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Evaluating Search-Based Software
Microbenchmark Prioritization

Christoph Laaber, Tao Yue, and Shaukat Ali

Abstract—Ensuring that software performance does not degrade after a code change is paramount. A solution is to regularly execute
software microbenchmarks, a performance testing technique similar to (functional) unit tests, which, however, often becomes infeasible
due to extensive runtimes. To address that challenge, research has investigated regression testing techniques, such as test case
prioritization (TCP), which reorder the execution within a microbenchmark suite to detect larger performance changes sooner. Such
techniques are either designed for unit tests and perform sub-par on microbenchmarks or require complex performance models,
drastically reducing their potential application. In this paper, we empirically evaluate single- and multi-objective search-based
microbenchmark prioritization techniques to understand whether they are more effective and efficient than greedy, coverage-based
techniques. For this, we devise three search objectives, i.e., coverage to maximize, coverage overlap to minimize, and historical
performance change detection to maximize. We find that search algorithms (SAs) are only competitive with but do not outperform the best
greedy, coverage-based baselines. However, a simple greedy technique utilizing solely the performance change history (without coverage
information) is equally or more effective than the best coverage-based techniques while being considerably more efficient, with a runtime
overhead of less than 1%. These results show that simple, non-coverage-based techniques are a better fit for microbenchmarks than
complex coverage-based techniques.

Index Terms—software microbenchmarking, performance testing, JMH, search-based software engineering, multi-objective optimization,
regression testing, test case prioritization

✦

1 INTRODUCTION

Regression testing comprises effective techniques for reveal-
ing faults in continuously evolving software systems [35],
e.g., as part of continuous integration (CI) [25, 26, 33, 62].
To detect performance problems, particularly, in software
libraries and frameworks, microbenchmarks are the predom-
inantly used performance testing technique, similar to unit
tests for functional testing [76]. However, their extensive
runtimes inhibit their adoption in CI [40, 51, 54, 76]. In our
previous work [54], we found that 15% of the Java Microbench-
mark Harness (JMH) suites on GitHub run longer than three
hours and 3% longer than 12 hours. Therefore, it is inevitable
to employ performance regression testing techniques, such
as software microbenchmark prioritization (SMBP) (test
case prioritization (TCP) on software microbenchmarks), to
capture important performance changes as early as possible.

Catching performance problems early is crucial for indus-
try. Meta mentioned that performance regression testing
is worth investigating [2], and MongoDB has created a
sophisticated solution to run benchmarks as part of CI [13].
Though academic research on microbenchmarks has recently
gained attention [15, 42, 51, 59, 76], performance regression
testing on microbenchmark-level is still scarce, mostly fo-
cusing on regression test selection (RTS) for performance
tests [3, 4, 11, 17]. Mostafa et al. [67] are the first to
apply SMBP, introducing a technique based on a complex
performance-impact model, which is, however, only suited

• C. Laaber and S. Ali are with the Simula Research Laboratory, Oslo,
Norway
E-mail: {laaber, shaukat}@simula.no

• T. Yue is with the Beihang University, Beijing, China
E-mail: yuetao@buaa.edu.cn

for collection-intensive software and non-trivial to apply.
In our previous work [56], we perform a large-scale study
of coverage-based, greedy heuristics for SMBP, inspired by
TCP [24, 64, 73], and found that the studied techniques are
not nearly as effective on microbenchmarks as on unit tests
and impose a relatively large runtime overhead of 17%.

A promising approach is search-based techniques, which
are highly effective for various software engineering opti-
mization problems [1, 5, 22, 27, 29, 41, 60, 65, 84]. Motivated
by these successes, in this paper, we define search-based
software microbenchmark prioritization (SBSMBP) problems
and solve them with single-objective search algorithms (SAs)
and multi-objective evolutionary algorithms (MOEAs), with
(up to) three objectives: (1) coverage (C), (2) coverage overlap
among benchmarks (CO), and (3) historical performance
change size (CH). Moreover, we define new Greedy SMBP
techniques based on each of the three objectives as well as
their combination (C-CO-CH).

We evaluate the SBSMBP (two single-objective SAs and
six MOEAs) and Greedy SMBP techniques on 10 JMH suites
having 1,829 distinct microbenchmarks with 6,460 distinct
parameterizations across 161 versions, regarding (1) effective-
ness measured by the average percentage of fault-detection
on performance (APFD-P); and (2) efficiency measured as
the runtime overhead. The study compares the SBSMBP
and Greedy SMBP techniques to two greedy, coverage-based
baselines, i.e., Total and Additional [56, 67].

The results show that the best SBSMBP technique, i.e.,
the single-objective Generational Genetic Algorithm (GA)
combining the three objectives with weighted-sum (GA
C-CO-CH), performs competitively with the best greedy
baseline, i.e., Total. However, it does not outperform Total
regarding effectiveness, with both having an overall median
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APFD-P of 0.60, while only adding a minor additional
overhead of 1% compared to below 1% for Total on top
of the coverage extraction overhead. The best MOEA is
Multi-Objective Cellular Genetic Algorithm (MOCell), which
exhibits a lower median APFD-P of 0.58 than GA C-CO-CH
and Total. Surprisingly, the Greedy technique that relies only
on the historical performance change size (i.e., Greedy CH)
has a higher median APFD-P of 0.65 than Total. Statistically,
however, the best Greedy and SBSMBP techniques are only
as effective as Total. Per project, Greedy CH is more effective
than Total for one project and never worse, while having
a significantly lower overhead of 1% consistently across
the studied projects, whereas the coverage-based techniques
have overheads ranging between 8% and 105% across the
projects and 17% on average.

These results reveal that the Greedy technique relying
solely on the performance change history (CH) performs
the best and is arguably the simplest to implement. Hence,
we recommend practitioners to employ the Greedy CH
technique to achieve consistently earlier performance change
detection, e.g., as part of CI, and researchers to investigate
non-coverage-based SMBP techniques in the future.

To summarize, the main contributions of this paper are:
• the first paper to describe SMBP with search (SBSMBP);
• three search objectives (two of which are novel) to

employ in SMBP algorithms;
• an experimental study showing the effectiveness and

efficiency of the new Greedy SMBP and SBSMBP tech-
niques compared to greedy, coverage-based baselines;

• an experimental study on the impact of change-
awareness on the SMBP techniques; and

• an experimental study on the effectiveness and efficiency
of two single-objective SAs and six MOEAs.

We provide all data and scripts in our replication package [58]
and the SMBPs implementations in bencher v0.4.0 [52].

2 SOFTWARE MICROBENCHMARKING WITH JMH
Software microbenchmarking is a performance testing tech-
nique that can be seen as the equivalent of unit testing for
functional testing. A software microbenchmark, microbench-
mark or benchmark for short and used thereafter, measures a
performance metric, usually runtime or throughput, of small
code units, such as statements and methods.

The Java Microbenchmark Harness (JMH) is the de facto
standard for defining and executing Java microbenchmarks.
They are defined in source code with annotations, similar to
JUnit. Listing 1 shows a simplified example. A benchmark is
a method annotated with @Benchmark (lines 8–15), which
optionally takes parameters as input, i.e., an Input object
containing an instance variable annotated with @Param (lines
9 and 17–21), called the parameterization of a benchmark.

As measuring performance is non-deterministic and
multiple factors can influence the measurement, one has
to repeatedly execute each benchmark to get reliable results.
JMH executes each combination of a benchmark method and
its parameterization according to a specified configuration,
set through annotations on class or method level (lines 1–
5) or through the command line interface (CLI). Figure 1
visualizes the repeated execution of a benchmark suite. Each

1 @Fork(3)
2 @Warmup(iterations = 10, time = 1, timeUnit =

TimeUnit.SECONDS)
3 @Measurement(iterations = 20, time = 1, timeUnit =

TimeUnit.SECONDS)
4 @BenchmarkMode(Mode.SampleTime)
5 @OutputTimeUnit(TimeUnit.NANOSECONDS)
6 public class ComputationSchedulerPerf {
7

8 @Benchmark
9 public void observeOn(Input input) {

10 LatchedObserver<Integer> o = input.
newLatchedObserver();

11 input.observable
12 .observeOn(Schedulers.computation())
13 .subscribe(o);
14 o.latch.await();
15 }
16

17 @State(Scope.Thread)
18 public static class Input extends

InputWithIncrementingInteger {
19 @Param({ "1", "1000" })
20 public int size;
21 }
22 }

Listing 1: Modified JMH example from RxJava
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Figure 1: JMH Execution

(parameterized) benchmark is invoked as often as possible
for a defined time period (e.g., 1 s, configured on lines 2 and
3), called an iteration, and the measured performance metrics
are reported. To get reliable results, JMH first runs a set of
warmup iterations (line 2 and “wi”) to get the system into
a steady state, for which the measurements are discarded.
After the warmup, JMH runs a set of measurement iterations
(line 3 and “mi”). To deal with non-determinism of the Java
Virtual Machine (JVM), JMH repeats the sets of warmup and
measurement iterations for a number of forks (line 1 and
“f”), each in a new JVM instance. The result of a benchmark
is then the distribution of all measurement iterations (“mi”)
of all forks (“f”). A microbenchmark suite usually contains
many benchmarks, which JMH executes sequentially.

3 SEARCH-BASED PRIORITIZATION

This section defines SBSMBP, which draws inspiration from
search-based TCP [22, 27, 41, 60, 65] and greedy SMBP [56].

Figure 2 depicts an overview of SBSMBP. Upon a new
version, the source code is retrieved from a repository. First,
the coverage information is extracted for every benchmark.
This is different from TCP where coverage information is
retrieved during the test execution, and the TCP technique
uses the coverage of the old version for ranking the test
execution of the new version. This is due to unit tests
being usually only executed once. Because benchmarks are
executed repeatedly for rigorous measurements, SBSMBP can
leverage a single execution before the measurement to extract
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Figure 2: Search-Based Software Microbenchmark Prioritization (adapted and extended from our previous work [56])

coverage information. Based on the coverage information,
historical performance changes, and source code changes
(in case the technique implements change-awareness), a pre-
processing stage prepares the search objectives. Then, SB-
SMBP employs a SA to compute a SMBP ranking (solution),
i.e., ordered benchmarks. SBSMBP can be parameterized
with either a single-, multi-, or many-objective SA.

The post-processing stage has two tasks. (1) Select one
solution from the SA results. In the single-objective SA
case there is only one solution. In the multi-objective SA
case, the SA returns the Pareto front containing multiple
solutions to select from [28]. (2) Adjust the benchmark
order based on the source code changes, when using a
change-aware technique (see Section 4.3.4). Finally, SBSMBP
executes the whole benchmark suite in the optimized order.
That is, it executes each benchmark repeatedly according
to performance engineering best practice [30], measures the
performance, and compares the measurements to the old
version for change detection. The changes are then reported
to the developers and stored for future versions, i.e., to
compute the historical performance changes objective.

4 EXPERIMENTAL STUDY

We conduct a laboratory experiment [77] to empirically study
the effectiveness and efficiency of SBSMBP.

4.1 Research Questions
We pose the following research questions (RQs):

RQ1 How effective is SBSMBP?

RQ1a Which SBSMBP technique is most effective?
RQ1b How do SBSMBP techniques compare to greedy

techniques?
RQ1c How does change-awareness impact effective-

ness?

RQ2 How efficient is SBSMBP?

RQ1 addresses the effectiveness of SBSMBP by first inves-
tigating different SAs and objectives in RQ1a to find the
most effective SBSMBP techniques, which we subsequently
compare with greedy SMBP techniques in RQ1b, including
the Total and Additional baselines. RQ1c assesses the impact

of two source code change-aware techniques compared to
the non-change-aware technique on SMBP effectiveness.
Finally, RQ2 studies the runtime overhead that the SBSMBP
techniques impose compared to the greedy techniques, which
shows the practical feasibility.

4.2 Dataset
To perform our experimental evaluation, we require execu-
tions of (1) dedicated benchmarks (but not unit tests utilized
as performance tests because their execution is not rigorous
concerning performance testing and benchmarking best prac-
tice [30]); (2) full benchmark suites, as TCP/SMBP is defined
by executing a full suite in a certain order [73, 74]; (3) multiple
versions of the same project to perform regression testing;
and (4) multiple projects to improve external validity. In
addition, a rigorous performance evaluation demands high
standards and compliance with the performance engineering
best practice to reduce internal validity threats [30, 66]. We
are only aware of one dataset that adheres to these criteria,
which is from our previous work and was specifically created
for SMBP [56, 57]. The dataset includes (1) JMH benchmark
suite executions, (2) dynamic coverage information on
method level for these benchmarks, and (3) coverage-based,
greedy baselines for TCP on benchmarks. Though there
are a few papers on microbenchmarking and performance
regression testing [10, 11, 17, 67, 78], no other dataset fits the
above-mentioned criteria. Hence, we only select the dataset
of our previous work [56, 57] for our experiment.

4.2.1 Study Objects
The dataset has 10 open-source software (OSS) Java projects
hosted on GitHub, which contain JMH suites. The projects
have 59,164 benchmarks in total and 6,460 distinct bench-
marks across 161 versions. Distinct benchmarks are counted
once across all versions they occur in. In this paper, we
consider a benchmark to be the instantiation of a JMH
benchmark method (annotated with @Benchmark) with
concrete parameterization (using JMH parameters annotated
with @Param). Table 1 provides an overview of these projects.
Columns “Benchmarks” and “Runtime” show the arithmetic
mean and standard deviation across the versions of each
project, as different versions potentially have a different
number of benchmarks and, hence, varying runtimes.
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Table 1: Study objects from the dataset [56]

Project Versions Benchmarks Runtime [h]

mean stdev mean stdev

Byte Buddy 31 30.74 ± 8 0.26 ± 0.07
Eclipse Collections 10 2,371.40 ± 13 38.45 ± 0.12
JCTools 11 126.91 ± 52 1.15 ± 0.48
Jenetics 21 49.24 ± 6 0.42 ± 0.05
Log4j 2 15 309.53 ± 162 2.71 ± 1.40
Netty 10 746.50 ± 522 6.56 ± 4.63
Okio 11 181.64 ± 20 1.56 ± 0.17
RxJava 19 842.63 ± 228 7.81 ± 2.11
Xodus 11 67.00 ± 10 1.33 ± 0.10
Zipkin 22 55.18 ± 11 0.48 ± 0.10

4.2.2 Benchmark Executions and Performance Changes
We executed the benchmarks in a controlled environment
for a predefined number of repetitions, following the best
practice [30, 66]. The executions used a unified configuration
for all the benchmarks, i.e., 10 warmup iterations and 20
measurement iterations of 1 s each. In addition, we executed
the full suites for 3 trials (note that a trial is different from
a JMH fork, in that it is executed at different points in time
and not back-to-back), leading to a total runtime for all the
projects, versions, and repetitions of approximately 89 days.

Based on the executions, the performance changes are
computed between adjacent versions with a Monte-Carlo
technique to estimate the confidence intervals of the ratio
of the means. The technique is based on Kalibera and Jones
[45, 46] and employs bootstrap [16] with hierarchical random
resampling with replacement [71] on three levels, i.e., trial,
iteration, and benchmark invocation. It uses 10,000 bootstrap
iterations [39] and a confidence level of 99%. For this, we
used the pa tool [50].

4.2.3 Coverage Information and SMBP Baselines
The dataset provides the necessary coverage information for
the SBSMBP, Greedy SMBP, and greedy baseline techniques.
Dynamic coverage information, i.e., method coverage, is
extracted per benchmark and version with JaCoCo1, by
executing a benchmark once (with JMH’s single-shot mode)
and injecting the JaCoCo agent. Based on these coverages,
we [56] studied coverage-based, greedy SMBP techniques,
particularly Total and Additional — our baselines.

4.3 Independent Variables
Our experiment investigates four independent variables:
(1) the prioritization strategies, (2) the SAs employed in
the SBSMBP techniques, (3) the search objectives used for
solving the SBSMBP problem, and (4) the change-awareness
of the technique, which are described below in detail.

4.3.1 Prioritization Strategies
The four different prioritization strategies are: (1) the
coverage-based, greedy Total strategy, which ranks the bench-
marks in a suite, based on their total number of covered
units, from the one with the most to the one with the least;
(2) the coverage-based, greedy Additional strategy, which
ranks the benchmarks, based on the number of covered

1. https://www.jacoco.org/jacoco/

units not yet been considered for prioritization by previously
ranked benchmarks; (3) a Greedy strategy which ranks the
benchmarks according to either one or three of the search
objectives; and (4) the search-based strategy described in Sec-
tion 3. The strategies relying on code coverage use dynamic
method coverage, aligned with our previous work [56].

The Total and Additional strategies have their roots in unit
testing [73, 74], are the standard coverage-based techniques
with good effectiveness [34, 64], and were recently adapted
for benchmarks [56, 67]. Our experiment parameterizes Total
and Additional with a benchmark granularity for both the
prioritization strategy and the coverage extraction on the
parameter level, which we showed to be optimal [56]. The
Greedy strategy based on the search objectives uses either
coverage, coverage-overlap, performance change history, or
a combination of these. The parameterization of the search-
based strategy is mostly concerned with the employed
SA and search objectives, which are distinct independent
variables of our experiment that the next sections describe.

4.3.2 Search Algorithms (SAs)

We study eight SAs: (1) Steepest Ascent Hill Climbing (HC),
(2) Generational Genetic Algorithm (GA), (3) Indicator-
Based Evolutionary Algorithm (IBEA) [85] using the hy-
pervolume [7], (4) Multi-Objective Cellular Genetic Algo-
rithm (MOCell) [68], (5) Non-Dominated Sorting Genetic
Algorithm II (NSGAII) [19], (6) Non-Dominated Sorting
Genetic Algorithm III (NSGAIII) [18], (7) Pareto Archived
Evolution Strategy (PAES) [48], and (8) Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [47, 86]. The first two
are single-objective SAs, and the other six are MOEAs.
We select these to cover a wide range of algorithms that
have been used in previous search-based test optimization
research [22, 27, 60, 82] and are supported by jMetal [69].

Solution Encoding. A SBSMBP solution is encoded as
an integer permutation, where its length corresponds to
the number of benchmarks in a suite, and each element
corresponds to an integer identifier mapping to a unique
benchmark in that suite. We choose this encoding because
the SMBP problem has the constraint that each benchmark
exists exactly once in every solution. SBSMBP then executes
the benchmark suite in the order of the solution.

Algorithm Parameters. Our experiment uses the same
parameter settings across the SAs where possible to facilitate
a fair comparison, which are also in line with previous
research on multi-objective TCP [22, 27, 41, 61, 65]. The
algorithm parameters are set to:

• population size: 250;
• selection: binary tournament selection;
• crossover: PMX-Crossover with a probability pc = 0.9;
• mutation: SWAP-Mutation with a probability pm = 1/n,

where n is the number of benchmarks to prioritize;
• maximum number of generations: 100; and
• maximum evaluations: population size times the maxi-

mum number of generations, i.e., 25,000.
Note that not all SAs make use of all the parameters. Archive-
based MOEAs, i.e., IBEA, MOCell, and PAES, use an archive
size equal to the population size, which is in line with the
papers that introduced them [48, 68, 85] and the JMetal
defaults. MOCell is an exception, which requires a population

https://github.com/raphw/byte-buddy
https://github.com/eclipse/eclipse-collections
https://github.com/JCTools/JCTools
https://github.com/jenetics/jenetics
https://github.com/apache/logging-log4j2
https://github.com/netty/netty
https://github.com/square/okio
https://github.com/ReactiveX/RxJava
https://github.com/JetBrains/xodus
https://github.com/openzipkin/zipkin
https://www.jacoco.org/jacoco/
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size that is the power of 2 of an integer; hence, we set
MOCell’s population size to 256, which is the closest to
the population size of the other MOEAs, i.e., 250, and its
maximum number of generations to 25,600.

HC Neighborhood. We define the neighborhood of a
solution as the benchmark orderings that swap the first
benchmark with each of the other benchmarks. The neigh-
borhood size is n− 1, where n is the number of benchmarks
in the suite. This definition is in line with previous research
to keep HC scalable [60]. Other definitions would also be
valid, e.g., swapping any two benchmarks; however, this
would not scale, as for every iteration HC would need to
check O(n2) neighbors.

4.3.3 Search Objectives

The ideal search objective would be the actual performance
changes (faults) the benchmark suite detects upon a new
release, which, however, are only known after the execution
(see Section 2 for details). Hence, the search requires objec-
tives that are good proxies for performance changes, which
are available before the repeated suite execution.

Search-based TCP often relies on coverage metrics [22,
27, 60], such as average percentage element coverage
(APEC) [60] inspired by average percentage of fault-detection
(APFD) [22, 60]. APEC requires O(mn), where m and n are
the number of elements and tests, because it considers the
additionally covered elements (“additional coverage”) for
each test (not covered by an already ranked test) [27], as it is a
better proxy for fault detection than “total coverage” [63, 64].

Differently for SMBP, “total coverage” leads to more
effective rankings than “additional coverage” [56]. Hence,
we refrain from using APEC and employ objectives that
favor “total coverage”, i.e., average percentage total elements
coverage (APTEC) in Eq. (1) inspired by APFD-P [56, 67].

APTEC =

n∑
b=1

prev(b−1)+elements(b)
mtotal

n
(1)

where mtotal is the number of total covered elements; n is
the number of benchmarks; prev() is the cumulative element
coverage until the previous benchmark b − 1 in a SMBP
ranking; and elements(b) is the number of covered elements
by benchmark b. Note, mtotal potentially contains duplicate
elements; e.g., if two benchmarks cover the same element,
it is counted twice in mtotal. APTEC only requires O(n)
to compute instead of O(mn) for APEC, as we can use
memoization in prev: prev(b) = prev(b− 1) + elements(b),
where prev(0) = 0. What constitutes an element depends on
the specific search objective.

We define three objectives based on APTEC:
Coverage (C, maximize): This objective is akin to code cov-

erage objectives in search-based TCP [60], but with
APTEC, aiming to cover more code elements that are
more likely to expose performance changes. While
Laaber et al. [56] showed that SMBP that solely relies
on code coverage is only slightly more effective than a
random strategy and code coverage has a low correlation
with the performance change size, coverage is still one
factor that can be used as a proxy for performance
changes. Coverage maximizes the total number of code

elements covered by a benchmark b as returned by
elements(b).

Coverage Overlap (CO, minimize): Due to Coverage
greedily selecting benchmarks based on static coverage
information (i.e., already covered code elements remain,
which is akin to Total), the SBSMBP techniques are
prone to rank benchmarks covering the same code
elements similarly. To achieve coverage diversity
among benchmarks, Coverage Overlap minimizes
the cumulative coverage overlap among them. For
Coverage Overlap, elements(b) returns the average
overlap between a benchmark b and all other
benchmarks in the suite.

Historical Performance Change (CH, maximize): This ob-
jective maximizes the historically-detected performance
change size of early-ranked benchmarks. The idea is
that benchmarks that have previously detected large
performance changes are more likely to detect perfor-
mance changes in the future and, hence, should be
ranked earlier. This is similar to search-based TCP,
which introduces “Fault History Coverage” as an ob-
jective [27]. For this objective, elements(b) returns the
average performance change size of benchmark b across
all previous versions.

Note, we do not employ delta coverage and benchmark
execution cost as search objectives, as our preliminary
experiments showed that delta coverage does not improve
effectiveness and benchmark execution cost is approximately
the same for all benchmarks when using a unified execution
configuration (number of repetitions).

Our study investigates different combinations of SAs and
objectives across all RQs. Since each objective can be consid-
ered a proxy metric for finding effective SMBP rankings, it is
necessary to select one or more objectives to form different
search problems and compare their effectiveness. Particularly,
with single-objective SAs, we solve four problems: (1) three
one-objective problems, each formed with each of the three
objectives; and (2) one three-objective problem, formed by
aggregating the three objectives oi ∈ O into a single one o′

with the classical weighted-sum approach, defined in Eq. (2),
using equal weights wi =

1
3 , similar to Yoo and Harman [82].

o′ =

|O|∑
i=1

(wi ∗ oi),
|O|∑
i=1

wi = 1 (2)

We study the effectiveness and efficiency of the single-
objective SAs solving the above four problems and the
MOEAs solving the three-objective problem (with individual
objectives). We refer to the SBSMBP techniques by its SA and
employed objectives, e.g., GA C-CO-CH.

4.3.4 Change-Awareness
This independent variable studies whether “change-
awareness” of the SMBP technique improves its effectiveness.
That is, does the technique perform better if it considers the
code that has changed since the last version in a dedicated
way? This is inspired by Mostafa et al. [67], who studied
change-aware approaches for SMBP, and research on multi-
objective search-based TCP considering “delta coverage”
as objective [27]. We consider three approaches: (1) Non-
Change-Aware (nca), which uses the full coverage informa-
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tion of the current version to encode the objectives C and
CO; (2) Change-Aware Coverage (cac), which relies only on
coverage information that has changed since the last version,
i.e., retains only changed methods, for the objectives C and
CO; (3) Change-Aware Ranking (car), which uses the full
coverage information (as for nca) to rank benchmarks and
afterwards groups benchmarks covering a changed method
before benchmarks not covering any changed method, while
retaining the initial order.

4.4 Dependent Variables

The dependent variables of our study involve a set of effec-
tiveness and efficiency metrics: one effectiveness variable,
i.e., APFD-P, to answer RQ1 and its sub-questions; and two
efficiency variables, i.e., the prioritization and analysis (total)
runtime overhead of the technique, to answer RQ2. They all
have been used in previous research on SMBP [56, 67].

4.4.1 Effectiveness

The effectiveness measures rely on the performance changes
that the benchmarks of a suite detect between two adjacent
versions. We rely on the measurements and computed
changes (see Section 4.2.2) from our previous work [56],
where a change is defined based on the bootstrapped
confidence interval of the mean difference and not just the
mean difference. Note that we do not distinguish the two
possible directions of a change, i.e., performance regression
(slowdown) or improvement (speedup), but only consider
these as a change of a certain size. This aligns with both previ-
ous works on SMBP [56, 67]. Assuming that function change
returns the change of a benchmark between two versions as
a percentage, change is defined as change : B 7→ Z0+, where
B is the set of benchmarks in a suite.

APFD-P [67] adapts APFD [73] from unit testing. APFD
itself is inapplicable for benchmarks, as benchmarks have
continuous outputs (i.e., different fault severities; see change)
as opposed to the discrete ones (pass or fail) for unit tests.
APFD-P, as an area under the curve (AUC) metric, assesses
the fault-detection capabilities of a SMBP technique, ranging
from 0 to 1, with 0 and 1 denoting the worst and optimal
rankings of a benchmark suite, respectively. A technique that
ranks benchmarks with larger changes higher than those
with smaller changes is considered better and has a larger
APFD-P value, as defined in Eq. (3).

APFD-P =

n∑
x=1

detected(x)
c

n
(3)

where n is the benchmark suite size; c is the sum of the
changes of all the benchmarks; detected(x) returns the
cumulative change of the first x benchmarks, see Eq. (4).

detected(x) =
x∑

i=1

change(i) (4)

where change(i) is the ith benchmark’s change in a ranking.
Previous SMBP works [56, 67] also study normalized

discounted cumulative gain (nDCG) and Top-3, which we do
not consider due to similar results to APFD-P in our study.

4.4.2 Efficiency
Our experiment evaluates the technique’s efficiency with two
dependent variables in RQ2. Both concern the technique’s
runtime overhead imposed on the overall benchmarking
time: (1) Prioritization time is the time required to run a
SMBP technique, i.e., computing the SMBP ranking with
all necessary inputs already available; and (2) Analysis
time is the total time necessary to prioritize a benchmark
suite, including extracting all the required information
(coverage information and historically-detected performance
changes) and the prioritization time. Both times are studied
as overhead (in percentage) of the benchmark suite runtimes
(see Table 1), which is required for comparability across the
projects. The overhead of Additional and Total (this study’s
baselines) is dominated by the time to extract the coverage
information [56]. Note that we neither study the coverage
extraction time, as all the coverage-based techniques rely
on the same coverage type, nor the time to extract the
historically detected changes, as these are available from
previous versions and are not computed online at the time
of prioritization.

4.5 Experiment Setup

To deal with the stochastic nature of the SBSMBP techniques,
we follow recommended practice [6] and previous research
on search-based TCP [22, 27, 61, 65], and repeatedly execute
each prioritization 30 times, i.e., for each project, version, and
SA, which are called “repetitions” in the rest of the paper.
The effectiveness calculations and results, unless otherwise
specified, rely on all the repetitions for analyses.

Regarding the variance of a Pareto front (for each project,
version, MOEA, and repetition), we select the solution with
the median effectiveness for analysis as similarly done by
previous research on multi-objective TCP [22, 27, 65]. Other
selection strategies, e.g, choosing the solution at a knee
point [9], are arguably less applicable in our context where
the objectives are just proxies for the context-dependent
effectiveness (i.e., APFD-P) of SMBP. The efficiency analysis,
however, retains the measurements of all the solutions be-
cause more performance measurements raise the confidence
that the results are representative [30, 53, 66].

Rigorously executing performance measurements is cru-
cial to the validity of the results [30, 66]. There are two
basic principles to ensure reliable measurements: (1) suffi-
cient numbers of repetitions and (2) a controlled execution
environment. This paper assesses the overhead added to the
full benchmark suite, which is in the order of minutes and
hours (see Table 1). Hence, minor measurement inaccuracies
are permissible, as they will not change the overall results.
Best practice suggests 30 repeated measurements for every
distinct measurement scenario (combinations of projects,
versions, and SAs). We reuse the repetitions for tackling the
SAs’ stochasticity are as performance measurements, i.e., one
measurement per repetition.

To ensure reliable measurements, a controlled execution
environment is desirable. However, due to the dimension of
the runtimes, it is acceptable to use a slightly less controlled
environment, as the results will not be impacted much.
Hence, we refrain from employing a tightly controlled bare-
metal environment and use a high-performance computing
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(HPC) cluster (Experimental Infrastructure for Exploration
of Exascale Computing (eX3) cluster2) instead, as it allows
for parallelization to keep the experiment runtime lower.
eX3 is hosted at the first author’s institution, which uses
Slurm 21.08.8-2 as its cluster management software. The
experiment executes the measurements on nodes of the
same type (using the defq partition of eX3), with 30 central
processing unit (CPU) cores assigned to and a single CPU
exclusively reserved for the measurement process. The nodes
have AMD EPYC 7601 32-core processors, run Ubuntu
22.04.3, and have 2 TB total memory shared for all CPUs.
The experiments were conducted in the second half of 2023.

4.6 Statistical Analyses
We employ hypothesis testing in combination with effect size
measures to compare different observations. An observation
in our context can be, e.g., a single APFD-P value of a
project, in a version, using one MOEA, for a single repetition.
Depending on the analysis and the RQ, the compared set of
observations changes, however, the tests remain the same. We
follow the best practice for evaluating search algorithms [6].

We use the non-parametric Kruskal–Wallis H [49] test to
compare multiple sets of observations. Note that Arcuri
and Briand [6] suggest using the Mann-Whitney U test,
which, however, only compares two sets of observations.
The Kruskal-Wallis H test is considered an extension of the
Mann-Whitney U test and is, therefore, compatible with the
best practice by Arcuri and Briand [6]. The null hypothesis H0

states that the different distributions’ medians are the same,
and the alternative hypothesis H1 is that they are different.
If H0 can be rejected, we apply Dunn’s post-hoc test [23] to
identify which pairs of observations are statistically different.

Note that we consciously decided against using the Fried-
man test, which is used by the SBFT3 tool competition [21]
because our experiment setup does not fit into a complete
block design as required for the Friedman test. To use the
Friedman test (e.g., where the projects are the subjects and
the SAs are the treatments), we would need to aggregate the
dependent variables of the different versions and experiment
repetitions into a single value (e.g., taking the median
of the median), which would completely disregard their
variability. Doing so is unacceptable and, hence, we use the
Kruskal-Wallis H test instead, though it does not distinguish
between the different subjects (projects). To alleviate it, we
add additional analysis on a per-project level.

We also report the effect size with Vargha-Delaney
Â12 [80] to characterize the magnitude of the differences.
Two groups of observations are the same if Â12 = 0.5. If
Â12 > 0.5, the first group is larger than the second, otherwise
if Â12 < 0.5. The magnitude values are divided into four
nominal categories, which rely on the scaled Â12 defined as
Âscaled

12 = (Â12−0.5)∗2 [38]: “negligible” (|Âscaled
12 | < 0.147),

“small” (0.147 ≤ |Âscaled
12 | < 0.33), “medium” (0.33 ≤

|Âscaled
12 | < 0.474), and “large” (|Âscaled

12 | ≥ 0.474).
All results are considered statistically significant at signifi-

cance level α = 0.01 and with a non-negligible effect size. We
control the false discovery rate with the Benjamini-Yekutieli
procedure [8] where multiple comparisons are performed.

2. https://www.ex3.simula.no/
3. International Workshop on Search-Based and Fuzz Testing

It is considered a more powerful procedure than, e.g., the
Bonferroni or Holm corrections for family-wise Type I errors.

4.7 Threats to Validity
Construct Validity. We rely on APFD-P as the metric for
SMBP effectiveness, which builds on the performance change
size as a measure for benchmark importance. Different
metrics and measures are likely to impact the results and
conclusions of this study. Nevertheless, recent studies in
performance regression testing have relied on the perfor-
mance change size and APFD-P for SMBP [12, 17, 56, 67].
The procedure to compute the performance change size is
from our previous work [56]. Consequently, this paper suffers
from the same validity threats in this regard.

Internal Validity. Regarding the threat introduced by the
SAs’ stochasticity, we repeatedly executed the algorithms and
chose the relevant statistical tests and the effect size measure
by following the best practice reported by Arcuri and Briand
[6]. Regarding the measurement inaccuracies of the runtime
overhead, we tried to mitigate this by executing on dedicated
HPC nodes and repeated runtime measurements, following
the performance engineering best practices [30]. Regarding
setting the SAs hyperparameters, different hyperparameters
might lead to different conclusions. We followed previous
research in search-based TCP [22] and used a unified config-
uration for all the eight SAs.

External Validity. The generalizability of our results is
concerned with the number of datasets used, and conse-
quently with the projects, versions, and benchmarks. We rely
on a single dataset from our previous work [56], which is, to
the best of our knowledge, the only one that fits the study.All
the projects are written in Java and use JMH benchmarks.
Our results do not generalize to projects written in other
languages and with other benchmarking frameworks. The
same limitation applies to other types of performance tests,
such as application-level load and stress tests [43], and macro-
and application-benchmarks [14, 31]. Finally, the results
depend on performance changes executed in controlled, bare-
metal environments; hence, they are not generalizable to
SMBP effectiveness assessed based on changes observed in
less-controlled environments, e.g., the cloud.

5 RESULTS AND ANALYSES

This section describes the results to answer the study’s RQs.

5.1 RQ1: Effectiveness
This section studies the effectiveness of eight different SAs in
Section 5.1.1; compares the best SAs to the greedy baselines,
i.e., Additional, Total, and the Greedy strategy in Section 5.1.2;
and assesses the impact of change-awareness in Section 5.1.3.

5.1.1 RQ1a: Effectiveness of SBSMBP Techniques
This section compares the APFD-P effectiveness of the eight
SAs across all the projects and then per project. In total, we
study 14 SBSMBP techniques, based on the SA and search
objective combinations (see Section 4.3.3). Table 2 shows the
effectiveness results overall and per project.

Overall. From Table 2’s “Overall” column, we observe
that the median APFD-P ranges from 0.48 to 0.60. The

https://www.ex3.simula.no/
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Table 2: APFD-P effectiveness for the SBSMBP techniques (SAs and objectives) and projects across all the versions and
repetitions. The values are the median ± the median absolute deviation (MAD).

SA Objectives Overall Projects

Byte Buddy Eclipse Collections JCTools Jenetics Log4j 2 Netty Okio RxJava Xodus Zipkin

HC C 0.51±0.10 0.52±0.16 0.50±0.02 0.50±0.07 0.53±0.20 0.50±0.07 0.51±0.08 0.51±0.13 0.50±0.04 0.54±0.10 0.51±0.17
CO 0.50±0.10 0.51±0.16 0.50±0.03 0.50±0.08 0.49±0.17 0.49±0.06 0.51±0.08 0.56±0.16 0.50±0.04 0.51±0.08 0.52±0.15
CH 0.51±0.10 0.54±0.17 0.50±0.02 0.51±0.07 0.53±0.18 0.50±0.06 0.51±0.08 0.51±0.13 0.50±0.04 0.53±0.11 0.51±0.14
C-CO-CH 0.51±0.10 0.54±0.16 0.50±0.03 0.51±0.08 0.52±0.19 0.51±0.07 0.51±0.07 0.50±0.14 0.50±0.04 0.50±0.10 0.53±0.15

GA C 0.56±0.14 0.49±0.26 0.53±0.02 0.62±0.10 0.63±0.11 0.60±0.08 0.52±0.09 0.67±0.11 0.53±0.06 0.70±0.05 0.47±0.17
CO 0.48±0.13 0.4±0.14 0.52±0.04 0.49±0.08 0.38±0.18 0.44±0.07 0.51±0.08 0.74±0.16 0.51±0.05 0.40±0.06 0.54±0.13
CH 0.58±0.13 0.68±0.14 0.54±0.03 0.59±0.09 0.57±0.28 0.58±0.07 0.54±0.08 0.59±0.18 0.55±0.07 0.59±0.15 0.59±0.14
C-CO-CH 0.60±0.13 0.68±0.13 0.55±0.03 0.65±0.07 0.59±0.21 0.61±0.09 0.54±0.09 0.68±0.14 0.56±0.08 0.71±0.05 0.55±0.16

IBEA C-CO-CH 0.57±0.12 0.61±0.15 0.54±0.03 0.59±0.06 0.58±0.23 0.56±0.06 0.51±0.05 0.69±0.15 0.55±0.06 0.67±0.08 0.54±0.14
MOCell C-CO-CH 0.58±0.12 0.59±0.13 0.56±0.03 0.60±0.07 0.57±0.20 0.56±0.06 0.53±0.07 0.76±0.13 0.58±0.07 0.64±0.08 0.52±0.17
NSGAII C-CO-CH 0.56±0.11 0.60±0.11 0.54±0.02 0.59±0.06 0.55±0.20 0.55±0.05 0.52±0.05 0.77±0.14 0.55±0.06 0.63±0.07 0.51±0.17
NSGAIII C-CO-CH 0.56±0.12 0.59±0.14 0.54±0.03 0.59±0.07 0.57±0.20 0.55±0.06 0.53±0.07 0.76±0.14 0.55±0.06 0.63±0.08 0.52±0.17
PAES C-CO-CH 0.52±0.10 0.54±0.17 0.50±0.03 0.56±0.08 0.55±0.18 0.51±0.07 0.51±0.07 0.58±0.13 0.50±0.04 0.57±0.09 0.53±0.15
SPEA2 C-CO-CH 0.56±0.11 0.59±0.11 0.54±0.02 0.59±0.06 0.54±0.19 0.55±0.05 0.52±0.05 0.76±0.16 0.55±0.05 0.63±0.07 0.50±0.18

Figure 3: Overall APFD-P effectiveness compared pair-wise
for the SBSMBP techniques across all the versions and
repetitions

SBSMBP technique with the highest median APFD-P is GA C-
CO-CH with 0.60, followed by GA CH with 0.58 and MOCell
with 0.58. Interestingly, GA CH performs competitively by
only relying on the historical performance change size and
without relying on coverage. We further notice that HC (all
objectives) and GA CO exhibit the worst effectiveness.

In addition, we conduct pair-wise comparisons among
all the SBSMBP techniques with the statistical tests in Fig. 3.
The results confirm that HC and GA CO are statistically
worse than all the other SAs except PAES. HC is the only
local search algorithm and the most primitive in our study;
consequently, it is unsurprising that it performs the worst.
GA CO performs worse than the other GAs and the MOEAs
because it only optimizes coverage overlap.

The single-objective GA C-CO-CH also performs the best
statistically, better than all the other SAs except GA CH and
IBEA with at least a small effect size. This is interesting
because a simple (single-objective) GA using weighted-sum
performs equally or better than the MOEAs, which shows
that in our context, using a MOEA does not lead to higher
effectiveness. In addition, using GA instead of any MOEA has
the benefit that the output is a single benchmark ranking and
not a Pareto front from which a solution has to be selected.
The remaining GA and MOEA strategies are statistically
equivalent though they show a minor difference in median
effectiveness.

Per Project. Table 2 shows the median APFD-P per project,
and Fig. 4 depicts the pair-wise statistical test results. We
observe that the effectiveness depends on the project the
SMBP technique is applied to, e.g., for GA C-CO-CH, APFD-
P ranges from 0.54 (for Netty) to 0.71 (for Xodus).

We mostly notice a similar pattern to the overall results,
i.e., HC and GA CO perform the worst. The only exception
is Okio where GA CO performs well (NSGAII performs even
better on median, while the other MOEAs except PAES are
also effective). The reason for this is that Okio is the project
with the most disjoint coverage sets among the benchmarks
and, consequently, a SBSMBP technique with only the CO
objective can perform well. Moreover, we observe that for
Netty and Zipkin, the SA choice largely does not matter.

The most effective strategies for each project are: (1) GA
C-CO-CH for six, i.e., Byte Buddy, JCTools, Jenetics, Log4j 2,
Netty, and Xodus; (2) GA CH for two, i.e., Byte Buddy and
Zipkin; (3) MOCell for two, i.e., Eclipse Collections and RxJava;
and (4) NSGAII and GA CO for one, i.e., Okio.

The reasons why a SA is more effective depends on
the characteristics of the studied projects and the problem
definition. As we are evaluating the SAs on real-world
projects, it is impossible to say which characteristics are
responsible for the observed differences. To provide such
reasons, we would need to run a controlled experiment
where we identify certain project characteristics, create
projects and benchmark suites with these, and investigate
their impact. Such a study is out-of-scope of this paper.

RQ1a Summary: GA C-CO-CH is the most effective
SBSMBP technique overall, as it performs the best for six
of the ten projects. The other SBSMBPs techniques worth
considering are GA CH, particularly because it does not
require coverage information, and MOCell, which is the
most effective MOEA.

5.1.2 RQ1b: Comparison to Greedy Techniques
This section compares the SBSMBP techniques to the two
greedy baselines (i.e., Additional and Total) and four Greedy
techniques, one for each objective C, CO, and CH and the
combination C-CO-CH (see Section 4.3.3). For brevity, we
only investigate the three best SBSMBP techniques from
RQ1a, i.e., GA C-CO-CH, GA CH, and MOCell. Table 3 shows
the effectiveness results overall and per project.

Overall. From Table 3’s column “Overall”, we observe
that the median APFD-P ranges from 0.44 to 0.65, where the
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Figure 4: Per project APFD-P effectiveness compared pair-wise for the SBSMBP techniques all the versions and repetitions

Table 3: APFD-P effectiveness for the greedy baselines, four Greedy techniques, and three best SBSMBP techniques from
RQ1a; overall and per projects across all the versions and repetitions. The values are the median ± the MAD.

SMBP Algorithm Objectives Overall Projects

Byte Buddy Eclipse Collections JCTools Jenetics Log4j 2 Netty Okio RxJava Xodus Zipkin

Total – 0.60±0.13 0.49±0.25 0.60±0.03 0.63±0.13 0.65±0.10 0.65±0.07 0.59±0.09 0.70±0.13 0.58±0.10 0.69±0.04 0.45±0.14
Additional – 0.52±0.17 0.38±0.16 0.60±0.03 0.50±0.05 0.44±0.26 0.50±0.07 0.51±0.05 0.74±0.13 0.45±0.14 0.61±0.12 0.58±0.20
Greedy C 0.60±0.13 0.49±0.25 0.60±0.04 0.64±0.13 0.65±0.10 0.65±0.07 0.59±0.09 0.71±0.12 0.57±0.10 0.69±0.04 0.45±0.14

CO 0.44±0.17 0.40±0.15 0.59±0.04 0.39±0.09 0.38±0.16 0.39±0.08 0.42±0.20 0.80±0.14 0.41±0.14 0.38±0.06 0.56±0.14
CH 0.65±0.15 0.67±0.13 0.67±0.05 0.51±0.09 0.62±0.32 0.65±0.07 0.48±0.24 0.68±0.17 0.64±0.14 0.58±0.16 0.63±0.16
C-CO-CH 0.61±0.14 0.50±0.28 0.64±0.03 0.65±0.10 0.62±0.14 0.61±0.09 0.60±0.09 0.72±0.15 0.58±0.11 0.72±0.06 0.51±0.18

GA CH 0.58±0.13 0.68±0.14 0.54±0.03 0.59±0.09 0.57±0.28 0.58±0.07 0.54±0.08 0.59±0.18 0.55±0.07 0.59±0.15 0.59±0.14
C-CO-CH 0.60±0.13 0.68±0.13 0.55±0.03 0.65±0.07 0.59±0.21 0.61±0.09 0.54±0.09 0.68±0.14 0.56±0.08 0.71±0.05 0.55±0.16

MOCell C-CO-CH 0.58±0.12 0.59±0.13 0.56±0.03 0.60±0.07 0.57±0.20 0.56±0.06 0.53±0.07 0.76±0.13 0.58±0.07 0.64±0.08 0.52±0.17

Figure 5: Overall APFD-P effectiveness pairwise comparison
among the three best SBSMBP technqiues from RQ1a, the
greedy baselines, and the Greedy techniques across all the
versions and repetitions

two greedy baselines achieve 0.60 (for Total) and 0.52 (for
Additional). We already found that Total is more effective than
Additional for SMBP [56], which might come as a surprise to
TCP-savvy readers (e.g., see Luo et al. [63]).

A surprising result is that the SBSMBP techniques exhibit
either only an equal (GA C-CO-CH) or a lower (GA CH

and MOCell) median APFD-P compared to Total. However,
our observation aligns with TCP research [63], where the
search-based technique is inferior to the greedy baseline (in
their case Additional). The statistical tests, depicted in Fig. 5,
confirm that the SBSMBP techniques are statistically equal to
but never worse than Total and better than Additional (with
small and medium effect sizes).

The Greedy techniques show a similar pattern as the
GA techniques in RQ1a: Greedy CO is the technique with
the lowest median APFD-P of 0.44, Greedy C is equivalent
to Total at 0.60, and both Greedy C-CO-CH with 0.61 and
Greedy CH with 0.65 exhibit higher median APFD-Ps than
Total. However, the improvement of the latter two Greedy
techniques over Total is not statistically significant (see Fig. 5).
Nevertheless, using Greedy CH and achieving a better median
effectiveness even though being statistically equivalent is a
surprising, yet great result, as it does not require coverage
information. RQ2 in Section 5.2 investigates the implications
of this on the technique efficiency.

Per Project. While overall the baseline Total is not
statistically outperformed by any of the SBSMBP and Greedy
techniques, the per-project results offer a nuanced view in
Table 3 and Fig. 6.

The best SBSMBP technique, i.e., GA C-CO-CH is statis-
tically equivalent to Total for eight projects, better for one



10

Figure 6: Per project APFD-P effectiveness pairwise comparison among the three best SBSMBP technqiues from RQ1a, the
greedy baselines, and the Greedy techniques across all the versions and repetitions

(Byte Buddy), and worse for one (Eclipse Collections). The other
two SBSMBP techniques, i.e., GA CH and MOCell perform
worse. GA CH is statistically better than Total for one project
(Byte Buddy), worse for three, and equivalent for six, whereas
MOCell is never statistically better, worse for two projects,
and equivalent for eight. The median differences are in line:
(1) GA C-CO-CH is four times better and six times worse
than Total; (2) GA CH is twice better and eight times worse;
and (3) MOCell is three times better, six times worse, and
once equal.

The two best Greedy techniques perform favorably com-
pared to Total: (1) Greedy CH is better for one project
(Byte Buddy) and equal for nine, while the medians are better
for four projects, worse for five, and equal for one; (2) Greedy
C-CO-CH is equal for all the ten projects, while the medians
are better for seven, worse for two, and equal for one.

From a project perspective, the SBSMBP techniques and
Greedy CH perform better on Byte Buddy, while just the
SBSMBP techniques perform worse on Eclipse Collections.
Byte Buddy is the project with the smallest benchmark suite,
and Eclipse Collections the one with the largest. However, this
suite size trend is not noticeable for the remaining projects.
For Jenetics, Netty, Okio, RxJava, and Zipkin, it largely does
not matter which technique one chooses as long as it is not
Greedy CO and GA CH. For JCTools, Log4j 2, and Xodus any
technique except Additional, Greedy CO, GA CH, and MOCell
is equally effective.

The strategies with the highest median APFD-P for each
project are: (1) Greedy CH for four, i.e., Eclipse Collections,
Log4j 2, RxJava, and Zipkin; (2) Greedy C-CO-CH for three, i.e.,
JCTools, Netty, and Xodus; (3) Total for two, i.e., Jenetics and
Log4j 2; (4) GA C-CO-CH for two, i.e., Byte Buddy and JCTools;
and (5) GA CH for one, i.e., Byte Buddy.

RQ1b Summary: Only one SBSMBP technique, i.e., GA
C-CO-CH, is competitive with the best greedy techniques.
The baseline Total performs surprisingly well, only
improved upon by Greedy CH for one project and when
considering the median APFD-P. Considering that Greedy
CH does not require coverage information makes it a
great candidate to generally recommend.

5.1.3 RQ1c: Impact of Change-Awareness

This section studies if the SMBP techniques from RQ1a
and RQ1b perform differently when incorporating change-
awareness. Specifically, we compare nca with the two change-
aware approaches: cac and car (see Section 4.3.4). Figure 7
depicts the results of the pair-wise statistical tests displayed
per project and SMBP technique. For each project and tech-
nique, the figure shows which change-awareness approaches
are statistically better than which other approaches.

Overall. Contrary to intuition, i.e., a change-aware ap-
proach performs better, change-awareness does not improve
SMBP effectiveness (see the top row of Fig. 7). To keep the
SMBP techniques simple, i.e., not having to manage code
change information, this result suggests that nca is the best
choice overall.

Per Project. From the overall results, we observe dif-
ferences among the change-aware approaches, although
with no best approach across SMBP techniques and projects.
Specifically, greedy techniques are less sensitive to change-
awareness, i.e., change-awareness has hardly an impact
on the effectiveness. Whereas the SBSMBP techniques are
considerably impacted by the change-awareness choice, each
technique is not equally affected by the same approach. We
notice that change-awareness is connected to the project that
the SMBP is applied to, e.g., using cac for Byte Buddy, car
for JCTools, and nca for (most SMBP techniques for) Okio
is most effective. This shows that there often is a benefit
for practitioners choosing the “right” change-awareness
approach depending on the project and SMBP technique.
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Figure 7: Per project change-awareness pair-wise comparison for each SMBP technique and project across all the versions
and repetitions

RQ1c Summary: Change-awareness does not impact
SMBP effectiveness overall. However, depending on the
concrete project and SMBP technique, one of the three
change-awareness approaches can be more effective, in
particular when using a SBSMBP technique.

5.2 RQ2: Efficiency
While the previous section investigated the effectiveness of
the SBSMBP and Greedy techniques, a holistic evaluation re-
quires an efficiency evaluation to understand whether using
a technique is feasible in practice. This section compares the
greedy heuristics Additional and Total, Greedy techniques, and
SBSMBP techniques with respect to the overhead they impose
on the overall benchmark suite execution time. Table 4 shows
the median and MAD efficiency overheads overall and per
project. Overheads below 1% are depicted as “< 1%”. We
refrain from reporting statistical tests, as they would arguably
neither add valuable insights nor change the conclusions.

Overall. Both baselines add less than 1% for running the
algorithm, i.e., prioritization time, and combined with the
coverage extraction time have a total runtime overhead, i.e.,
analysis time, of 17%. This shows that the analysis time
is dominated by the coverage extraction and the SMBP
algorithm plays only a minor role. These numbers are from
our previous work [56]. The same applies to the coverage-
based Greedy techniques, i.e., C, CO, and C-CO-CH.

The single-objective SBSMBP techniques (i.e., HC and
GA) have around 1% prioritization time. This brings the
analysis time to between 17% and 19%, similar to the greedy
baselines. Greedy CH, HC CH, and GA CH, however, have
a similar analysis and prioritization time. This is because
the CH objective does not rely on coverage extraction,
which takes the majority of the analysis time for coverage-
based techniques. In particular, Greedy CH becomes (even
more) appealing, as it is not only among the most effective
techniques (with, e.g., Total) but also the most efficient one.

Regarding the multi-objective SBSMBP technique, we
observe that the overall overheads do not change for the
majority of the MOEAs, i.e., MOCell (the most effective
MOEA from RQ1, see Section 5.1), NSGAII, NSGAIII, and

PAES. Only IBEA and SPEA2 encounter a slightly larger
prioritization time, which increases the analysis time to 19%
and 21%, respectively. Given the large suite runtimes (see
Table 1), this slight increase over the greedy techniques can
be considered acceptable.

Per Project. The results per project show a diverse situa-
tion for the SMBP techniques that rely on coverage objectives:
the analysis times range from between 8% and 13% for
Jenetics to between 104% and 105% for Eclipse Collections.
For eight of the projects, the analysis time is 23% or less. For
Eclipse Collections and Netty, where the overhead is 105% and
49% respectively, applying SMBP is not worthwhile.

These project-dependent overheads suggest that the
techniques with non-coverage-based objectives are critical to
be universally applicable across projects, especially when
run as part of CI. Hence, the overhead results for the
CH techniques are especially promising: all CH techniques
have an analysis time overhead of 2% or less across all
the projects. When considering the most effective technique
Greedy CH, the overhead even drops below 1% for all the
projects. Consequently, the analysis time of the techniques
with non-coverage-based objectives is solely dependent on
the prioritization time (i.e., the time taken to run the SMBP
algorithm), which will likely always be considerably smaller
than the extensive benchmark suite runtimes; therefore, it is
generally beneficial to apply these SMBP techniques.

RQ2 Summary: The SBSMBP techniques impose only
a minor additional overhead compared to the greedy
baselines. Employing a SMBP technique that only relies
on the CH objective gives the lowest and most reliable
overhead across all the projects. In particular, Greedy CH
consistently has less than 1% overhead.

6 DISCUSSION

The results show that the best SBSMBP technique (GA C-CO-
CH) is only competitive with the best greedy baseline (Total).
When using a simple Greedy technique that only considers
the historical performance change size (CH), one can retrieve
equally and sometimes more effective SMBP rankings with
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Table 4: Runtime overhead (prioritization and analysis time) for all the projects and overall for the SMBP techniques

SMBP Algorithm Objectives Time Overall Projects

Byte Buddy Eclipse Collections JCTools Jenetics Log4j 2 Netty Okio RxJava Xodus Zipkin

Total – Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

Additional – Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 105%±<1 19%±<1 8%±<1 22%±<1 50%±1 14%±<1 23%±<1 16%±<1 20%±<1

Greedy C Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

CO Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

CH Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

C-CO-CH Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

HC C Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

CO Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

CH Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

C-CO-CH Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 20%±<1

GA C Prioritization 1%±1 2%±1 <1%±<1 <1%±<1 1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

Analysis 18%±1 15%±1 104%±<1 19%±<1 9%±<1 23%±<1 49%±<1 14%±<1 23%±<1 16%±<1 22%±<1

CO Prioritization 1%±1 2%±1 <1%±<1 <1%±<1 1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

Analysis 19%±1 15%±1 104%±<1 19%±<1 9%±<1 23%±<1 49%±<1 14%±<1 23%±<1 16%±<1 22%±<1

CH Prioritization 1%±1 2%±1 <1%±<1 <1%±<1 1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

Analysis 1%±1 2%±1 <1%±<1 <1%±<1 1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

C-CO-CH Prioritization 1%±1 2%±1 <1%±<1 1%±<1 2%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

Analysis 19%±1 15%±1 104%±<1 20%±<1 9%±<1 23%±<1 49%±<1 14%±<1 23%±<1 16%±<1 23%±<1

IBEA C-CO-CH Prioritization 1%±2 5%±2 <1%±<1 1%±<1 3%±<1 1%±<1 <1%±<1 1%±<1 <1%±<1 1%±<1 3%±1

Analysis 20%±2 18%±2 104%±<1 20%±<1 11%±<1 23%±<1 49%±<1 15%±<1 23%±<1 17%±<1 25%±1

MOCell C-CO-CH Prioritization <1%±<1 3%±1 <1%±<1 <1%±<1 1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

Analysis 18%±<1 15%±1 105%±<1 19%±<1 9%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 23%±<1

NSGAII C-CO-CH Prioritization 1%±1 2%±1 <1%±<1 <1%±<1 1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 1%±<1

Analysis 19%±1 15%±1 104%±<1 20%±<1 9%±<1 23%±<1 49%±<1 14%±<1 23%±<1 16%±<1 22%±<1

NSGAIII C-CO-CH Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 21%±<1

PAES C-CO-CH Prioritization <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1 <1%±<1

Analysis 17%±<1 13%±<1 104%±<1 19%±<1 8%±<1 22%±<1 49%±<1 14%±<1 23%±<1 16%±<1 21%±<1

SPEA2 C-CO-CH Prioritization 2%±2 9%±3 <1%±<1 1%±<1 5%±1 1%±<1 <1%±<1 1%±<1 <1%±<1 1%±<1 3%±1

Analysis 22%±2 22%±3 105%±<1 20%±<1 13%±1 23%±<1 49%±<1 15%±<1 23%±<1 17%±<1 26%±1

significantly lower overhead than when relying on coverage
objectives (C and CO), which is the case for both the greedy
baselines and the SBSMBP techniques. This section discusses
our empirical results from several different perspectives.

The Underperforming Search-Based Techniques. The
success of the Greedy CH technique in terms of effectiveness
begs the question, why are the SBSMBP techniques under-
performing in our study? We see the following two reasons.

First, coverage is not “good enough” as objectives for
SMBP. This becomes evident from this and our previous
study [56]. Furthermore, Chen et al. [11] observed that in the
context of benchmark selection, functional bug prediction
metrics are more important than code-level performance
metrics. This suggests that future SMBP techniques should
explore dedicated metrics related to size, diffusion, or history
as well as specific code-level performance metrics, such
as loops or synchronization (similar to Laaber et al. [55]).
However, given the high coverage extraction overhead, non-
code metrics should be more favoured over code metrics.

Second, optimal hyperparameters of the SAs could
improve SBSMBP effectiveness. For this, we explored the
SAs’ effectiveness with more generations, investigated the
convergence of the objectives, and found that the objectives
converge quickly. This suggests that the search space is
relatively trivial (for the given objectives) and SAs do not

offer an advantage over simple greedy techniques, which
our results empirically show. Moreover, the employed search
objectives, in particular the coverage-based objectives, are
ineffective in finding larger performance changes sooner, and
other objectives should be explored in the future (such as the
ones mentioned above).

Is it Worth Applying SMBP? While coverage-based
SMBP is effective, there is still a considerable overhead.
This overhead is mostly due to the time required to extract
coverage information [56] and only a small fraction is
attributed to the prioritization algorithm (see Section 5.2).
While this time is arguably lower than for unit testing
because benchmarks are repeatedly executed and run much
longer [54], whether it is worth employing coverage-based
SMBP highly depends on the individual benchmark suite
and the project’s performance testing objectives. If it is critical
to detect performance changes as fast as possible, e.g., the
release of a new software version would be otherwise halted,
running SMBP can drastically reduce the time to detect these.
However, for projects with extensive overheads, such as
Eclipse Collections and Netty in our study, coverage-based
SMBP is not worthwhile. A better alternative to coverage-
based techniques are SMBP techniques that solely rely on
the CH objective, which is (sometimes) more effective and
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substantially more efficient. This suggests that non-coverage-
based SMBP techniques are highly suggested to be employed.

Is it Practical to Apply SMBP? Beyond the temporal
cost of applying a SMBP technique, there is a cost of
extracting and maintaining the information required as input.
On the one hand, the techniques require storing historical
information about benchmark executions, especially their
changes between previous versions, for computing the CH
objective. On the other hand, there is neither a need to store
historical coverage information nor compute the source code
difference on every new commit, as the results of RQ1c show
that nca, the non-change-aware approach, performs equally
to the change-aware approaches (i.e., cac and car) overall. This
is probably best done as part of the CI pipeline because it
provides the necessary infrastructure to run benchmarks,
store the information about the build (i.e., performance
change history), and has the code changes readily available.

Relying on Measured Performance Changes. Research
on functional TCP often uses datasets with seeded, artificial
faults (mutations) to evaluate TCP effectiveness (e.g., [22, 64]).
Conversely, performance regression testing research mostly
relies on measured performance changes between adjacent
versions [56, 67]. This is due to performance mutation testing
having only recently received attention [20, 42] and large
datasets, such as Defects4J [44], do not exist. Because of
the enormous experiment runtimes required for rigorously
executing benchmarks (this study’s dataset took 89 days to
create), performing performance mutation testing, where for
each mutant the whole benchmark suite has to be executed,
becomes unrealistic. However, this does not invalidate the
findings of this study or any other experimental performance
regression study relying on measured performance changes
as long as the measurements have been conducted rigorously.

Moreover, measuring performance captures changes
stemming from “outside” the software under test (SUT), e.g.,
its dependencies or runtime environment. While it is harder
for techniques to also detect these changes, it makes the
evaluation more realistic, as the SUT’s developers should be
aware of any observable performance changes, irrespective
of their origin, to take adequate action.

What is an Important Performance Change? Following
previous research on SMBP [56, 67], this paper also defines
the importance of a benchmark as the performance change
size it detects. A benchmark that detects a large performance
change is considered more important than a benchmark
that detects a small one. Accordingly, we conclude whether
a technique is more or less effective. It is, however, un-
clear whether this definition of importance is “accurate.”
Alternative formulations of importance could be based on:
(1) the impact of the code called by the benchmark on the
performance of an application, (2) the project developer’s
perception and context-dependent knowledge, or (3) the
usage frequency of the code from application programming
interface (API) clients. Moreover, developers might consider
any performance change as important, irrespective of the
size. All these different definitions of importance would
likely change our results and require a study of its own.

7 RELATED WORK

This section discusses the related work on (1) search-based
regression testing and (2) software performance testing.

7.1 Search-Based Regression Testing
Regression testing on unit tests has been a well-established
research field for the last 30 years [81]. The three main
techniques in regression testing are test suite minimization,
RTS, and TCP. Traditionally, techniques relied on greedy
heuristics, such as Additional and Total coverage, to solve
the optimization problems of selecting the best subset or
prioritizing the most fault-revealing tests [24, 72, 73].

Based on the early success of search techniques in
software engineering [36], regression testing techniques were
quickly adapted to use search for the optimization. Yoo and
Harman [82] formulate RTS as a multi-objective optimization
problem and generate Pareto optimal solutions [28]. Li et al.
[60] are the first to apply search to TCP by introducing
coverage-based objectives based on block, decision, and
statement granularity. Our work is inspired by theirs and
adapts the objectives for SMBP.

Li et al. [61] take the idea a step forward and introduce
multi-objective, search-based TCP with NSGAII and two
objectives: coverage and execution time. Islam et al. [41]
and Marchetto et al. [65] consider three objectives and apply
different weights to these. Epitropakis et al. [27] address
the O(mn) complexity of the fitness function by devising
a coverage compaction algorithm and consider historical
faults as an objective. Finally, Di Nucci et al. [22] introduce
a new search algorithm based on the hypervolume [7]. Our
work builds on all these in terms of inspiration for the search
objectives and the experimental setup (see Section 4.3) and
ports them to the problem of prioritizing microbenchmarks.

7.2 Software Performance Testing
Performance testing with microbenchmarks is a relatively
new area of research. To this end, earlier studies investigate
unit-level performance testing of OSS Java projects [59, 76],
which conclude that it is still a niche technique, especially
compared to unit testing. Explanations could be that more
effort is required to write microbenchmarks, the extra cost of
their execution, and the higher complexity required to assess
the results with statistical analyses. Samoaa and Leitner
[75] investigate parameterization of benchmarks in detail.
Grambow et al. [31, 32] utilize information from applica-
tion benchmarks to guide microbenchmark execution and
assess the ability of microbenchmarks to detect application
performance changes, with limited success. He et al. [37] and
Laaber et al. [54] take an orthogonal approach to optimizing
performance testing: they dynamically stop benchmarks
when their results are of a desired statistical quality instead
of optimizing the execution order of the benchmark suite.
Traini et al. [79] further assess whether dynamically stopping
is beneficially for measuring in steady state.

There exist works on performance regression testing, i.e.,
greedy heuristics [17], genetic algorithms [3, 4], and machine
learning [11], which have been used to select the optimal
benchmarks for a given software version in terms of their
ability to find performance changes. These works focus on
RTS whereas this paper targets SMBP. In addition, some
works exist for performance regression testing of concurrent
classes (e.g., [70, 83]). They focus on and generate tests
for concurrent software, whereas this paper optimizes the
execution of existing benchmark suites. Finally, Huang et al.
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[40] proposed a prediction method to assess the need for
performance testing of a new software version, which targets
the version level compared to ours on the benchmark level.

We consider two works on performance regression testing
closely related to ours [56, 67]. For a given version, Mostafa
et al. [67] prioritize test cases with complex performance im-
pact analyses that require measuring individual components
of not only the SUT but also the Java Development Kit (JDK).
Their technique focuses on collection-intensive software and
is partially only evaluated on unit tests used as performance
tests, whereas our technique is generally applicable to any
kind of software and is evaluated only on benchmarks.
Laaber et al. [56] studied coverage-based, greedy SMBP
techniques and found that they are only marginally more
effective than a random ordering. We build on their work
and use SAs and novel Greedy techniques instead.

8 CONCLUSIONS AND FUTURE WORK

This paper defines SBSMBP and Greedy SMBP techniques
relying on three objectives: coverage, coverage overlap
among benchmarks, and performance change size obtained
from historical data. With an extensive experimental evalu-
ation on 10 Java projects with JMH suites, we study the
effectiveness and efficiency of a total of 18 new SMBP
techniques and compare these to two coverage-based, greedy
SMBP baselines. The results reveal that the best SBSMBP
technique is competitive with the best greedy baselines
but does not improve on its effectiveness. Surprisingly, the
Greedy technique relying only on the historical performance
change size is sometimes more but at least equally effective
as the best coverage-based, greedy baselines and SBSMBP
techniques while being significantly more efficient.

This paper provides evidence that SMBP is a difficult
problem to solve and more work is required going forward.
Hence, we envision future research to (1) assess SMBP on
performance mutations and developer-reported performance
bugs, (2) investigate novel algorithms (potentially search-
based) specifically targeting SMBP, and (3) devise process-
and performance-focused, ideally non-coverage-based, ob-
jectives that serve as better proxies for performance changes
than the ones studied here.
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