
DRAFT
ADIOS4DOLFINx: A framework for checkpointing in1

FEniCS2

Jørgen Schartum Dokken 1¶
3

1 Simula Research Laboratory ¶ Corresponding author4

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary5

We introduce a checkpointing framework for the latest version of the FEniCS project, known as6

DOLFINx. The framework leverages the data-centric approach of DOLFINx along with a state7

of the art adaptable Input/Output system called ADIOS2. Several variations of checkpointing8

are supported, including N-to-M checkpointing of function data, storage of mesh partitioning9

information for N-to-N checkpointing and snapshot checkpointing for RAM reduction during10

simulation. All MPI operations are using MPI-3 Neighborhood collectives.11

Statement of need12

The ability to start, stop and resume simulations is becoming increasingly important with the13

growing use of supercomputers for solving scientific and engineering problems. A rising number14

of large scale problems are deployed on high performance, memory distributed computing15

systems and users tend to run more demanding simulations. These are often non-linear and16

time-dependent, which typically amounts to thousands of CPU hours. As it might uncover17

bugs and unphysical solutions, the ability to run parts of the simulation, inspect the result18

and then resume simulation becomes a key factor to enable efficient development. If this is19

discovered early on, the simulation can be terminated saving the developer time, money and20

energy-usage.21

The proposed framework enables users of the FEniCS project (Baratta et al., 2023) to store22

solutions during simulation, and read them in at their convenience to resume simulations at a23

later stage. Several checkpointing methods are implemented, including N-to-M checkpointing,24

which means saving data from a program executed with N processes, and loading it back in on25

M processes.26

Functionality for N-to-M checkpointing was implemented for the old version of DOLFIN by27

(Habera et al., 2018). However, this functionality is not present in the newest version of28

the FEniCS Project (Baratta et al., 2023). The storage principles in the ADIOS4DOLFINx29

are based on the ideas present in this implementation. However, the implementation for30

non-Lagrangian finite element spaces vastly differs, due to the usage of dof-permutations31

(Scroggs et al., 2022). Additionally, all global MPI-calls in the old implementation have been32

reimplemented with scalable MPI-communication using the MPI-3 Neighborhood Collectives33

(MPI-Forum, 2012).34

The framework introduces several new methods for storing partitioning information for N-to-N35

checkpointing with arbitrary ghosting, as well as very lightweight snapshot checkpoints. A36

similar framework for N-to-M checkpointing was implemented by (Ham et al., 2024) for the37

finite element framework Firedrake (Rathgeber et al., 2016). This frameworks differs from38

the one used in ADIOS4DOLFINx in several ways due to the different internal structures of39

DOLFINx and Firedrake.40

Dokken. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 0(0), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0001-6489-8858
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DRAFT
Functionality41

The software is written as a Python-extension to DOLFINx, which can be installed using the42

Python Package installer pip directly from the Github repository or using the ADIOS4DOLFINx43

from the Python Package Index. The following features are supported:44

• Snapshot checkpointing45

• N-to-M checkpointing with mesh storage46

• N-to-M checkpointing without mesh storage47

• N-to-N checkpointing storing partitioning information48

A snapshot checkpoint is a checkpoint that is only valid during the run of a simulation. It is49

lightweight (only stores the local portion of the global dof array to file), and is stored using the50

Local Array feature in ADIOS2 (Godoy et al., 2020) to store data local to the MPI process.51

This feature is intended for use-cases where many solutions have to be aggregated to the end52

of a simulation to some post-processing step, or as a fall-back mechanism when restarting a53

diverging iterative solver.54

A N-to-M checkpoint is a checkpoint that can be written with N processes and read back in55

with M processes. Two versions of this checkpoint is supported; One where storage of the56

mesh is required and without mesh storage. The reasoning for such a split is that when a57

mesh is read into DOLFINx and passed to an appropriate partitioner, the ordering mesh nodes58

(coordinates) and connectivity (cells) is changed. Writing these back into global arrays requires59

MPI communication to ensure contiguous writing of data.60

The N-to-M checkpoint with mesh storage exclusively writes contiguous chunks of data owned61

by the current process to an ADIOS2 Global Array that can be read in with a different number62

of processes at a later stage. This operation requires no MPI-communication.63

In many cases, the input mesh might stem from an external mesh generator and is stored64

together with mesh entity markers in an external file, for instance an XDMF-file. To avoid65

duplication of this mesh data, a stand-alone file that can be associated with the XDMF file for66

a later restart can be created. This method requires some MPI neighborhood collective calls67

to move data from the process that currently owns it to the relevant process for that stores it68

as a Global Array in contiguous chunks. Both N-to-M checkpoint routines uses the same API69

to read in checkpoints at a later instance.70

In certain scenarios, mesh partitioning might be time-consuming, as a developer is running the71

same problem over and over again with the same number of processes. As DOLFINx supports72

custom partitioning (Baratta et al., 2023), we use this feature to read in partition data from a73

previous run. As opposed to the checkpoints in the old version of DOLFIN, these checkpoints74

handle any ghosting, that being a custom ghosting provided by the user, or the shared-facet75

mode provided by DOLFINx.76

Examples77

A large variety of examples covering all the functions in adios4dolfinx is available at https:78

//jorgensd.github.io/adios4dolfinx.79

Acknowledgements80

We acknowledge the valuable feedback on the documentation and manuscript by Thomas M.81

Surowiec and Halvor Herlyng. Additionally, we acknowledge the scientific discussion regarding82

feature development and code contributions by Henrik N. Finsberg and Francesco Ballarin.83

Dokken. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 0(0), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

2

https://pypi.org/project/adios4dolfinx/
https://jorgensd.github.io/adios4dolfinx
https://jorgensd.github.io/adios4dolfinx
https://jorgensd.github.io/adios4dolfinx
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DRAFT
References84

Baratta, I. A., Dean, J. P., Dokken, J. S., Habera, M., Hale, J., Richardson, C. N., Rognes,85

M. E., Scroggs, M. W., Sime, N., & Wells, G. N. (2023). DOLFINx: The next generation86

FEniCS problem solving environment. https://doi.org/10.5281/zenodo.1044766687

Godoy, W. F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Davis, P., Choi, J.,88

Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress, J., Kurc, T., Liu, Q., Logan, J.,89

Mehta, K., Ostrouchov, G., Parashar, M., … Klasky, S. (2020). ADIOS 2: The adaptable90

input output system. A framework for high-performance data management. SoftwareX, 12,91

100561. https://doi.org/10.1016/j.softx.2020.10056192

Habera, M., Zilian, A., Hale, J., Richardson, C. N., Blechta, J., & Dave, D. (2018). XDMF93

and ParaView: checkpointing format. https://hdl.handle.net/10993/3584894

Ham, D. A., Hapla, V., Knepley, M. G., Mitchell, L., & Sagiyama, K. (2024). Efficient n-to-m95

checkpointing algorithm for finite element simulations. https://doi.org/10.48550/arXiv.96

2401.0586897

MPI-Forum. (2012). MPI: A Message-Passing Interface Standard. Version 3.0. https:98

//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf99

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T. T., Bercea,100

G.-T., Markall, G. R., & Kelly, P. H. J. (2016). Firedrake: Automating the finite element101

method by composing abstractions. ACM Trans. Math. Softw., 43(3). https://doi.org/10.102

1145/2998441103

Scroggs, M. W., Dokken, J. S., Richardson, C. N., & Wells, G. N. (2022). Construction of104

arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell105

meshes. ACM Trans. Math. Softw., 48(2). https://doi.org/10.1145/3524456106

Dokken. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 0(0), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

3

https://doi.org/10.5281/zenodo.10447666
https://doi.org/10.1016/j.softx.2020.100561
https://hdl.handle.net/10993/35848
https://doi.org/10.48550/arXiv.2401.05868
https://doi.org/10.48550/arXiv.2401.05868
https://doi.org/10.48550/arXiv.2401.05868
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1145/3524456
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Functionality
	Examples
	Acknowledgements
	References

