfer the unused
values (but fewer) similar to the full separator communication
scheme.

4.1.3 Mixed-clean separator communication
To reduce the number of unused values sent, we can split the

communication such that up to two ranges are sent to each neighbor
partition. The first “mixed” range contains all the values that are
required by at least two neighbor partitions, and is transferred in its
entirety to all neighbor partitions. The remaining separator values
have been sorted by destination partition such that a second “clean”
range (containing no unused values) can be sent exclusively to the
relevant neighbor.

The advantage of this scheme is that the mixed range can be
broadcast from each tile to its neighbor partitions. Furthermore, the
clean ranges reduce the number of values transmitted and stored in
the halo regions, thus lowering memory usage.

FIGURE 2
Definition of interior, separator, and halo cells. The left side depicts the three cell regions, where the interior region is not communicated, values in
the separator region need to be sent to other partitions, and the halo region receives separator values from neighbor partitions. The right side depicts
three separator range methods, (full) transmits the entire separator cell range to every neighbor, (ranged) uses the smallest enclosing range for each
receiving partition, and (mixed-clean) splits the separator cell range into a mixed part and a clean part.
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4.2 Specific IPU programming

Porting the existing monodomain simulator to the IPU requires
porting two components, a PDE step and an ODE step, each
programmed as a Poplar codelet (see Supplementary Section 2.4).
The ODE step is independent between the cells; therefore, it can be
easily distributed and executed in parallel on all tiles without
communication. Each tile goes through all its interior and
separator cells and integrates the ODE system for each cell. The
required Poplar programming is mostly about deriving a Poplar
Vertex class that wraps C functions in the existing monodomain
simulator.

The PDE step performs an SpMV (5) involving the voltage
values on all the cells. This requires, beforehand, the communication
and propagation of halo values between each pair of neighboring
tiles. In Poplar, inter-tile communication is described implicitly, as
shown in Supplementary Section 2.4. When partitioning the
unstructured tetrahedral mesh, we also determine the ranges that
need to be communicated from one tile to another. Section 4.1 has
described how these ranges are obtained. The globally addressed
vector of voltages, V, is required and partitioned into different
partitions to be multiplied with the sparse matrix Z, partitioned
and stored in the ELLPACK format per tile. Specifically, vector V is
decomposed into multiple partitions V|i,j = Vp with the global index
ranging from i to j for the tile with index p.

Here, we recall that each value in vector V is owned by one tile,
and the value may be a halo value in one or several tiles. Poplar
requires defining the locality of data on the subdomains of tensors.
We can do this mapping with, for example,
graph.setTileMapping(V.slice(i,j), 123), which
maps the range i to j of V to the tile with the identifier of 123.
To append halo data into an existing tensor that is already on the tile,
we can create a virtual tensor composed of different tensor regions.
This virtual tensor will be created through copies and exchanges
once the BSP-superstep is launched using this tensor (see
Supplementary Section 2.4). Such a virtual tensor can be created
by localV = concat(localV, V.slice(m,n)) ∀(m, n) ∈ separatorReceive,
where localV is a tensor representing Vp. This simple statement
implies the needed tile-to-tile communication, as the ranges (m, n)
are owned and computed by other tiles. The compiler automatically
generates the exchanges and synchronization steps needed when the
PDE compute-vertex using localV is running. On the other hand,
localV is not necessarily materialized when the PDE compute-vertex
is not running. The memory space can be overwritten by other
operations.

Attention must be paid when working with big exchanges of
data, as data are duplicated when transferred. Therefore, bigger
exchanges can transfer at most half of the per-tile memory in an
optimal scenario. An alternative approach is to communicate in
smaller chunks to mitigate this problem.

4.3 Performance modeling

On CPUs and GPUs, all hardware optimizations need to be
accounted for to determine the expected runtime. Hence, if not

performed rigorously, the actual performance can differ
dramatically from a predetermined performance model. However,
the IPU does not have special hardware optimizations such as caches
or instruction pipelining (see Supplementary Section 2.3) and stalling.

Due to the simplicity of the IPU architecture, we can count
instructions in any algorithm in the computation phase to create a
performance model. In the following, our focus is on the
computations involved in the PDE and ODE parts of the
monodomain simulator. Using Graphcore’s popc compiler with
the -O3 flag, we generated the assembly output for the
GC200 platform.

4.3.1 Performance model for the PDE part
On conventional platforms, due to the unstructured

computational mesh used, the SpMV operation during each PDE
step has to read values that are spread across the main memory. On
such systems, due to the random access pattern, the values cannot be
fully cached, leading to long runtimes for SpMV.

On the IPU, however, once the sparse matrix and the associated
vectors (with halo parts) are partitioned among the tiles, data are
only accessed from the local SRAM of each tile. The Poplar code that
implements the computation phase of the SpMV is given in Listing 1.

Listing 1. ELLPACK formatted SpMV used for PDE computation.
Counting the instructions of the inner SpMV loop, we

estimated for each tetrahedron 107 execution context local
cycles and measured a real performance of 106 execution
context local cycles. We noticed that of the 107 cycles, 18 cycles
are used to store and load spilled registers. Furthermore, the
generated code makes use of instruction bundles but does not
yet include more specialized instructions available to the GC200,
such as headless loops. The one-time start and teardown overhead
is 153 instructions.

4.3.2 Performance model for the ODE part
As mentioned in Section 2, the ten Tusscher–Panfilov model

(TP06, see [17]) is used for modeling the ionic currents (2–3). An
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augmented forward Euler scheme is used to explicitly integrate
the ODE system (see Section 3.2). By counting the instructions
of the TP06 model, we arrive at 1,077 instruction bundles.
Adding latencies for the involved math functions (see
Supplementary Section 2.2), we get an estimate of
1,401 cycles per tetrahedron (per time step). Adding the loop
overhead gives us a total of 1,418 cycles. Our measurements can
confirm that the model with 1,415 cycles was actually used. We
noticed that 111 instructions, or about 7.9%, were used to
handle register spilling. Furthermore, we noticed that the
compiler generated 2-element vectorized operations in some
places, which is the maximum SIMD operation width for single-
precision (32-bit) float values.

5 Math accuracy

The purpose of this section is to rigorously verify the accuracy of
some representative mathematical functions when executed on the
IPU using single precision. We consider it a very important step
before adopting this new processor architecture for numerically
solving the monodomain model.

The IPU uses the IEEE754 [28] standard for single-precision
floating-point numbers. IEEE754 specifies these as binary32 with
one sign bit indicating a positive or negative number, an exponent of
8 bits, and 23 mantissa bits. The general form of a normalized
floating-point number can be given as

m0.m1 . . .mp( )
2
× βe,

with one significant digit in front of the decimal separator. For the
IPU, the base is β = 2, and according to IEEE754,m0 = 1 is specified.

5.1 Subnormal numbers

The IEEE754 [28] standard formulates an extension of floating-
point numbers to subnormal numbers. Subnormal numbers are
used to represent numbers smaller than the minimum floating-point
number at the loss of accuracy. Subnormal numbers are represented
with emin = 1 − emax and have m0 = 0. The numbers they can
represent are numbers between zeros and the minimum normalized
single-float number. The subnormals are linearly spaced, while
normalized floating-point numbers have logarithmic spacing.

The IPU does not support hardware-accelerated subnormals.
However, CPUs and GPUs are also not primarily optimized to
deal with subnormals. As shown by Fasi et al. [29], V100 and
A100 have hardware-accelerated support for subnormals.
However, as noted in both Intel and Nvidia developer
documentation, subnormals can be an order of magnitude
slower than normalized floats.

5.2 Units in the last place

To compare floating-point numbers in one format, such as the
IEEE754 single-precision format, we choose the units in the last

place (ULP) as a metric rather than the relative error. One ULP is
equivalent to

ulp β, e( ) � 01.02 . . . 0p−11p( )
2
× βe

and defined under a constant basis and exponent. One ULP has the
scalar distance between representable numbers with bases β and
exponent e.

When considering the error, we generally are speaking about the
difference from a calculated result ŷ to the mathematically precise
and accurate result y:

errorabsolute � |y − ŷ|.
We generally cannot precisely represent y in a finite-precision

floating-point format, as the true value may always be between two
representable numbers. Considering that we are rounding to the
nearest number, even with perfect calculation, the error can still be
up to 0.5 × ulp (β, e) because we have ŷ≤y≤ ŷ + 0.5ulp(β, e)≤ ŷ +
ulp(β, e).

5.3 Experimental setup

We are interested in determining the accuracy of the most
important mathematical functions used in our simulator. The
functions with one argument that we want to analyze are {exp,
expm1, log, sqrt}. The function of interest with two operands
is {÷}.

All function operands xn are represented in the IEEE754 single-
precision floating-point format. The results ŷ are like the input
operands in single precision. When considering the mathematically
accurate result y for a comparison with ŷ, we are using double-
precision floating-point numbers. However, for |y − ŷ|, we are
interested in the error represented in ULPs, which gives us a fair
estimate of how far we are off in our given representation. Therefore,
to get the difference of y − ŷ in ULPs, we need to convert y into the
same floating-point format as ŷ with the same base and exponent.
This conversion gives us the most accurate result in our chosen
representation. We assume the double-precision floating-point
result is accurate and precise only with a minimal error, which
occurs beyond the representation of single-precision floating-point
numbers. Therefore, when converting from double to single
precision, we do not introduce an error bigger than 0.5 × ulp (β,
e). The final error in ULPs represents howmany places in our single-
precision representation we are off. For example, if we are able to
only represent one place behind the decimal separator with a base
and exponent βe, our accurate mathematical result would be y =
1.3315 × βe. If we calculated ŷ � 1.5 × βe, while the mathematical
result in our representation would be y = 1.3 × βe, the observed result
ŷ is wrong by two ULPs.

For functions with one operand, we can iterate over all
single-precision floating-point values as the possible inputs,
thus bounded by just 232 different representable states.
However, we are unable to iterate through functions with
two operands as the number of possible inputs is not iterable
with 264 possible states. Hence, we randomly sample 10 billion
different input operand pairs.
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5.4 Experiment results

All single-operand math functions {exp, expm1, log,
sqrt} and the double-operand function {÷} have been
implemented as hardware instructions and specifiable in the
assembly. We noticed that subnormal values are rounded off to
zero in input, also, if a non-normalized output could be
expected. Furthermore, operands that are normalized and
produce a subnormal output are rounded off to zero. Both
cases are covered in hardware implementation and produce
faster results after a single cycle.

All functions showed no more than a 1 × ulp (β, e) error. Errors
of one ULP were found randomly distributed throughout the results.
Thus, we can say that the single-precision floating-point
implementation of the IPU can be considered accurate.

6 Niederer Benchmark

6.1 Running the benchmark

Now, the task is to verify the correctness of our IPU
implementation. Ideally, we should choose a well-known
problem instance and compare our computational results
with real-world measurements. However, cardiac simulations
are very complex with multiple parameters and non-trivial
geometries. Therefore, the scientific community has agreed to
compare multiple codes against each other to create a golden
solution that serves as a sensible reference. Niederer et al. [30]
formulated an N-version benchmark to compare cardiac

electrophysiology simulators independent of the numerical
scheme used.

More specifically, the Niederer benchmark uses a box-shaped
geometry to represent a 20 × 7 × 3 mm slab of cardiac tissue with
fibers aligned along the long (20 mm) axis. A stimulus is applied
within a small 1.5 × 1.5 × 1.5 mm cube at a corner of the geometry
for a duration of 2 ms and with a stimulation strength of
50000 μA/cm3.

6.2 Benchmark results

As described previously, the Niederer benchmark compares
multiple simulation results against each other. As the baseline,
we used the existing monodomain code (its CPU version denoted
as “OMP” in Figure 3) and executed it on an Intel Xeon CPU with
IEEE754-float64 double precision. We compared the IPU
implementation of the same cell model to the CPU
implementation with more accurate math.

The benchmark is run for three meshes with 0.5, 0.2, and
0.1 mm resolution. The PDE and ODE time steps are fixed to
0.05 ms. In Figure 3, we observe that the benchmark results
computed by the IPU do not diverge significantly from the CPU
baseline. When using the same mesh resolution, for example,
0.1 mm, the two implementations produce results that are
difficult to distinguish with naked eyes.

In Section 7.4, we will present another comparison of the
simulation results between the ported IPU code and an existing
GPU implementation. This comparison addresses a realistic heart
geometry and unstructured computational meshes.

FIGURE 3
Niederer benchmark results reported as the activation time vs. the distance from the stimulus origin.
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7 Experiments

7.1 Separator experiments

To determine the effectiveness of the three schemes for
reordering and dividing the separator cells on each tile, as
discussed in Section 4.1, we use the heart04 mesh (see Section
3.1) as an example. For a given number of IPUs, the unstructured
mesh is decomposed by the k-way partitioner of METIS [27] into N
sub-meshes, with N equaling the total number of tiles available. For
all the experiments, we have always used an imbalance ratio of 3%,
while minimizing the adjacency edge-cut, meaning that the number
of cells on the largest partition cannot be more than 1.03 times
greater than the ideal partition size. This offered us a good trade-off
between runtime and partitioning quality. With more workload
imbalance, the downsides are twofold: 1) As the IPU uses a bulk
synchronous parallel (BSP) programming model, all tiles need to
wait until the last tile is finished, leading to poor use of the hardware
resources. 2) The maximum problem size which fits on a set of IPUs
is reduced because once a single partition becomes too large, the
popc compiler fails. Setting a lower work imbalance ratio would
reduce the computation time in the PDE and ODE steps, but it
might increase the communication volume and, thereby, the time
spent on the halo-data exchange phase that occurs before each
PDE step.

First, we are interested in the maximum and median memory
used on the tiles because themaximummemory requirement per tile
indirectly determines how big meshes can fit on a single or multiple
IPUs. The second metric of interest is the maximum and median
inbound communication volume per tile and the number of unused
cells included in the halo regions. To evaluate the effect on a real-
world application, we benchmarked the PDE exchange phase and
counted the number of cycles used for the exchanges (see details in
Section 7.3).

A high-level comparison is shown in Table 1. We can observe
that the mixed-clean strategy outperforms the full and ranged
strategies. The latter two are on average 2× worse. As expected,
the full separator strategy performs consistently worse than the
ranged separator strategy. However, the advantage of the mixed-
clean strategy may not hold for very small partitions, for example,
when the number of IPUs used is very large. This is because as the
partitions get smaller, the overlapping ranges in the mixed-clean
separator strategy increase, approaching the same level of the full
separator strategy. The ranged separator strategy, therefore, may
have a small advantage.

When running the real-world benchmarks, such as those to be
presented in Section 7.2, we observed a correlation between the
number of inbound cells and the exchange time usage. The mixed-
clean strategy was thus used when running the IPU-ported
monodomain simulator.

7.2 Strong-scaling experiments

We continue with some strong-scaling experiments; that is, the
computational mesh is fixed while the number of IPUs increases. For
all the IPU numbers tested, we used the heart04 mesh (with
3,031,704 cells) as it is the biggest fitting instance that runs on a
single IPU. Figure 4 shows three snapshots from a monodomain
simulation using the heart04 mesh. It simulates the propagation
of the electrical signal in the heart for 500 ms, with ΔtODE = 20 μs
and ΔtPDE = 5 μs, that is, one ODE step per four PDE steps. In
addition to heart04, we also used heart05 (with 7,205,076 cells)
for which two IPUs were of the smallest configuration. This mesh
has a finer resolution than heart04; thus, a smaller value of
ΔtPDE = 4 μs was used, that is, one ODE step per five PDE steps.
In addition, we compared the IPU performance with the GPU
performance of the existing code [15] using one to eight GPUs
in an NVIDIA DGX A100 system. A high-level summary of the
comparison is shown in Figure 5, whereas Section 7.4 contains a
deep-dive analysis.

The k-way partitioner from the METIS software package was
used to divide the unstructured meshes, with k equal to the total
number of tiles used for each IPU experiment. For the GPU
experiments, k is equal to the number of GPUs used. The intra-
GPU parallelism utilized the device-level memory accessible for all
CUDA threads. All the experiments used a METIS load imbalance
constraint of 3%.

Figure 5 shows the results of the strong-scaling experiment. We
can observe that both IPU and GPU implementations scale almost
linearly. A100 has almost twice the performance and is always
matched by twice the number of IPUs. However, when
approaching eight GPUs, the scaling efficiency drops. This is not
the case for the IPUs, which are able to scale up to 16 IPUs. We were
not able to run this experiment on more than 16 IPUs as the popc
compilation ran out of memory when trying to compile for 32 IPUs.

When increasing the number of IPUs from 1 to 16 for the
heart04 mesh, we observe that the time decreases almost linearly
with the added hardware. From the perspective of computation
alone, this scaling trend is expected because each tile is responsible

TABLE 1 Partitioning the heart04mesh using 1 to 16 IPUs under three different exchange strategies. The inbound cells correspond to the halo cells. The total cells
are of the biggest partition. Unused cells refer to the cells in the halo region not used by the receiving partition.

IPU Count Inbound cell max Total cell max Unused cell median

Full Mixed Ranged Full Mixed Ranged Full Mixed Ranged

1 3.4× 1× 2.1× 2.6× 1× 1.7× 5.3× 1× 2.7×

2 2.8× 1× 1.8× 2.3× 1× 1.6× 3.9× 1× 2.0×

4 2.2× 1× 1.5× 2.0× 1× 1.4× 3.0× 1× 1.6×

8 1.9× 1× 1.3× 1.7× 1× 1.3× 2.4× 1× 1.3×

16 1.5× 1× 1.2× 1.5× 1× 1.2× 1.8× 1× 1.3×
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for less work. However, due to the increasing number of tiles used,
the number of halo cells increases. When using a single IPU for the
heart04 mesh, we see a median of 2,058 interior+separator cells
per tile and a median of 2,226 halo cells per tile. That is, the halo cells
occupy about 51.9% of the total cells per tile. Let us also recall that
the values of these halo cells need to be transferred from other tiles
before each diffusion step. With more IPUs, the transfer volume
increases to about 63.33%, 72.60%, 80.20%, 86.13% of all the cells,
for 2, 4, 8, 16 IPUs, respectively. The memory footprints of the halo
cells are, thus, steadily increasing.

7.3 Phase breakdown

We used the Graphcore PopVision tools to visualize the inner
workings of our IPU-enabled simulator. In order to generate a
profile containing runtime and compile information, an
environment variable has to be passed during compilation, which
will make the Poplar libraries generate profiling information. The
profiling information contains static runtime-independent data,
such as the memory usage on each tile. Runtime-dependent
information is also collected. However, runtime profiling incurs a
small performance and memory usage penalty. We are, thus, only
interested in the proportions of the execution steps that can be back-
adjusted through the non-profiled wall-time usage.

We profiled the four phases of our IPU code, that is, PDEcompute,
PDEexchange, ODEcompute, and ODEexchange, respectively, based on the
computing and exchange phases of the PDE and ODE parts. Table 2
gives a breakdown of the PDE and ODE phases. For example, when
using one IPU, the PDE part took about 25.8% of the total execution
time, while the data exchange within the PDE steps only took about
1.1%. The computation phase of a PDE step consumes about 22× as
much time as the exchange phase. The ODE computation is by far
the slowest part, requiring approximately 74.2% of the total
execution time. Recall that four PDE steps were executed per
ODE step, each ODE step, thus, requires about 11.5× the time of
a single PDE step. No communication is required to start the ODE
step after the preceding PDE step has finished. Therefore,
ODEexchange is 0. We also noticed that the execution of the ODE
step starts without any synchronization.

The PDEcompute phase took an average of 238K cycles per tile, where
the fastest tile finished after 231K cycles and the slowest after 245K. The
standard deviation is 5.2K cycles. However, workload imbalances have
no significant impact on the performance because the ODE part can
start without requiring global synchronization. ODEcompute took on
average 2.8M cycles per tile, with a minimum of 2.7M and a maximum
of 2.9M cycles. The standard deviation for ODEcompute is 63.1K cycles.

If we quantify the effectiveness as the percentage of time during
which the tiles on average remain non-idle, then the effectiveness is
97% for both the ODEcompute and PDEcompute phases. However, the

TABLE 2 Breakdown of different algorithmic phases (in number of clock cycles) for the strong-scaling experiments using the heart04 mesh. The PDE per ODE
factor p is always four, i.e., four PDE steps per ODE step.

IPUs PDE exchange PDE compute ODE compute PDE total ODE total PDE/ODE (%) PDE
p /ODE

1 11,365 250,916 3,018,062 1,049,124 3,018,062 34.76 8.69%

2 14,642 125,600 1,512,146 560,968 1,512,146 37.10 9.27%

4 12,960 63,296 763,441 305,024 763,441 39.95 9.99%

8 14,144 32,144 383,185 185,152 383,185 48.32 12.08%

16 13,101 15,860 193,406 115,844 193,406 59.90 14.97%

FIGURE 4
Three snapshots of the 3D transmembrane potential field from a realistic monodomain simulation using the heart04 mesh.

Frontiers in Physics frontiersin.org10

Burchard et al. 10.3389/fphy.2023.979699

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.979699


effectiveness is only 57.4% for the PDEexchange phase. These numbers
are associated with the single-IPU experiment. Using more IPUs will
show lower effectiveness, particularly for the PDEexchange phase, due
to a more unbalanced distribution of the halo cells. This problem is
currently not properly handled by the mainstream mesh
partitioners.

Breaking down the phases of the strong-scaling
experiments in Figure 6 shows that the share of communication
time (the “PDE exchange” phase) increases. This increasing
communication share can be explained by the ladder topology
(see Supplementary Figure S2), which increases the latencies
linearly with the number of IPUs used.

FIGURE 5
Strong-scaling experiments using the meshes of heart04 and heart05. The heart05 mesh is too large for a single IPU.

FIGURE 6
Breakdown of the strong-scaling experiments using the heart04mesh. Blue denotes the total ODE step time composed of only compute, green is
the compute phase of the PDE step, and orange denotes the cycles used for PDE exchanges.
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7.4 Detailed performance comparison
between IPUs and GPUs

Figure 5 has already shown a high-level comparison of the
performance between IPUs and GPUs. Now, we want to provide a
more detailed performance comparison between two processor
architectures, using dissected time measurements of the strong-
scaling test with the heart04 mesh.

It can be seen in Table 3 that the GC200 IPUs and A100 GPUs
behave very differently for the PDE and ODE parts. It should be noted
that the PDE part includes the time spent on halo-data exchanges. The
GC200 IPU is considerably more powerful than the A100 GPU for
running the SpMVs that constitute the PDE part. We remark that the
GPU version of the monodomain simulator is highly optimized as
studied in [15]. This can be confirmed by a simple study on thememory
traffic. Namely, let us assume perfect data reuse in the L2 cache of the
A100GPU; that is, each value of the input vector �vn to the SpMV (Eq. 5)
is loaded exactly only once from the GPU’s device memory per SpMV.
This will produce an idealized lower-bound estimate of the memory
traffic on the GPU, which can, in turn, be translated to a minimum
bandwidth of 1507.48 GB/s that has been achieved when one
A100 GPU is used. Compared with the realistically achievable
memory bandwidth of 1774.37 GB/s per A100 GPU, which is
measured by the BabelStream micro-benchmark [31], we can
conclude that the GPU implementation of the SpMV has achieved
at least 85% of the realistically achievable maximum performance.
Considering the high level of A100s SpMV performance, it is very
impressive that the GC200 IPU beats the A100 GPU in this regard. The
explanation lies in the aggregate on-chip SRAM bandwidth of IPU. On
the other hand, the GPU performance of the ODE part is much higher
than the IPU counterpart, thanks to the GPU’s tremendous floating-
point capability. One remark, however, is that GPU implementation
can allow a certain level of overlap between the halo-data exchange and
the ODE step, which may make the ODE time measurement on the
GPU seem shorter than it actually is. This is evident for the ODE time
measurement in Table 3 when eight GPUs are used.

Last but not least, we have also taken a closer look at the
simulated results that are produced by IPU and GPU
implementations. Three example snapshots from simulation are
shown in Figure 4. Human eyes cannot detect any difference
between the two numerical solutions. During the entire
simulation that spans 500 ms, the largest maximum difference
between the IPU-produced and GPU-produced v values is found
to be 0.18 mV. Considering that the simulated v values lie in the
range of [−90 mV, 40 mV], this small discrepancy is acceptable.

8 Conclusion

In this work, we have ported an existing simulator of cardiac
electrophysiology to Graphcore IPUs. In this process, we
investigated the Poplar programming needed and the impact of
partitioning and halo-data exchange on SpMV operations that arise
from unstructured computational meshes. The speed and accuracy
of some special math functions were also rigorously checked on
IPUs. These topics are, by no means, constrained to the particular
cardiac simulator, but with a good possibility of becoming useful for
other computational physics applications.

8.1 Limitations

There are several limitations of the present work. First, the
SpMV operations that have been ported to the IPU use the
ELLPACK format to store the off-diagonal part of a sparse
matrix. This is due to the cell-centered finite volume
discretization adopted for the diffusion equation, resulting in the
same number of non-zeros per matrix row. In the case of node-
centered finite volume discretization or finite element discretization,
in general, the number of non-zeros per matrix row will no longer be
the same. For example, the standard compressed sparse row format
can then be used to store the resulting sparse matrix. This will,
however, require a change in the partitioning step, where each row
should be weighted by its number of non-zeros. Thus, the sub-
meshes can be assigned with different numbers of rows. Such a
weighted partitioning scheme actually suits the IPU very well
because the computing cost per tile will be strictly proportional
to the total number of non-zeros assigned. The GPU counterpart, on
the other hand, may need to adopt other storage formats to achieve
its full memory bandwidth capacity. This is an active research field
illustrated by many recent publications such as [32].

Second, still with respect to the partitioning step, the present work
has another limitation related to using multiple IPUs. Our current
partitioning strategy is single-layered, that is, an unstructured mesh is
decomposed into as many pieces as the total number of IPUs available
onmultiple IPUs. No effort is made to limit the halo-data exchanges that
span between IPUs. As shown in Supplementary Figure S2 in
Supplementary Section 2.1, the communication speed between IPUs
is heterogeneous and much lower than the intra-IPU communication
speed between the tiles. An idea for improvement is to introduce a
hierarchical partitioning scheme, where a first-layer partitioning
concerns only the division between the IPUs, whereas a second-layer

TABLE 3 Performance comparison between GC200 IPUs and A100 GPUs related to a monodomain simulation using the heart04mesh with 25,000 ODE steps and
100,000 PDE steps.

IPUs Total time PDE part ODE part GPUs Total time PDE part ODE part

1 76.57 s 19.75 s 56.82 s 1 37.40 s 27.34 s 10.05 s

2 38.99 s 10.55 s 28.44 s 2 18.77 s 13.26 s 5.51 s

4 20.06 s 5.73 s 14.33 s 4 9.75 s 6.89 s 2.86 s

8 10.71 s 3.49 s 7.22 s 8 9.54 s 8.81 s 0.73 s

16 6.02 s 2.26 s 3.76 s
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partitioning divides further for the tiles within each IPU. Moreover, the
partitioning on both layers should attempt to evenly distribute the halo
cells. Otherwise, tiles over-burdened with halo cells will quickly become
the bottlenecks.

Third, we have only considered explicit time integration for the
diffusion equation. The upside is that the PDE solver only needs
SpMVs, but the downside is the severe stability restriction on the size
of ΔtPDE. Implicit time integration is good to have with respect to
numerical stability but will give rise to linear systems that need to be
solved. Here, we remark that SpMVs constitute one of the building
blocks of any iterative linear solver.

8.2 Lessons learned

The design of algorithms must be reconsidered for massively
tiled processors. While the HPC community already has ample
experience in using technologies like distributed memory and BSP,
their use in the IPU has not been explored equally well. Most of the
current projects and their underlying design considerations are not
adjusted to the trade-offs of this new class of accelerators. New ways
to think of communication and load balance are necessary.

Furthermore, Poplar programming requires us to implicitly define
communication at compile time. This makes it impossible to have
predefined kernels such as those commonly found on CPUs and
GPUs. One could argue that the compilation of regular-mesh kernels
for IPUs only needs to happen once for all inputs. However, compiling
irregular meshes is required for every single communication scenario
unless a regular representation can be found. This unavoidable
compilation requires us to be aware of the expensive compilation
time.We also found that the compilation time andmesh preprocessing
time substantially increase with multiple IPU devices.

The current IPU architecture also has clear limitations. These
include the support of only single-precision computing and limited
SRAM resource per tile. Instead of waiting for Graphcore to develop
new IPUs capable of double-precision computing, a possible strategy
can be used to identify the most accuracy-critical parts of a
computation and emulate double-precision operations by software
for these parts, whereas the remaining parts use single precision. Better
partitioning algorithms, which adopt a hierarchical approach and are
aware of the heterogeneity in the communication network, will also be
useful for optimizing the usage of the limited SRAM per tile. On the
other hand, we should not forget about one particular advantage of AI
processors such as IPUs. That is, these processors are already good at
running machine-learning workloads. Thus, if “conventional”
scientific computing tasks can be efficiently ported to AI processors,
the distance to converged AI and HPC is short.

In future work, we will investigate further optimizations of halo-
data exchanges both on and between the IPUs (with the help of
better partitioning strategies) and extend our work to other more
general unstructured-mesh computations.
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