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An automatic and personalized 
recommendation modelling 
in activity eCoaching with deep 
learning and ontology
Ayan Chatterjee 1,2*, Andreas Prinz 1, Michael Alexander Riegler 2 & Yogesh Kumar Meena 3

Electronic coaching (eCoach) facilitates goal-focused development for individuals to optimize 
certain human behavior. However, the automatic generation of personalized recommendations in 
eCoaching remains a challenging task. This research paper introduces a novel approach that combines 
deep learning and semantic ontologies to generate hybrid and personalized recommendations by 
considering “Physical Activity” as a case study. To achieve this, we employ three methods: time-
series forecasting, time-series physical activity level classification, and statistical metrics for data 
processing. Additionally, we utilize a naïve-based probabilistic interval prediction technique with 
the residual standard deviation used to make point predictions meaningful in the recommendation 
presentation. The processed results are integrated into activity datasets using an ontology called 
OntoeCoach, which facilitates semantic representation and reasoning. To generate personalized 
recommendations in an understandable format, we implement the SPARQL Protocol and RDF Query 
Language (SPARQL). We evaluate the performance of standard time-series forecasting algorithms 
[such as 1D Convolutional Neural Network Model (CNN1D), autoregression, Long Short-Term Memory 
(LSTM), and Gated Recurrent Units (GRU)] and classifiers [including Multilayer Perceptron (MLP), 
Rocket, MiniRocket, and MiniRocketVoting] using state-of-the-art metrics. We conduct evaluations on 
both public datasets (e.g., PMData) and private datasets (e.g., MOX2-5 activity). Our CNN1D model 
achieves the highest prediction accuracy of 97% , while the MLP model outperforms other classifiers 
with an accuracy of 74% . Furthermore, we evaluate the performance of our proposed OntoeCoach 
ontology model by assessing reasoning and query execution time metrics. The results demonstrate 
that our approach effectively plans and generates recommendations on both datasets. The rule set of 
OntoeCoach can also be generalized to enhance interpretability.
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KNN	� K-nearest neighbour
DT	� Decision tree
PCA	� Principal component analysis
LDA	� Linear discriminator analysis
MLP	� Multi-layer perceptron
CNN	� Convolution neural network
RNN	� Recurrent neural network
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AR	� Auto regression
TDB	� Touple database
NSD	� Norwegian study data center
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SDG	� Sustainable development goal

The collaborative effects of sedentary lifestyle patterns are linked to multiple adverse health outcomes, including 
increased risk of lifestyle diseases such as obesity, type 2 diabetes, hypertension, depression, and cardiovascu-
lar disease1–4. Regular physical exercise positively affects the prevention and management of lifestyle diseases. 
People who are not physically active have a 20–30% increased risk of death compared to those who are physi-
cally active5–8. E-health research can improve personal healthcare through information and communication 
technology (ICT)9,10. eHealth technologies help collaborate and share health information through digital sen-
sors for ubiquitous monitoring and care. eCoach systems can enable people to lead a healthy lifestyle through 
ubiquitous personalized health status monitoring (e.g., physical activity, diet, healthy habits) and personalized 
recommendation generation11–13.

An eCoach system is complex system with many partially connected computerized components interacting 
through various feedback loops. It creates an artificial entity that can sense, judge, learn and predict the behavior 
of individuals. It proactively engages in ongoing collaborative dialogue with individuals to support planning and 
encourage effective goal management through persuasive skills11. The eCoach system can generate automatic and 
customized activity recommendations based on insights from activity sensor data such as that collected using 
wearable Bluetooth activity devices such as Fitbit, MOX2-5, Garmin, and Actigraph for daily, weekly, or monthly 
activity goals. The activity coaching process can be face-to-face or technology-driven11. Personal coaching with 
manual activity tracking and generating recommendations is time-consuming and repetitious.

Recommendation technology can be defined as a decision-making approach in complex information 
environments14–16. The techniques can be classified as rule-based and data-driven17. Solely data-driven recom-
mendation technology with machine learning (ML) and deep learning (DL) algorithms suffers from insufficient 
data, high computing overhead, lack of interpretability, re-training, personalization, and cold-start problem17,18. 
In contrast, a rule-based recommendation technology uses binary logic in a symbolic form to present knowledge 
in “IF-THEN or IF-ELSE IF-THEN” rules and infer new knowledge with reasoning. A knowledge base (KB) is 
retained to store and access such rules and related messages. Rules can be specified differently, such as proposi-
tional logic, decision tree, relational algebra, and description logic. Rule-based systems are modular, intelligible, 
and easy to manage; however, they suffer from symbol grounding problems17. Therefore, a hybrid approach may 
overcome the shortcomings of both data-driven and rule-based recommendation technologies.

Description logics (i.e., formal knowledge representation of ontology language) balance transparency, com-
plexity, and effectiveness of knowledge description and knowledge reasoning. Moreover, semantic web rule 
language (SWRL) and SPARQL languages also represent description logics in an ontology3,19,20. In particular, 
ontology is a formal description of knowledge in a domain and its relationships according to a hierarchical 
structure, which can help existing technologies develop new ideas through conceptual modeling or proof-of-
concept (PoC) research to address the challenges of semantic processing modeling. Unlike taxonomies or rela-
tional database schema, ontologies express relationships and allow users to connect or relate multiple concepts 
innovatively using the following elements: individuals/objects, classes, attributes, relations, and axioms3,21. They 
follow an open-world hypothetical knowledge representation style using the Web Ontology Language (OWL), 
Resource Description Framework (RDF), and RDF Schema (RDFS) syntax3. In addition, knowledge representa-
tion can be optimized by the ontology model, and the ontology reasoning engine can verify the stability of its 
logic and structure.

A digital activity recommendation system includes a data collection module, data processing and a recom-
mendation generation or decision-making module. Data can be collected over time and analyzed using ML, DL, 
or rule-based algorithms to generate real-time feedback to achieve individual activity goals. The decision engine 
recommends changes to a person’s behavior, daily routine, and activity schedule. The eCoach feature can show 
hope and motivation to improve physical activity using wearable activity sensors and digital activity trackers. 
Various mobile applications for activity monitoring and lifestyle guidance are available online; however, they are 
too generic and lack proper design guidelines. Furthermore, the existing literature lacks real-time data analysis 
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to generate timely, personalized recommendations through eCoaching. An appropriate eCoach-based personal-
ized referral program can help people stay active and achieve their activity goals. There can be two types of goal 
types—short-term goals (e.g., weekly) and/or long-term goals (e.g., monthly). Achievement of the short-term 
goals (STG) contributes to the achievement of the long-term goals (LTG), and the LTG is the sum of the STG. 
Semantic rules in the ontology may enhance understandability in personalized recommendation generation. 
Most activity trackers, involving mobile apps and intelligent wearable devices (e.g., smart watches), predict future 
activity in terms of “steps” as a point prediction either with time-series forecasting, probabilistic approaches, 
or specific rules. However, point prediction is a very abstract concept. Therefore, in this context, a probabilistic 
interval prediction approach may be promising.

This study proposes a hybrid personalized recommendation generation concept in intuitive coaching with 
deep learning and ontology. We have developed an eCoaching prototype system that can perform a collection 
of activity data from actual participants with wearable activity sensors; process collected activity data with DL 
models to forecast step count; classify individual activity levels; calculate and compare activity intensity across 
different weeks with statistical methods; combine the results in an ontology for semantic knowledge representa-
tion and thereby generate personalized recommendations with SPARQL query engine against a rule base. The 
novel major contributions of this work include—(1) the design and development of an ontology model (Onto-
eCoach) for semantic representation of personal and personalized activity data, (2) proposing a novel algorithm 
that combines the OntoeCoach model with deep learning for hybrid recommendation generation with person 
based heuristic configuration, and (3) evaluation of the performance of time-series prediction, classification, and 
ontology models on both public (i.e., PMData) and private (i.e., MOX2-5 activity) datasets.

Related work
We considered the overall activity eCoaching process in related work by classifying it into a data-driven approach 
and a rule-based approach. As eCoach design approaches and applications in eHealth are broader, therefore, 
included search results are mainly focused on technology-driven activity coaching for a healthy lifestyle and 
personalized feedback or recommendation generation.

Data‑driven approach.  The literature search reveals that eCoach concepts with artificial intelligence (AI)-
based tailored recommendation generation are still improving. Few studies have examined the use of actionable 
and data-driven predictive models30. Dijkhuis et al.22 analyzed personalized physical activity guidance for sed-
entary lifestyles using AI (ML and DL) algorithms at Hanze University. They collected daily step count data to 
train an AI classifier, estimated the likelihood of reaching an hourly step count goal, and then used a web-based 
coaching app to generate feedback. Hansel et al.23 designed and developed a fully automated web-based tutorial 
program. They used pedometer-based activity or step monitoring to increase their physical activity in a rand-
omized group of patients with type 2 diabetes and abdominal obesity.

Pessemier et al.24 used raw accelerometer data for individual activity detection, accepted personal prefer-
ences to schedule activity recommendations, and generated personalized recommendations via tag-based and 
rule-based filtering. Amorim et al.25, and Oliveira et al.26 performed activity monitoring using a Fitbit over a 
randomized control trial study. They performed a statistical analysis to find the effectiveness of a multimodal 
physical activity intervention, including supervised exercise, fitness coaching, and activity monitoring of physical 
activity levels in patients with chronic nonspecific low back pain. Their research shows that physical activity is 
vital in managing chronic back pain. According to the review results, ML (e.g., Support Vector Machine (SVM), 
Decision Tree (DT), K-Nearest Neighbor (KNN), Principal Component Analysis (PCA), Linear Discriminator 
Analysis (LDA)) and DL (e.g., Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN), Long-Term Short Memory (LSTM)) models have been used to classify, predict and 
generate recommendations in health settings22–26,30–38.

Rule‑based approach.  Rule-based recommendation generation opens up new directions for eCoaching. 
Petsani et al.27 designed and developed an eCoach system for older adults to improve their adherence to physical 
activity. They followed electronic coaching guidelines set by a human therapist/physician or a trusted person 
chosen by the user who had access to stored health and wellness data and included or intervened in the coaching 
process. They concluded that health eCoaching is a complex process that requires careful planning and collabo-
ration across many scientific fields, including psychology, computer science, and medicine. Braber et al.28 incor-
porated the eCoaching concepts into personalized diabetes management, where lifestyle data (e.g., food intake, 
physical activity, blood glucose values) were recorded and integrated into clinical rules to enable customized 
coaching for better lifestyle recommendations management. Chatterjee et al.3 focused on the design and devel-
opment of a meaningful, context-specific ontology (“UiAeHo”) to capture unintuitive and raw insights from 
human-generated health data (e.g., sensors, interviews, questionnaires) using semantic models and unstruc-
tured observation metadata to create logical abstractions for rule-based health risk prediction in the eCoaching 
system. Villalonga et  al.29 designed an ontology-based automated reasoning model to generate personalized 
motivational messages for activity guidance, taking into account behavioral traits. Therefore, ontologies can be 
a practical choice for rule-based decision-making with powerful design flexibility within the object-oriented 
design paradigm.

In state-of-the-art research, the feasibility analysis of DL time-series classifiers and prediction models in physi-
cal activity detection is demonstrated to design an ML or DL pipeline. However, this study shows its application 
one step ahead by applying DL models, statistical methods, and OWL ontology in real-time activity guidance to 
improve sedentary lifestyles through goal management skills. In particular, this study has utilized the ML and 
DL concepts in the followings objectives � (1) an MLP model to classify individual daily physical activity into 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10182  | https://doi.org/10.1038/s41598-023-37233-7

www.nature.com/scientificreports/

multiple levels such as sedentary, low physically active (LPA), medium physically active (MPA), and vigorous 
physically active (VPA), (2) a CNN1D model for univariate “step” forecasting, (3) state-of-the-art statistical meth-
ods to calculate weekly activity intensity, (4) mapping the time-series point prediction to an interval prediction, 
and (5) the creation of an OWL ontology for semantic modeling of personal preferences, activity predictions, 
and the generation of personalized recommendations with SPARQL against a rule base.

To verify the above objectives, we use sensor data processed by Fitbit Versa and MOX2-5 wearable activity sen-
sors instead of raw signal data (e.g., accelerometer, gyroscope) for personal activity prediction and classification. 
Moreover, to explain the study’s relevance, we proposed an algorithm to annotate the activity prediction outcomes 
in an ontology for personalized recommendation generation. Semantic annotation can more easily identify causal 
relationships between data inputs and recommendation results. The above-mentioned study by Pessemier et al. 
focused on recommendation generation at the “Community” level whereas this work targets activity coaching 
and recommendation generation at the “Personal” level. To the best of our knowledge, no similar work has been 
published or made available online, therefore, instead of a quantitative evaluation, a qualitative comparison 
between our study and the related activity coaching studies has been described in Table  1. Our present study is 
the extended version of our previous studies36–38. In Table 2, we elaborated on the novelty of this study and how 
this study differs from our previous studies and added more value, with a qualitative comparison.

Table 1.   A comparison between our study and the related studies in a qualitative way.

Study Hybrid recommendation

Semantic modeling with 
ontology and ontology 
tree in decision-making Interval prediction

Observation with 
activity sensor

Incorporation of 
preference data

Logical 
recommendation 
generation

Our work Yes Yes Yes Yes Yes Yes

Dijkhuis et al.22 No No No Yes No No

Hansel et al.23 No No No Yes No No

Pessemier et al.24 Yes No No Yes Yes No

Amorim et al.25 No No No Yes No No

Oliveira et al.26 No No No Yes No No

Petsani et al.27 No No No No No No

Den et al.28 No No No Yes No No

Chatterjee et al.3 No Yes No No No No

Villalonga et al.29 No Yes No No No No

Table 2.   A comparison between our previous studies and this extended study.

Study Study focus Dataset used Recommendation type Method focus

Chatterjee et al.36

Conceptualized the idea of weekly activity 
forecasting with statistical models and a rule-base 
for personalized rule-based recommendation 
generation in activity eCoaching

PMData Personalized ARIMA, SARIMA, Kalman Filter, Rule-database

Chatterjee et al.37

Conceptualized the idea of weekly activity fore-
casting and a rule-base for personalized recom-
mendation generation with Ontology reasoning 
and querying in activity eCoaching

PMData Personalized LSTM, Ontology

Chatterjee et al.38

Semantic ontology model to annotate the 
machine learning (ML)-classification outcomes 
and personal preferences to conceptualize person-
alized recommendation generation with a hybrid 
approach in activity eCoaching with a focus on 
transfer learning approach to improve ML model 
training and its performance, and an incremental 
learning approach to handle daily growing data 
and fit them into the ML models (Support Vector, 
Naive Bayes, Decision Tree, K-Nearest Neighbour, 
Random Forest)

Zenodo Fitbit and MOX2-5 Personalized Standard ML classification models, Ontology

Our work

Design and development of an extended ontology 
model for semantic representation of personal 
and personalized activity data, and algorithm 
development to include time-series forecasting, 
time-series physical activity level classification, 
and statistical metrics in the ontology model for 
hybrid recommendation generation with person-
based heuristic configuration and the verification 
of the algorithm against different datasets with 
existing and derived metrics

PMData and MOX2-5 Personalized Deep learning models, Ontology, Probabilistic 
Interval Prediction, Statistical Metrics
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Proposed hybrid recommendation generation
In this section, we begin by defining and explaining the OntoeCoach ontology proposed in our research. We then 
delve into the problem formulation and algorithm. Finally, we conclude this section by presenting the derived 
time complexity of the proposed model.

Ontology modelling.  The proposed OntoeCoach ontology follows the following knowledge representa-
tion phases—abstraction or dictionary (L) of mapping rules, abduction phase (B) of hypothesis generation rules, 
deduction (C), and induction of operator reduction rules for generalization (D). The generated recommendation 
spanning tree (T) follows a binary structure, and the syntactic knowledge representation of T helps to solve the 
understandability problem when generating personalized lifestyle recommendations.

Our proposed OntoeCoach ontology is a tree-like hierarchical structure ( Oh ) with the following properties. 
Formally, the ontology (O) may be represented as � = {C, R}, where C is the concept set and R is a relation set. 
The total levels in an ontology hierarchy is represented by H = Levels ( Oh ), 0 ≤ n ≤ H, where n ∈ Z+ , n = 0 and 
represents the root node. When a model is classifying (O) at a level n, can be denoted as Cn,i , where i ∈ {0, 1, ...| 
Cn |}. | C | is number of instances classified as class C. The edge between node Cn,i and its parent node C(n−1,j) is 
defined as E = Edge ( Cn,i , C(n−1,j) ). We re-used the concept and extended our ontology representation with the 
following four tuples:

where Oa is defined as Oa = { Oa1 , Oa2 . . .Oan }, it represents “n” concepts or classes and each Oai has a set of “j” 
attributes or properties ∀ Pi = {p1, p2 . . . pi } where n, i, j ∈ Z+ . We denote a set of binary relations between the 
elements of Oa by R. R holds two subsets H for the inheritance relationship among concepts and S for the semantic 
relationship between concepts with a domain and range. We represent a knowledge base with a set of object 
instances by I. P represents a set of axioms to model O and it includes domain-specific constraints to model an 
Ontology with Oa , R, and I. The knowledge (K) in the ontology has been expressed with two tuples, defined as:

where the components of OntoActivityReco and RulesActivityReco are defined as:

where OAL , OAB , OAC , OAD are the knowledge bases, consisting of lexicon, abduction, deduction, and induction 
phases for personalized physical activity recommendation. On the contrary, RAL , RAB , RAC , RAD are rule sets 
to match with the abstraction, abduction, deduction, and induction interfaces, respectively. OAB , OAC , OAD are 
representations of properties P of concepts Oa , data or entities (e.g., activity variables), and they follow a simple 
representation of P(X|Y) or P(Y|X) based on the relational mapping, where, P is attributes or properties in O, 
and X, Y are components of activity variables.

Rule sets help to explain the logic behind recommendation generation. All rule execution internally fol-
lows a binary tree structure, where non-leaf nodes contain semantic rules to be executed ( A|A → B ), and leaf 
nodes have results (B or recommended message). The edges contain decision statements (true or false). For 
interactively navigating the relationships of our OWL ontology, we implemented the high-level structure of 
OntoeCoach ontology (see Fig.  1) in OntoGraf using the Protege. The key object properties, domain, range, 
property, and cardinality of OntoeCoach ontology are described in Table 3. The OntoeCoach ontology is the 
extended version of our previous ontological studies as elaborated in13,38 and annotates the subsequent data types 
for reasoning—sensor observation (e.g., activity sensor), personal information, and personal preference data, 
personalized recommendations, and participant health records (e.g., activity level, step prediction, statistical 
metrics) in the processed forms. The ontology metrics used in our OntoeCoach design are—(a) Metrics (Axiom 
(n = 965), Logical axiom count (n = 327), Declaration axiom count (n = 310), Class count (n = 90), Object prop-
erty count (n = 81), Data property count (n = 128) and Annotation property count (n = 13)), (b) Class axioms 
(SubClassOf (n = 167), EquivalentClasses (n = 12), Hidden GCI Count (n = 12)), (c) Object property axioms 
(SubObjectPropertyOf (n = 30), InverseObjectProperties (n = 8), ObjectPropertyDomain (n = 8), ObjectProp-
ertyRange (n = 8), and SubPropertyChainOf (n = 2)), (d) Data property axioms (SubDataPropertyOf (n = 9), 
DataPropertyDomain (n = 25), and DataPropertyRange (n = 25)), and Annotation axioms (AnnotationAssertion 
(n = 328)). “n” signifies counts ≥ 0.

Problem formulation and proposed algorithm.  In this study, the recommendations are generated to 
maximize weekly individual physical activity levels and to minimize sedentary time. The maximization problem 
focuses on maintaining a moderate activity level for an entire week (i.e., 

∑
 Days ∈ (1, 2...n) ∀ n = 7 . We consider 

multiple expression for the activity maximization problem. We maximize the four parameters – 1) 
∑

 Moder-
ateActivitytime > 150, 2) 

∑
 GoalScoredaily ≥ 21, 3) 0 ≤ 

∑
 µS ≤ 32, and 4) SimilarityScoreweekly ≥ 0. These parameters 

are maximized subject to the multiple conditions such as—(1) ModerateActivitytime ≥ 21.45, (2) GoalScoredaily ≥ 
3, (3) 0 ≤ PerformanceScoredaily ≤ 32, (4) CV → P, (5) P → R, (6) 

∑
 P = 1, and (7) ModerateActivitytime = 2 * 

VigorousActivitytime.
Activity goals can be system-defined (i.e., generic goals defined by WHO) or user-defined, as athletes may 

have different goal plans than ordinary people. According to the World Health Organization, adults (ages 18–64) 

(1)O = {Oa,R, I , P},

(2)O = {OntoActivityReco,RulesActivityReco},

(3)OntoActivityReco = {OAL,OAB,OAC ,OAD},

(4)RulesActivityReco = {RAL,RAB,RAC ,RAD},



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10182  | https://doi.org/10.1038/s41598-023-37233-7

www.nature.com/scientificreports/

should complete at least 150–300 min (2.5–5 h) of moderate-intensity aerobic activity (MPA); or at least 75–150 
minutes of vigorous aerobic activity (VPA) or equivalent moderate- and vigorous-intensity exercise to stay 
active. We have added the daily activity scores to calculate each week’s individual goal achievement scores (see 
Table  4). In Table  4, the right column represents the standard rules to determine the activity level on a daily 
basis. The left column represents the type of activity level and their numeric representation as a daily score value. 
Activity eCoach is designed to maximize target scores through continuous activity monitoring and personalized 
recommendation generation.

For validation, we used rule-based personalized activity recommendation generation and SPARQL que-
ries to motivate eCoach participants to stay active by reducing their sedentary time. Ontologies annotate 

Figure 1.   The high-level structure of the proposed OntoeCoach Ontology.

Table 3.   Key object properties, domain, range, and cardinalities of the ontoeCoach ontology.

Object properties Domain Range Cardinality

HasPersonalHealthRecord Participant HealthRecord Some

HasPersonalDataInfo Participant PersonalData Some

HasPersonalPreferences Participant Preferences Some

HasReceivedPersonal Recommendation Participant Recommendation Some

HasHealthStatus Participant ParticipantStatus Some

HasbeenCollectedBy ActivityData ActivityDataValue Some

HasTimeStamp ActivityDataValue, Questionnaire, Recommendation, Partici-
pantHealthRecord TemporalEntity Some

Has Measurement Capability ActivityDevice Measurement Capability Only

HasOutput ActivityDevice Sensor Output Some

Observes ActivityDevice Property Only

Detects ActivityDevice Stimulus Only

Feature of interest Observation Feature of Interest Only

Observation result Observation Sensor Output Only

ObservedBy Observation Sensor Only

Is property of Property Feature of Interest Some

HasProperty Feature of Interest Property Some

HasIntervalDay Participant StepPrediction Some

HasActivityLevel Participant Activity_Level_(Daily) Some

HasStatValue Participant Statistical Some
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recommendation messages to describe their attributes, metadata, and content information outside the static 
text form. Recommendation messages can be both formal and informal. Additionally, the rule base helps explain 
the logic behind recommendation generation through logical AND, OR, and NOT operations.

In this work, the SROIQ description logic is used as the formal argument logic (see Table 5). The Table  6 
contains a defined set of recommended messages for OntoeCoach ontology validation based on the used dataset. 
For each condition described in Table  5, the RG module runs a SPARQL query to determine the type of referral 
message sent to the individual daily. This study grouped eight semantic rules into activity-level categories (9) and 
satisfiability categories (1). The integrated concepts and rules are easy to follow and apply. Custom recommenda-
tions are generated using the structure [(rule) IMPLIES (suggestion variable) → recommendation message]. In 
Table  5, the semantic rules have been created to define relationships and constraints between different entities 
or concepts within the activity eCoach knowledge representation system. These rules help capture the data’s 
meaning and semantics and enable reasoning and inference capabilities. Here are the steps involved in defining 
the semantic rules—(a) Identify the Entities: We identified the entities and concepts for which we want to define 
semantic rules. These entities represent objects, properties, and relationships in the physical activity domain. 
(b) Define the Relationships: We specified the relationships between the entities which includes identifying the 
type of relationship (e.g., “is-a,” “part-of,” “has-property”) and the directionality of the relationship. (c) Define 
Constraints: We determined constraints or conditions that need to be satisfied for the relationships to hold 
true. These constraints involve logical operations, comparisons, or other specific criteria. (d) Rule Representa‑
tion Format: We selected a suitable format or language to represent the semantic rules. Our common formats 
include formal languages, such as OWL (Web Ontology Language) or RDF (Resource Description Framework), 
and rule-based languages, such as SPARQL (SPARQL Protocol and RDF Query Language). (e) Expression of the 
Rules: We expressed the semantic rules using the chosen representation format. This involves writing the rules 
based on the identified entities, relationships, and constraints. The syntax and semantics of the chosen format 
will guide the rule expression. (f) Validate and Test the Rules: We validated the semantic rules to ensure their 
correctness and consistency. We planned to test the rules against sample data or scenarios to verify their behavior 

Table 4.   The “Activity Level” classification rules following the WHO guidelines. aMPA = 2 VPA.

Level (score) Rule(s)a

Sedentary (0) ((step < 5000) ∧ (VPA*2 + MPA) *7 < 90 ∧ LPA ≥ 0)) ∨ (step < 5000)

Low physical active (1) ((step > 4999) ∧ (VPA*2 + MPA) *7 ≥ 90 ∧ (VPA*2 + MPA) *7 < 210) ∨ (step > 4999 ∧ step < 7500)

Active (2) ((step > 4999) ∧ (VPA*2 + MPA) *7 ≥ 210 ∧ (VPA*2 + MPA) *7 < 300) ∨ (step > 7499 ∧ step < 10,000)

Medium physical active (3) ((step > 4999) ∧ (VPA*2 + MPA) *7 ≥ 300 ∧ (VPA*2 + MPA) *7 < 360)) ∨ (step > 9999 ∧ step < 12,500)

High physical active (4) ((step > 4999) ∧ (VPA*2 + MPA) *7 ≥ 360) ∨ (step > 12,499)

Table 5.   In context recommendation conditions and corresponding rules (Rule-base) for test set-up.

No. Semantic rule(s) (R) and condition

1
(hasActivityLevel == 0) IMPLIES (Sedentary AND hasPhysicalActivityLevel) (hasActivityLevel == 1) IMPLIES (Low_physi-
cally_active AND hasPhysicalActivityLevel) (hasActivityLevel == 2) IMPLIES (Physically_active AND hasPhysicalActivityLevel) 
(hasActivityLevel == 3) IMPLIES (Moderate_physically_active AND hasPhysicalActivityLevel) (hasActivityLevel == 4) IMPLIES 
(Vigorous_physically_active AND hasPhysicalActivityLevel)

2 ((hasSedentaryBouts - daily_sedentary_goal_time as set in goal) > 0) IMPLIES (Sedentary_hour_negative) ((hasSedentaryBouts - 
daily_sedentary_goal_time as set in goal) <= 0) IMPLIES (Sedentary_hour_positive)

3 ((hasSteps - daily_step_goal as set in goal) => 0) IMPLIES (Steps_positive) ((hasSteps - daily_step_goal as set in goal) < 0) IMPLIES 
(Steps_negative)

4
((hasMPAMinutes - daily_MPA_goal as set in goal) OR (hasVPAMinutes*2 - daily_VPA_goal as set in goal) => 0) IMPLIES (Activ-
ity_minute_positive) ((hasMPAMinutes - daily_MPA_goal as set in goal) OR (hasVPAMinutes*2 - daily_VPA_goal as set in goal) < 
0) IMPLIES (Activity_minute_negative)

5 ((hasWeeklyStepPrediction - weekly_step_goal as set in goal) => 0) IMPLIES (Step_forecast_trend_postive) (hasWeeklyStepPredic-
tion - weekly_step_goal as set in goal < 0) IMPLIES (Step_forecast_trend_negative)

6
((hasSteps - daily_step_goal as set in goal) => 0) AND ((hasMPAMinutes - daily_MPA_goal as set in goal) OR (hasVPAMinutes*2 - 
daily_VPA_goal as set in goal) => 0) AND (hasTotalSleepTime => (daily_sleep_goal as set in goal *60)) AND ((hasSedentaryBouts 
- daily_sedentary_goal_time as set in goal) <= 0) IMPLIES (Daily_Goal_achieved)

7 (hasCurrentWeeklyDeviation > hasPreviousWeeklyDeviation) AND (hasSimilarityScore > 0) IMPLIES (Weekly_performance_devia-
tion_trend_negative)

8 (hasCurrentWeeklyDeviation <= hasPreviousWeeklyDeviation) AND (hasSimilarityScore == 0) IMPLIES (Weekly_performance_
deviation_trend_positive)

9
((hasSteps - weekly_step_goal as set in goal) => 0) AND ((hasMPAMinutes - weekly_MPA_goal as set in goal) OR (hasV-
PAMinutes*2 - weekly_VPA_goal as set in goal) => 0) AND (hasTotalSleepTime => (weekly_sleep_goal as set in goal *60)) AND 
((hasSedentaryBouts - weekly_sedentary_goal_time as set in goal) <= 0) IMPLIES (Weekly_Goal_achieved)

10

(Sedentary + Low_physically_active + Moderate_physically_active + Vigorous_physically_active + Sedentary_hour_negative + 
Sedentary_hour_positive + Steps_negative + Steps_positive + Activity_minute_negative + Activity_minute_positive + Step_fore-
cast_trend_postive + Step_forecast_trend_negative + Daily_Goal_achieved + Daily_Goal_not_achieved + Weekly_Goal_achieved + 
Weekly_Goal_not_achieved + Good_weather + Bad_weather + Weekly_performance_deviation_trend_positive + Weekly_perfor-
mance_deviation_trend_negative = 1)
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and evaluate their effectiveness. (g) Refine and Iterate: We refined the rules based on feedback, domain expertise, 
or real-world use cases. We iterated the process of rule creation, testing, and refinement to improve the quality 
and accuracy of the semantic rules. Overall, the creation of semantic rules required a good understanding of 
the domain, the entities involved, and the desired semantics. Collaboration with domain experts and leveraging 
existing ontologies or knowledge bases had also been valuable in the rule-creation process.

Measurable parameters related to the activity of a particular participant in a timestamp are obtained at 
preference-based intervals based on SPARQL queries. Rules (1–9) in Table  5 assign Boolean values to variables, 
ensuring consistency. We have verified using Ontology Reasoner that the correct recommendation message 
is triggered for a particular situation. However, ensuring that no variable patterns would make the entire rule 
unsatisfactory is essential. We’ve made sure that only one message is active at a time. Here we have a formal 
guarantee that neither two “once a day” messages can be active at the same time, nor can there be a model with 
a reasoner output each time for every possible combination of variables.

Let us consider a case, if we put the different variables used in the nine rules as described in Table 5 to gener-
ate respective propositional variables (see Table 6). In that case, we will have an exponential number of possible 
participants. A traditional way to ensure the presence of a model negates all our rules and provides the same. 
Therefore, this formula is not satisfactory. Since two messages cannot be triggered simultaneously, we added a rule 
(Rule-10) to meet the exact requirement, and the variables used in the suggestion start once a day. If (rule-10) is 
false, the entire rule set (considered significant conjunction) is set to false, then there is no model as output, and 
we can debug our rules if needed. When set to true, we have a formal guarantee that no two “once a day” mes-
sages will fire simultaneously, regardless of the true value we feed into the rule base. All rule execution internally 
follows a binary tree (BT) structure, where the non-leaf nodes contain the semantic rules to be executed (A | 
A → B), and the leaf nodes have the results (B or recommendation message). Edges have decision statements 
(true or false). In this way, satisfiability and understandability (or explainability) issues are addressed in custom 
recommendation generation in our Activity eCoach system. The proposed personalized hybrid recommendation 
generation approach is described in Algorithm 1.

Table 6.   Propositional variables and corresponding recommendation messages.

Type Propositional variable (P) Description

A-1 Sedentary Please continue a light activity (e.g., sports 1–3 days/week, a walking goal of 5000 to 7499 steps/day)

A-2 Low_physically_active
Please continue more activity (e.g., sports 3–5 days/week, a walking goal of 7500–9999 steps/day) OR do a minimum 
150–300 min (2.5–5.0 h) of moderate-intensity aerobic exercise or minimum 75–150 min of high-intensity aerobic 
exercise or do an equivalent combination of moderate and high-intensity activities in a week to stay physically active

A-3 Physically_active Please continue the same or more activities based on your goal (e.g., sports 3–5 days/week, a walking goal of 7500 to 
9000 steps/ day)

A-4 Moderate_physically_active Please continue the same or more activities based on your goal (e.g., sports 3–5 days/week, a walking goal of 10,000 to 
12,499 steps/ day)

A-5 Vigorous_physically_active Please continue the same or more activities based on your goal (e.g., sports 5+ days/week, a walking goal of 12,500+ 
steps/day)

A-6 Sedentary_hour_negative Please be active for z h. more as today you were z h. more sedentary beyond your goal

A-7 Sedentary_hour_positive You were very active today and z hr. less sedentary; therefore, you can take that h. of rest tomorrow

A-8 Steps_negative Please continue x steps more tomorrow to achieve your weekly goal of x1 steps

A-9 Steps_positive
You have performed extra x steps today beyond your goal; therefore, you can do x steps less tomorrow or you can carry 
out the same pace. You are x1 step behind to achieve your weekly goal (OR) congratulations! You have achieved your 
weekly target

A-10 Activity_minute_negative Please continue more activity of n min tomorrow to achieve n1 min of a weekly goal

A-11 Activity_minute_positive
You have performed extra m minutes of activity today beyond your goal; therefore, you can be m mins. of less highly 
active tomorrow or you can carry out the same pace. You are n1 mins. behind to achieve your weekly goal (OR) con-
gratulations! You have achieved your weekly target

A-12 Step_forecast_trend_postive Based on your weekly step forecast trend in this Week-N you can achieve the step goal

A-13 Step_forecast_trend_negative Based on your weekly step forecast trend in this Week-N you cannot achieve the step goal. On Week-XX and Week-XY 
weeks, you were very active. Please try to follow similar activity patterns

A-14 Daily_Goal_achieved Good work. Please keep it up tomorrow. You are active and completed the goal for today. Overview: You have performed 
X steps today. You slept Y h. You were sedentary for Z h. You were M min medium active. You were N min highly active

A-15 Daily_Goal_not_achieved You must improve to meet the daily goal. Please stay active tomorrow. Overview: You have performed X steps today. You 
slept Y h. You were sedentary for Z h. You were M min medium active. You were N minutes highly active

A-16 Weekly_performance_deviation _trend_positive Congratulations! You have maintained a good weekly activity pattern

A-17 Weekly_performance_deviation _trend_negative Your weekly activity pattern must be improved

A-18 Weekly_Goal_achieved Good work. Please keep it up next week. You are active and completed the goal for this week

A-19 Weekly_Goal_not_achieved You must improve to meet the weekly goal. Please stay active next week and try to overcome the shortcomings of this 
week. On Week-XX and Week-XY weeks, you were very active. Please try to follow similar activity patterns
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To assess the performance of Algorithm 1 more effectively, we consider its time complexity39. This analysis 
helps to understand how the algorithm’s effectiveness scales with increasing input size. The time complexity is 
typically expressed using big O notation, which provides the maximum growth rate of the algorithm’s execution 
time. By analyzing time complexity, we can estimate the efficiency and scalability of the algorithm, compare the 
performance of different algorithms, and identify any design bottlenecks. In the case of our proposed algorithm, 
the time complexity is quadratic, denoted as O(n2) , due to the presence of a nested loop. Here, “n” represents 
the input size, with a value greater than 0. This quadratic time complexity indicates that the running time of the 
algorithm grows quadratically with the input size.

Activity eCoach system overview
This section describes a model for activity eCoaching. We followed an iterative and incremental approach to 
design and develop our Activity eCoach that follows a modular design with four primary modules—(1) data 
collection and semantic annotation (DSSA), (2) health state monitoring (HSM), (3) recommendation genera-
tion (RG), and (4) recommendation delivery (RD). The data flow in the activity eCoach prototype system is 
depicted in Fig. 2.

After collecting personal, person-generated activity and preference data, the DSSA module stores them in a 
tuple database (TDB) using semantic annotation. Moreover, the DSSA module records pre-defined rulesets and 
recommendation messages set to be generated as a part of personalized recommendation generation and store 
them in the database. The rules and recommendation messages can be updated based on the context. We plan to 
use a standard wearable CE-approved activity sensor (e.g., MOX2-5) for activity data collection. Furthermore, 
we prepared a set of questionnaires to collect personal preference data for recommendation planning. Personal 
preference data includes goal settings (such as daily, weekly, or monthly), target goals (such as moderately active 
or vigorously active), goal scores, interaction types, or recommendation delivery (such as text, audio, or graphics), 
and the recommended delivery time. Participants can review and update their preference information at any time.
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The HSM module consists of the following three submodules—classification, forecasting, and statistical 
analysis (SA). The classification submodule classifies daily time-series activity data into the following activity 
levels: sedentary (0), LPA (1), MPA (2), and VPA (3) (see Table 3). The prediction submodule is responsible for 
forecasting daily steps for the next 7-days based on the temporal pattern in individual step data. The SA sub-
module calculates the weighted mean, activity pattern, and similarity score between the weekly achieved activity 
score and weekly goal score to understand the weekly activity intensity. All the outcomes of the DP module are 
semantically annotated in OntoeCoach ontology and followed by stored in the TDB. Furthermore, we designed 
a pipeline to automate the process. An incremental approach helped to keep the DL models updated with real-
time, growing activity data.

The RG module runs a scheduler periodically to query and process individual activity prediction results from 
the TDB database with a SPARQL query engine and a KB. In KB, all the semantic rules are stored for recom-
mendation generation. Some suggestions should be made to the participants of the semantic data source if some 
specific variables are inferred to be true. Semantic rules consist of propositional variables using (IMPLIES), (OR), 
(AND), and (NOT) operations. RG modules trigger logical structure rules (A IMPLIES B) or in a logically identi-
cal way (NOT(A) or B). Following, individual recommendation data are updated in the OntoeCoach ontology 
against a timestamp and stored in the TDB. The RD module periodically accesses TDB for personal preference 
data and generates individual recommendation data to send personalized feedback based on personal prefer-
ences. Additionally, it meaningfully displays a reflection of ongoing activity through continuous and discrete 
personal health data, notifications, and recommended messages.

All the modules follow a microservice architecture. The exposed eCoach interfaces are protected with mul-
tifactor authentication and authorization (OAuth2) to allow legitimate users only40–42. The DC, RG, and RD 
modules are written in Java (JDK 11+) programming language with SpringBoot Framework. The HSM module 
is written in Python (V. 3.8.x) programming language with Flask Framework, and Python DL libraries, such as 
sktime, and Keras. Open-source Apache libraries (such as Jena, Jena Fuseki, and Tomcat 9.x) have been used for 
ontology implementation and eCoach service deployment.

Materials and methods
This section describes materials and methods that are utilized to run the overall experiment.

Experimental setup.  We used Python 3.8.5-supported language libraries such as pandas (v. 1.1.3), NumPy 
(v. 1.21.2), SciPy (v. 1.5.2), Matplotlib (v. 3.3.2), Seaborn ( v. 0.11.0), Plotly (v. 5.2.1), scikit-learn or sklearn (v. 
0.24.2), Keras (v. 2.6.0), and Graph Viz (v. 2.49.1) to process data, build and train deep learning models. We set 
up a Python environment on a Windows 10 operating system using the Anaconda distribution and installed 
Jupyter Notebook v. 6.4.5 for development, model analysis, and data visualization. The target system consists of 
16 GB RAM and 64-bit architecture. Due to the small size of the dataset, we used the CPU to run the experi-
ments.

Figure 2.   The data flow in the Activity eCoach system includes all components and their connections. In this, 
TDB represents a tuple database.
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Data collection.  We followed ethical guidelines during the collection, processing, and representation of 
personal and personalized activity data in our activity eCoach prototype system. We focused collection of activ-
ity data only for adults (aged 18–64). The bodybuilders, pregnant women, and persons with a severe medical 
history and chronic illness were excluded from the study. This work includes the following two data sets.

PMData public datasets.  We used the anonymized PMData public physical activity dataset of n = 15 adult 
(male 12; female 3) for model training and testing. The activity dataset was collected from a Fitbit Versa 2 fitness 
smartwatch to PMSys sports logging smartphone application43. We received nearly 114–152 days of recordings 
from each participant, for a total volume of 2244 recordings. This dataset shows several features related to physi-
cal activity, e.g., VPA). However, we chose the “steps” metadata file and excluded sleep-related features since 
sleep tracking is out of scope. We excluded activity data for participant P_12 from the analysis due to a lack of 
LPA information.

MOX2‑5 real‑time datasets.  We collected 30–45 days of physical activity data from n = 16 adults (male 12; 
female 4) in Grimstad, Norway anonymously, using the wearable activity sensor MOX2-5 (CE certified)44. We 
followed Norwegian ethical guidelines to collect real-time activity data from actual participants with signed con-
sent forms. It produced 539 volume records. With the permission of the Norwegian Study Data Center (NSD), 
we collected and evaluated the personal data of the participants in this study following data protection law. The 
characteristics of the participants are recorded in Table 7. Table 8 describes the features of the MOX2-5 dataset.

Feature selection.  Activity data shows steps per minute. Therefore, we turned it into a daily step count for 
daily step count prediction. We used the Augmented Dicky-Fuller (ADF) hypothesis test45 with Autolog = “AIC” 
and Regression = “CT/C” to verify the stationarity of the time series data. We used seasonal decomposition to 
analyze the data’s trend, seasonal and residual components. We transformed non-stationary data into stationary 
using the differential transformation method. It helped to remove trends and seasonality in time series data. We 
observed the lag values (X-axis) and correlations (Y-axis) using the 2D autocorrelation (ACF) plots and partial 
autocorrelation (PCF) with finite lag values (e.g., 25, 50) to plot observations. ACF and PCF have been useful for 
parameter selection in time series forecasting models. Additionally, we used the forward and backward filling 
methods to handle missing data.

Table 7.   Participant characteristics (N = 16).

Factors Mean ( µ) SD ( σ) Min Max P25 P50 P75

Age 35.375 ± 7.03 21 51 30.8 35.5 39.0

Height (cm) 173.5 ± 8.02 158.5 184.0 167.6 173.3 180.5

Weight (kg) 77.0 ± 16.36 55.0 107.0 65.0 72.0 90.5

BMI 25.38 ± 3.93 19.41 31.604 22.0 25.8 27.9

Duration (days) 33.6875 ± 5.41 30 48 30.6 31.0 34.3

Total sedentary seconds 24,49,171 ± 1,051,610.5 590,028 4,261,190 – – –

Total VPA seconds 41,887.81 ± 60,688.5 112 256,896 – – –

Total MPA seconds 53,231.75 ± 17,965 23,402 95,730 – – –

Total LPA seconds 154,647.1 ± 66,540.6 32,272 254,332 – – –

Total steps 366,703.3 ± 87,202.25 52,551 588,132 – – –

Table 8.   Attributes of the MOX2-5 datasets.

Attributes Type Description

Date String Recorded activity date

Time String Recorded activity time

UploadStatus Character Indicates uploading status: ‘H’ and ‘L’

IMA Integer Total activity intensity

WeightBearing Integer Total weightbearing seconds

Sedentary Integer Total sedentary seconds

Standing Integer Total standing seconds

LPA Integer Total low physical activities seconds

MPA Integer Total moderate physical activities seconds

VPA Integer Total vigorous physical activities seconds

Steps Integer Total daily step count
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The relevant features obtained from the MOX2-5 sensor are − time stamp, the intensity of activity (IMA), 
seconds sitting, seconds bearing weight, seconds standing, seconds LPA, seconds MPA, seconds VPA, and steps 
per minute. “Step” and “IMA” are the most valuable and robust features of the sensor-based MOX2-5 dataset since 
other attributes (except timestamp) are almost derived (e.g., LPA, MPA, and VPA are defined as IMA derivative 
of Table  9). IMA has a strong relationship with step count and is primarily used as a measure of activity. For 
MOX2-5 sensors, sedentary time is the period without physical activity, including leisure and sleep. The rela-
tionship between sitting and active (LPA/MPA/VPA) time can be written as �(sitting, active, weight-bearing, 
standing) = 60 s. Activity intensity values can be correlated to energy expenditure expressed in metabolic values 
(METs). It allows the following classification—LPA: 1.5 to 3.0 METS, MPA: 3.0 to 6.0 METS, and VPA: 6.0 or 
more METS.

The Shapiro-Wilk normality test method2 uncovered that the individual data sample and their columns did 
not look like a Gaussian distribution. Normality testing is a hypothesis testing method using P-value > α = 0.05 
(i.e., the sample looks like a Gaussian distribution) and P-value < α = 0.05 (i.e., the sample does not look Gauss-
ian)2. The α indicates the confidence interval. For feature selection, we used Spearman’s correlation analysis, 
which reveals the strength of the linear relationship between features according to the value of the correlation 
coefficient (r)2. We removed functions that strongly depend on the value |r| > 0.72. SelectKBest using chi-square, 
ExtraTreesClassifier, and Principal Component Analysis (PCA) facilitates feature ranking and feature selection 
in two datasets4,46,47. PCA uses the variance ratio of the eigenvalues of the eigenvectors to the total eigenvalues. 
The selected temporal activity data are continuous for both datasets. We eliminated participant data that is less 
than a month old, redundant, noisy, incomplete, or missing. For prediction, we considered univariate daily steps 
from two datasets.

Data labelling for classification.  The activity level characteristics represent the following five catego-
ries—Sedentary (0), Low Physical Active (1), Active (2), Moderately Physical Active (3), and High Physical 
Active (4). Activity level feature class creation rules are defined in Table 4, where we derive feature classes based 
on sedentary lifestyle, LPA, MPA, and VPA by adult activity reference5,8,48,49. Characteristics such as age, sex, and 
weight were not the subject of this study. The class distributions of the two datasets are shown in Fig. 3.

Deep learning time‑series classifier.  The architecture of the time-series classifier we developed is 
inspired by standard, well-known MLP architectures based on the fully connected neural network (FCNN) style. 
Since our dataset is small, we employed a decent number of neurons in each layer based on common heuristics 
(e.g., validation loss, hidden units are a fraction of the input). The entire sequential structure of the model we 
developed consists of six fully connected dense layers, an input layer ∈ R32 , followed by a hidden layer ∈ R32 , then, 
three hidden layers ∈ R16 followed by an output layer ∈ R5 . The input dimension of the input layer is five. Due to 
the limited number of functions and data, regularization and dropout layers are not used. We checked; however, 
L1 and L2 regularizers could not help much to improve the model performance.

Table 9.   The relation between activity intensity (IMA) and activity type.

Activity type Rule

LPA 0 ≤ Activity intensity (IMA) ≤ 400

MPA 401 ≤ Activity intensity (IMA) ≤ 800

VPA Activity intensity (IMA) ≥ 801

Figure 3.   The comparison of the distribution of classes for the public PMData and the private MOX2-5 
datasets.
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For the first five layers, we chose the rectified linear unit (ReLU) activation function over other linear 
and nonlinear functions because ReLU does not have the zero gradient problem and generally leads to faster 
convergence50. We used the SoftMax activation function in the last layer to classify the data according to the 
probability distribution. The expression for the ReLU is

We used the categorical_crossentropy loss function in model compilation because we one-hot encoded the pre-
dictor class variables. Also, we used the ADAM optimizer because it is computationally efficient and consumes 
less memory. The ADAM configuration parameters are α (the learning rate), β1 (the exponential decay rate of the 
first moment guess), β2 (the exponential decay rate of the second moment guess), and ǫ (very Small numbers to 
prevent division by zero). In Keras, the default ADAM configuration is α=0.001, β1=0.9, β2=0.999, ǫ=1e-08 and 
Decay=0.0, and this experiment also uses the same configuration. We used validation split = 0.05, verbose = 0, 
and the callback of ReduceLROnPlateau to reduce the learning rate and improve the model’s performance. We 
recorded loss histories to compare training and test losses over multiple epochs.

Deep learning univariate time‑series forecasting.  CNNs are primarily designed and developed to 
process two-dimensional (2D) image data. However, CNNs can automatically extract and learn features from 
one-dimensional sequence data, such as patterns in univariate time-series data. The traditional, well-known 
CNN architecture inspired the univariate predictive model we developed. Since our dataset is small, we kept a 
reasonable number of neurons in each layer based on common heuristics (e.g., validation loss, hidden units are 
a fraction of the input). The model’s overall structure consists of the following five layers-two CNN1D layers, 
one MaxPooling1D layer, one flattening layer, and one dense seed layer. A Conv1D layer consists of 3D input 
and output tensors of shape (Batch, Steps, Channel) and (Batch, newsteps , Filter), respectively. The output shape 
changes depending on padding or stride selection. The batch dimension is the number of samples in the dataset, 
which is called “None” because it is not fixed. We performed linear convolution operation using Keras Conv1D 
plane with input parameters filter kernelsize and padding.

Due to the limited number of functions and data, the dropout layer is not used. MaxPooling1D blocks sample 
input data, parameters, and computed convolutions needed to control overfitting. The flattened layer takes com-
pressed input from a MaxPooling1D block and converts the data into 1D linear vectors for input to the following 
dense layer. We used the standard MaxPooling1D parameter defined in the Keras library51. We kept the kernel 
size of the CNN1D layer as 3. We used a sequential model with two CNN1D layers, a MaxPooling1D layer, and 
a flattened and dense output layer with an output size of 1. We chose the ReLU activation function for the first 
two CNN1D slices to avoid vanishing gradients and achieve faster convergence.

We used public PMData and private MOX2-5 datasets for model training, testing, and cross-validation. Before 
training, we processed our active dataset with MinMaxScaler ( µ = 0 and σ = 1) with features ranging between 
0 and 1. We then calculated a timestep value as the difference between the training set’s length and the training 
data’s size. The time steps are valued as n _steps, n _features = 1. The input form of the initial CNN layer consists 
of the following two input parameters: n _steps and n _features.

We used the mean squared error (MSE) loss function to compile our CNN1D model because we performed 
one-hot encoding on the predictor class variables. Also, we used the ADAM optimization function because it is 
computationally efficient and consumes less memory. Adam optimization is a stochastic gradient descent method 
based on adaptive first and second-moment estimation. We used the standard ADAM configuration parameters 
available in Keras. We used validation split = 0.05, verbose = 0, and the callback of ReduceLROnPlateau to reduce 
the learning rate ( α ) and improve the model’s performance.

We compared our developed CNN1D model with other baseline predictive models such as autoregressive 
(AR), LSTM, and GRU. We evaluated each model for 200 epochs with a stack size of 50. We used 100 neurons 
for the LSTM and GRU base models, the ADAM optimizer, and the MSE loss function for model compilation. 
The AR time series base model was improvised with residual error minimization (REM) to verify how our model 
solves the traditional REM problem in time series step data. We created a lag value of 50 for the PMData dataset 
and 14 for the MOX2-5 dataset. We consider two datasets with AR window lengths 5.

Interval prediction over point prediction.  In predictive inference, a prediction interval estimates a gap 
in which future observations will have some probability of falling, assuming what has already been observed52,53. 
Prediction intervals are often used in prediction analysis. In this study, we used the concept of step forecasting. 
The prediction interval, which gives the gap to maintain a specific probability value, can be written as

c changes with coverage probability. In 1-step interval prediction, c is 1.28 (80% prediction interval where forecast 
error values are normally distributed). σh estimates the residual standard deviation in the h-step forecast distri-
bution ( h > 0 ). Residual standard deviation (RSD) statistically describes the difference between the standard 
deviation of observed values and the standard deviations of estimated values. We used a well-accepted Naïve 
forecast method to statistically derive “ σh ” under the assumption of uncorrelated residuals.

Ontology processing.  In Fig. 2, the TDB database acts as a KB. All the messages as described in Table 6 
are stored in the KB. The RG module in Fig. 2 is used to access these messages during tailored recommendation 
generation based on SPARQL query execution, followed by implementing the rules in Table 5. The rules are 
also stored in the KB. The asserted and inferred knowledge obtained from the reasoning method helped deter-

(5)Relu(z) = max(0, z).

(6)ŶT+h ± cσh.
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mine the most suitable recommendation message. Ontology models are associated with a document manager, 
OntDocumentManager to assist in processing ontology documents. All classes that represent the value of the 
ontology in the ontology API have OntResource as a general superclass. We have implemented the RDF interface 
provided by Apache Jena to persist the designed and developed OntoeCoach ontology and its instances in the 
TDB and load them back for further processing. Jena Fuseki is tightly integrated with TDB to provide a robust 
transactional persistent storage layer. The reasoning time of the OntoeCoach ontology is measured against the 
following reasoners available in the Protégé: HermiT, KAON2, Pellet, RacerPro, and Fact++.

Performance evaluation.  We utilized multiple state-of-the-art metrics to evaluate and compare the per-
formance of the classifier, forecasting, and OntoeCoach models.

Classification.  The performance of DL-based multi-class classification models was evaluated against discrimi-
nation analysis. Multiple metrics such as classification report, confusion matrix, precision, recall, specificity, 
accuracy score, and F1 score were estimated2. A confusion matrix is a 2-D table (actual versus predicted) and 
both dimensions have four options, namely, true positives (TP), false positives (FP), true negatives (TN), and false 
negatives (FN). TP is an outcome where the model estimates the positive class accurately; TN is an outcome in 
which the model correctly predicts the negative class; FP is an outcome where the model estimates the positive 
class inaccurately; and FN is an outcome in which the model predicts the negative class incorrectly. The cor-
responding equations are −

A higher value from the above expressions represents a better performance of a model, and this applies to all 
performance metrics. On the other hand, bias is an error due to erroneous assumptions in the learning algorithm, 
and variance is an error from sensitivity to small fluctuations in the training set. While high bias leads to under-
fitting, high variance results in overfitting. Accuracy and F1-scores can be misleading because they do not fully 
account for the sizes of the four categories of the confusion matrix in the final score calculation. In comparison, 
the MCC is more informative than the F1-score and Accuracy because it considers the balanced ratios of the 
four confusion matrix categories (i.e., TP, TN, FP, and FN). The F1-score depends on which class is defined as a 
positive class. However, MCC does not depend on which class is the positive class, and it has an advantage over 
the F1-score as it avoids incorrectly defining the positive class54. The MCC is expressed as follows38.

Forecasting.  The performance of each time-series forecasting model was evaluated with root mean squared 
error (RMSE). MSE informs how close the regression line is to a set of points. It calculates “errors” from the 
points to the regression line and squares them to eliminate negative signs. The squared root of MSE gives more 
weight to a significant difference with no bias45. The RMSE can be expressed as ( yi represents the predicted value 
and xi represents the expected value)

Additionally, we have used other metrics such as Forecast Bias (FB), RSD, and model execution time in seconds 
(s). FB can be positive or negative. A nonzero mean forecast error value indicates the tendency of the model to 
overpredict (negative error) or underpredict (positive error). Therefore, the average forecast error is also called 
FB. If Forecast Error = 0, the forecast has no errors or perfect predictive power. Overpredict if forecast variance 
< 0, the model is unbiased if forecast variance ≈ 045.

Statistical.  We developed new four statistical metrics beyond the existing ones. (1) activity pattern vector 
(APV)—a weekly activity pattern vector of length 7 that contains an activity level score for a given week. Thus, 
it can also be termed as an activity level vector (ALV), (2) similarity score (SC)—a weekly similarity score is a 
difference between the summation of the weekly activity pattern vector and weekly goal vector. If SC ≥ 0, then 
it signifies that the participant has achieved a weekly goal, (3) weighted mean ( µS)—standard mean calculation 
with weighted mean calculation to determine personal activity intensity on a weekly basis and thereby use the 

(7)Precision =
TP

TP + FP

(8)Recall = Sensistivity =
TP

TP + FN

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)F1-score =
2× Recall × Precision

Recall + Precision

(11)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(12)RMSE =

√√√√(
1

n
)

n∑

i=1

(yi − xi)2.
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information in activity recommendations (e.g., based on the progress, the activity on Week-2 will likely match 
the action performed; however, your activity was very good on Week-3). We calculated a weighted mean on an 
individual weekly activity dataset to calculate weekly activity progression with a defined non-negative weight 
point set: {0, 2, 4, 6, 8} that represents sedentary, low active, active, medium active, high active, (4) standard 
deviation ( σ)—weighted mean values to calculate deviations in weekly activity intensities.

We evaluate these statistical metrics using the following steps. Step 1—load individual activity datasets for 
the last few weeks, Step 2—calculate the weekly mean of the following activity features F: Sedentary time, LPA, 
MPA, VPA, Steps, Step 3—calculate weekly activity level score based on the activity level classification results, 
APV, Step 4—SC = � APV ( Wi ) - � GoalScore ( Wi ), where Wi signifies a week, Step 5—calculate performance 
score against APV with the following rule: Performance Score (S) = � activity level on day-n * activity weight 
point ( pointi ), Step 6—µS = Calculate the mean of S on weekly basis (= S/7), Step 7—predict or calculate activity 
intensity of the corresponding week based on µ score and prepare a weightedMeanList, and Step 8—calculate 
deviation in between weekly activities and prepare a deviationList.

Ontology.  Our proposed ontology model was evaluated against the following two metrics reasoning time, and 
query execution time. Protégé provides a list of reasoners, such as HermiT, Fact++, Pellet, KAON2, and Racer-
Pro, to check the logical and structural consistencies. We compared mean reasoning time and selected the best 
reasoner for our ontology. Besides, we captured the SPARQL query execution time in Protégé. We loaded the 
ontology file in “TTL” format into the Jena Fuseki server for cross-verification in SPARQL query execution time. 
We used the Apache Jena Framework to query each ontology class, predicate, subject, and object.

Ethical approval and consent to participate.  In this project, for handling personal health and wellness data, 
we received approval from the Norwegian Centre for Research Data (NSD) (797208) and we obtained ethical 
approval from the Regional Committees for Medical and Health Research Ethics (REK) (53224). For this study, 
participation has been voluntary, and informed or signed consent has been obtained from all the participants. 
Moreover, we have not disclosed any identifiable data of the participants using numbers, text, or figures.

Results
We performed the complete experiment on PMData and MOX2-5 datasets for verification. The volume of the 
PMData dataset was more than the MOX2-5 datasets.

Correlation analysis and feature ranking.  The correlation matrix of the features selected from the 
PMData and MOX2-5 datasets are depicted in Figs. 4 and 5, respectively. The resultant |r| value helps to under-
stand the strong association between the features, followed by preparing the final feature set to run the entire 
experiment. We found that the duration_score, resting_heart_rate, deep_sleep_in_minutes, and sleep_duration 
features produced a very high correlation in the PMData dataset. Whereas IMA, standing, and WeightBearing 
features produced a very high correlation in the MOX2-5 dataset.

Figure 4.   The feature correlation in the PMData datasets.
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Moreover, we prepared the final feature set for daily activity level classification, with the most relevant fea-
tures, such as Steps, sedentary, LPA, VPA, and MPA, based on the adopted feature analysis methods, such as 
SelectKBest, PCA, and ExtraTreeClassifier. The selected features are presented in Table 10 for both datasets 
based on their ranks. Table 10 reveals that in both the datasets the “Step” feature has achieved the highest rank 
against the used methods.

Classification performance.  The performance of our developed time-series classifier and other state-
of-the-art time-series classifiers, such as Rocket, MiniRocket, and MiniRocketVoting, was evaluated for both 
PMData (see Table 11 and MOX2-5 (see Table 12) datasets. The proposed MLP classifier model has outper-
formed other baseline state-of-the-art classifiers for both PMData and MOX2-5 datasets with an accuracy 
score of 97.0% (precision=97.0% , recall=97.0% , F1-score=97.0% ), and 74% (precision=71.0% , recall=72.5% , 
F1-score=71.0% ), respectively. The MLP model has produced the best performance on selected features in the 
low-volume activity datasets.

Figure 5.   The feature correlation in the MOX2-5 datasets.

Table 10.   The feature ranking in datasets against different methods.

Method Datasets and rankings

SelectKBest PMData: steps, sedentary, LPA, VPA, MPA and MOX2-5: steps, sedentary, LPA, VPA, MPA

PCA PMData: steps, VPA, MPA, LPA, sedentary and MOX2-5: steps, VPA, MPA, LPA, sedentary

ExtraTreesClassifier PMData: steps, VPA, sedentary, LPA, MPA and MOX2-5: steps, LPA, MPA, VPA, sedentary

Table 11.   Classification results on PMData datasets.

Models
Precision 
(%)

Recall 
(%)

F1-score 
(%)

Accuracy 
(%)

MCC 
(%)

Our MLP model 97.0 97.0 97.0 97.0 94.0

Rocket 51.0 56.0 52.0 56.0 54.0

MiniRocket 66.0 52.0 58.2 58.2 54.2

MiniRocketVoting 45.0 52.0 48.5 49.0 46.0

Table 12.   Classification results on MOX2-5 datasets.

Models
Precision 
(%)

Recall 
(%)

F1-score 
(%)

Accuracy 
(%)

MCC 
(%)

Our MLP model 74.0 71.0 72.5 71.0 69.0

Rocket 56.0 42.0 48.0 48.0 45.0

MiniRocket 58.0 45.0 50.2 51.0 49.0

MiniRocketVoting 39.0 44.0 41.3 42.0 41.0
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We compute the model loss for both datasets. The loss value indicates how well the model performed after 
each optimization iteration. It is a value representing the sum of the errors in our developed MLP classifier model. 
Loss measures how well (or poorly) our model performs. The “Model Loss” with categorical entropy to compare 
training and test sets over epochs for both the datasets have been depicted in Fig. 6 together with the confusion 
matrices in Fig. 7 to describe the weighted average precision, recall, and accuracy score for both datasets against 
our developed MLP classifier.

Results in Figs. 6 and  7 show that MLP model loss in training and testing data converges for both datasets 
without showing any abruption or divergence. The confusion matrices provide insight not only into the incorrect 
classifications of developed MLP classifiers but also into the types of mistakes made. According to the confusion 
matrices, the performance of the MLP classifier increases with more training data. Therefore, misclassification 
rates are less in PMData datasets as compared to MOX2-5 datasets. Similar precision and recall scores signify 
that FP = FN and their similarity with accuracy tells that our developed MLP model is balanced. However, 
this may vary from cases and datasets. DL models improve their learning with an increased volume of data. 
The evidence has been captured in Tables 11 and 12. The proposed MLP classifier has outclassed its nearest 
best-performing MiniRocket classifier with ≈ 46% and 27.5% accuracy improvement for PMData and MOX2-5 
datasets, respectively.

Prediction outcomes.  The mean performance analysis against forecasting matrices between our CNN1D-
based univariate “Step” forecasting model and other existing DL forecasting models has been compared in 
Tables 13 and 14 for both datasets. Our developed CNN1D model reduces the RMSE error, improves forecast 
bias, and balances residual standard deviation for both datasets. Forecasting results in both tables show that 
our developed CNN1D has outperformed other baseline time-series forecasting models against state-of-the-art 

Figure 6.   Model Loss of our proposed classifier in PMData (a) and MOX2-5 (b) datasets.

Figure 7.   The confusion matrix in the classification of PMData (a) and MOX2-5 (b) datasets with a weighted 
average precision, recall, and accuracy score.
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evaluation matrices. Its close competitors are bidirectional LSTM and GRU models. We found that the CNN, 
LSTM, and GRU effectively manage residual errors, and produce better results than AR with the REM technique.

Statistical analysis and interval prediction.  Based on the proposed weighted mean calculation 
method, we showed the weekly activity score (S), similarity score (SC), and standard deviation (SD) calculation 
for participant-1 or P-1 from the MOX2-5 datasets in Table 15. For example, we considered the activity data of 
P-1 for the last 4 weeks. We can use the same method for other participant data. The mean sedentary, LPA, MPA, 
and LPA times are measured in seconds. SC signifies that P-1 has failed to achieve weekly goals for the last three 
consecutive weeks and therefore needs proper recommendation planning to stay motivated in the following 
weeks. The S and SD values tell that the activity performance has significantly dropped after Week-1.

Moreover, we used our CNN1D model for the next 7 days’ step forecast for P-1 based on its temporal step 
data analysis. We calculated the RSD value ≈ 1271.0 for the step data of P-1. Using the Naïve-based interval 
prediction method, we showed a direction to calculate the 1-step interval prediction of activity steps on top of 

Table 13.   Mean step forecasting results on PMData datasets.

Models RMSE | FB | RSD ET (s)

Our CNN1D 1520.9 222.54 1534.0 88.0

AR with REM 5936.5 223.4 1475.6 144.0

Vanilla LSTM 4537.3 234.0 4574.7 149.2

Stacked LSTM 4541.7 244.0 4580.4 232.6

Bidirectional LSTM 4369.7 369.0 4411.0 211.8

Vanilla GRU​ 4488.3 223.5 4526.6 146.8

Stacked GRU​ 4518.6 125.0 4515.0 234.2

Bidirectional GRU​ 4367.4 224.6 4434.3 219.3

Table 14.   Mean step forecasting results on MOX2-5 datasets.

Models RMSE | FB | RSD ET (s)

Our CNN1D 1742.7 246.3 1796.3 88.0

AR with REM 3753.1 150.0 3956.4 143.0

Vanilla LSTM 3831.5 128.4 3951.0 157.3

Stacked LSTM 3788.7 111.0 3907.2 199.3

Bidirectional LSTM 3687.9 138.0 3801.7 192.0

Vanilla GRU​ 3930.9 104.8 4052.9 152.0

Stacked GRU​ 3877.1 185.3 4007.1 205.5

Bidirectional GRU​ 3703.9 117.5 3819.4 209.3

Table 15.   Statistical analysis on last 4 weeks’ STATISTICAL ANALYSIS ON LAST FOUR WEEKs’ ACTIVITY 
DATA FOR P-1 IN MOX2-5 DATASETS. LPA Low physical activity, MPA Medium physical activity, VPA 
Vigorous physical activity, APV Activity pattern vector, GS Goal score, SC Similarity score, AP Activity point, S 
Activity performance score, SD Standard deviation.

Metrics Week-1 Week-2 Week-3 Week-4

Mean sedentary time (s) 2146.0 81,838.0 91,305.0 940.0

Mean LPA time (s) 5935.0 3799.0 2551.0 3240.0

Mean MPA time (s) 1239.0 1008.0 316.0 682.0

Mean VPA time (s) 55.0 164.0 0.0 383.0

Mean steps 11,706 8861 4649 7256

APV [3, 3, 3, 4, 4, 2, 4] [4, 4, 4, 2, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0] [1, 1, 3, 2, 1, 1, 1]

GS [3, 3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3, 3]

SC + 2 − 7 − 20 − 11

�AP 158 104 2 36

Mean S 22.5 14.9 0.3 5.1

Weekly (|SD|) 0.0 (Error: ± 0.0) 3.8 (Error: ± 2.7) 9.2 (Error: ± 5.3) 8.6 (Error: ± 4.3)
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the point prediction (see Table 16). The mean predicted steps for the following week (Week-X) produced a value 
of 4576.0 ( ≈ (3520.0 + 5171.0 + 4855.0 + 4979.0 + 5071.0 + 4508.0 + 3928.0)/7) which tells that the upcoming 
week (or Week-X) can be a match with Week-3. Therefore, the daily activity performance must be improvised.

Query execution and recommendation generation.  We generated personalized activity recommen-
dations during ontology validation based on semantic rules to improve individual physical activity levels to 
achieve activity goals. We executed semantic rules and used the Jena ARQ engine to run associated SPARQL 
queries on the used dataset. Query results have been combined to create tailored recommendations to meet the 
eCoaching requirements. For instance, in Week-3, participant P-1 failed to achieve WHO’s generic activity goal 
to stay active. Therefore, based on the semantic rule, he received recommendation messages A-19 and A-17. 
Based on the step forecast results with our developed CNN1D model, P-1 received recommendation message 
A-13 for the following week. On Week-3, the set of daily classified activity levels or APV is [0, 0, 0, 0, 0, 1, 0]. 
Therefore, for activity level 0, P-1 received A-1, A-7, A-8, A-10, and A-15, and for activity level 1, P-1 received 
A-2, A-7, A-8, A-10, and A-15.

We utilized the OWL_MEM_MICRO_RULE_INF specification (OWL-full) to investigate the ontology struc-
ture in Jena in the TTL format and approximated the reading time to 1.0–1.5 s. Moreover, we used In-memory 
storage, optimized rule-based reasoner OWL rules, and the Jena framework to query the ontology class, ontology, 
predicate, subject, and object of each sentence in < 1.0 s, < 2.0 s, and < 2.0 s, respectively. The reasoning time 
of the OntoeCoach ontology has been captured in Table 17. The HermiT reasoner performed the best without 
any inconsistencies.

Discussion
This work presents a novel deep learning and ontology-based personalized recommendation modeling and 
includes comprehensive and multiple comparison levels to appreciate the proposed approaches’ performance 
better. From the classification and forecasting results on both datasets, we found that DL models for time-series 
prediction and classifications can be effectively designed and developed. Further, we integrated these models in 
the OntoeCoach model for hybrid personalized recommendation generation.

According to the evidence in Tables 11 and 12, an increased volume of MOX2-5 datasets could improve 
our model performance in this multi-class classification problem. In both datasets, model loss for training and 
testing converges. Due to the higher volume in PMData as compared to MOX2-5 datasets, our MLP classifier 
took more epochs for convergence. We compared the result of our proposed MLP classifier with traditional ML 
classifiers, such as SVM with linear and non-linear kernels, Decision Tree, KNN, Naïve Bayes, LDA, and our 
model outperformed these ML classifiers on PMData datasets. We planned to perform a similar comparison on 
MOX2-5 datasets in our future study with increased data.

Across both datasets, CNN1D outperformed other forecast models and produced high-speed output. We tried 
to increase the efficiency of the CNN1D model with more hidden layers, neurons, variations in filters, and drop-
out layers; however, we could not succeed. A limited volume of datasets can be a strong reason behind this. We 
also noticed that CNN, LSTM, and GRU models have different hyperparameters in terms of filter dimension, the 
number of filters, and hidden state dimension, and they internally work differently. CNN1D generally manipu-
lates the spatial correlation in data and performs well when capturing the neighborhood information in data.

Table 16.   Step and interval prediction for Week-X for P-1 in MOX2-5 datasets.

Week-x Predicted step points (SP) 80% interval step prediction with c = 1.28, σh = 1271.0

Day-1 3520.0 [1893, 5147]

Day-2 5171.0 [3544, 6798]

Day-3 4855.0 [3228, 6482]

Day-4 4979.0 [3353, 6605]

Day-5 5071.0 [3445, 6697]

Day-6 4508.0 [2882, 6134]

Day-7 3928.0 [2302, 5554]

Table 17.   Performance comparison of different ontology reasoners available in Protege.

Reasoner(s) Average reasoning time (s)

HermiT 1.0–2.0 s

Pellet 2.0–4.0 s

Fact++ 3.0–4.0 s

RacerPro 2.0–3.0 s

KAON2 3.0–4.0 s
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Future step prediction for individuals combined with the estimated S-value for the previous weeks can be a 
good direction for generating tailored recommendations. Similar studies are missing in the literature. Figure 8 
shows a visual approach to present the interval step prediction in the ActiCoach smartphone application to 
motivate individuals to personal activity monitoring to reach their activity goals.

Average execution times for SPARQL queries were recorded between 0.1 and 0.4 s. The semantic rules 
described in Table 5 represent the logic behind generating personalized recommendation messages. Rule-Based 
binary reasoning (if → 1 else → 0) helps to explain the formation of personal activity recommendation messages. 
A complete data-driven approach to personalized recommendation generation in healthcare is still critical due 
to false-positive scenarios. Therefore, prediction modeling followed by an annotated ruleset can add more value 
to personalized health recommendations. For solving the generic cold-start problem in our personalized recom-
mendation generation, we recorded data for an initial two weeks to identify the activity patterns in an individual 
before starting DL-based data processing and followed by a recommendation generation.

Our modular eCoach system design can integrate other ML and DL classifiers, predictors, and statistical 
methods (e.g., daily activity frequency, graded activity frequency, regular activity frequency, and distribution 
of daily activity patterns). In that case, we only need to update respective models and techniques. The concept 
of ontology supports new branching to integrate new ideas or pruning if some ideas are unnecessary. The KB 
and RMT can grow or shrink on demand based on future studies’ efficacy evaluation. Furthermore, this type of 
design approach can support similar activity sensors (e.g., Actigraph).

This study proves an integrated concept for hybrid personalized recommendation generation in activity 
eCoaching, combining time-series classification and forecasting results with semantic ontology to generate 
rule-based personalized recommendations. However, a longitudinal study on a group of controlled trials could 
evaluate its practical efficacy. More state-of-the-art time-series models (classification and forecasting) for perfor-
mance comparison, stability analysis, and more activity attribute support with the growing activity data can be 
included. The recommendation generation performance could improve by using density-based spatial clustering, 
sessions, criteria, similarity score, reward maximization, fuzzy logic, entropy, and community-based heuristic 
approaches. In the current approach, a person can receive multiple recommendation messages. Thus, the scope 
of the solution can be increased with meta-heuristic methods to select an optimal set of recommendations from 
a feasible recommendation set and make the selection dynamic with personal behavioral patterns.

Collaborative filtering is a well-established recommendation method to generate recommendations to filter 
out items based on the user similarity score. It defines an optimal search space that includes users with the 
closest preference score. The similarity score helps to create profile rankings. Our model-based exercise recom-
mendations are filtered based on personal preferences and short- and/or long-term goal achievement. The tree 
structure of the semantic ontology explains the binary logic or rules behind specific recommendation generation. 
The process is highly individualized; thus, the notion of group similarity is not included in recommendation 

Figure 8.   Visualization of daily step count, target step count, and predicted interval.



21

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10182  | https://doi.org/10.1038/s41598-023-37233-7

www.nature.com/scientificreports/

generation. In the future, we will extend this research to group-based meta-heuristics by incorporating ideas 
from collaborative filtering.

The proposed Activity eCoach system demonstrates its significance in real life by offering personalized guid-
ance, support, and motivation to individuals aiming to enhance their physical health and overall well-being. Our 
physical activity eCoaching system could offer multiple benefits and use cases in the real world, as demonstrated 
by real-life examples (a–j). These could directly contribute to the sustainable development goal of the nation e.g., 
the United Nations’ Sustainable Development Goal (SDG) 355. (a) Personalized Approach: Our activity eCoaching 
offers a personalized approach to fitness and wellness. It takes into account individuals’ unique characteristics, 
goals, preferences, and constraints, allowing for tailored recommendations and strategies that align with their 
specific needs. This personalized approach enhances engagement and increases the likelihood of successful 
behavior change. (b) Accessibility and Convenience: Our activity eCoaching provides accessibility and conveni-
ence to individuals. With the use of mobile applications, online platforms, and wearable devices, individuals can 
access coaching support and resources anytime, anywhere. This flexibility eliminates geographical barriers and 
time constraints, making it easier for people to engage in fitness activities and receive guidance, regardless of 
their location or schedule. (c) Continuous Support and Accountability: Our activity eCoaching provides continu-
ous support and accountability. Coaches can monitor individuals’ activity progress, track their activities, and 
provide timely feedback and encouragement. This ongoing support helps individuals stay motivated, overcome 
obstacles, and maintain consistency in their fitness journey. (d) Goal Setting and Progress Tracking: Our activity 
eCoaching facilitates goal setting and progress tracking. Activity eCoache system works with individuals to set 
realistic and achievable goals, breaking them down into manageable steps. Regular tracking of progress allows 
individuals to visualize their achievements, identify areas for improvement, and make necessary adjustments 
to their routines. (e) Education and Guidance: Our activity eCoach system can provide evidence-based infor-
mation, answer questions, and address concerns, empowering individuals to make informed decisions about 
their health and well-being. (f) Behavior Change Support: Our activity eCoaching focuses on behavior change 
strategies and techniques. eCoaches help individuals develop new habits, overcome barriers, and adopt healthier 
lifestyles. They provide guidance on setting realistic expectations, managing setbacks, and sustaining long-term 
behavior change. (g) Motivation and Engagement: Our activity eCoaching enhances motivation and engagement. 
Through personalized feedback, progress updates, goal achievements, and interactive features, individuals are 
motivated to stay active and engaged in their fitness routines. Recommendation and rewarding features further 
enhance motivation and create a sense of community. (h) Health Monitoring and Risk Management: Our activity 
eCoaching can incorporate health monitoring features to track vital health signs, heart rate, sleep patterns, and 
other relevant health indicators. This may allow to identify potential health risks, provide early intervention, 
and promote overall well-being. (i) Integration with Other Healthcare Services: Our activity eCoaching can be 
integrated with other healthcare services, such as telemedicine or electronic health records, to ensure a compre-
hensive approach to individuals’ health management. eCoaches may collaborate with healthcare providers, share 
relevant data, and align coaching strategies with medical recommendations. (j) Long-Term Sustainability: Our 
activity eCoaching aims to promote long-term behavior change and sustainability. Providing ongoing support, 
education, and personalized strategies, eCoaches help individuals develop healthy habits that can be sustained 
beyond a specific program or intervention.

Conclusion
To improve an individual’s physical activity levels through wearable activity sensors and digital activity trackers, 
eCoach capabilities may be encouraging. Through continuous monitoring and personalized recommendation 
generation, eCoach can motivate participants to achieve their physical activity goals to maintain a healthy life-
style. This work proposes a new theoretical concept for generating personalized activity recommendations in 
eCoaching using a hybrid approach. The idea of univariate time series forecasting exists; its application to the 
ontology of activity eCoaching and interval forecasting is novel. This study reveals a method for examining and 
using projection, classification, statistical, and recommendation models with semantic rule bases to design and 
develop a prototype eCoach system to generate interpretable and personalized campaign recommendations to 
manage campaign goals.
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