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ABSTRACT
Quantum computers have the potential to outperform classical
computers for some complex computational problems. However,
current quantum computers (e.g., from IBM and Google) have inher-
ent noise that results in errors in the outputs of quantum software
executing on the quantum computers, affecting the reliability of
quantum software development. The industry is increasingly inter-
ested in machine learning (ML)-based error mitigation techniques,
given their scalability and practicality. However, existing ML-based
techniques have limitations, such as only targeting specific noise
types or specific quantum circuits. This paper proposes a practical
ML-based approach, called Q-LEAR, with a novel feature set, to
mitigate noise errors in quantum software outputs. We evaluated Q-
LEAR on eight quantum computers and their corresponding noisy
simulators, all from IBM, and compared Q-LEAR with a state-of-
the-art ML-based approach taken as baseline. Results show that,
compared to the baseline, Q-LEAR achieved a 25% average im-
provement in error mitigation on both real quantum computers
and simulators. We also discuss the implications and practicality of
Q-LEAR, which, we believe, is valuable for practitioners.
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1 INTRODUCTION
QuantumComputing (QC) holds immense promise for tackling com-
plex computational problems beyond the capabilities of classical
computers [29]. However, the practical realization of this potential
faces challenges, with quantum noise being a prominent obstacle.
Quantum noise, stemming from imperfections and environmental
interactions, significantly impacts the accuracy of computations
performed by quantum computers [43]. Consequently, the accuracy
of software1 running on a noisy quantum computer is compro-
mised, even when correctly implemented, thereby limiting QC’s
practical applications and advantage over classical computers.

Developing quantum software while addressing noise poses var-
ious challenges, including uncertainty about whether the quantum
software is producing an incorrect output or if the output is flawed
due to noise in the quantum computer. Recognizing the noise issue,
industry leaders in QC, such as IBM, have identified quantum error
correction (i.e., error correction during circuit executions) and quan-
tum error mitigation (i.e., error correction post-circuit execution)
as pivotal building blocks in their roadmap to facilitate the devel-
opment of practical QC software [14, 27]. This paper focuses on
quantum error mitigation, i.e., applying automated error mitigation
techniques after software execution on a quantum computer to
eliminate the noise effects from the software outputs. Such noise
elimination serves as a valuable tool for quantum software engi-
neers, which facilitates software development and testing with
outputs that have undergone a noise-cleansing process. Doing so,
thereby, increases software engineers’ assurance of the correct-
ness of quantum software under real-world quantum computing
conditions–inherent noise in quantum computers.

In practice, several error mitigation techniques have been in-
corporated into industrial frameworks such as IBM’s Qiskit [11]

1Quantum software is currently being built as quantum circuits, i.e., a sequence of
quantum gate operations applied to quantum bits (qubits).
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to correct output errors in quantum circuits. Notable methods in-
clude Probabilistic Error Cancellation (PEC) [51] and Zero-Noise
Extrapolation (ZNE) [33]. While these techniques show promise
in mitigating output errors, they often require a comprehensive
understanding of specific noise characteristics for each circuit. For
instance, to use PEC, it is needed to identify the predominant type
of noise error and create mathematical models for each type of
noise that can impact a given circuit. However, this process incurs
an exponential cost in terms of circuit sampling (i.e., the number of
repeated executions of a circuit required to build a noise model),
rendering it impractical in terms of scalability for current quantum
computers [18]. On the other hand, ZNE is accurate only for specific
circuits where noise lacks temporal correlation, a condition not met
by the majority of current quantum algorithms [46].

In recent years, there has been a shift among industry practi-
tioners towards machine learning (ML)-based error mitigation for
practical, reliable, and scalable solutions [34], with state-of-art be-
ing QRAFT [39] which leverages an ensemble-based ML algorithm
for quantum error mitigation in the presence of noise. However,
a critical limitation of the current methods, including QRAFT, is
the absence of a reliable feature set that can accurately quantify
the noise magnitude of a quantum circuit. Consequently, the ML
models of these methods could exacerbate errors (instead of remov-
ing them) by making inaccurate adjustments based on wrong noise
estimates, as evidenced by the results of our empirical study.

This paper presents an ML-based error mitigation approach
(Q-LEAR) to address the limitations of current ML-based error
mitigation methods. Q-LEAR proposes a set of novel features, in-
cluding the Depth-cut Program Error (Dpe), which cuts a quantum
circuit at specific circuit depths and leverages quantum operations’
reversibility feature to quantify noise magnitude. With Dpe, we
estimate noise magnitude more accurately when compared with
the state of the art. Q-LEAR enables ML models to effectively learn
and mitigate quantum circuit output error caused by noise. We
empirically evaluate the effectiveness of Q-LEAR with various ML
models on real quantum circuits and across eight IBM’s quantum
computers and their corresponding noisy simulators. Results show
that ML models trained with Q-LEAR perform significantly better
than QRAFT on IBM’s quantum computers and simulators. Notably,
Q-LEAR demonstrates an average improvement of 25% in error
mitigation compared to QRAFT when executed on eight IBM’s
quantum computers and simulators. The results emphasize that
Q-LEAR’s ML model trained with its feature set has the potential
to substantially improve the reliability of quantum software de-
velopment, especially on IBM’s quantum computers. Our work is
industry-relevant because we used real data from IBM’s quantum
computers, and employed real quantum computers and simula-
tors. Additionally, we discuss the implications and practicality of
Q-LEAR to provide valuable insights for practitioners.

2 BACKGROUND
Qubit. Quantum Computing (QC) uses quantum bits, i.e., qubits,
as its fundamental information units. A qubit can exist in a su-
perposition of states |0⟩ and |1⟩, with associated amplitudes for
each, and the state of one qubit immediately influences the state
of another one when they are entangled. The amplitude is a com-
plex number comprising both magnitude and phase in its polar

(a) Python code in Qiskit

(b) Quantum Circuit

Figure 1: W-state quantum program

representation. In the Dirac notation [17], a qubit is denoted as
|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 represent the amplitudes associ-
ated with states |0⟩ and |1⟩, respectively. The superposition of a
qubit upon measurement collapses to a single basis state where the
probability of observing a qubit in either state |0⟩ or |1⟩ is deter-
mined by the squared magnitude of 𝛼 and 𝛽 , with the sum of all
squared magnitudes being 1: |𝛼 |2 + |𝛽 |2 = 1.

Quantum Gate and Circuit. Gate-based quantum computers
manipulate a qubit with a quantum gate, which is a unitary operator
that changes the qubit’s state based on a unitary matrix [19]. For
example, a Hadamard gate puts a single qubit in superposition. Cur-
rently, quantum programs are represented in the circuit model [5];
a quantum program is a sequence of quantum gates acting on a set
of qubits. Each gate operation is a single-time step in the unitary
evolution of a quantum system [5]. Circuit depth is an essential
indicator of circuit complexity, representing the longest sequence
of gate operations in a circuit. Fig. 1a shows the Python code for
the program that creates a three-qubit entangled state known as
W-state [28] and Fig. 1b shows its corresponding quantum circuit.
In Fig. 1a, lines 1-6 create an empty quantum circuit with three
qubits 𝑞0, 𝑞1, 𝑞2 initialized to state |0⟩. Then, lines 7-10 create three
classical registers 𝑐0, 𝑐1, 𝑐2 to hold the measurement results of the
qubits. In line 12, the 𝑅𝑦 gate operation is performed on the circuit
to rotate the Y axis of 𝑞0’s Bloch sphere by 1.91 degrees. Next, in
line 14 a conditional Hadamard gate is applied on 𝑞1 to put it in
superposition. In lines 15 and 16, two conditional NOT (CNOT )
gates are then applied to entangle all three qubits. After applying
another NOT gate (also called X gate) in line 17, we obtain a W
state (|𝑊 ⟩ = 1√

3
( |001⟩ + |010⟩ + |100⟩). Lines 19-21 apply the mea-

surement operation on all three qubits so that we can get as output
one of the three states (|001⟩, |010⟩, |100⟩) with equal probability
on the classical registers 𝑐0, 𝑐1, and 𝑐2.
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Transpilation. Each quantum computer has its own native gate
set and qubit connection topology, implying that each qubit can only
interact with another qubit if a physical connection exists between
them. Hence, some gate operations cannot be performed due to
limited physical connections. Transpilation transforms a quantum
logical circuit to a transpiled circuit only containing hardware-
defined gate operations and additional swap operations for solving
the limited physical connections of the hardware [5].

Quantum Noise. Noise arises from various sources. First, envi-
ronmental factors, e.g., magnetic fields and radiation can impact
computations [10, 43]. When qubits interact with their surround-
ings, these interactions can cause disturbances and information
loss in quantum states, called decoherence [3]. Second, even when
qubits are isolated from the environment, unwanted interactions
can occur among them, resulting in crosstalk noise [7, 41, 45]. Third,
imprecise calibrations of quantum gates, which are necessary to op-
timize gate parameters and reduce errors while improving fidelity,
can introduce noise [9]. Small calibration errors may cause minor
changes in qubit phases, amplitudes, etc., resulting in undesired
states after a series of gate operations [6].

Noise in computing systems is not a unique concept to quantum
computing; it also exists in the classical world, notably in domains
like the Internet of Things (IoT) and cyber-physical systems [48, 55].
This raises the question of whether classical noise filtering or error
correction techniques can be directly applied to quantum com-
puting (QC). While some principles from classical methods, such
as error correction codes derived from information theory, can
find applications in QC [12, 30], it is crucial to acknowledge that
quantum noise possesses unique characteristics. Quantum noise
exhibits phenomena such as entanglement, superposition, and quan-
tum interference, which differentiate it from classical noise. These
quantum characteristics make quantum noise significantly more
complex. In contrast, classical noise can be described using classical
probability theory and arises from random fluctuations, electronic
interference, thermal effects, etc. [50]. Classical noise sources often
exhibit behaviors where noise events are independent and adhere
to probability distributions like Gaussian or Poisson [50]. However,
when it comes to quantum noise, understanding the underlying
distribution becomes extremely challenging. This difficulty arises
primarily due to the restrictions in quantum computing inherent
to quantum mechanics, such as the no-cloning theorem and state
collapse [35]. These quantum principles limit the ability to clone
quantum states and introduce uncertainties in the measurement
process, making it difficult to model quantum noise with the same
level of predictability as classical noise.

3 RELATED WORK AND THEIR LIMITATIONS
Existing quantum noise error mitigation methods can be classified
into three categories.

Probabilistic Error Cancellation (PEC). Since being intro-
duced in [51] for Markovian noise (errors at a time point inde-
pendent of what occurred in the past), PEC has been extended to
handle non-Markovian noise by [26]. It uses the quasi-probability
decomposition of the inverse noise process, resulting in a linear
combination of noisy circuits. Various PEC methods have recently
been proposed, including [21, 52, 54], for various noise errors. Lim-
itation: However, PEC-based methods require complete knowledge

about noise characteristics specific to a circuit, including identify-
ing the dominant noise error type and establishing mathematical
models for each noise channel in the circuit. Hence, applying PEC
to different quantum circuits executing on different quantum com-
puters becomes extremely challenging.

Zero-Noise Extrapolation (ZNE). ZNE gathers execution data
of quantum circuits at different error rates and extrapolates to
the zero noise limit [33]. Various studies have extended ZNE with
different extrapolation methods [8, 23, 33, 51]. Limitation: How-
ever, ZNE-based methods assume that noise is uncorrelated with
time, which has been invalidated by recent studies [46]. In the pres-
ence of time-correlated noise, scaling quantum circuits for different
error rates without altering their spectral distribution becomes
difficult [46].

Learning-based methods. Recent research focuses on using
ML for noise error mitigation to deal with some limitations of meth-
ods such as PEC and ZNE. Examples include Clifford data regression
(CDR) [13], Learning-based PEC (L-PEC) [47], ML-QEM [34], and
QRAFT [39]. CDR employs near-Clifford quantum circuits as train-
ing data to develop a regressionmodel that mitigates noise; however,
it works only for quantum circuits with Clifford gates. L-PEC does
not rely on prior knowledge of noise channels as other PECmethods
do. It generates multiple variants of the target quantum circuit by
replacing non-Clifford gates with gates that are easier to simulate
classically. The execution of these variants is then used as training
data for a probabilistic noise mitigation model. However, L-PEC
assumes that single-qubit Clifford gates are noise-free, which is
not always true for real-world quantum computers [36]. ML-QEM
reduces noise in quantum circuits by leveraging variations in circuit
properties like native gate counts and angle values. It utilizes the
noise parameters of a specific quantum computer and native gate
counts of the target circuit to mitigate noise errors. However, a
significant limitation of ML-QEM is that its effectiveness is limited
to accurately remove noise only from circuits similar to those in
the training data.

QRAFT leverages the reversibility of quantum circuits as a pseudo
oracle for training a noise mitigation regression model. Limitation:
Although QRAFT avoids assumptions about noise and quantum
gate types, it doubles the circuit depth for feature calculation, so
increasing the decoherence likelihood and making error mitigation
difficult [38]. To this end, we introduce a novel Depth-cut Program
Error (Dpe) feature in Q-LEAR that uses the same pseudo oracle as
QRAFT, but divides a quantum circuit into smaller subcircuits to
avoid doubling the original circuit depth (see section 5.2). Further,
QRAFT is more prone to cross-talk noise in feature calculations, as
it uses all qubits in the reversed quantum circuit, leading to addi-
tional cross-talk noise compared to the original circuit. In contrast,
we only measure a subset of qubits for our Dpe feature that are
measured in the original circuit.

4 PRELIMINARIES
We describe the necessary terms to ease understanding of the rest
of the paper.

Output State. It is one of the possible states observed after the
quantum circuit execution. For instance, in the 3-qubit W-state
quantum circuit (Fig. 1), there are 23 (i.e., 8) possible output states
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Table 1: Ideal and noisy outputs of the W-state circuit (Fig. 1)
after 1024 executions on IBM’s Quito (5-qubit quantum com-
puter). Column Output States with Probabilities shows Out-
put States with associated probabilities.

Output States with Probabilities

Circuit Output 000 001 010 011 100 101 110 111

Ideal 0 0.33 0.33 0 0.33 0 0 0
Noisy 0.002 0.034 0.29 0.007 0.29 0.011 0.009 0.004

(see Table 1). Each output state has a probability determined by the
circuit’s logic and operations.

Circuit Output. It refers to all output states and their respective
probabilities observed after circuit execution. For example, the ideal
output ofW-state (row 1 of Fig. 1) comprises 8 possible output states
and their probabilities.

Output Error. Quantum noise manifests as errors in the quantum
circuit’s output. For example, the Noisy row of Table 1 shows the
noisy outputs of the W-state circuit (see Fig. 1), where we observe
wrong output states and probabilities compared to Ideal. In litera-
ture, to quantify the amount of noise in the circuit output, Hellinger
distance (HLD) has been used to calculate the similarity between
ideal and observed circuit outputs [15, 16, 24]:

ℎ(𝑃,𝑄) = 1
√
2
| |
√
𝑃 −

√︁
𝑄 | |2 (1)

where 𝑃 and 𝑄 are the true and observed noisy probability distri-
butions of a circuit’s outputs. Hellinger distance (HLD) is between
0 and 1, where 0 means that two outputs are identical and 1 is
the opposite. For example, the HLD between the Ideal and Noisy
outputs in Table 1 is 0.2, i.e., a 20% difference in the output.

Output State Error.
err𝑠 = |𝑃𝑠 −𝑄𝑠 | (2)

where 𝑃𝑠 is the ideal probability, and 𝑄𝑠 is the observed noisy
probability of a state. For instance, the output state error for |001⟩
(Table 1) is |0.33 − 0.034| = 0.296.

5 APPROACH
We propose a Learning-based Error mitigation Approach with a
Robust feature set (Quantum-LEAR or Q-LEAR for short), to reduce
the effect of noise from program output. Q-LEAR has circuit- and
output-level features. Fig. 2 shows the process (having three steps)
for calculating the Q-LEAR features for a given quantum circuit and
a target quantum computer. First, we transpile a quantum circuit
(see Sect. 2). Second, we divide the transpiled circuit into subcircuits
for Dpe feature calculation (detailed in Sect. 5.2). Third, we execute
the transpiled circuit and all subcircuits on the quantum computer
or simulator and calculate Q-LEAR’s feature set for each output
state derived from the circuit and its output.

5.1 Circuit-level Features
Circuit-level features are: 1) the total number of qubits, also called
circuit width (Cw), 2) the circuit depth (Cd), 3) the number of
single gate operations (Gc1q), and 4) the number of two-qubit

gate operations (Gc2q). We chose Cw since its higher value leads
to a higher probability of cross-talk noise, hence inducing errors
in the circuit output [45]. Cd also directly relates to the effect of
noise on the circuit output [38] as decoherence increases with
the increased depth. Quantum gates also play a crucial role in
characterizing noise effect since different numbers of single and
two-qubit gates are impacted by noise in distinct ways [22]. Note
that after transpilation, the circuit-level features, e.g., depth, can
significantly differ from the logical circuit. Thus, we calculated
features on the transpiled circuits.

In our feature set related to gate operations in a quantum circuit,
we specifically focus on generic features that can be calculated for
gate-based quantum computers. This approach involves excluding
non-generic gate features like counts of U1, U2, and U3 gates, which
were used in QRAFT. In transpiled circuits, U1, U2, and U3 gates
are substituted with varying numbers of other single and two-qubit
gates. The choice of replacement gates depends on the logic of
the quantum algorithm and the gate set supported by the target
hardware (i.e., the one and two-qubit gates physically available in
the quantum hardware). While different quantum computers may
have distinct gate sets, the commonality is that presently only one
and two-qubit gates are physically supported. To ensure compat-
ibility across various quantum computers and quantum circuits,
we have chosen to categorize gates based on the number of qubits
they act on in the transpiled circuit. However, in the current evalu-
ation of Q-LEAR, we focus on quantum circuits transpiled using
IBM’s supported gate set, which includes CX as two qubits and ID,
RZ, SX, and X as one qubit quantum gates. Although theoretically,
Q-LEAR could accommodate any quantum circuit, practical limi-
tations arise as Q-LEAR is currently confined to circuits utilizing
gate sets supported by IBM’s existing quantum hardware.

5.2 Output-level Features
From a quantum circuit output, we use the following output-level
features. Observed Probability (Probobv ) is the probability associ-
ated with an output state observed after execution on the quantum
computer or simulator. Odds Ratio (Odr) quantifies the strength
of association between each output state of two consecutive quan-
tum circuit executions, defined as Odr = odds𝑟

odds𝑟+1
, where odds𝑟 and

odds𝑟+1 are the odds of a specific output state in two consecutive ex-
ecutions [25]. An event’s odd is calculated as odds𝑟 =

𝑃𝑠
1−𝑃𝑠 , where

𝑃𝑠 is the probability of the output state s in one circuit execution.
Compared to probabilities of output states, the odds ratio offers a
slight advantage under noise due to its scale-invariance property,
i.e., remaining unchanged even when all probabilities are multiplied
by a constant noise factor [25]. This property makes the odds ratio
less susceptible to constant noise factors [25].

State Weight (Stw) is the number of qubits in state |1⟩. It was
first studied by [39] as a feature for mitigating noise error; the study
shows that states with lower weights have higher noise errors as
higher-weight states (with more qubits in |1⟩) have a higher chance
of relaxing to states with lower weights due to noise. Relaxed qubits
end up accumulating errors in lower-weight states.

Depth-cut Program Error (Dpe)measures the noise magnitude
affecting the circuit’s output. QRAFT [39] uses the inverse of a
quantum circuit to quantify noise impact on the circuit output.
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Figure 2: Overview of the process of calculating Q-LEAR’s feature set for a given quantum circuit and quantum computer.

However, this doubles the circuit depth, increasing decoherence
noise and weakening correlation between noise effects on inverted
and original circuits. To overcome this limitation, we introduce
the Dpe method. It is inspired from QRAFT [39] regarding the
pseudo oracle and CutQC [49] to cut the original circuit into smaller
subcircuits based on the circuit depth with a specific interval, then
calculating the output error with Eq. 1 for each subcircuit. With
the increased circuit depth, the effect of noise also increases [38].
Thus, employing multiple depth cuts and computing the output
error allows quantifying the noise effect up to a certain depth and
provides insights into the temporal evolution of noise’s impact on
the circuit output.

However, cutting a quantum circuit at various depths has two
limitations. First, such cuts may violate the intended logic of a
quantum program [49], leading to undesirable outcomes. Second,
accurate calculation of the circuit error requires knowledge of the
ideal output of the circuit at different depths, which is impractical on
real quantum computers. To address these limitations, we leverage
the reversible property of a quantum circuit. When a quantum
operation transforms a quantum state |Ψ⟩ into a new state |Ψ′ ⟩
= 𝑈 |Ψ⟩, the conjugate transpose of 𝑈 , denoted as 𝑈 †, acts as the
reverse operation that undoes the effect of 𝑈 [1]. Consequently,
when𝑈 † is applied to |Ψ′ ⟩, the original state |Ψ⟩ is restored:

𝑈 † |Ψ
′
⟩ = 𝑈 † (𝑈 |Ψ⟩) = (𝑈 †𝑈 ) |Ψ⟩ = 𝐼 |Ψ⟩ = |Ψ⟩ (3)

Here, 𝐼 is the identity matrix. With the reversible property, we cut
a quantum circuit at a smaller depth and append the inverse of the
subcircuit to ensure the quantum logic remains valid. Using the
inverse subcircuit, we also get to know the ideal outcome of the
quantum circuit, which should always be |0×𝑛⟩ (i.e., all measured
qubits should be |0⟩) with a probability of 1 and all other states
have a probability of 0.

To calculate Dpe for any quantum circuit, we define depth cut
points at the beginning to 1/4th of circuit depth, 1/4th to 1/2th of
circuit depth, and 1/2th to 3/4th of circuit depth. We omit the con-
cluding section from 3/4th to the end due to its primary composition
of measurement gate operations. Additionally, the inverse of the
measurement gate results in no operation on any qubit, which
contributes no practical value. We use these ranges to ensure that
the total depth of each depth-cut subcircuit, when joined with its
inverse, remains less than the total depth of the original full circuit.

This condition is essential to prevent correlation weakening due to
additional noise from decoherence. Moreover, using these regular
interval ranges guarantees that we always calculate a specific num-
ber of Dpe features (in this case, three, i.e., Dpe1/4 , Dpe1/2 , Dpe3/4 for
any circuit), making Dpe comparable among different circuits. For
example, let’s consider a quantum circuit 𝑄 with five qubits and a
circuit depth of 136. To calculate Dpe for this circuit, we divide 𝑄
into three subcircuits: 𝑄1, 𝑄2, and 𝑄3. 𝑄1 represents the subcircuit
from depth 0 to 34 (1/4th of 136), 𝑄2 is the subcircuit from depth 35
to 68 (1/2th of 136), and𝑄3 corresponds to the subcircuit from depth
69 to 102 (3/4th of 136). The Dpe for subcircuits can be calculated
using Hellinger distance from Eq. 1 as Dpe𝑛 = ℎ( |0×𝑞⟩, |𝑄𝑛𝑄

†
𝑛⟩),

where 𝑞 stands for the number of measured qubits in the original
circuit, |𝑄𝑛𝑄

†
𝑛⟩ represents the observed output of the subcircuit

appended with its inverse, and 𝑛 stands for the 𝑛th subcircuit.

6 EVALUATION AND ANALYSIS
6.1 Research Question
We assess the effectiveness of Q-LEAR in training ML models to
diminish noise errors from quantum circuit outputs by answering
the following research questions (RQs):

RQ1 What is the relationship between Q-LEAR’s feature set and
error in circuit output due to noise?

RQ2 How effective is Q-LEAR in training ML models for error
mitigation, compared with state-of-the-art QRAFT?

RQ3 Do all features play an important role in mitigating errors
from circuit output?

6.2 Experiment Design
6.2.1 Benchmarks. We employ the MQT benchmark [42], which
has a diverse set of quantum circuits tailored for various quantum
computers. The circuits in MQT are categorized into two groups:
those designed for educational purposes (learning-level) and those
addressing real-world problems (application-level). We selected cir-
cuits from both categories that can be executed on all of IBM’s
quantum computers. In total, we obtained 56 learning-level and
six application-level circuits. For application-level circuits, an addi-
tional selection criterion was that they must solve real optimization
problems. This led to the inclusion of the following circuits in our
evaluation. (i) Ground State (GS): Finds ground state of hydrogen
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molecules; (ii) Pricing Call (PC): Estimates the fair price of a single
European call option using iterative amplitude estimation; (iii) Pric-
ing Put (PP): Estimates the fair price of a single European put option
using iterative amplitude estimation; (iv) Quantum Approximate Op-
timization Algorithm (QAOA): Solves a Max-Cut problem instance;
(v) Vehicle Routing (RT ): Solves a vehicle routing problem instance;
and (vi) Traveling Salesman Problem (TSP): Solves a Traveling Sales-
man Problem instance.

MQT benchmark provides the final optimized quantum circuits
for all selected problems. For the circuit execution, we used eight
industrial IBM quantum computers accessible publicly through the
IBM Quantum Cloud platform: Lagos, Nairobi, Perth, Belem, Jakarta,
Lima, Manila, and Quito.

6.2.2 Machine Learning Models. Error mitigation in a quantum
circuit’s output is a regression problem. Thus, we selected the most
common ML models [44] for regression, i.e., Linear-Regression
(LR), Lasso-Regression (Lasso), Ridge-Regression (Ridge), Elastic-
Regression (Elastic), Support-Vector Regression (SVR), K-Nearest
Neighbour Regression (KNNR), Ensemble-of-Trees-regression (EDT),
Light Gradient Boosting Machine (LGBM), Extreme Gradient Boost-
ing (Xgb), and Multilayer-Perceptron (MLP).

6.2.3 Training and Testing. To generate training data for ML mod-
els, we used IBM’s quantum simulator in Qiskit Runtime [11], with
noise models from IBM corresponding to the selected quantum
computers. Due to the long waiting queues for getting access to
IBM’s quantum computers, generating training data on real quan-
tum machines is infeasible. The noise models provided by IBM are
constructed using calibration data, approximating the noise experi-
enced in real quantum computers. These models enable classical
simulators to produce results with simulated noise.

For supervised learning, we used an ideal simulator without a
noise model to obtain the ground truth for each observed state.
However, using an ideal simulator has its limitations, as classi-
cal simulators cannot fully simulate complex quantum algorithms.
Thus, we selected learning-level circuits that can be simulated on
classical computers to generate training data. We hypothesized
that the selected features would be generalizable to more complex
circuits on real quantum computers. To verify this hypothesis, we
used application-level circuits to generate test data by executing
them on real quantum computers instead of simulators.

For the training data, we executed the selected 56 learning-level
circuits on noise models of all eight selected quantum computers,
resulting in approximately 10k quantum states. We executed the six
application-level circuits for the testing data on all eight real quan-
tum computers, yielding 1060 quantum states. For hyperparameter
tunning, we used Optuna [2], which uses Bayesian optimization.We
opted for the Bayesian optimization to have a fair comparison with
QRAFT since QRAFT is also trained with Bayesian optimization
for hyperparameter tuning. For each trial in Bayesian optimization,
the fitness of an ML model was calculated as an average of five-fold
cross-validation. For all ML models, we used Mean Square Error as
the loss function.
6.2.4 Metrics. For RQ1, we use Pearson correlation [31] to quan-
tify the relationship between Q-LEAR’s feature set and the errors
in the quantum circuit output caused by noise. For circuit-level fea-
tures, e.g., depth and width, previous studies (e.g., [38]) have already

demonstrated a positive correlation with quantum noise. Thus, we
do not study their correlation. Regarding output-level features, we
use the metric Output State Error (Eq. 2) to assess the impact of
noise on a specific output state of a quantum circuit, and the Output
Error (Eq. 1) metric to evaluate the overall effect of noise on the
circuit’s output. We employed Pearson correlation to characterize
the relationship between output-level features and the metrics Out-
put State Error and Output Error . Specifically, for Stw and Odr , we
computed the correlation with Output State Error , as these features
are derived for each output state of a circuit. Conversely, for Dpe
features, the correlation was determined with Output Error , given
that these features are not calculated for a particular output state
but rather for the entire circuit output.

For RQ2, we initially assess the quality of trained ML mod-
els using common regression metrics found in the literature [40].
These metrics include the Pearson correlation coefficient (R), coeffi-
cient of determination (R2), root mean square error (RMSE), root
mean square relative error (RMSRE), mean absolute percentage
error (MAPE), and mean square error (TestLoss). For a compara-
tive analysis with QRAFT, we first identify the best-performing
ML model based on the aforementioned regression quality metrics.
Subsequently, we compare Q-LEAR with QRAFT using Output Er-
ror (see Eq. 1) as a metric. Output Error represents the Hellinger
distance (HLD) between two probability distributions. QRAFT’s
evaluation mainly used two metrics: (i) State Error: Measured as
Mean Square Error (MSE), which in this paper is defined as TestLoss
and used along with other regression metrics. (ii) Program Error: Ini-
tially, in QRAFT, program error was calculated using Total Variance
Distance (TVD). However, we opted for HLD for several reasons.
HLD is more suitable because it is widely used for comparison with
noise [15, 16, 24]. Also, HLD considers both the difference in proba-
bility values and the overall shape of the distribution. This is crucial,
as a quantum program may yield low probability outcomes, but as
long as the distribution shape aligns with the expected ideal shape,
the result is considered correct. In quantum circuits, specific prob-
abilities obtained in an ideal setting may require more shots (i.e.,
the number of repeated circuit executions to obtain a probability
distribution as an output) when subjected to noise. However, if the
distribution shape matches the ideal shape under noise, additional
shots are unnecessary. TVD does not account for such scenarios,
making HLD a more appropriate choice.

For RQ3, we employed the Leave-one-covariate-out (LOCO)
method to determine the feature importance for each feature in the
proposed feature set. LOCO is a comprehensive method for feature
importance assessment [32], involving the exclusion of one feature
at a time, retraining the model, and evaluating its performance. In
our case, LOCO was utilized to ascertain the impact of a specific
feature on Output Error . To mitigate random bias, we conducted the
LOCO process 10 times. For statistical analysis, we employed the
Mann-Whitney U [20] statistical test and Vargha Delaney 𝐴12 [53]
effect size measure. The statistical tests were conducted on 10 obser-
vations of Output Error for a given circuit-computer pair without a
specific feature, comparing them with 10 observations when utiliz-
ing the full feature set. This setup allows us to assess the importance
of each feature for each test circuit-computer pair, providing valu-
able insights into the impact of individual features.
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Table 2: RQ1 - Results of Pearson correlation analyses for
output-level features with Output State Error and Output
Error. Columns Stw and Odr denote State Weight and Odds
Ratio; Dpe1/4, Dpe1/2 , and Dpe3/4 denote Dpe at various cuts.

Circuits Stw Odr Dpe1/4 Dpe1/2 Dpe3/4

GS 0.003 -0.27 0.40 0.64 0.51
PC -0.44 -0.16 0.49 0.94 0.95
PP -0.43 -0.19 0.63 0.88 0.89

QAOA -0.10 -0.19 0.58 0.57 0.52
RT 0.61 -0.22 0.94 0.91 0.92
TSP -0.11 -0.20 0.70 0.59 0.62

6.3 Results and Analyses
6.3.1 RQ1 – Relation of Q-LEAR’s feature set with circuit error.
Effective features must have some relationship with the target value
(in our case the errors in quantum circuit output), allowing ML
models to leverage this relationship for predicting the target value.
Hence, RQ1 studies such relationship between errors in quantum
circuit output and our proposed features. Regarding circuit-level
features: circuit depth, width, and counts of single and two-qubit
gates, their relationship with noise is well-explored in the literature
(e.g., [38]), which has shown a positive correlation with quantum
noise. Therefore, we do not study their correlation in this research
question.

For output-level features, instead, we executed the selected ap-
plication-level circuits on the selected quantum computers and
simulators [11] and obtained both outputs affected by noise and
ideal outputs. To measure the noise effect on a specific output state
of a quantum circuit, as well as on overall circuit output, we used
the metrics introduced in Section 6.2.4. Results are shown in Table 2.
These correlations explain how the selected features can be used
for error mitigation and how they impact the accuracy of quantum
circuit outputs. Column Stw in Table 2 shows that for PP and PC,
states with lower weights tend to exhibit higher Output State Error
due to an overall negative correlation between Stw and Output State
Error . However, their correlation varies across circuits. For instance,
for RT , a positive correlation was observed. For GS and QAOA, the
correlation is relatively weak. These findings are consistent with
QRAFT [39], which also employs Stw. QRAFT also highlights that
the circuits with a higher number of output states, having larger
weights, tend to experience more errors in output states with lower
weights. This is because states with higher weights have more
qubits in the excited state, making them more prone to relaxation
into states with lower weights [39].

For Odr and Output State Error (see Table 2), for all circuits,
negative correlations were observed, showing that reducing the
odds of observing a specific output state leads to an increase in
Output State Error . This suggests that states with lower odds are
more susceptible to noise effect, or they might be noise-induced
states (e.g., see Table 1’s row Noisy). Note that the correlation
magnitude varies across the circuits, as expected. From columns
Dpe1/4 , Dpe1/2 , and Dpe3/4 , we observe that each Dpe feature exhibits
a moderate to strong positive correlation with Output Error for
all circuits implying that Dpe can be used to quantify the noise
magnitude affecting a specific circuit output.

Table 3: RQ2 – Performance of ML models on test data for
six most commonly used regression performance metrics –
across all eight real quantum computers. Each model with
the best performance for a specific metric is in bold.

Model R R2 RMSE RMSRE MAPE TestLoss

MLP 0.787 0.605 0.071 0.213 5.479 0.005
LGBM 0.792 0.567 0.074 0.227 5.655 0.005
XGB 0.761 0.554 0.075 0.210 5.179 0.006
EDT 0.804 0.590 0.072 0.212 5.189 0.005
LR 0.751 0.542 0.076 0.201 5.068 0.006
Ridge 0.751 0.542 0.076 0.201 5.068 0.006
Lasso 0.754 0.551 0.075 0.200 5.039 0.006
Elastic 0.754 0.551 0.075 0.200 5.039 0.006
SVR 0.637 0.120 0.105 0.187 5.058 0.011
KNNR 0.710 0.485 0.080 0.227 6.272 0.006

RQ1:Overall, the Pearson correlation analysis revealed sig-
nificant correlations for Q-LEAR’s feature set with errors
in quantum circuit output. This suggests that the feature
set has the potential to be utilized for mitigating the noise-
induced errors in the circuit output.

6.3.2 RQ2 – Comparison with QRAFT. In this RQ, we train machine
learning models using Q-LEAR’s feature set and compare them
with the state-of-the-art QRAFT. To identify the best-performing
regression model to compare with QRAFT, we used metrics R, R2 ,
RMSE, RMSRE, MAPE, and TestLoss introduced in Sect. 6.2.4.

Table 3 presents the results of these metrics for all quantum
computers. All models exhibit comparable performance across all
metrics, indicating that the regression models learned similarly
from the selected feature set. Higher R and R2 values indicate better
results, while lower values are preferred for other metrics. Table 3
shows that MLP slightly outperforms the others as it is the best in
three metrics; thus, we use it for comparison against QRAFT.

Table 4 presents a comparison between Q-LEAR and QRAFT. The
column Obv shows the Output Error without any mitigation, the
columnM represents the Output Error after applying Q-LEAR’s mit-
igation, and the column Q shows the Output Error after QRAFT’s
mitigation. The columns %M and %Q demonstrate the percent-
age improvement from Obv. Additionally, the column %B shows
the percentage improvement that Q-LEAR achieved compared to
QRAFT in column Q. In Table 4, positive percentage improvements
are highlighted in green, while negative improvements (indicating
performance below the compared values) are shown in red.

Table 4a presents the average comparison of Q-LEAR’s MLP
and QRAFT in terms of Output Error (Eq. 1) for the six application-
level quantum circuits and all the selected quantum computers.
The table shows a large difference in noise magnitude between
the simulators and real computers. For example, for GS, on aver-
age, the observed Output Error (Obv) on the simulators is 0.35,
but on the real computers it’s 0.55. This difference is a big error
margin indicating the need for training data from real computers,
which is unfortunately limited due to restricted access. Regarding
simulators, the Q-LEAR’s MLP model demonstrates a substantial
improvement in Output Error (column %M) compared to QRAFT
(column %Q) across all circuits. Though the magnitude of the error
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Table 4: RQ2 – Comparison of MLP of Q-LEAR (𝑀) with that
of QRAFT (𝑄), in terms of Output Error, on IBM’s quantum
computers and simulators. Column Obv shows the averaged
values of observedOutput Error without any prediction from
Q-LEAR’s MLP or QRAFT. Columns %M and %Q show the
percentage improvement (given by 𝑣2−𝑣1

|𝑣1 | ∗ 100) in error mit-
igation that Q-LEAR’s MLP and QRAFT achieved over Obv.
%B shows the percentage improvement that Q-LEAR’s MLP
achieved over baseline QRAFT.

(a) Circuit-level (across all selected quantum computers)

Simulators Real ComputersCircuit M Q Obv %M %Q %B M Q Obv %M %Q %B

GS 0.20 0.36 0.35 43.0 -3.0 44.4 0.45 0.60 0.55 18.0 -9.0 25.0
PC 0.32 0.34 0.54 41.0 37.0 6.0 0.60 0.62 0.72 17.0 14.0 3.2
PP 0.34 0.35 0.55 38.0 36.0 2.8 0.59 0.63 0.72 18.0 12.0 6.3

QAOA 0.26 0.29 0.44 41.0 34.0 10.3 0.57 0.48 0.64 11.0 25.0 -18.7
RT 0.05 0.12 0.23 78.0 48.0 58.3 0.10 0.72 0.28 64.0 -157.0 86.1
TSP 0.24 0.34 0.33 27.0 -3.0 29.4 0.36 0.66 0.43 16.0 -53.0 45.4

Average 44.6 24.8 25.2 24.0 -28.0 25.0

(b) Computer-level (across all application-level quantum circuits)

Simulators Real ComputersComputer M Q Obv %M %Q %B M Q Obv %M %Q %B

Lagos 0.16 0.29 0.33 52.0 12.0 45.0 0.44 0.60 0.54 19.0 -11.0 27.0
Nairobi 0.24 0.34 0.41 41.0 17.0 29.4 0.46 0.61 0.56 18.0 -9.0 24.5
Perth 0.21 0.33 0.40 48.0 18.0 36.3 0.47 0.64 0.56 16.0 -14.0 26.5
Belem 0.43 0.29 0.56 23.0 48.0 -48.2 0.65 0.61 0.69 6.0 12.0 -6.5
Jakarta 0.16 0.26 0.34 53.0 24.0 38.4 0.38 0.61 0.52 27.0 -17.0 38.0
Lima 0.23 0.34 0.41 44.0 17.0 32.3 0.44 0.63 0.55 20.0 -15.0 30.1
Manila 0.25 0.26 0.41 39.0 37.0 3.8 0.35 0.63 0.50 30.0 -26.0 44.4
Quito 0.20 0.28 0.39 49.0 28.0 28.5 0.36 0.62 0.52 31.0 -19.0 41.9

Average 38.1 25.1 21.0 21.0 -12.3 28.2

mitigation is smaller for real computers, the Q-LEAR’s MLP model
still outperforms QRAFT, with a total average improvement of 24%.
In contrast, QRAFT tends to overestimate the noise magnitude, es-
pecially in real computer data (highlighted in red). An explanation
is that QRAFT, during feature calculation, doubles the circuit depth
to quantify noise, thereby increasing decoherence and cross-talk
probabilities. This is, however, not the case for the Q-LEAR’s MLP
model, as it employs Dpe, which does not need to go beyond the
circuit depth. In contrast to the baseline QRAFT (column %B), Q-
LEAR’s MLP model demonstrated an average improvement of 25%
for both simulators and real quantum computers. This indicates that
the feature set of Q-LEAR was effective in enhancing performance,
achieving up to a 25% improvement over the baseline QRAFT.

Table 4b shows the comparison of the Q-LEAR’s MLP model and
QRAFT regarding Output Error (Eq. 1) for each selected quantum
computer across all application-level quantum circuits to study er-
ror mitigation capabilities for each specific quantum computer. The
table shows that, on average, MLP achieved 38.1% error mitigation
compared to QRAFT’s 25.1% on the simulators and 21% as compared
to QRAFT’s −12.3% on real computers. QRAFT, in general, seems
to overestimate noise in real computers with the only exception
of Belem computer where QRAFT is better than Q-LEAR’s MLP.
For the rest, Q-LEAR’s MLP performs better, showing that Q-LEAR
has the potential to capture noise patterns for most computers.
Belem being an exception can be caused by two reasons. Either the
noise pattern in Belem significantly differs from other computers,
or the training data is insufficient to generalize across all quantum
computers. We will investigate this in the future.

Figure 3: RQ3 – LOCO feature importance boxplots for the
MLP model on test data for real computers and application-
level circuits. The text (red) shows the %difference between
the medians of boxplots with and without a specific feature.

RQ2: Compared to state-of-the-art, Q-LEAR is effective
in reducing Output Error on simulators and real quantum
computers. Training ML models with Q-LEAR on simu-
lator data even outperforms the state-of-the-art method
trained on real quantum computers highlighting Q-LEAR’s
potential in capturing noise and motivating its application
in training data obtained from real quantum computers.

6.3.3 RQ3 – Feature Importance. We used the Leave-one-covariate-
out (LOCO) feature importance technique introduced in Section 6.2.4
to comprehensively assess each feature’s impact on the model’s
performance. To minimize the effect of training variability, we re-
trained the MLP model with a full feature set ten times. We also
executed the LOCO process for each feature ten times. Next, we
calculated an average Output Error for each real computer and
application-level circuit pair, resulting in 48 observations for the
full feature set and 48 observations for the LOCO process for each
feature. Fig. 3 shows that excluding Probobv caused a median in-
crease of 32% Output Error as compared to the full Q-LEAR (the
blue boxplot). All other features have a median increase of over
5% Output Error . This shows that all features are important for the
MLP model performance. Moreover, we also see slight increases
in the variances for the LOCO boxplots as compared to those of
the full feature set. This suggests that the full Q-LEAR helps to
achieve more trustworthy predictions when compared with the
models trained after dropping any of the features.

We also conducted the Mann-Whitney U [20] statistical test and
Vargha Delaney𝐴12 [53] effect size measure. For statistical analysis,
we used 10 observations of Output Error for a circuit-computer
pair without a feature and compared them with 10 observations
with the full feature set. Due to space constraints, we provide a
summary of findings; however, full results are provided with the
code [4]. In summary, out of 48 total circuit-computer pairs, for
Dpe1/4 and Dpe1/2 , there are 71% pairs, for which removing these
features results in a statistically significantly worse Output Error
than keeping them. For Dpe3/4 , the percentage is 62%, for Odr is 58%,
for Gc1q is 75%, for Gc2q is 69%, for Cd is 60%, for Cw is 75%, for
Probobv is 88%, and for Stw is 62%. For all the statistically significant
pairs, the 𝐴12 effect size was large according to the classification
of 𝐴12 of Vargha et al. [53]. When looking at all computer-circuit
pairs (i.e., a total of 48), we observed that for 48%, all features were
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important. For the remaining pairs, we observed that only a subset
of features were important. For instance, for QAOA in the Lagos
computer, all features’ p-values are less than 0.05, with large effect
sizes indicating that all features played an important role. On the
other hand, for QAOA on the Perth computer, only Dpe1/2 , Gc1q ,
Cw, and Probobv have p-values less than 0.05 with large effect sizes.
This insight can be used to recommend specific features for specific
computers and circuits, which is an interesting future direction.

RQ3: The Probobv feature holds the highest significance
and all features contribute significantly to error mitigation.

7 THREATS TO VALIDITY
Construct Validity pertains to how accurately a measurement
assesses the intended theoretical concept. One such threat is asso-
ciated with the metrics employed to evaluate the effectiveness of
Q-LEAR. In this work, we used widely accepted regression met-
rics [40], including R, R2 , RMSE, RMSRE, MAPE, and TestLoss intro-
duced in Section 6.2.4 to assess the performance of the machine
learning models.

Another concern relates to the choice of metric for comparison
with QRAFT. We opted for the Hellinger Distance (HLD) metric to
calculate the output error, in contrast to the Total Variance Distance
(TVD) used by QRAFT due to: 1) HLD is widely used for evaluating
performance in the presence of noise [15, 16, 24]; 2) Unlike TVD,
HLD considers the difference in both probability values and the
overall shape of the distribution, which is crucial as a quantum
program may produce outcomes with low probabilities, yet the
result is deemed correct as long as the distribution shape aligns
with the expected ideal shape.

Internal Validity concerns the extent to which experiments
can establish a causal relationship between independent and de-
pendent variables. One such threat is about hyperparameters of the
ML models. To this end, we used Bayesian optimization for hyper-
parameter tuning and implemented five-fold cross-validation. This
helped mitigate dataset selection bias and ensured a more robust
and unbiased evaluation of the models. Another internal validity
threat relates to the choice of the depth-cut interval used for calcu-
lating theDpe feature. We opted for 1/4th intervals as they provided
a fine segmentation that suited the specific characteristics of the
quantum programs under investigation. In many quantum circuits,
there are distinctive segments such as state preparation, compu-
tational steps, and measurements. The selected intervals closely
aligned with these segment divisions in our experiment. For exam-
ple, in most programs we examined, the last 1/4th of their circuits
predominantly consisted of measurement operations. However, we
acknowledge that this choice may not be universally optimal. Deter-
mining the most suitable intervals requires a separate experiment,
and this aspect is part of our future research plans.

Conclusion Validity focuses on the statistical significance of
the results derived from an experiment. Using an ML model intro-
duces inherent randomness, meaning that the presented results can
exhibit variability. To address this concern, in RQ1, we implemented
five-fold cross-validation to minimize the randomness during the
ML model training. Regarding RQ2, we assessed ten distinct runs

Figure 4: Quantum Program Execution Flow using IBM’s
Qiskit Framework integrated with Q-LEAR.

of the complete LOCO experiment to illustrate the median change
in performance. The multiple runs of the experiment help dealing
with the randomness introduced by ML, providing a more robust
and reliable analysis of the outcomes.

External Validity concerns the applicability of our method to
other datasets and domains. One challenge in this regard is the
number of qubits used in quantum circuits, as the impact of noise
significantly increases with a higher number of qubits. Due to
limited access to real quantum computers, we used circuits with
only 5 to 7 qubits. Note that using simulators with a higher number
of qubits does not ensure optimal performance on real quantum
computers, as the noise approximation in simulators may differ
substantially from that in actual quantum hardware, as evidenced by
the Obv column in Table 4. The limited number of available circuits
for training and testing restricts the generalizability of our findings.
To address this limitation, we used the widely adopted benchmark
MQT [42] to select circuits that represent commonly used quantum
circuits. Our approach involved using simpler circuits for training
and more complex, real-world problem-solving circuits for testing,
to maintain practical relevance in the noisy QC era.

8 DISCUSSION
Practical Implications. We provide a practical solution to sup-
port reliable quantum software development across various stages,
including design and implementation, testing, and maintenance.
During implementation, testing, and maintenance, having a depend-
able quantum program execution workflow is critical for verifying
the developed coding solution and assessing the quantum software’s
correctness. While quantum software development can initially be
done using ideal quantum computer simulators that are noise-free,
these simulators become impractical as the complexity of quan-
tum programs increases exponentially with the growing number
of qubits [29]. For practical quantum programs, developers often
have to rely on real quantum computers for program execution.
However, this introduces a new level of uncertainty in the output
of quantum programs due to the effects of noise.

Fig. 4 shows the integration of Q-LEAR with IBM’s Qiskit frame-
work. By mitigating the noise effect from the noisy output of quan-
tum computer after each program execution, Q-LEAR enhances the
reliability of outputs obtained from quantum program execution.
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In our experiments, we demonstrated that Q-LEAR can be applied
to IBM’s quantum computers as a post-processing approach. In the
quantum software development process, when executing quantum
software on a quantum computer, Q-LEAR empowers quantum
software developers to effortlessly mitigate noise from the original
outputs produced by quantum software. This capability allows de-
velopers to analyze and verify whether the quantum software aligns
with their intended behavior, ultimately enhancing the precision
and reliability of quantum software development.

Integration with Quantum Software Stack. Q-LEAR functions
as a post-processing module designed to mitigate the effects of
noise in the outputs of a quantum program. The process of quantum
program execution varies depending on the quantum platform and
the framework used for quantum software development. In a typical
process, the logical quantum circuit (in our case, written in Qiskit)
is first transpiled for the target quantum computer. The execution
of the transpiled circuit is then handled by the runtime service
provider, such as IBM’s Qiskit, and the raw results are obtained from
the target quantum hardware. Q-LEAR is designed as a separate
module that can be integrated with runtime service providers like
Qiskit to consume the raw output from quantum hardware and
perform noise mitigation. The feature set in Q-LEAR comprises
generic features that can be calculated from the transpiled version of
the quantum circuit and the raw results from the quantum hardware.
This design allows Q-LEAR to seamlessly integrate with widely
used quantum software development frameworks such as Qiskit,
as it does not require underlying API calls or logic access from the
black-box runtime services and can seamlessly be integrated into
the quantum software execution process.

Insights on Quantum Noise. In our experiments, the significant
disparity between the classically modeled quantum noise, i.e., noisy
simulators, and the noise in real quantum computers is evident,
as indicated by Table 4 column (Obv). Noisy simulators currently
serve as a weak approximation of real quantum noise. It is well-
established in machine learning that data quality is a crucial compo-
nent. While training machine learning models for noise mitigation
using simulators can yield progress, it has limitations. Our experi-
ments demonstrated that Q-LEAR outperforms the state-of-the-art
even when trained using data from simulators. However, to achieve
substantial improvements in noise mitigation on real quantum com-
puters, there is a pressing need for training data collected from
real systems. Presently, wide access to real quantum computers is
severely restricted, making it impractical to gather sufficient data
for more effective machine learning model training. To support
learning-based methods for noise mitigation, there is a need for
enhanced infrastructure to support quantum technology. This in-
frastructure development is a crucial component of the quantum
software development roadmap outlined by key companies like
IBM [27].

Generalizability to Other Quantum Computers. In this work,
our experimentation focused on the industrial case study of IBM
quantum computers. However, the applicability of Q-LEAR is not
limited to IBM quantum computers alone. Q-LEAR is designed to
work with the majority of gate-based quantum computers, includ-
ing those from IBM, Google, and Rigetti. Q-LEAR operates with

the transpiled version of a quantum program, and the transpilation
process is managed by the vendor’s own runtime services such as
IBM’s Qiskit, Google’s Cirq, or Rigetti’s Forrest. This design en-
sures that Q-LEAR can work with quantum circuits across multiple
quantum computers. Additionally, the feature set employed by Q-
LEAR is generic and can be computed for all gate-based quantum
computers. Currently, the primary differences between quantum
computers from different vendors lie in the basis gate set supported
and the topology of physical connections. These disparities in-
fluence changes in the transpilation process, producing different
transpiled quantum circuits for the same logical circuit on different
quantum computers. However, Q-LEAR’s feature set distinguishes
between gates based on the number of qubits they act on and cal-
culate features from the transpiled circuits, making it applicable to
all current gate-based quantum computers.

Moreover, Q-LEAR is a post-processing module that operates
independently of specific quantum computing runtimes, allowing
it to process raw outputs from any gate-based quantum computing
platform like Qiskit, Cirq, or Forrest. This allows Q-LEAR to inte-
grate with quantum computers beyond IBM’s ecosystem. The ML
model trained by Q-LEAR for IBM computers may not be directly
applicable to other quantum computers like Google’s Sycamore or
Rigetti’s Aspen due to variations in quantum noise influenced by
the physical and environmental characteristics of each system [37].
Retraining the ML model for each quantum computer vendor is
necessary, but it’s a one-time unavoidable cost due to the inherent
nature of quantum noise

9 CONCLUSION AND FUTUREWORK
To use machine learning (ML) for quantum error mitigation in the
current noisy quantum computers, we introduce Q-LEAR that uti-
lizes a reliable feature set for training machine learning models.
These features are derivable from a quantum circuit and its corre-
sponding output, allowingML algorithms tomitigate errors in quan-
tum circuit outputs. We evaluated Q-LEAR with six application-
level quantum circuits on IBM quantum computers and their cor-
responding simulators. Our results, in general, show an average
improvement of 25% compared to state-of-the-art on industrial-
grade quantum computers and simulators. Our feature importance
experiment results show that in general for error mitigation, all
features are important. However, for some circuit-computer pairs,
the significance of each feature varies. In the future, we will experi-
ment with diverse circuits and investigate the relationship between
noise and individual features, particularly how this relationship is
influenced by diverse quantum operations across various quantum
circuits.
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