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Abstract—With the increased developments in quantum com-
puting, the availability of systematic and automatic testing
approaches for quantum programs is becoming increasingly es-
sential. To this end, we present the quantum software testing tool
QuCAT for combinatorial testing of quantum programs. QuCAT
provides two functionalities of use. With the first functionality,
the tool generates a test suite of a given strength (e.g., pair-
wise). With the second functionality, it generates test suites with
increasing strength until a failure is triggered or a maximum
strength is reached. QuCAT uses two test oracles to check the
correctness of test outputs. We assess the cost and effectiveness
of QuCAT with 3 faulty versions of 5 quantum programs. Results
show that combinatorial test suites with a low strength can find
faults with limited cost, while a higher strength performs better
to trigger some difficult faults with relatively higher cost.
Repository: https://github.com/Simula-COMPLEX/qucat-tool
Video: https://youtu.be/UsqgOudKLio

Index Terms—quantum programs, software testing, combina-
torial testing

I. INTRODUCTION

Quantum Software Engineering (QSE) [1], [2] is rapidly
growing these years. QSE enables building software engi-
neering solutions to solve complex problems with quantum
software that can be executed on quantum computers. Testing
quantum software is one area within QSE which presents some
challenges due to the unique features of quantum computing,
such as its probabilistic nature, destructive measurement, and
no-cloning theorem of quantum states. Thus, it is essential to
build automated solutions for testing quantum programs [1],
[3], [4]. To this end, some approaches have been proposed,
employing different techniques such as property-based test-
ing [5], search-based testing [6], mutation testing [7], [8], fuzz
testing [9], metamorphic testing [10], in addition to input and
output coverage criteria for quantum programs [11]. These
approaches are also supported by tools [12]–[15].

However, previous approaches overlook the types of inputs
that can trigger a fault. Indeed, in a quantum program, a fault is
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often due to a faulty gate of the quantum circuit corresponding
to the quantum program. Quantum gates combine the values
of one or more qubits; therefore, a specific combination of
the values for some input qubits should be able to trigger
the fault. For classic software, combinatorial testing is a well-
known technique which is used to generate test suites to detect
faults caused by specific combinations of input parameters
(e.g., pair-wise or 3-wise testing) [16]. It has also been
successfully applied in many other domains, such as deep
neural networks [17] and autonomous driving systems [18].

Motivated by the success of combinatorial testing in differ-
ent domains, in [19] we proposed an approach for doing com-
binatorial testing of quantum programs. However, the approach
was not implemented in a tool usable by practitioners. To this
aim, in this paper, we present how we engineered the approach
in the tool QuCAT. The tool can generate combinatorial test
suites for quantum programs, execute them, and assess the
test results automatically. Such quantum programs are written
in the Qiskit framework [20]. In Qiskit, a quantum circuit is
a computational routine containing quantum wires, quantum
gates, initialization, measurements, etc.
QuCAT provides two functionalities of use. With function-

ality func1, QuCAT can be used to generate a test suite with
a specified strength, while with functionality func2, QuCAT
can be used to generate test suites with incremental strengths
until a fault is detected or the maximum strength is reached.
QuCAT employs two test oracles to assess test results. We
assess the cost and effectiveness of QuCAT by experimenting
it on 3 faulty versions of 5 different quantum programs.
Paper structure. Sect. II briefly introduces qubits and quantum
circuits and provides the definitions of key concepts. We
describe the overview and methodology of QuCAT in Sect. III.
Validation of the approach is presented in Sect. IV. Finally,
we conclude our work and discuss the future work in Sect. V.

II. PRELIMINARIES

A. Qubits and Quantum Circuits

Classic computers work on classic bits, which can be either
0 or 1 assigned to each bit. Differently, a quantum computer
works on qubits, which can be both 0 and 1 simultaneously,
i.e., they are in superposition until being observed.
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q0 |0⟩ H •

q1 |0⟩

Fig. 1. Entanglement Quantum Circuit

For a qubit, we define its quantum state |ψ⟩ as follows:

|ψ⟩ = α |0⟩+ β |1⟩

where α and β are two complex numbers, each defining the
amplitude of the qubit in terms of magnitude and phase. |α|2
and |β|2 show the probability for a qubit to be in state |0⟩ or
|1⟩, and it holds that |α|2+ |β|2 = 1. An example of quantum
circuits is shown in Fig. 1, which is an Entanglement program.
First, we can initialize the two qubits to a state. For instance,
in this example, we initialize both of them as the |0⟩ state.
Then, we apply a Hadamard gate on the first qubit (i.e., q0) to
turn it into superposition and a CX gate on both qubits, i.e.,
q0 as the control qubit and q1 as the target qubit. If q0 is in
state |1⟩, q1 will be flipped. Otherwise, q1 won’t be flipped.
Finally, we measure the two qubits to obtain the outputs. For
this circuit, there will be a 50% probability of obtaining output
00 and a 50% probability of obtaining 11.

B. Definitions

This section provides definitions of key concepts of quantum
programs and combinatorial testing.

Definition 1 (Inputs, outputs, and quantum program). Let Q =
{q1, q2, . . . , qn} be the set of qubits of a quantum program
QP. A subset I ⊆ Q are the input qubits, while a subset
O ⊆ Q are the output qubits. DI = B|I| and DO = B|O|

are the input and output values. A quantum program can be
described as a function QP : DI → 2DO .

According to the definition, a quantum program can re-
turn different outputs with the same input value due to its
probabilistic nature. If the expected behaviour of the quantum
program is known, we can define it as a program specification.

Definition 2 (Program specification). Given a quantum pro-
gram QP, PS is identified as the program specification which
is the expected behaviour of QP. Given an input i ∈ DI and
a possible output value h, PS states the expected probability
of occurrence of output h for input i (i.e., PS(i, h) = ph).

Due to its non-deterministic nature, for a given input, a
quantum program must be executed multiple times to get the
distribution of output values.

Definition 3 (Test inputs and test results). A test input is
defined by the pair ⟨i, n⟩, where i is the assignment to input
qubits I (i.e., i ∈ DI ), and n represents the number of times
that QP needs to be executed with i. Test results are defined
as res = [QP(i), . . . ,QP(i)] = [o1, . . . , on], where oj is the
output returned by QP at the jth execution.

We define two failure types to assess the test results.

Fig. 2. Architecture of the QuCAT Tool

• Unexpected Output Failure (uof ): for a given input i,
it checks whether there exists one output oj that is
unexpected (i.e., PS(i, oj) = 0).

• Wrong Output Distribution Failure (wodf ): when there
is no unexpected output, it checks whether there is a
significant difference between the observed distribution
of outputs and that defined in the program specification
PS. We use goodness of fit test with Pearson’s chi-square
test [21] to assess the difference.

In a quantum program, faults may be caused by the incorrect
use of gates, and they could be exposed by some specific
values combination of some of the inputs. Combinatorial
testing can be applied to find such combinations for testing
quantum programs. Value schema [16] specifies a combination
of input values that has to be covered in a test.

Definition 4 (Value schema). For a quantum program with
input qubits (q0, q2, . . . , q|I|−1), a k-value schema (k > 0 and
k ≤ |I|) is (. . . , vi1 , . . . , vik , . . .), where k qubits are assigned
with fixed values while the others are not fixed.

Here, we identify with ’-’ the values of qubits, which are
not fixed. For example, given a quantum program with 4 input
qubits in which the second and third qubits are fixed with ’0’
and ’1’, the 2-value schema is (−, 0, 1,−).

Definition 5 (Combinatorial test suite). A combinatorial test
suite Tk of strength k contains, for each k-value schema, at
least a test covering the schema.

III. QUCAT TOOL DESCRIPTION AND METHODOLOGY

We present how we have engineered the approach proposed
in [19] in the tool QuCAT, which automatically generates
combinatorial test suites, executes them, and analyzes test
results. The overview of QuCAT is shown in Fig. 2.

A. Functionalities

QuCAT can be used in two ways:



• func1: A user specifies a fixed strength k and the tool
generates and assesses a combinatorial test suite Tk.

• func2: Test suites are kept on being generated with an
incremental strength, beginning from k = 2, until a fault
is found or the maximum strength K is reached.

B. Input and Configuration
To use QuCAT, a user should provide input information

and the tool configuration. The input information includes the
quantum program under test (SUT), the program specification
(PS), the list of input and output qubits, and the total number
of qubits. The configuration contains parameters of QuCAT:

• the functionality to use QuCAT, i.e., func1 or func2
as described in Sect. II-B.

• a strength value. If the user selects func1, the strength is
the value k for the combinatorial test suite Tk to generate
(e.g., k = 2 for pairwise testing, k = 3 for 3-wise testing).
In this case, the default value is k = 2. If instead, the user
selects functionality func2, the value is the maximum
strength K until which the tool must generate test suites.

• QuCAT employs Pearson’s chi-square test to assess failure
type wodf (see Sect. II-B). The user can specify the
significance level for the test. The default value is 0.01.

• Moreover, the user can provide a file of seeding rows,
which contains test cases required to appear in all gener-
ated test suites by combinatorial testing.

Then, QuCAT generates tests following the configuration file.
In summary, as shown in Fig. 2, when using QuCAT, the

user should (i) select one of the two functionalities, (ii) provide
input information of the quantum program, (iii) configure
parameters for combinatorial testing and test assessment, and
(iv) provide a file of seeding rows if needed.

C. Process of Test Generation, Execution, and Assessment
We describe the steps performed by QuCAT to generate

test suites with combinatorial testing, execute them over the
quantum program, get test results, and perform test assessment.

• QuCAT employs PICT [22] to generate combinatorial test
suites of a given strength (see Def. 5). Dependent on the
selected functionality, QuCAT works as follows:
– If the user chooses func1, the tool generates a test

suite Tk for the strength k defined by the user.
– If the user chooses func2, the tool keeps on generat-

ing combinatorial test suites with incremental strengths
until a test triggers a failure or the maximum strength
value K is reached. Note that QuCAT will assess
results every time when a new test suite is generated.

• For a test input ⟨i, n⟩, the number of executions n is
defined according to the program specification. In detail,
the number of repetitions is computed as the number of
possible outputs for input i multiplied by 100 (i.e., n =
|{h ∈ DO | PS(i, h) ̸= 0}| × 100).

• QuCAT automatically checks each test case (i.e., test
input) according to two failure types uof and wodf , as
defined in Def. 3, by comparing test results with the
program specification.

– QuCAT first checks failure type uof . For input i, after
n executions, if there is any unexpected output value
that does not appear in the program specification, the
test case fails for uof .

– If there is no unexpected output, QuCAT checks wodf .
After n executions, if the output distribution is signifi-
cantly different from that of the program specification
(checked with the statistical test introduced in Def. 3),
the test fails for wodf .

• After the generation of all the test suites, their execution,
and their assessment, QuCAT provides the following files
as output: (i) a file containing execution results of all
test cases; (ii) a file of assessments of each test case;
(iii) unit tests written in the unittest framework for
the generated test suites that the user can use to rerun the
test cases when debugging the quantum program.

IV. TOOL VALIDATION

We evaluate QuCAT with five quantum programs. For each
program, we created three faulty versions (i.e., F1, F2 and
F3). F3 is the most difficult one, followed by F2 and F1 based
on the number of input values that can trigger the fault. The
selected programs are: 1) BV: the Bernstein-Vazirani cryp-
tography algorithm; 2) QR: quantum random access memory
implementation; 3) IQ: inverse quantum Fourier transform;
4) AS: performing v1 = v1 + v2 ∗ v2, where v1 and v2
are two quantum integers; and 5) CE: a conditional addition
on a quantum integer. The characteristics of these quantum
programs vary in terms of the number of qubits and gates and
circuit depth. The gate numbers BV, QR, IQ, AS, CE are 21, 15,
60, 25, and 25, and the depths are 3, 12, 56, 22, and 26.

Table I shows the results of testing the faulty versions of the
five quantum programs with functionality func1 using values
2, 3, and 4 for strength k. |I| is the number of input qubits
and |Tk| is the test suite size. Column failure tells whether a
failure is triggered by the test suite (i.e., a fault is detected).
Higher numbers of qubits and strength k (e.g., k = 4) result
in a higher test suite size, i.e., the higher cost in terms of test
suite size (e.g., CE and IQ). One observation is that even with
the lower strength (i.e., pairwise testing), QuCAT can still find
the easiest faults (i.e., F1) in all the programs. All the faults,
including the most difficult one (i.e., F3), are triggered by the
test suites generated with strength 4.

Table II reports the results of running QuCAT with function-
ality func2 using 4 as maximum strength K. kend refers to
the strength of the generated test suite containing the test case
which triggered the fault; |T c| reports the number of executed
tests, i.e., all the tests in the generated test suites T2, . . . ,
Tkend−1 and the tests in Tkend

that have been executed before
triggering the fault (including the failing test). F1 faults for
all the programs and F2 faults of three programs are triggered
by test suites with strength 2. Test suites with strength 3 have
been necessary to detect faults of two programs with F2 faults
and two programs with F3 faults. For the rest of F3 faulty
programs, QuCAT had to generate till the test suites with the
maximum strength 4, which were able to detect these faults.



TABLE I
RESULTS FOR FUNCTIONALITY FUNC1

k = 2 k = 3 k = 4

QP |I| F1 F2 F3 F1 F2 F3 F1 F2 F3

failure |T2| failure |T2| failure |T2| failure |T3| failure |T3| failure |T3| failure |T4| failure |T4| failure |T4|

AS 6 ✓ 6 ✓ 6 ✗ 6 ✓ 14 ✓ 13 ✗ 13 ✓ 26 ✓ 27 ✓ 24
BV 7 ✓ 7 ✗ 6 ✗ 7 ✓ 15 ✓ 14 ✓ 14 ✓ 31 ✓ 30 ✓ 32
CE 11 ✓ 8 ✗ 9 ✗ 8 ✓ 19 ✓ 19 ✓ 19 ✓ 47 ✓ 43 ✓ 46
IQ 10 ✓ 8 ✓ 9 ✗ 8 ✓ 18 ✓ 18 ✓ 18 ✓ 43 ✓ 44 ✓ 44
QR 9 ✓ 8 ✓ 8 ✗ 8 ✓ 14 ✓ 17 ✗ 16 ✓ 38 ✓ 38 ✓ 38

TABLE II
RESULTS FOR FUNCTIONALITY FUNC2

F1 F2 F3

QP |T c| kend |T c| kend |T c| kend

AS 5 2 8 3 32 4
BV 4 2 6 2 39 4
CE 2 2 6 2 13 3
IQ 1 2 15 3 25 3
QR 2 2 6 2 26 4

V. CONCLUSIONS AND FUTURE WORK

We presented QuCAT– an automated tool for combinatorial
testing of quantum programs. QuCAT uses two test oracles
to assess test results and two functionalities to generate tests.
We also presented the architecture of the tool. Finally, we
validated the tool by testing three faulty versions of five
quantum programs to assess the cost and effectiveness of
QuCAT followed by discussing the results. In the future, we
plan to extend the tool further to provide features such as
pinpointing the location where the program failed (i.e., fault
localisation) and porting the tool for real quantum computers.
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