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Figure 1: Overview of the proposed research through key research questions (RQ).

ABSTRACT
With the increasing availability of multimodal data, especially in the
sports and medical domains, there is growing interest in developing
Artificial Intelligence (AI) models capable of comprehending the
world in a more holistic manner. Nevertheless, various challenges
exist in multimodal understanding, including the integration of
multiple modalities and the resolution of semantic gaps between
them. The proposed research aims to leverage multiple input modal-
ities for the multimodal understanding of AI models, enhancing
their reasoning, generation, and intelligent behavior. The research
objectives focus on developing novel methods for multimodal AI,
integrating them into conversational agents with optimizations
for domain-specific requirements. The research methodology en-
compasses literature review, data curation, model development
and implementation, evaluation and performance analysis, domain-
specific applications, and documentation and reporting. Ethical
considerations will be thoroughly addressed, and a comprehen-
sive research plan is outlined to provide guidance. The research
contributes to the field of multimodal AI understanding and the
advancement of sophisticated AI systems by experimenting with
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multimodal data to enhance the performance of state-of-the-art
neural networks.
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1 INTRODUCTION AND MOTIVATION
Multimodal understanding refers to the capability of AI systems
to simultaneously process information from multiple modalities
(text, speech, images, etc.), leading to a more comprehensive under-
standing of the content. For instance, in soccer game summariza-
tion, multimodal understanding involves analyzing both visual cues
(such as player movements and goals) and accompanying audio (in-
cluding crowd cheers and commentator’s remarks) to generate an
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informative summary. Similarly, in medical image understanding,
combining information from different imaging modalities (such
as X-rays and MRI scans) with textual medical reports could yield
a more accurate diagnosis and a comprehensive assessment of a
patient’s condition.

Recent years have witnessed a growing interest in AI for mul-
timodal understanding [17, 20, 29, 38]. This interest stems from
the increased availability of multimodal data [35], including sports
videos (comprising image frames and audio) paired with text com-
mentaries [21] and medical images/videos coupled with clinical
characteristics [30]. Leveraging multimodal data, AI models can
achieve a more holistic comprehension of the world [1, 17, 23]. De-
veloping robust AI models for multimodal understanding presents
several challenges. One such challenge is addressing the seman-
tic gap between diverse modalities [4, 6, 29, 38]. For instance, a
captivating soccer moment, like a player kicking the ball into the
net, can be described textually as "a shot by a player toward the
net." Yet, there is no direct mapping between the visual features
of game elements and situations on the field and the descriptive
words employed.

Another significant challenge is effectively integrating multiple
modalities to capture their complementary information [2]. This en-
tails meticulous design of model architecture and training processes,
along with a profound understanding of inter-modality relation-
ships [37]. Despite these challenges, substantial progress has been
made inAI formultimodal understanding in recent years [17]. Novel
techniques have emerged to bridge the semantic gap between dis-
tinct modalities [17], contributing to the training of AI models that
demonstrate impressive performance across a range of multimodal
tasks. This research aims to forge connections between diverse
modalities in multimodal understanding by developing innovative
models to enhance such understanding and seamlessly integrating
them into domain-specific optimized autonomous agents.

The subsequent sections of this document are organized as fol-
lows: In Section 2, we provide a concise background and overview
of related work. In Section 3, we delve into our research questions.
Section 4 outlines our methodology to address these research ques-
tions and discusses our dissemination plan. Preliminary results from
experiments pertaining to the research questions are presented in
Section 5. Finally, Section 6 concludes the document with notes on
the next steps.

2 BACKGROUND AND RELATEDWORK
The integration of multimodal approaches and language models has
driven significant advancements in AI systems. Gao et al. [8] demon-
strated that their multimodal feature-based method achieved higher
accuracy and effectiveness in recognizing human motion during
soccer games. Similarly, Wu et al. [34] proposed a multimodal two-
stream 3D network framework that improved recognition perfor-
mance through the synergistic use of complementary multimodal
information. Extensive experiments on challenging action recogni-
tion datasets substantiated their approach. These studies [8, 22, 34]
collectively underscore the potential of multimodal approaches in
enhancing AI understanding within multimedia analysis.

The Meta-Transformer [39] stands as a multimodal framework
enabling unified learning across 12 diverse modalities without

paired training data. This approach leverages a frozen encoder to
extract high-level semantic features from raw input data, exhibiting
efficacy across various tasks and applications. However, limitations
include high computational complexity, absence of temporal and
structural awareness, and potential constraints for cross-modal gen-
eration tasks. MultiBench [16] offers a comprehensive and standard-
ized large-scale benchmark for multimodal learning. Encompassing
diverse datasets, modalities, and prediction tasks, MultiBench accel-
erates progress and enhances real-world robustness in multimodal
AI research.

Previous research onAI-based soccer game summarization pipelines [9–
11] focused on automating the generation of comprehensive textual
summaries for soccer games. These pipelines incorporated multi-
modal inputs such as video and audio streams, alongside accessible
game metadata, to produce variable-length game summaries. No-
table achievements included fine-tuning a Longformer model [3]
for generating game summaries based on textual game captions.
Additionally, these studies explored the use of game audio to prior-
itize events for summary inclusion, utilizing the Root Mean Square
(RMS) audio intensity score to assess event importance [10]. To
address the challenge of comprehending information-rich videos,
researchers are increasingly exploring direct input of temporal
image frames [22, 25, 31, 33], aiming to enhance multimodal AI
understanding across diverse modalities [38].

Researchers from various domains are actively exploring the
realm of deep learning for multimodal data fusion. Gao et al. [7]
delve into pioneering models that fuse diverse data types, offering
fundamental insights specifically in the context of multimodal big
data. Stahlschmidt et al. [28] prioritize nonlinear biomedical data
fusion, proposing a taxonomy to enhance fusion strategy selec-
tion within the biomedical domain. To complement this landscape,
Lipkova et al.[36] enriches the discourse by providing a nuanced
exploration of AI’s integration into the multifaceted world of oncol-
ogy data. Moreover, the work of Li et al. [14] systematically reviews
deep learning’s role in remote sensing data fusion, shedding light
on emerging trends in the domain of multimodal remote sensing
data fusion.

Moreover, interest has surged in agent-based frameworks to en-
hance language model capabilities, providing modular components
and pre-built chains for various tasks [12, 13, 26, 27]. These chains
consist of modular components that are customizable and seam-
lessly integrable with multimodal data sources and functions. No-
table examples include frameworks developed by Kraus et al. [13],
Shen et al. [26], and Shridhar et al. [27].

LAnguage Model Analysis (LAMA) [24] extensively explores
the inherent relational knowledge in pretrained language models,
highlighting their potential as unsupervised open-domain ques-
tion answering systems. Liu et al. [19] provide a comprehensive
overview of prompt-based learning in natural language processing,
discussing advantages, mathematical notations, and various dimen-
sions such as pre-trained language models, prompts, and tuning
strategies. Ding et al. [5] introduce Open-Prompt, a comprehensive
toolkit for prompt-based learning with Pre-trained Language Mod-
els (PLMs)s, offering efficiency, modularity, and adaptability to vari-
ous Natural Language Processing (NLP) tasks. Liu et al. [18] present
a rigorous comparison between few-shot In-Context Learning (ICL)
and Parameter-efficient Fine-tuning (PEFT) methods, showcasing
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PEFT’s efficient prompt-based approach, superior accuracy, and
reduced computational costs. Video-ChatGPT [25] combines video-
adapted visual encoding with Large Language Models (LLMs), en-
abling human-like conversations about videos. Video-LLaMA [38]
empowers LLMs to comprehend both visual and auditory content
in videos, addressing challenges in capturing temporal changes
in visual scenes and integrating audio-visual signals, making it a
promising prototype for audio-visual conversational agents.

The proposed research aims to build upon these achievements by
bridging the gap between different input modalities, including those
addressed through computer vision, audio analysis, and language
models. This will enhance AI understanding for downstream tasks,
including but not limited to generation, classification, and detection.
Such enhancements will also improve conversational agents, mak-
ing them more intelligent by leveraging multimodal data sources
and functions. By addressing open challenges and exploring novel
directions, this research has the potential to significantly advance
multimodal understanding and contribute to the development of
more sophisticated AI systems.

3 RESEARCH QUESTIONS
Building upon the accomplishments of previous research, the pro-
posed study aims to synthesize various modalities in multimodal
understanding. This is achieved through the development of novel
models for enhanced multimodal understanding, their integration
into conversational agents with domain-specific optimizations, and
the addressing of application requirements and performance con-
cerns. The research is guided by the following research question:

Main Research Question (RQ):
How can existing AI models be adapted or extended to handle

multimodal data and enhance reasoning and generation capabili-
ties through the effective representation and alignment of different
input modalities? How can these adapted models be optimized for
integration into conversational agents, addressing domain-specific
application requirements for various use cases?

Sub-Research Questions:
Research Question 1 (RQ1): How can existing AI models be

adapted or extended to handle multimodal data and enhance reason-
ing and generation capabilities through the effective representation
and alignment of different input modalities? In RQ1, the focus is
on modifying and combining pre-existing AI models, originally
designed for individual modalities, to efficiently process and align
information from multiple sources. By integrating knowledge and
advancements from unimodal domains, the goal is to develop novel
multimodal AI models capable of reasoning and generating content
by effectively fusing information from diverse input sources. The
successful development of such adapted models will contribute to
enhancing multimodal AI understanding.

Research Question 2 (RQ2): Can the integration of multimodal
data and models in conversational agents enhance their capabilities
and reflect improved intelligent behavior? RQ2 aims to investigate
how leveraging multimodal information can empower conversa-
tional agents to gain contextual understanding, generate richer
responses, and make better decisions. By fusing data from various
modalities, conversational agents can become more contextually
aware and provide more informative and personalized interactions,

ultimately improving their overall performance and user experi-
ence.

Research Question 3 (RQ3):How can the incorporation of multi-
modal data and models be optimized to address domain-specific appli-
cation requirements and performance concerns for different use cases,
such as sports and healthcare? RQ3 addresses the optimization of
incorporating multimodal data and models to meet domain-specific
application requirements and performance concerns in different
use cases, such as sports and healthcare. The motivation behind
this question lies in the need to tailor multimodal understanding
approaches to specific domains, ensuring their effectiveness and
efficiency in practical applications.

The fusion of different modalities, as explored in RQ1, holds
the potential to enhance the quality and richness of generation
across various domains [15, 38]. For example, it can improve game
summaries by capturing the nuances of gameplay, player actions,
and visual cues. In the medical domain, challenges such as privacy
concerns and limited data availability for machine learning training
often necessitate the use of synthetic data. Conversely, the sports
domain benefits from easily accessible long game videos, publicly
available statistics, and news data, facilitating multimodal under-
standing tasks within this domain. These variations in modalities
and data availability contribute to the distinct considerations and
approaches required for each use case.

4 METHODOLOGY AND APPROACH
The proposed research constitutes a vital component of a 3-year
(36-month) PhD program. The outlined plans below detail how
the PhD student aims to acquire knowledge, practical skills, and
contribute significantly to the field of multimodal understanding.

4.1 Research Plan
Literature Review (RQ1, RQ2, RQ3): The research commences
with an extensive review of existing literature on multimodal un-
derstanding, the alignment of diverse data modalities, fusion tech-
niques, integration of pre-trained models, and the amalgamation
of multimodal data and models within autonomous agents. This
analysis identifies strengths, limitations, and research gaps, forming
the foundation for the development of novel multimodal models
that represent and align various input modalities effectively. The
literature review also examines studies addressing domain-specific
application requirements and performance concerns, offering in-
sights into optimizing multimodal data and model integration for
various use cases.

Data Curation (RQ1, RQ2, RQ3): Acknowledging limitations
in existing datasets, particularly the lack of unified and compre-
hensive data sources for multimodal understanding [9, 11, 17], the
research will explore, curate, and enhance datasets. Ensuring di-
versity and representation of multimodal data while aligning with
domain-specific requirements in sports and healthcare, these cu-
rated datasets will undergo rigorous reprocessing to ensure quality,
consistency, and augmented training and evaluation efficiency.

Model Development and Implementation (RQ1): To address
RQ1, the research will explore novel methods for multimodal un-
derstanding and fusion. These methods aim to effectively represent
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and align diverse input modalities, including visual, audio, and tex-
tual data. Integration of pre-trained models, such as Convolutional
Neural Networks (CNNs), Transformers, and language models, will
be investigated to enhance multimodal understanding and improve
generation quality. Developed methods and algorithms will be im-
plemented using suitable programming languages and frameworks,
considering the specific requirements of diverse data modalities
and models.

Integration with Conversational Agents (RQ2): Aligned
with RQ2, the research will explore methods to enhance the ca-
pabilities of autonomous agents and reflect improved intelligent
behavior by leveraging multimodal data and models. This inte-
gration involves adapting multimodal models to interface with
conversational agents, enabling the agents to process and interpret
various input modalities. The integrated system’s performance will
be evaluated through experiments and objective/subjective stud-
ies, assessing the enhanced capabilities and improved intelligent
behaviors exhibited by the agents.

Domain-specific Applications (RQ3): The efficacy of multi-
modal understanding within developed models and methods will
be evaluated through practical domain-specific applications, such
as sports and healthcare, addressing RQ3. Models will be fine-tuned
based on domain-specific datasets and application scenarios, ad-
dressing challenges unique to each domain. Techniques to enhance
system efficiency, reduce computational complexity, and improve
real-time performance will be explored to optimize multimodal
model integration.

Evaluation and Performance Analysis (RQ1, RQ2, RQ3):
Rigorous evaluation of proposed models and methods will measure
performance in terms of reasoning accuracy, generation quality,
and intelligent behavior. Evaluations will involve comparing results
with baseline models and existing approaches, as well as subjective
assessment through human feedback. The proposed methods and
system will be validated using benchmark datasets and real-world
scenarios to ensure generalizability, effectiveness, and applicability
beyond the research problem.

Documentation and Reporting (RQ1, RQ2, RQ3): The entire
research process, methodologies, experimental setups, findings, and
insights will be documented and disseminated through research
papers, reports, presentations, and open-source code implementa-
tions. Sharing curated datasets and code promotes reproducibility
and facilitates further research efforts.

5 PRELIMINARY RESULTS
As part of this research, we have begun experimenting with var-
ious multimodal datasets from different domains and exploring
emerging model architectures. In our initial experiment, we uti-
lized Video-LLaMA [38], a platform enhanced by large language
models with video and audio understanding capabilities [32], and
performed fine-tuning using the SoccerNet-Captions dataset [21].
The concept is illustrated in Figure 2.

To start, soccer game videos from the SoccerNet dataset are
divided into uniform-length (𝑇 seconds) video chunks, each cov-
ering a game event with corresponding audio commentary from
the SoccerNet-Captions dataset (beginning at time point 𝐸). These
chunks are strategically generated to span a time duration starting

Figure 2: LLM-powered conversational agent leveraging video
frames (images), audio, and game commentary (text) for en-
hanced understanding.

𝑏 seconds before and ending 𝑎 seconds after the commentary for
the game event, such that (𝐸 + 𝑎) − (𝐸 − 𝑏) = 𝑇 .

Segmenting the videos in this manner equips the fine-tuning
process with pairs of video chunks and commentary. This approach
trains the model to comprehend the contextual context surrounding
specific soccer game events. Video-LLaMA thus learns the intri-
cate relationship between visual cues within the video, the associ-
ated audio content, and the textual commentary that describes the
event. The video chunks provide visual information that enables
the model to analyze the game’s dynamics and player movements,
while the corresponding audio complements this by capturing ambi-
ent sounds, crowd reactions, and other auditory cues that contribute
to a comprehensive understanding of the event.

Currently, the fine-tuning of the vision-language branch has
been completed, and efforts are ongoing in fine-tuning the audio-
language branch.We are activelyworking on evaluating the outputs,
and this evaluation process is a work in progress.

6 CONCLUSION AND NEXT STEPS
This proposed research aims to leveragemultiple inputmodalities to
enhance reasoning, generation, and intelligent behavior in conver-
sational agents, thereby advancing multimodal understanding and
integration. The research objectives encompass the development
of novel models for enhanced multimodal understanding through
the fusion of diverse modalities, their integration into conversa-
tional agents, and the pursuit of domain-specific optimizations
to address application requirements and performance concerns
in sports and healthcare domains. The proposed methodology in-
cludes comprehensive research, progress, and dissemination plans,
ensuring accessibility and high impact. Preliminary results from
ongoing work illustrate the potential of experimenting with various
multimodal datasets and emerging model architectures, specifically
focusing on enhancing automated video and audio understanding
of soccer game events in the sports domain. The forthcoming steps
will be guided by the research questions outlined in Section 3 and
the research and dissemination plans detailed in Section 4.1.
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