Invited Talk at Copenhagen Business School

Cloud and Fog:
How and Where is My Data Flowing?
Obtaining Insights into Data Privacy
in Today's Applications

Thomas Dreibholz (托马斯博士) Simula Metropolitan Centre for Digital Engineering dreibh@simula.no

April 26, 2024

Contents

- About the Presenter
- Workload Offloading to Cloud and Fog
- What about Privacy?
- How and where is my data flowing?
- Secure Embedded Living Framework (SELF)
- Conclusions

About the Presenter

- Thomas Dreibholz
 - Chief Research Engineer at SimulaMet in Oslo
 - Habilitation in Computer Science in 2012
 - Ph.D. in Computer Science in 2007
 - M.Sc (Diplom) in Computer Science in 2001
 - Experience with Internet protocols since ca. 1996
 - Working with Linux systems since 1994
 - Open Source software development
- Website: https://www.nntb.no/~dreibh/

Scope

Artificial Intelligence (AI)

- Today's talk: Networking
- Networking contains privacy-relevant user data
 - Can be processed by AI to extract user profiles, etc.
- How does networking work?
- What are the issues?
- How to make improvements?

Trend: Smartphones and Cloud Computing

- Smartphone
 - Storage space is small (or expensive)
 - Hardly extensible (e.g. by SD card slot)
- Cloud connectivity
 - Storage space
 - Pictures, videos, music, maps, ...
 - Documents
 - Applications
 - Computation-intensive applications in the cloud (e.g. voice recognition, AI/ML, ...)

"Cloud" is an integral part of today's smartphones!

Hardware in a Cloud Data Centre

- User's local computer
 - Low utilisation
 - Main task: waiting for user input
- Idea: many computers, for a large number of users
 - Computers in a data centre
 - Usage by many users
 - Usage distribution over time
 - Scalability
 - High utilisation, low costs

Virtual Machines and Containers

- Data centres can provide "virtual computers" for the users
- Virtual Machines (VM)
 - Full operating system (OS) on virtualised hardware
 - Own operating system and kernel version
 - Very flexible, but requires resources

Containers

- Containers run on shared OS kernel
- Containers are shielded from each other (own view of processes, file system, networking, ...)
- More lightweight than VM, but same OS/kernel

Latency and Fog/(Mobile) Edge Computing

- Cloud
 - Resources **somewhere**, where they are inexpensive
 - But network communication takes time → latency!
 - Speed limit: speed of light c≈ 3*10^8 m/s!
- Fog/(Mobile) Edge Computing (MEC, EC)
 - Adding resources nearby the user, e.g. computers at the user's Internet service provider
 - Backed by cloud resources
 - => Low latency for latency-critical tasks
- Offloading of work from user's system to edge/fog or cloud

What about Privacy?

- Cloud is quite convenient
 - Inexpensive, scalable, resources are available when needed
 - But what about privacy
- Cloud data centres
 - They are located somewhere, in a **country/region** with certain **regulations**
 - EU/EEA: General Data Protection Regulation (GDPR);
 USA: the US regulations; China: Chinese rules; / / / /
- But what about the network transfer of data?
 - Over which countries/regions is data flowing?
 - Is this static, or does it change?
 - How can I find out details about my data flows?

Network Communication – How does it work? (1)

- Analogon: sending items via post
 - Pack things into packets (with size limits)
 - Add label with recipient and sender
 - Take it to the local post office
 - Each packet is routed individually
 - Receiver picks up packets at his local post office
 - Unpack things from packets

Thomas Dreibholz c/o SimulaMet Pilestredet 52 0167 Oslo NORGE

Network Communication – How does it work? (2)

- Sending data via the Internet Protocol (IP)
 - Encapsulate (pack) data into packets
 - Size limit: Maximum Transmission Unit (MTU)
 - Usually ~1500 bytes
 - Add header including recipient (destination) and sender (source)
 - Send packets to your local network's router
 - Each packet is routed individually
 - Receiver gets packets from his local router
 - Decapsulate (unpack) data from packets

IP Header (version 6)

Addressing and Routing

- Postal addresses are hierarchical:
 - Country
 - Postcode and City
 - Street, Number
 - Name
- Routing: relevant recipient details
 - Int'l freight airline: only country/city
 - Domestic postal service: postcode
 - Postman: name, street and number

- Internet addresses are hierarchical:
 - Network ID
 - Host ID
- Routing: relevant receiver details
 - Trans-Atlantic cable provider: only aggregated network IDs of ISPs
 - Local ISP: aggregated network ID of customers
 - Local router:
 knows networks and devices at home

A computer networks course is recommended for more details!

Traceroute and HiPerConTracer

- Traceroute
 - Send packets from source to destination (as usual)
 - Limit the number of intermediate stations (routers)
 - If destination is not reachable within the limit, the last router sends error
 - Result: sequence of all routers' addresses + known source/destination
 - Note: IP address ≠ geo-location!
- Larger-scale Traceroute runs
 - HiPerConTracer framework
 - See https://www.nntb.no/~dreibh/hipercontracer/

What can be done with this?

- Continuous, larger-scale measurements
 - See changes over time (long-term, short-term)
 - Perform geo-location of addresses
 - Lookup in databases
 - Triangulation measurements from known vantage points
- Idea: Secure Embedded Living Framework (SELF)
 - Give user some control over desirable/undesirable routes
 - Restrict connectivity of devices/groups of devices

Secure Embedded Living Framework (SELF)

Dynamic Execution Environments

- Execution Environments (EE):
 - Assign devices, access to clouds/fogs, etc.
 - Created/removed on demand
 - Dynamic scaling (more/less resources)
- Example:
 - EE1: security cameras, processing in Fog1 + Fog2
 - EE2: some Al application, compute resources in PublicCloud1
 - _
- Different EEs do not interact
 - Security/privacy issue in one EE does not affect other EEs

Conclusions

- Privacy is an important and broad topic!
 - Cloud/fog resources located somewhere
 - Network communication is very interesting as well
 - Routing changes over time
 - Routing may take quite unexpected detours (via different countries, regions, network providers, ...)
 - Some ideas for improvements → SELF concept
- Opportunities for Bachelor/Master topics
 - Collaboration between SimulaMet and CBS

Literature

Mazumdar, S. and Dreibholz, T.: "Towards A Data Privacy-Aware Execution Zone Creation on Cloud/Fog Platform", in Proceedings of the 49th Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA), pp. 140–149, Durrës/Albania, September 2023, URL: https://web-backend.simula.no/sites/default/files/2023-10/SEAA2023.pdf.

Dreibholz, T. and Mazumdar, S.: "Towards a Lightweight Task Scheduling Framework for Cloud and Edge Platform", in Internet of Things, vol. 21, Elsevier, April 2023, URL: https://web.archive.org/web/20230517075030/https://www.simula.no/file/iot2023pdf/download.

Mazumdar, S. and Dreibholz, T.: "Towards a Privacy Preserving Data Flow Control via Packet Header Marking", in Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HPCC), pp. 1509–1516, Chengdu, Sichuan/People's Republic of China, December 2022, URL: https://web.archive.org/web/20230520172441/https://www.simula.no/file/hpcc2022pdf/download.

Mazumdar, S. and Dreibholz, T.: "Secure Embedded Living: Towards a Self-contained User Data Preserving Framework", in IEEE Communications Magazine, vol. 60, pp. 74–80, November 2022, URL: https://web.archive.org/web/20230920185748/https://www.simula.no/file/commmag2022pdf/download.

Dreibholz, T. and Mazumdar, S.: "Find Out: How Do Your Data Packets Travel?", in Proceedings of the 18th IEEE International Conference on Network and Service Management (CNSM), pp. 359–363, Thessaloniki, Greece, November 2022, URL: https://web.archive.org/web/20230920185748/https://www.simula.no/file/cnsm2022pdf/download.

Dreibholz, T. and Mazumdar, S.: "A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework", in Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN), Demo presentation, Edmonton, Alberta/Canada,

October 2021, URL:

https://web.archive.org/web/20230920185748/https://www.simula.no/file/lcn2021-rserpool-webpdf/download.

