
Optimizing Network Latency: Unveiling the
Impact of Reflection Server Tuning

Jan Marius Evang1,2 and Thomas Dreibholz1

Abstract This study investigates the dynamics of network latency optimiza-
tions, with a focus on the role of reflection server tuning. In an era marked
by the demand for precise and low-latency network measurements, our explo-
ration unveils the interplay of diverse parameters in achieving optimal per-
formance. Notably, the implementation of a tuned profile on Linux emerges
as a standout strategy, showcasing significant rewards in network efficiency.
We highlight the importance of early acceptance of latency-critical traffic in
the firewall chain and emphasize the cumulative impact of various optimiza-
tions. These findings have practical implications for network administrators
and system architects, providing valuable insights for the deployment of ef-
ficient and low-latency network infrastructures, essential in the landscape of
emerging technologies such as 5G networks and edge computing solutions.

1 Introduction

Effective management of network latency is increasingly important, especially
in our era of technologies such as 5G networks, cloud-based Radio Access
Networks (RAN) and low-latency edge computing. HiPerConTracer [4, 5] is
a valuable tool for high-precision short- and long-term network latency mea-
surements through the utilization of hardware timestamping.
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Traditional latency measurements involve the transmission of Internet
Control Message Protocol (ICMP) [3, 10] Echo Request packets across net-
work paths. Upon reception of an ICMP Echo Request, the receiver’s net-
work stack, i.e. usually the operating system kernel, replies with an ICMP
Echo Reply (by default, unless deactivated or firewalled). The time between
sending an Echo Request and receiving the corresponding Echo Reply is the
Round-Trip Time (RTT). ICMP therefore provides relatively simple and re-
liable means of measuring latency, without any need for an additional service
at the remote site.

While ICMP is convenient for measuring, it may be subject to varying
treatments by networking and security devices. In contrast, the User Data-
gram Protocol (UDP), though less accurate, is the preferred protocol for
quality measurements in modern network environments, because the high-
demanding services often use UDP payloads [1]. Similar to ICMP, the UDP
Echo protocol [11] can be used for UDP-based RTT measurements. However,
unlike for ICMP, a UDP Echo service has to be deployed at the remote end-
point, replying to incoming UDP packets. That is, it requires explicit support
by the remote endpoint, either by a UDP Echo service in user-space, or by a
special router setup for a reply in hardware. This is denoted as “reflector”,
since it simply echoes the UDP packet back to the sender.

This paper uses HiPerConTracer [4, 5] to measure round-trip time using
reflectors with varying configurations, with the aim to optimize reflectors and
to provide recommendations for configuring servers and network devices. By
addressing this trade-off between measurement ease and accuracy associated
with ICMP and UDP, our research contributes to enhancing latency- and
jitter-sensitive production services in contemporary networks.

While recent efforts have been dedicated to achieving low latency by mod-
ifying the Linux kernel [2, 7, 9], our approach in this paper is distinct, as we
only leverage standard Linux kernel tuning. Focusing on the lightweight UDP
reflector service, involving minimal CPU processing, allows for a detailed ex-
amination of network performance factors induced by underlying hardware,
drivers, and the kernel.

A comprehensive investigation into the underlying mechanisms contribut-
ing to the observed result variations is deferred to future research.

2 Methodology: The HiPerConTracer Framework

The measurements in this paper utilized the High-Performance Connectivity
Tracer (HiPerConTracer) framework1 [4, 5]. The HiPerConTracer architec-
ture comprises measurement vantage points (clients) sending ICMP and/or

1 HiPerConTracer: https://www.nntb.no/∼dreibh/hipercontracer/.

https://www.nntb.no/~dreibh/hipercontracer/
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Fig. 1 An Overview of the Architecture of HiPerConTracer.

UDP packets to echo-servers (reflectors), alongside the associated storage and
analysis devices, as shown in Fig. 2.

HiPerConTracer’s precise timestamping [5] enables both short- and long-
term latency measurements. Measurement vantage points act as clients to-
wards echo-servers (reflectors) to perform latency measurements. The mod-
ular architecture of the framework enables flexibility in configuring measure-
ment scenarios, making it well-suited for our investigation into round-trip
time optimization.

3 Measurements Infrastructure

For our experiments, we employed a single HiPerConTracer client composed
of a server equipped with a 24-thread 3.2 GHz Intel i9-12900K CPU, 32 GiB
RAM, and an Intel I225-V Ethernet card. The reflector server featured a 4-
core 3.4 GHz Intel Xeon E-2224 CPU and was equipped with five different
Ethernet cards. Both servers operated on Ubuntu 22.04. For some tests the
the setup was configured as in Fig. 2 with a Linux kernel firewall on the
reflector server. For other tests, a Juniper MX80 was configured as a routing
firewall as illustrated in Fig. 3, addressing typical real-world scenarios.

Each test consisted of 20 iterations, with packets sent in bursts of 1, 10,
and 50 as rapidly as possible. The measurement client remained static, while
the configuration of the reflector server varied as described below.

As a measure of latency, HiPerConTracer records the RTT, which is used
in this paper. As a measure of jitter we use the Inter-Quartile Range (IQR),
defined as the difference between the 75th percentile (Q3) and the 25th per-
centile (Q1) of the RTT values for all packets in a test.
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Fig. 2 Scenario 1: Direct Connection with Firewalled Server

Fig. 3 Scenario 2: Routed Connection with Firewall in the Network

Most of the tests were performed with a user-space process running on the
Linux server as reflector. The Linux kernel has a multitude of configuration
parameters that may be adjusted at runtime using the sysctl interface. Many
of the parameters affect the performance of our UDP reflector process, and
are adjusted by various tools to test their effect as described below.

Unless explicitly specified, the tests in this paper were conducted with
a 100/1000 Mbit/s Ethernet switch in the path. Test G deviated from this
standard, utilizing a direct cable between the client and the server.

The tests were executed with both, iptables and nftables modules loaded,
employing an “accept all” configuration, with a tuned profile of “balanced”.
The Intel I350 card with ID 0.1 was used, unless stated otherwise in Section 4.

4 Results

We conducted a series of tests on the established infrastructure, exploring
diverse aspects of potential tuning options for the reflector server system,
as detailed in the following subsections. The used HiPerConTracer source
branch is available via GitHub2, the dataset of the following experiments is
available as well [6].

2 HiPerConTracer version 2.0.0∼beta4 sources:
Git repository: https://github.com/dreibh/hipercontracer, branch “dreibh/udpping”.

https://github.com/dreibh/hipercontracer
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4.1 Test A: Tuned Profile

Tuned3 is a tuning daemon designed to enhance the performance of the oper-
ating system under specific workloads by applying tuning profiles. It can dy-
namically respond to changes in CPU and network utilization, adjust sysctl
settings to optimize performance for active devices and conserve power for
inactive. We explored three distinct Tuned profiles:

1. network-latency: This server profile prioritizes reducing network latency,
emphasizing performance over power savings. It configures sysctl pa-
rameters such as setting intel pstate, min perf pct=100, disabling trans-
parent huge pages, and turning off automatic Non-Uniform Memory Ac-
cess (NUMA) balancing. Additionally, it utilizes cpupower to set the per-
formance cpufreq governor, requests a cpu dma latency value of 1, and
adjusts busy read, bus poll times to 50 µs, and tcp fastopen to 3.4

2. balanced: This profile strikes a balance between performance and power
consumption, employing automatic scaling and tuning when feasible. How-
ever, it may result in slightly increased latency.

3. powersave: Geared towards maximizing power savings, this profile can min-
imize actual power consumption by throttling performance.

R
TT

 (m
s)

0.0

0.5

1.0

1.5

po
wer 

bu
rst

1

po
wer 

bu
rst

10

po
wer 

bu
rst

50

ba
lan

ce
d b

urs
t1

ba
lan

ce
d b

urs
t10

ba
lan

ce
d b

urs
t50

lat
en

cy
 bu

rst
1

lat
en

cy
 bu

rst
10

lat
en

cy
 bu

rst
50

Test A: power optimized, balanced, latency optimized

Fig. 4 Test A: Effects of Tuned profiles: Power-optimized, balanced and latency-
optimized.

3 Tuned: https://access.redhat.com/documentation/en-us/red hat enterprise linux/
7/html/performance tuning guide/chap-red hat enterprise linux-performance
tuning guide-tuned.
4 A description of the options can be found in https://access.redhat.com/sites/
default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
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As depicted in Fig. 4, employing the kernel Tuned profile for network-
latency results in a notable enhancement, reducing latency by a factor of 7.0
to 15.9, and jitter by a factor of 4.0 to 44.8.

4.2 Test B: Firewall Rules

Firewalls can introduce variability to network latency. In this test, we mea-
sured the latencies imposed by the Linux kernel firewall running on the re-
flector server, utilizing the nftables module in iptables compatibility mode.
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Fig. 5 Test B2: The Effect of a Large Linux Firewall Table

Fig. 5 illustrates the impact of incorporating firewall rules into the Linux
kernel. For this experiment, the reflection server was equipped with 10001 fire-
wall rules, each accepting a single UDP port. Subsequent tests were con-
ducted, where the traffic matched the 1st, 1001st, . . . , 10001st firewall rule
to gauge differences in processing time within the Linux firewall.

With just one firewall rule, we observed an almost 0.4 ms latency increase
for a burst of 50 packets. Furthermore, we noticed a nearly linear latency
escalation, with an additional latency of approximately 2 µs per firewall rule.
It is worth noting that the measurement with 10001 rules, while perhaps
unrealistically large, resulted in an almost 60 ms latency increase.
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4.3 Test C: Network Interface Cards

The reflection server has three different network cards, with altogether five
Ethernet interfaces. One Intel I350 with two interfaces identified with ID 0
and ID 0.1, one Broadcom (BCM) with interfaces ID 0 and ID 0.1, and one
Intel 82574L with one interface. Four of the interfaces were tested to observe
any differences.

Some notable differences were observed. Particularly intriguing was the
variance between I350-0 and I350-0.1, where the ID0 interface exhibited sig-
nificantly lower latency for burst50, while the ID0.1 interface demonstrated
superior RTT albeit with a single high outlier displaying extended latency.
There was no similar pattern for BCM, and the cause is unknown.

4.4 Test D: Coalesce

The network cards support network coalescing. This is a mechanism where
the Linux kernel does not receive an interrupt (IRQ) for every packet. Instead,
the network card queues up a number of packets before sending an interrupt
to the kernel to handle a batch of packets. While this approach improves
throughput, it introduces latency and jitter. The default coalescing setting
for our server is 3 µs.

Surprisingly, disabling coalescing has a modest impact on RTT and jitter.
For burst1, a coalescing setting of 0 µs shows a slight improvement. However,
for bursts of 10 or 50 packets, the default 3 µs setting has the best results.

4.5 Test E: Kernel Options

Ubuntu Linux offers various kernel options, including the standard kernel, the
low-latency kernel, and the real-time kernel. Test E measures the impact of us-
ing the low-latency kernel, without modifying the used udp-echo-server
program (which is the UDP Echo server provided by the HiPerConTracer
framework). By enabling CONFIG PREEMPT, the low-latency Ubuntu ker-
nel disables preemption only at critical locations where the kernel must pro-
tect data from concurrent access. This means that the UDP reflector will
send the response immediately, unless a higher-priority task is being exe-
cuted. The real-time kernel imposes even stricter constraints but is generally
not recommended for standard servers unless precise timing is a requirement.

The results of our tests show a latency improvement ranging from 0.02 ms
to 0.2 ms with the low-latency kernel. However, this improvement comes at
the cost of slightly increased jitter.
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4.6 Test F: Process Affinity for the UDP Echo Server

Since we suspected that CPU scheduling might contribute to latency and
jitter in udp-echo-server, we investigated the impact of CPU affinity. To
explore this, we locked the udp-echo-server process to a specific CPU
core using CPU affinity.

Applying CPU affinity resulted in a slight reduction of jitter by 0.02 ms
for the burst1 tests. For the other cases, CPU affinity did not significantly
impact the results.

4.7 Test G: Direct Connection

All previous tests were conducted with a single 1 Gbit/s switch between
the HiPerConTracer client and the UDP Echo reflection server. In order to
evaluate whether the switch significantly influenced our measurements, we
conducted Test G with a direct cable connection.

The results show a reduction in RTT varying from 0.01 ms to 0.1 ms.
Additionally, there is a decrease in jitter for burst1, while jitter increases for
burst10 and burst50.

4.8 Test H: Juniper MX80 Router as Reflector

While the standard measurement setup with HiPerConTracer’s UDP Ping
involves using a user-space UDP Echo server on a Linux server, certain router-
firewalls like Juniper’s MX80 offer a built-in system for latency measurement
called Real-Time Performance Monitoring (RPM). In this test, we compare
the performance of HiPerConTracer with the RPM probe-server against the
Linux UDP Echo server.

The results depicted in Fig. 6 reveal that the RPM probe-server signifi-
cantly lags behind the Linux UDP Echo server, causing RTT and jitter to
increase by 16-120 times. It is noteworthy that in the RPM architecture,
hardware timestamping is supported, but only on the client-side.

4.9 Test I: Inline MX80 Firewall

This test explores the impact of the configuration depicted in Fig. 3, where a
dedicated routing firewall (Juniper MX80) is positioned between the HiPer-
ConTracer client and the UDP Echo server. The firewall is specifically con-



Optimizing Network Latency 9

R
TT

 (m
s)

0

10

20

30

40

RPM     
burst1

RPM    
burst10

RPM     
burst50

udp-echo 
burst1

udp-echo 
burst10

udp-echo 
burst50

MX80 probe-server vs linux (tuned) udp-echo

Fig. 6 Test H: Comparison Between RPM Probe-Server and UDP Echo Server.

R
TT

 (m
s)

0.0

0.1

0.2

0.3

0.4

ru
le

1 
bu

rs
t1

ru
le

1 
bu

rs
t1

0
ru

le
1 

bu
rs

t5
0

r1
00

1 
b1

r1
00

1 
b1

0
r1

00
1 

b5
0

r2
00

1 
b1

r2
00

1 
b1

0
r2

00
1 

b5
0

r3
00

1 
b1

r3
00

1 
b1

0
r3

00
1 

b5
0

r4
00

1 
b1

r4
00

1 
b1

0
r4

00
1 

b5
0

r5
00

1 
b1

r5
00

1 
b1

0
r5

00
1 

b5
0

r6
00

1 
b1

r6
00

1 
b1

0
r6

00
1 

b5
0

r7
00

1 
b1

r7
00

1 
b1

0
r7

00
1 

b5
0

r8
00

1 
b1

r8
00

1 
b1

0
r8

00
1 

b5
0

r9
00

1 
b1

r9
00

1 
b1

0
r9

00
1 

b5
0

r1
00

01
 b

1
r1

00
01

 b
10

r1
00

01
 b

50

high, q3, median, q1 and low

Fig. 7 Test I: The impact of an in-line MX80 firewall.

figured with 1 to 10001 firewall rules, and the corresponding results are vi-
sualized in Fig. 7.

The Juniper MX80 firewall is set up with a stateless firewall configuration.
Comparing these results to those presented in Fig. 5 yields intriguing insights.
The data indicates that the MX80 firewall is notably optimized for large fire-
wall filters. Remarkably, aside from a few outliers (primarily the first packet
in a burst), there is no discernible difference in performance, irrespective of
whether a packet matches the first or the 10001st filter rule. This pattern
is consistent across most tests and suggests that the MX80 firewall employs
some form of connection tracking optimization, even in stateless mode.
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4.10 Test J: UDP vs. ICMP

Testing with ICMP is often simpler to implement than testing with UDP,
as any device can be used to reflect ICMP packets. This method may offer
higher accuracy, as packets are reflected in kernel-space. However, considering
that latency-sensitive production traffic typically involves UDP, and ICMP
packets may be treated differently by network devices, conducting tests with
UDP provides more representative measurements.
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In Fig. 8, the contrast between UDP and ICMP is examined using the
Tuned (latency-optimized) Linux server as a reflector. The results indicate
that, for burst1, ICMP exhibits significantly lower RTT. In all cases, ICMP
demonstrates approximately half the jitter compared to UDP.

4.11 Test K: ICMP to Server vs. ICMP to Firewall

The Linux server responds to ICMP packets in kernel-space, but the Juniper
MX80 offers multiple response layers, including a Modular Port Concentra-
tor (MPC), two Flexible Physical Interface Controllers (PIC), a Trio [12]
programmable chipset, a bare-metal Linux kernel and a virtualized FreeBSD
kernel (Routing Engine), plus various user-space processes. Routers are of-
ten not optimized for responding to ICMP ping. This test aims to evaluate
whether ICMP Ping to the router is superior or inferior to the Linux server.

Our measurements unsurprisingly reveal that the Juniper MX80 exhibits
suboptimal performance in responding to ICMP Ping, introducing up to
18 ms of additional RTT and 1000 times the jitter compared to the Tuned
Linux kernel. The reason for the low performance is that ICMP Echo handling
is performed in software and is a low priority task.
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4.12 Test L: Linux Kernel-Space Reflector

Since HiPerConTracer supports specifying the source UDP port, it is possible
to use the Linux kernel’s Network Address Translation (NAT) functionality
to enable UDP reflection in kernel-space. Our tests show that this further
reduces jitter for the bursty measurements by 40 % to 50 % down to the
minimal attained 2.4 µs to 2.9 µs IQR.

4.13 Test Z: Multiple Optimizations

The preceding tests measured the individual variables affecting RTT and
jitter. This test, however, examines the collective impact of applying the
optimal values for all parameters: It was conducted using a Linux kernel with
a latency-optimized Tuned profile, the first firewall rule matching packets, the
optimal interface card (BCM-0), zero coalescing, a low-latency kernel, UDP
tests, no inline firewall, and utilizing the UDP Echo server.

The improvements achieved through these optimizations are significant,
median RTT was reduced from 0.66 ms to 0.04 ms and jitter was reduced
by 99 %.

5 Conclusion

In this study, we delved into the intricate landscape of network latency op-
timizations, unveiling the critical importance of reflection server tuning in
achieving precise and low-latency network measurements. Our findings high-
light the synergistic effects of various parameters, emphasizing the need for
a holistic approach to network optimization.

The implementation of a Tuned profile on Linux emerged as a standout
strategy, showcasing substantial rewards in network performance, in particu-
lar for a kernel-space reflector. Early acceptance of latency-critical traffic in
the firewall chain proved pivotal. While the impact of individual factors might
seem modest, the cumulative effect of optimizations became pronounced, es-
pecially in the context of stringent latency requirements, such as those dic-
tated by emerging technologies like 5G networks.

Our study underscores the practical implications for system architects and
network administrators, emphasizing the need to consider multiple factors
collectively for optimal performance. As technology continues to advance,
these insights contribute to the ongoing pursuit of efficient and low-latency
network infrastructures, which are essential for the success of latency-sensitive
applications and edge computing solutions.
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Future research should probably delve more into changing the software,
exploring socket options and further Linux kernel scheduling features, as well
as TWAMP Light (Two-Way Active Measurement Protocol as defined in [8]).

Another topic for future research is the observation that the differences
in firewall behaviour between the Linux firewall and the Juniper MX80 to-
gether with the achieved level of accuracy (jitter) has the potential to allow
fingerprinting of firewalls based on similar network measurements.
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