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Abstract— Energy-saving methods like Discontinuous Recep-
tion (DRX) and Power Save Mode (PSM) are commonly used
in Internet of Thing (IoT) applications, allowing for sleep and
awake cycle adjustments to save energy. However, understanding
and configuring these parameters on devices, especially actuator-
type devices, is challenging for IoT service providers. Unlike
sensor types, these devices must complete their sleep cycle
before responding to infrequent downlink commands, making
efficient parameter selection and traffic prediction vital for
energy efficiency and command reception.

To address this, we present ADDER, a network-side solution
leveraging a context-aware traffic predictor. This predictor fore-
casts downlink arrival probabilities, guiding a deep deterministic
policy gradient (DDPG) policymaker that selects energy-saving
parameters based on thresholds defined by the IoT service
providers. ADDER, leverages contextual information like day
of week, hour, weather, holidays, and events, shifting the focus
from individual device histories (often erratic) to analyzing
broader service traffic patterns. This data-driven strategy en-
ables ADDER to adjust energy-saving settings for the best
balance between energy efficiency and latency, customizing to the
unique requirements of each service and removing the burden
of configuring complex network settings. We observed that
ADDER meets latency needs while achieving a 5.9% reduction in
energy consumption for services requiring rapid responses. For
applications prioritizing energy conservation, such as irrigation
systems and city lighting, ADDER achieves a significant 32.7%
reduction in energy consumption with a slight increase (9%)
in messages might not meet the strictest latency requirements.
To evaluate the consequences of prediction inaccuracies from
our predictor, we utilized a real-world shared mobility dataset
provided by Austin’s Transportation Department for a case study.

Index Terms—NB-IoT, LTE-M, energy saving, context bandit,
deep reinforcement learning

I. INTRODUCTION

In 3GPP MTC, protocols such as NB-IoT and LTE-M utilize
energy-saving features like DRX [1], [2] and PSM [3], [4],
enhancing battery life. While sensor-based devices quickly
reconnect to send mobile-originated (MO) messages, resulting
in delays primarily due to reconnection and latency, actuator-
centric applications like intelligent irrigation systems and
smart lockers mainly rely on less frequent downlink commu-
nication for operations, leading to potential delays in response
to urgent downlink messages due to the inactive connection
state of the devices.

This material is based upon work supported by the National Science
Foundation under Grant Number 1827940.

While applications like farm irrigation tolerate delays, un-
locking a bike requires quicker action, and managing traffic
signs demands real-time responsiveness to prevent jams. This
creates a balance challenge between energy efficiency and
response speed that varies by application. Developers must
be familiar with complex cellular network energy-saving con-
figurations and develop adaptable strategies based on each
application’s traffic needs. This necessitates exploring how
to dynamically learn and adjust these mechanisms to meet
specific energy and response time requirements.

We propose ADDER, a novel network-side solution that
goes beyond device-specific approaches to achieve optimal
energy savings while meeting latency constraints for specific
actuator-focused services. ADDER leverages a context-aware
traffic predictor that combines service provider insights with
additional data like weather, traffic, and holidays to forecast
traffic patterns accurately. These predictions then guide the
modified DDPG-based [5] policy maker in selecting the most
suitable DRX and PSM parameters. The network controller
acknowledges these settings to devices, allowing them to adapt
their communication accordingly.

ADDER enhances energy efficiency for IoT actuators with
infrequent and unpredictable traffic, focusing on optimal DRX
settings and underutilized PSM potential. Unlike prior research
[6], [7] that either overlooked PSM or did not distinguish
its unique energy characteristics, ADDER adapts to varying
energy profiles. It considers the wake-up energy cost during
the Tracking Area Update process for more accurate energy
consumption analysis. Furthermore, while majority previous
studies (see Section VII) relied on sparse or aggregated
device data, ADDER incorporates contextual information
like weather, traffic, and holidays from service providers for
precise, application-specific traffic predictions. This enables
ADDER to balance energy savings with service demands,
optimizing network settings for peak to low demand scenarios.

ADDER’s implementation faces two key challenges: the
complexity of its reinforcement learning (RL) framework,
which must navigate a vast state space influenced by con-
textual factors and a varied action space for energy-saving
settings, and the impracticality of online learning due to
latency issues. To tackle these, ADDER uses a simulator for
safe exploration and data collection, the DDPG framework for
managing the high-dimensional action space, and a context-



aware predictor to simplify the state space by estimating traffic
patterns from contextual data. This approach enables syn-
thetic data generation for various traffic scenarios, facilitating
practical RL model training with limited real-world data and
addressing the data scarcity challenge in IoT applications.

In evaluating ADDER’s performance, we compared it with
two baselines: EDRX, set to the longest acceptable delay,
and AC-DRX, an actor-critic approach used for a similar
problem in a previous study [6]. ADDER showed superior
energy efficiency, particularly in low-traffic scenarios. It also
introduces a traffic arrival probability threshold as a practical
metric for service providers to balance energy use against
their needs, simplifying the adjustment process. A case study
in bike-sharing highlighted ADDER’s real-world applicability,
focusing on how prediction inaccuracies affect performance.
This study underscores ADDER’s potential for operational
enhancements and predictive model refinement.

This paper is organized as follows: Section II introduces
the background by explaining Radio Resource Control (RRC)
energy-saving configurations and parameters. Next, Section III
describes ADDER’s architecture, detailing its role in param-
eter configuration, the reinforcement learning problem defini-
tion and solution. The paper concludes with Section IV, which
presents an empirical assessment of our methodology.

II. BACKGROUND

In this section, we provide the necessary background. We
first explain the energy-saving mechanisms, encompassing a
variety of energy-saving parameters, as well as the procedures
for reconfiguring these parameters. Particular attention is paid
to pinpointing the specific parameters that ADDER can op-
timize for actuator applications. Following this, we provide
an overview of several IoT actuator use cases, alongside an
analysis of their respective traffic patterns, which will serve to
formulate the problem in the subsequent sections.

A. Energy Saving Mechanisms and Related Parameters

The RRC layer is the central controller, managing radio
communications between the mobile device and the network.
Regarding energy management, the RRC layer plays a crit-
ical role by negotiating with mobile devices to establish an
agreement on the devices’ communication modules’ sleep
and awake time intervals. Following the schedule, mobile
devices shift between different RRC states, which governs
their radioactivity. This process is crucial for balancing energy
efficiency with the need for consistent and reliable communi-
cation.

DRX and PSM Mechanism. DRX [1], [2] allows devices
to enter a low-power state while periodically checking for
incoming traffic, necessitating maintenance of network syn-
chronization and readiness for immediate wake-up and data
reception. On the other hand, PSM [3], [4] puts the device into
a deeper sleep, shutting down more functionalities, completely
disconnecting from the network and achieving more significant
energy savings.

Energy Saving Parameters. Fig. 1 illustrates the relation-
ship between radio activity, RRC states, and parameters for
DRX and PSM. To save energy during the RRC inactivity
timer, a DRX Mechanism in an RRC-connected state called
cDRX was introduced, and its configurations mainly include
the OnDurationTimer and cDRX cycle.

In the RRC Idle state and PSM, critical parameters such
as Paging Frame (PF), Paging Occasion (PO), Paging Time
Window (PTW), eDRX cycle, and T3324 play vital roles
in balancing device availability and energy conservation. PF
determines the specific periods for the device to wake up
and check for paging messages, while PO specifies the exact
instances within these frames, enhancing energy efficiency.
The PTW defines a sub-duration within the DRX cycle for
receiving paging messages, offering additional power savings.
The eDRX cycle extends these wake-up intervals, allowing
for prolonged low-power states and substantial energy con-
servation. Lastly, T3324 manages the transition duration from
active to idle states, preventing unnecessary state changes and
further contributing to power efficiency. The time following
the expiration of Timer T3324 up until Timer T3412 runs
out is referred to as PSM. At the end of this period, as
marked by Timer T3412’s expiration, UEs send TAU requests
to reconnect to the network.

Fig. 1. RRC states, radio activity and timers for NB-IoT and LTE-M. (While
there are small differences between the RRC parameter options and
NB-IoT has unique and mandatory EPS optimization, the diagram
applies to both protocols within the context of ADDER.)

Traditionally, RRC parameter values are initially determined
during the first RRC setup, followed by negotiations between
UEs and MMEs to refine these settings. These negotiations
employ specific Information Element Identifiers (IEIs) for
the parameters above during RRC Connection Reconfigura-
tion and TAU procedures. However, Early Data Transmission
(EDT) in 3GPP Release 15 [8] has eliminated the need for con-
ventional RRC Connection Reconfiguration, favoring an event-
triggered TAU. This approach offers significant advantages in
specific scenarios, such as low battery situations or unique IoT
application requirements. In Section III, the workflow depicts
how ADDER leverages event-triggered and periodic TAUs for
timely reconfiguration of energy-saving parameters.



B. Targeted Use Cases and Traffic Patterns

Earlier work performed measurements with IoT devices
over commercial networks in Norway to assess how traffic load
and RCC parameter settings affect battery life expectancy [9].
As expected, message frequency is the dominant factor de-
termining lifetime, followed by the setting of DRX, signal
quality, and finally packet size. These findings further motivate
ADDER’s approach to adapting energy saving parameters
based on traffic behavior.

TABLE I
TYPICAL TRAFFIC PATTERNS IN USE CASES OF INTEREST.

Usecases MT Message Frequency Delay Tolerance
Lighting control irregular 15 seconds

Smart Irrigation irregular , infrequent 1 minute

Smart appliances irregular, infrequent 3 seconds

Bike Sharing irregular 10 seconds

Table I presents various IoT actuator applications that
predominantly wait for irregular mobile-terminated (MT) mes-
sages, along with their associated delay tolerance as referenced
in [10]. It is worth noting that these applications typically
perform periodic updates of their state or send heartbeat
signals via MO messages. However, our primary focus in
this context is on optimizing energy consumption for MT
messages. Delivering timely and accurate commands to IoT
devices through MT messages is vital, but may come at the
cost of increased energy consumption.

III. METHODOLOGY

A. Problem Formulation

Conserving energy in an IoT actuator needs accurate pre-
diction of packet (paging request) arrival times within a
time window to ensure responsiveness to anticipated requests
while transitioning to sleep mode during periods of inactivity.
However, due to the unpredictable nature of burst traffic, the
actuator must carefully balance entering sleep mode for energy
savings with frequent monitoring to avoid missing packets.
This challenge can be framed into a bandit problem, where
decisions are made without full knowledge of the environ-
ment, akin to choosing between sleep and monitoring without
knowing the exact timing of packet arrivals. Although precise
request times are unattainable, estimating the probability of a
packet arriving within a given time window is feasible. With
such a probability estimation, one can set a threshold to omit
infrequent requests with low arrival probabilities. When the
request probability is moderate, reduced monitoring suffices;
however, frequent checks or ensuring delay tolerance are
inevitable for high-probability scenarios. Historical data are
proved valuable in forecasting these probabilities, with time
series analysis revealing busy and quiet periods. Apart from
time-centric factors, external conditions also play a role. The
influence of days of the week, holidays, and local events must
be considered when shaping these patterns for more accurate
prediction. For instance, fields may not require irrigation

following prolonged rain, and areas experiencing shared-bike
shortages often see increased demand.

B. ADDER Design

ADDER addresses the energy parameter setting challenge,
which is framed as a contextual bandit problem, by employing
a modified DDPG algorithm. DDPG stands out due to its de-
terministic policy, which directly selects the optimal action for
each state. Moreover, its ”deep” neural network architecture
effectively handles the high-dimensional action spaces that
involve numerous energy-saving parameters. This sets it apart
from AC-DRX [6], another actor-critic framework that relies
on tabular learning and stochastic policy gradients. While AC-
DRX reduces the action space dimension to a single parameter
through redefinition, it still necessitates sampling from a distri-
bution encompassing all discrete actions and additional search
efforts to find optimal actions. To train the critic and actor
networks, DDPG needs training data, which can be challeng-
ing for IoT actuators receiving infrequent commands. ADDER
decouples the DDPG model from specific application contexts
to address this data scarcity. It accomplishes this by employing
a simulator to generate training samples encompassing varying
packet arrival probabilities. When configuring parameters for
a specific application, a context-aware predictor estimates the
packet arrival probability based on the context. Subsequently,
the DDPG model utilizes this estimated probability to make
informed action selections. Using synthetic datasets enables
DDPG to undergo efficient training without the reliance on an
extensive volume of real-world data.

C. ADDER Architecture
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Fig. 2. ADDER Architecture

Fig. 2 shows how ADDER works and how it fits into the
standard data transmission process between base stations and
IoT actuators. ADDER’s Learning and Control Application
consists of two key components: a context-aware predictor and
a DDPG-based policy maker. The predictor, using information
from IoT servers and external sources, estimates the likelihood
of a data packet arriving from the server in each time window.
Meanwhile, a simulator generates training data for the policy
maker by simulating traffic with varying arrival probabilities
within a time window. This simulation records the resulting la-
tency and energy consumption given the device power profile,



DRX and PSM parameters, and service latency requirements.
Following the model’s training, the policy maker utilizes the
predicted probability in conjunction with a predefined thresh-
old specific to the service to determine optimal parameter
settings. These newly determined parameter configurations
are then transmitted to the controller, where a parameter
update process is initiated to ensure that both the network
and end devices are effectively prepared for the impending
changes. The updated configurations are included in a TAU
response. When the network receives a TAU request from the
end devices, it sends them the updated settings. This allows
the devices to adjust their local parameters accordingly. End
devices can start the TAU request through periodic updates or
utilize the on-demand TAU. While reconfiguring parameters
through TAU introduces overhead in control signaling, the
infrequent downlink packets (a quarter hour to serval hours)
characteristic of IoT actuator-centric applications makes the
overall signaling overhead manageable.

D. Context-aware Predictor

Accurately forecasting application traffic remains the pri-
mary challenge in setting power-saving parameters. Time se-
ries analysis, a common technique employed in previous stud-
ies, typically concentrates on the traffic patterns of individual
devices. Even when applied to forecast the traffic pattern for a
service, it may not fully capture the infrequent, unpredictable,
and intermittent nature of IoT actuator applications. Consider
a bike-sharing service, where usage patterns can fluctuate sig-
nificantly based on the time of day, day of the week, weather
conditions, and specific events. Even with a consistent usage
pattern, the traffic pattern of each bike is likely to differ. While
primary time series data might be adequate for tracking daily
peaks, identifying variations across weekdays versus weekends
or comprehending seasonal and annual shifts—such as those
observed during pandemic years—requires more training data,
which may be impractical. By integrating more ”context” from
the environment, ADDER can craft more precise traffic fore-
casts. This enables finer power-saving strategies and bolsters
the efficiency of IoT actuator applications. In specific scenarios
detailed in Section IV, our case study with a bike-sharing
service revealed that ADDER surpassed conventional time
series forecasting models like ARIMA [11] and LSTM [12]
in predicting user demand patterns.

E. Modified DDPG

We consider the problem under the scenario that an agent
operates within an independent and identically distributed
(i.i.d) contextual bandit framework that allows for continuous
action choices. At each time step, denoted as t, and gathers a
state vector xt = [xt1, xt2] from the state space X = [0, 1]2.
The completion of each time step is marked by a TAU
update. At the beginning of each step, the new energy-saving
parameters for the step set up, and the timer for the periodic
TAU is reset. If no requests are received before the timer
runs out, the step terminates with the periodic TAU. If a
request arrives before the timer reaches zero, the UE triggers

an on-demand TAU, which completes the current step. xt1

is the estimated packet arrival probability. xt2 stands for
a threshold determined by the IoT service provider. When
xt1 falls below this threshold, energy considerations become
paramount; conversely, if xt1 surpasses the threshold, latency
takes precedence. Following this, the agent selects an action at
from action space A, where A = [−1, 1]N and receives reward
rt = R(xt, at), where R : X × A. To simplify the problem,
we leave out the settings for cDRX and PTW, only focus on
the configurations of T3324, TeDRX (eDRX cycle), and T3412,
which results in N = 3. We modify the values of T3324 and
T3412 in terms of TTI units (equivalent to the duration of a
subframe), TeDRX is expressed in units of 10 TTI (equivalent
to the duration of a radio frame). These values can vary from
0 up to the maximum TTI in the time window of a single
step and are mapped onto the action space respectively. These
values were originally set as fixed values in accordance with
the 3GPP protocol.

The primary objective for ADDER is to prioritize meeting
delay tolerance requirements during service peak hours while
concurrently aiming to maximize energy conservation during
off-peak periods. Thus we define the reward function R as
follows:

R =


Dat

+ Lat
if xt1 > xt2, S > d

(1−Dat
) + Eat

+ Lat
if xt1 > xt2, S <= d

αDat
+ Eat

+ Lat
if xt1 <= xt2

(1)

where d represents the delay tolerance, a variable contingent
on the specific requirements of the IoT application and S is the
maximum delay achievable by the selected action set. Eat

and
Lat

, representing the normalized energy cost and normalized
actual latency cost, respectively. Dat

denotes the normalized
distance between the maximum delay of the selected action set
and the delay tolerance, i.e. d−S. The coefficient α is a control
parameter that can be used to specify the relative importance
of the maximum delay cost over energy cost depending on the
IoT application requirements.
Dat

serves as a mechanism for constraining action selection
during peak hours. It imposes a penalty in the form of a
negative reward when an action set chosen results in a waiting
time exceeding the specified delay tolerance. This penalty is
essential for preventing the model from overly prioritizing
energy savings in scenarios where the probability of a request
arrival is low but still categorized as peak hours according to
the IoT application’s requirements. It ensures that the model
maintains latency within the delay tolerance. Conversely, Dat

grants positive rewards for actions when the maximum delay
incurred by the action set closely approaches but remains
below the delay tolerance. This reward system discourages
the model from becoming excessively focused on minimizing
latency costs to the detriment of other factors. The coefficient
α is a control parameter that can be used to specify the
relative importance of the maximum delay cost over energy
cost depending on the IoT application requirements. This
approach may result in longer wait times during off-peak
hours, potentially leading to the loss of some customers.



Businesses have the flexibility to adjust their threshold xt2

to strike a balance between device maintenance and customer
profitability, striving for maximum overall gain.

The process is then repeated with a new state at time
t + 1. Unlike the standard RL setting, there is no transition
function in the bandit setting. We defined deterministic policy
µθ that maps states to specific actions in A, parameterised
by θ. A deep contextual bandit agent for continuous actions
based upon the DDPG algorithm [13] is used in ADDER to
help deal with the one step RL problem. DDPG is a model-
free, off-policy reinforcement learning algorithm designed
specifically for environments with continuous action spaces.
Combining concepts from Deep Q-Learning (DQN) and Actor-
Critic methods, DDPG utilizes two neural networks: an actor
network that determines the optimal action given a state, and
a critic network that evaluates the quality of a given state-
action pair. The actor produces a deterministic policy, guiding
the agent towards the best perceived actions, while the critic
estimates the Q-value of the chosen action, helping to refine
the actor’s decisions.

Usually, as a solution for MDP problem, Q-value represents
the expected cumulative future reward an agent can obtain,
starting from state s, taking action a, and thereafter following a
specific policy and is described and updated using the Bellman
equation. As a bandit problem, the selected action won’t affect
the future state, thus the optimal one-step Q-value for (xt, at)
as follows:

Q∗(xt, at) = E[R(xt, at)], (2)

We refine the critic network using the following mean-squared
error (MSE) function to bring our estimated Q-values Qϕ

closer to the optimal Q∗.

L(ϕ,E) = E
(xt,at,rt)∼E

[
(Qϕ(xt, at)− rt)

2
]
, (3)

where ϕ represents the critic network parameters. Given that
our focus is solely on the immediate rewards of each step,
rather than the cumulative reward, we removed the target
networks.

Since the actor network produces a deterministic action for
each state, a behaviour policy β is used for exploration, by
adding noise sampled from a one-step Ornstein-Uhlenbeck
process N to the deterministic actor policy:

β = µ(xt|θµt ) +N , (4)

We update the deterministic policy gradient for the contextual
bandit setting by:

∇θJβ(µθ) =

∫
X
ρβ∇θµθ(a|x)Qµ(x, a)ds,

= Ext∼E

[
∇θµθ(xt)∇aQ

µ(xt, at)|at=µθ(xt)

]
,
(5)

where, ρβ(x) defines the state distribution visited under policy
β, which in the bandit setting is equivalent to sampling states
from our environment E.

TABLE II
CURRENT CONSUMPTION PARAMETERS

Symbol Description Value

IPSM PSM floor current 2.7µA
IPO Average current during PO 5913µA
IeDRX Average current during idle edrx 23.82µA
Iinact Average current during RRC inactivity 15345µA

IV. EVALUATION

In this section, we will first describe the configuration of
ADDER, followed by an evaluation of ADDER from three
perspectives: comparing ADDER to other baseline methods
in scenarios involving nonstationary and infrequent traffic,
demonstrating the utility of ADDER across various applica-
tion services with distinct objectives regarding energy con-
servation and latency, and finally, we examine the impact of
traffic prediction errors on the performance of ADDER with
a real-life use case.

A. Simulator

We use a simulator to generate the data samples needed
to train our model. The simulator creates packets based
on a random packet arrival probability within a given time
window. It precisely mimics the behavior of UE as it transi-
tions between different states according to an energy-saving
mechanism when handling downlink packets. We record the
energy consumption and resulting latency for training. The
energy consumption in the simulator is calculated based on the
specifications from the nRF9160 by Nordic Semiconductor,
a System-in-Package (SiP) that facilitates low-power cellular
IoT designs with its modem support. This SiP is compatible
with both PSM and eDRX power conservation techniques.
Table IV-A provides the power characteristics of the nRF9160
rev2 chip operating in NB-IoT network mode with a voltage
of 3.7v. To simplify the simulation, we assume that during
each TAU from PSM, we switch to the RRC connection state
for 2 seconds. It is important to note that no data transmission
occurs within the duration, equivalent to the RRC inactivity
state. Our simulation environment is built on Gymnasium’s
APIs [14]. While there is an ns-3-based model for LTE energy
conservation, ns-3’s extensive components tend to slow down
data acquisition. Our simulator has significantly improved data
collection speed, approximately eight times faster than the ns-
3-based model.

B. DDPG configuration

Since target networks are removed from the DDPG al-
gorithm, we only need to configure the actor and critic
networks. The actor-network comprises three hidden layers,
each employing a ReLU activation function. It culminates in
a Tanh activation function in the output layer. The output
is then mapped to the appropriate parameter value ranges,
and the resultant action values are input into the simulator.
These hidden layers consist of 64 units, 32 units, and the
dimension of the action space, respectively. Meanwhile, the



critic network utilizes two ReLU hidden layers comprising 32
units to process the observations. It combines these processed
observations with the actions and passes the result through
three additional ReLU hidden layers. These hidden layers in
the critic network also consist of 64 units, 32 units, and finally,
1 unit. During the training process, we employ a batch size
of 256, and both the actor and critic networks use a learning
rate of 0.0005.

C. Performance

Baseline Methods To evaluate our approach, we compare
it with two baselines. The first baseline, EDRX, uses a
static DRX cycle matching the delay tolerance parameter.
Our second comparison is AC-DRX, an Actor-critical-based
approach that combines tabular V value appraisal as a critique
with a stochastic actor policy for improved energy efficiency.

To compare AC-DRX with ADDER, we need to modify
AC-DRX. First, the original AC-DRX framework defines
decision windows (DWs) based on a predetermined number of
incoming requests. Each incoming request is associated with
a corresponding RRC state, and these states are subsequently
used to determine the action to be taken for the next DW.
We redefine the DW to be measured by the number of steps
(corresponding to each TAU update, as detailed in Section 1)
instead of the number of incoming requests. This modification
introduces a new state into AC-DRX to account for cases when
no packets are received within a step. Furthermore, the action
in the original AC-DRX framework is confined to determining
the length of the DRX cycle. It does not encompass the timing
configurations for PSM, which is referred to as the RRC
idle mode in their setup. To align with our method’s action
space for comparative analysis, we adapted the original AC
framework to include the parameter setting for PSM. This
required a transition to a DDPG strategy better suited to our
broader action space. For the critic component in AC-DRX,
we replaced the tabular approach for estimating the V value
for a state with a deep Q-learning algorithm for a state-action
pair. We retained their rule for updating the V value, which
utilizes accumulated rewards to inform the Q-learning process.
We continue using their defined reward function to ensure the
model benefits from their established conceptual groundwork.

Setup In our analysis, we set a fixed periodic TAU period
for each step and configured the AC-DRX model with DWs
spanning five steps each. While the packet arrival probability
remains constant during a single DW (five steps for ADDER),
it varies across different DWs to replicate the fluctuating
peak and off-hour traffic patterns frequently observed in IoT
environments. ADDER is provided with the arrival probability
and a threshold. This threshold determines the extent of
savings achieved when the actual usage probability falls below
it. ADDER 10 and ADDER 40 come with thresholds of 10
and 40, respectively, symbolizing the service’s varying needs
for real-time responses. The higher the threshold, the greater
the demand for immediate responses. Our primary objective
in this section is to compare ADDER to AC-DRX and EDRX
in nonstationary and infrequent traffic scenarios and showcase

how ADDER adapts to service latency requirements according
to the given threshold.

Results Fig. 3 and 4 show the performance of the methods,
evaluated over time windows of one and two hours per
step, respectively. The time window lengths are pertinent to
applications with infrequent traffic, such as actuators receiving
commands every few hours. The figures employ a Cumulative
Distribution Function (CDF) plot for energy consumption
analysis, measured in 100-step increments. For the one-hour
time window, approximately 7.5% of the samples for the
ADDER 40 had latencies over 10 secondsm which results
from the threshold that disregards packets that are unlikely
to arrive, yielding substantial energy savings. ADDER 40
predominantly shows energy usage under 30 Joules per 100
steps, which stands out against the other methods exceeding
30 Joules. Notably, ADDER 40 achieves a 26% reduction
in total energy consumption compared to EDRX. Meanwhile,
ADDER 10 consistently shows latencies under 10 seconds,
with an average of around 5 seconds and a maximum of 10
seconds, but it only offers a 5.7% energy saving over EDRX.
Clearly, adjusting the threshold allows ADDER to modify
its performance in response to the demand for low latency.
Both EDRX and AC-DRX maintain median latencies below
one second. However, AC-DRX, designed to focus on energy
efficiency, shows a more varied latency range and realizes an
energy saving of 2.9% .

For the two-hour time window, ADDER 40 is more
energy-efficient, saving approximately 32.7% more energy
than EDRX, while ADDER 10 saves around 5.9%. ADDER
40 exhibits a 9% occurrence of samples with latency exceeding
10 seconds, whereas all the samples for ADDER 10 stay
within the latency boundary. We observed that ADDER 40
consumed less energy than in a one-hour time window, result-
ing in ADDER’s tendency to adopt riskier strategies as traffic
becomes less frequent. ADDER switches to PSM when the
probability is low. When the probability is above the threshold
but remains below a certain level, ADDER uses a combination
of PSM and TAU to save energy. On the other hand, AC-
DRX consumes more energy than EDRX. This is because
AC-DRX lacks information about the probability of packet
arrival, often assuming that a higher packet arrival rate during
the on-duration of a DRX cycle in a DW implies a lower
probability of packet arrival in the next DW. Consequently,
AC-DRX is inclined to enter PSM for extended off durations
to maximize rewards while increasing the frequency of packet
checks during the RRC idle mode to avoid potential penalties
on latency. However, their reward function does not consider
the variations in energy costs associated with extended sleep
periods in PSM, the RRC idle mode, and the energy consump-
tion for TAU after PSM. This oversight is one of the reasons
why AC-DRX performs less effectively.

D. Case Study: Shared Micro-mobility Vehicle in Austin, Texas

In this section, we explore ADDER’s performance un-
der nonstationary traffic conditions without providing it with
packet arrival probabilities. Recognizing that a packet arrival
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estimator can only offer approximations, which might affect
ADDER’s effectiveness, we delve into a case study of scooter
sharing in Austin, Texas, to assess potential performance
degradation due to traffic prediction errors. Despite scooters
having larger batteries and less concern for communication
energy than bike sharing, the user behavior and environmental
impacts on usage patterns between the two are similar enough
to make the scooter-sharing scenario relevant to our study.
Given our emphasis on energy-sensitive applications, we will
refer to“scooters” as “bikes” in our analysis to maintain clarity.

1) Data Overview: Our dataset comprises two components:
the usage statistics and the contextual information. The usage
statistics source from the Austin Transportation Department’s
“Shared Micro-mobility Vehicle Trips” report [15] related to
a scooter sharing service. We selected a subset of data from
the West Campus neighborhood in central Austin, where the
records from March 2019 to June 2019 are notably com-
prehensive and consistent. This dataset features device ID,
census tract numbers for starting and concluding locations,
trip duration, and a 15-minute interval marking the trip’s
initiation and conclusion (for safeguarding user privacy). The
accompanying contextual data encapsulate local events and

weather information. Publicly available data sources provided
information on campus happenings, such as school vacations
and national holidays. We extracted hourly historical records
from Wunderground [16] for weather data, narrowing our
focus to the Austin-Bergstrom International Airport Station.
This station is located just 9 miles from West Campus and
offers the most detailed weather records nearby.

The demand-supply ratio indicates the probability that a
bike will be unlocked, highlighting service dynamics during
both high-demand (peak) and low-demand (off-peak) periods.
This ratio is derived by dividing the forecasted bike demand
by the bike service companies’ supply. However, the specific
data on the number of bikes in operation is not provided,
necessitating an estimation of the total bike supply. This
estimation is based on the anticipated bike demand and the
average turnover rate, which measures how frequently a bike is
used within a given fleet size and demand context. Our analysis
adopts a turnover rate assumption of twice per vehicle, in line
with the estimation approach outlined in [17]. By dividing
the total number of bike trips by this turnover rate, we can
estimate the available number of bikes, thereby enabling us to
calculate the demand-supply ratio.

2) Performance of Context-aware Predictor: The usage
data are divided into training and testing sets. Any missing
values are filled in with their respective mean values, and
the dataset is subjected to min-max normalization. To assess
the stationarity of the usage data, we utilize the Augmented
Dickey-Fuller (ADF) test. This test, known as a unit root test,
measures the impact of a trend on a time series. The results,
which include the p-value and ADF statistics from the ADF
test, are presented in Table III. Since the p-value is below 0.05,
it confirms that the series is indeed stationary. Therefore, time
series-based algorithms can be employed for usage prediction.

The ARIMA Model We first apply an ARIMA model to
the bike usage dataset and then analyze the residual errors.
The PACF plot in Fig. 5 highlights a distinct peak at lag 1,
suggesting nonseasonal behavior. The ACF follows a dimin-
ishing trend, pointing to an AR(1) component. This suggests a
nonseasonal model component of (1, 0, 0). Regarding seasonal
patterns, the seasonal period is defined as S = 24. The ACF
and PACF exhibit significant autocorrelation at lags of 24 and
48. A notable grouping is seen around lag 24 in the ACF.
Additionally, the PACF presents peaks at two intervals of
S, leading us to choose AR(2). Consequently, the seasonal
portion of the model is designated as (2, 1, 0, 24).

The LSTM Model We then employ LSTM for traffic
forecasting. In bike-sharing, the time series data are converted
into instances with an input-output structure with a lag of
24. The chosen model comprises two hidden layers, each
containing 50 neurons. The Adam algorithm is utilized as the
optimization method, and the mean squared error (MSE) is
the loss metric. The set parameters include a learning rate of
0.0008, a dropout rate of 0.2, a batch size of 50, and 800
epochs.

Context-aware Predictor The ADDER constructs a
Context-aware Predictor utilizing a neural network (NN).



TABLE III
ADF TEST RESULTS ON THE TIME SERIES.

ADF Statistic p-value Critical Value 1% Critical Value 5% Critical Value 10%
Value -4.71 8.12e−5 -3.43 -2.86 -2.57

Fig. 5. ACF and PACF

TABLE IV
RESULTS OF THE MLPREGRESSOR PERFORMANCES FOR THE

BIKE-SHARING CASE WITH 3 DIFFERENT LOSS FUNCTIONS.

Method
Test Rainy

MAE MSE RMSE MAE MSE RMSE
ARIMA 14.42 359.65 18.96 27.82 1588.60 39.86
LSTM 19.7 591.29 24.31 32.592 2010.48 44.83

NN 14.27 346.92 18.63 21.09 899.22 29.99

Method
Holiday Windy

MAE MSE RMSE MAE MSE RMSE
ARIMA 24.59 789.10 28.09 85.59 10069.63 100.34
LSTM 20.58 500.52 22.37 21.54 731.06 27.038

NN 11.07 176.43 13.28 22.05 752.02 27.42

Features influencing commuting behaviors, such as hourly
temperature, rainfall, wind intensity, holidays, day of the week,
and hour of the day, are employed to train this NN. This net-
work, specifically a multilayer perceptron (MLP) regression,
consists of three hidden layers with five hidden units in each
layer. The Adam algorithm is chosen for optimization, and the
ReLU function is used for activation.

To assess the performance of the models, we used three met-
rics: mean absolute percentage error (MAPE), mean squared
error (MSE), and root mean squared error (RMSE). In addition
to the standard test set, we evaluated the models on data from
rainy days, holidays, and windy days. We selected data for
these specific test sets using control variables, filtering out
entries with normalized hourly precipitation or wind speeds
greater than 0.5. The accuracy results are presented in Table
IV.

The Neural Network (NN) model outperforms the other
two methods regarding predictive accuracy on rainy days and
holidays, while it performs similarly to LSTM on windy days.
Since ARIMA and LSTM are primarily time series models, it
is expected that the NN would outperform them in less time-
dependent situations. This finding is consistent with previous
studies on bike-sharing system demand prediction [18]–[20],
which suggest that both regular (e.g., time and weather) and
opportunistic contextual factors (e.g., social and traffic events)

play essential roles in forecasting bike usage patterns.
3) Decision Making based on the Context: The discrepancy

between the anticipated and actual traffic patterns could result
in the selection of an alternative action, impacting energy
efficiency and latency. In this paragraph, we demonstrate
how this variance in performance plays out using the bike-
sharing scenario as an example. Fig. 6 depicts the performance
for ADDER act (based on actual packet arrival probability),
ADDER pred (based on estimated packet arrival probability),
and EDRX approaches, respectively. We have set the threshold
at the 30th percentile of the daily packet arrival probability
for both ADDER act and ADDER pred. The latency plot
for the three methods reveals that most latency measurements
range from 0 to 10 seconds, averaging around 5 seconds.
The box plot does not include outliers, which shows that
around 9% of ADDER act samples have latencies over 10
seconds, while about 12.5% of ADDER pred samples exceed
this latency threshold, suggesting that prediction errors can in-
crease latency. Regarding energy consumption, both ADDER
act and ADDER pred are more efficient than EDRX, with
the ADDER act curve higher than ADDER pred, indicating
greater energy efficiency when using actual data. The exper-
imental results demonstrate that devices equipped with the
nRF9160 NB-IoT module save 14.5% of energy using actual
probability and 12.9% with predicted probability over a one-
day period.

V. LIMITATION AND FUTURE WORK

The current simulator oversimplifies energy-saving mecha-
nisms in state transitions by assuming a constant power profile
and ignoring link quality factors such as signal strength and
noise levels. Creating a more practical simulator that accounts
for these real-world complexities is a significant undertak-
ing. This is particularly true when considering link quality,
which demands domain knowledge or extensive samples for
ML-based approaches which necessitate a testing phase to
determine the cost of different actions and retraining after
deployment if environmental conditions change.

Aside from creating a more realistic simulator, it’s essential
to recognize that in actual systems, the action space is not
continuous but rather high-dimensional. The current parameter
configuration relies on binary numbers to represent different
parameter values. To effectively use the Adder’s action spaces,
a more efficient approach for expressing parameter values with
minimal signaling is required.

While we sidestep the energy-intensive process of on-
line training, the implications of this approach on network
providers’ energy usage, particularly in terms of scheduling
parameters, remain uncertain. Moreover, fluctuating dynamic
DRX cycles for various applications within the same cell
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Fig. 6. ADDER’s performance, in terms of energy consumption and latency,
based on packets generated according to the records from the Shared Micro-
mobility Vehicle in Austin, Texas.

complicate the scheduling process, which may lead to less ef-
ficient spectrum use. Exploring the potential of reinforcement
learning to address the challenges of setting energy parameters
and optimizing spectrum and time scheduling could be a
promising direction for future research.

VI. CONCLUSION

We introduced our research on Adder, an adaptive data-
driven method for adjusting energy-saving mechanism pa-
rameters. Adder utilizes contextual data for IoT applications
and employs a machine learning-based approach on the net-
work side to dynamically adjust RRC parameter settings.
Our research demonstrate that Adder offers a customizable
balance between energy efficiency and latency, allowing IoT
service providers to tailor energy-saving network services to
specific service requirements. We assessed the practicality of
our approach through simulations using real-world data from
a mobility-sharing service.

VII. RELATED WORK

Earlier efforts [21] adapt the DRX mechanism for different
services such as web browsing, VoIP service, video and multi-
media services, ultra-reliable low latency communication and
others. These services demand rapid responses, so DRX in the
RRC connection is commonly employed to conserve energy

for such services. On the other hand, for IoT applications
with limited energy resources and infrequent traffic, DRX in
RRC idle mode and PSM are more frequently used [22]–
[25]. The tradeoff between latency and energy motivates many
studies to develop models for setting DRX parameters [26]–
[28]. Adaptive DRX parameter methods have been proposed
to strike this balance by considering traffic characteristics.
For example, a Counter-Driven Adaptive DRX scheme adjusts
DRX cycles based on traffic characteristics through coopera-
tion between base stations and the end devices, and reduces
the signaling required for RRC reconfiguration [29]. Other
earlier work has compared the performance of the DRX
mechanism with adjustable and non-adjustable DRX cycles
for bursty packet data traffic [30]. Quality of service (QoS)
or Channel Quality Indicator (CQI) is essential for service
latency requirements; DRX cycles can be extended or reduced
to satisfy applications’ real-time needs [31]–[33]. Researchers
have also started using AI methods to automatically adjust
DRX configurations. For instance, there have been proposals
to use a trained recurrent neural network (RNN) model to
implement dynamic short or long sleep cycles [34]. Long
short-term memory (LSTM) approaches for forecasting traffic
have also been suggested [35], [36] and these have been
extended to 5G scenarios in [37]. Finally, there have been
RL-based approaches for adjusting DRX cycles by learning
traffic statistics and testing them with different packet arrival
distributions [7].
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