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Abstract. In the present study, we consider the Extra-Membrane-Intra model (EMI) for the
simulation of excitable tissues at the cellular level. We provide the (possibly large) system of partial
differential equations (PDEs), equipped with ad hoc boundary conditions, relevant to model portions
of excitable tissues, composed of several cells. In particular, we study two geometrical settings:
computational cardiology and neuroscience. The Galerkin approximations to the considered system
of PDEs lead to large linear systems of algebraic equations, where the coefficient matrices depend
on the number N of cells and the fineness parameters. We give a structural and spectral analysis
of the related matrix-sequences with N fixed and with fineness parameters tending to zero. Based
on the theoretical results, we propose preconditioners and specific multilevel solvers. Numerical
experiments are presented and critically discussed, showing that a monolithic multilevel solver is
efficient and robust with respect to all the problem and discretization parameters. In particular, we
include numerical results increasing the number of cells N , both for idealized geometries (with N
exceeding 105) and for realistic, densely populated 3D tissue reconstruction.
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1. Introduction. The cell-by-cell framework, also known as EMI (Extra, Intra,
Membrane) model, is a successful tool in computational electrophysiology, employed
to simulate excitable tissues at a cellular scale. Compared to homogenized models,
such as the well-known mono- and bidomain equations, its essential novelty consists
in resolving cell morphologies explicitly, enabling detailed biological simulations. In
contrast, homogenized models assume extra- and intracellular quantities to be defined
in the whole spatial domain without a geometrical representation of cell membranes.
In this sense, EMI models allow a more detailed modelling of cellular interplay, for
example resolving complex cell networks or capturing inhomogeneities along cells
membranes. The interested reader is referred to [46], where an exhaustive description
of the EMI model, its derivation, some theoretical results, and several applications
are presented and discussed in detail. This framework is especially well suited to
simulate cellular activity in the human brain, where the cell-scale morphology is highly
complex [7, 19]. In this context, 3D dense reconstructions of neural tissue have recently
become available [48, 36, 41, 13, 6]. Moreover, in the field of computational cardiology,
we see a growing interest in modeling cardiomyocytes, with their structured pattern
[38, 28, 30, 29, 45]. In both applications, it is essential to accurately resolve the
propagation of electrical excitation in the tissue under examination [12, 20, 21, 14, 35].

Considering the realistic setting of a tissue composed of several cells, with possibly
different properties, we provide the associated system of partial differential equations
(PDEs) coupled via membrane ordinary differential equations ODEs, and equipped
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with ad hoc boundary conditions. Subsequently, we consider Galerkin-type approxi-
mations of the PDEs system, leading to large linear systems of algebraic equations,
where the resulting coefficient matrices depend on the number N of cells and on the
spatial discretization. The resulting matrices present different levels of structure: at
the outermost level, we have a block structure (e.g. a block arrowhead structure in the
context of neuroscience applications), while each block has a (block) two-level Toeplitz
[47, 44] or (block) two-level Generalized Locally Toeplitz (GLT) nature [25, 4]. The
number of levels is dictated by the dimensionality of the domain. For example, in the
case of three-dimensional domains a (block) three-level Toeplitz or (block) three-level
GLT (asymptotical) structure would occur in any single block.

By generalizing the work in [9], concerning the case of N = 1, our study is
developed in the following two directions:

(i) first we give a structural and spectral analysis of the EMI matrix-sequences
with N fixed and with fineness parameters tending to zero;

(ii) based on the the theoretical results, we propose preconditioners and specific
multilevel solvers, tested in different application settings, both for idealized
and realistic geometries, varying the number of cells N and discretization
parameters.

We emphasize that the GLT analysis is not completely sufficient for the considered
setting and hence specific theoretical tools are developed here, allowing us to give a
quite complete picture of the spectral features of the resulting matrices and matrix-
sequences (e.g. the eigenvalue distribution). Numerical experiments are presented and
critically discussed, showing the efficiency and robustness of a proposed monolithic
multilevel strategy. As a benchmark, we highlight [30], where an efficient solution
strategy is described for an idealized cardiac geometry, discretized with finite differen-
ces, increasing the number of cells up to N > 105.

The present work is organized as follows. In Section 2 the continuous problem
is introduced together with possible generalizations. Section 3 considers a basic
Galerkin strategy for approximating the examined problem. The spectral analysis
is given in Section 4 in terms of distribution results and degenerating eigenspaces.
Specifically, Subsection 4.1 lays out the foundational theories and concepts necessary
to understand the distribution of the entire system (presented in a general form in
Subsection 4.2) and the specific stiffness matrices and matrix-sequences (discussed in
Subsection 4.3). These findings represent the starting point for proposing in Section
5 a preconditioned multilevel strategy, where a selection of numerical experiments
is discussed, in connection with the spectral analysis and the related algorithmic
proposals. Finally, Section 6 contains conclusions and a list of relevant open problems.

2. The EMI model. We introduce the partial differential equations characteri-
zing the EMI model. Compared to homogenized models, we observe that the novelty
of the EMI approach lies in the fact that the cellular membrane Γ is explicitly
represented, as well as the intra- and extra-cellular subdomains.

We consider a domain Ω ⊂ Rd, with typically d ∈ {2, 3}, composed of N disjoint
domains, or cells, Ω1,Ω2, . . . ,ΩN , an extracellular media Ω0 surrounding the N cells,
so that Ω =

⋃N
i=0 Ωi. We define cell membranes Γi = ∂Ωi/∂Ω for i = 0, . . . , N and

the full membrane Γ =
⋃N

i=0 Γi. Moreover, we define possible common interfaces, as
Γij = ∂Ωi ∩ ∂Ωj , for i, j = 0, . . . , N and i ̸= j, satisfying Γij ⊆ Γi. We refer to
Fig. 1 for an example of this geometrical setting. We remark that in neuroscience
applications a thin layer of extracellular media is always present between different
cells, i.e. Γij = ∅. On the other hand, in cardiac tissue modeling, different cells are
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Ω0

Ω1

Ω2 Ω3 Ω4 Ω5

∂Ω
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Γ01 = Γ1
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Γ34

Fig. 1: Example of an EMI geometry with N = 5 cells with Ω =
(⋃5

i=0 Ωi

)
∪
(⋃5

i=1 Γi

)
.

Here, boundary conditions are enforced only for Ω0 and Ω5 and Γ34 is an example of a
common interface between two cells (e.g. a gap junction).

often in direct contact, through so-called gap junction, with a non-empty Γij . We
explore both applications, theoretically and experimentally.

We consider the following stationary problem for extra- and intracellular potentials
ui : Ωi → R, for i = 0, . . . , N :

−∇ · (σi∇ui) = 0 in Ωi,(2.1)

− σi∇ui · ni = σj∇uj · nj = Iij in Γij , ∀j ̸= i,(2.2)

vij = ui − uj in Γij , ∀j ̸= i,(2.3)

τIij = vij + fij in Γij , ∀j ̸= i,(2.4)

where σi ∈ R+ is the conductivity in Ωi, ni is the outer normal of ∂Ωi, Iij : Γij → R
is a membrane current, and fij ∈ L2(Γij) is a known membrane source satisfying
fij = −fji, e.g. in the form

(2.5) fij =

{
g, for i < j,
−g, for i > j,

for a source function g ∈ L2(Γ). The physical parameter τ = C−1
M ∆t ∈ R+ includes

the membrane capacitance CM and a discrete time step ∆t. Essentially, the EMI
problem consists of N + 1 homogeneous Poisson problems coupled at the interfaces
Γi, where the solution can be discontinuous, via a Robin-type condition (2.2)-(2.4),
In particular, eq. (2.4) is obtained by an implicit-explicit (IMEX) time discretization
of the membrane current, given a capacitive and an ionic contribution:

Iij = Iij,cap + Iij,ion = CM
∂vij
∂t

+ Iion(vij).

The capacitive contribution Iij,cap satisfies the capacitor current-voltage relation and
Iion : R → R is an ionic current subject to further modelling, i.e. a possibly non-linear
reaction term. Given the initial condition for the trans-membrane voltage vin : Γ → R,
we have τ−1(vij − vin) = Iij − Iion(vin) for 0 ≤ i < j ≤ N (considering vij = −vji and
Iij = −Iji), and define the source term in (2.5) as

(2.6) f = τIion(vin)− vin.
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Fig. 2: Examples of geometrical setting for the nervous system (left) and cardiac tissue
(right) for d = 2.

We close the EMI problem with homogeneous Neumann boundary conditions:

(2.7) ∇ui · ni = 0 in ∂Ω ∩ ∂Ωi for i = 0, . . . , N.

Because of the pure Neumann boundary condition, the solving potentials ui are
defined up to an additive constant. Uniqueness can be enforced via Lagrange multi-
pliers, pinning the solution in one point, or on the discrete level, providing a discrete
nullspace to the solution strategy.

We investigate two cases of interest in the context of excitable tissues in physiologi-
cal applications, cf. Figure 2, with final remarks on the general problem:

(i) A relevant setting to model nervous system cells. In this case, a layer of
extracellular media is always present between different cells (e.g. neurons
and glial cells, see for example [43]), i.e. Γi = Γi,0 for all i = 1, . . . , N or,
equivalently, Γij = ∅ if i, j ̸= 0.

(ii) A setting for cell-by-cell cardiac modeling. We consider the geometry of
myocardiocytes, cardiac muscles cells which are connected by gap junctions
or intercaleted discs, with a somehow regular pattern [31].

3. Weak formulation and discrete operators. The EMI problem can be
weakly formulated in various ways, depending on the unknowns of interest. We refer
to [46] for a broad discussion on various formulations (including the so-called mixed
ones). As it could be expected from the structure of (2.1)-(2.4), all formulations
and corresponding discretizations give rise to block operators, with different blocks
corresponding to Ωi, and Γij .

We use a so-called single-dimensional formulation and the corresponding discrete
operators. In this setting, the weak form depends only on bulk quantities ui since the
current term Iij is replaced by:

Iij = τ−1(ui − uj + fij),

according to equations (2.3)-(2.4).
After substituting the expression for Iij in (2.2), assuming the solution ui to

be sufficiently regular over Ωi, we multiply the PDEs in (2.1) by test functions
ϕi ∈ Vi(Ωi), with Vi a sufficiently regular Sobolev space with elements satisfying
the boundary conditions in (2.7); in practice Vi = H1(Ωi) is a standard choice. After
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integrating over Ωi and applying integration by parts, using the normal flux definition
(2.2), we have the following variational formulation for i = 0, . . . , N :

−
∫
Ωi

∇ · (σi∇ui)ϕi dx = 0,

σi

∫
Ωi

∇ui · ∇ϕi dx−
∫
∂Ωi

σi∇ui · niϕi ds = 0,

σi

∫
Ωi

∇ui · ∇ϕi dx+
∑
j ̸=i

∫
Γij

Iijϕi ds = 0,

τσi

∫
Ωi

∇ui · ∇ϕi dx+
∑
j ̸=i

∫
Γij

(ui − uj + fij)ϕi ds = 0.

Defining τi = τσi, the weak EMI problem finally reads: for i = 0, . . . , N , find ui ∈
Vi(Ωi) such that

(3.1) τi

∫
Ωi

∇ui · ∇ϕi dx+

∫
Γi

uiϕi ds−
∑
j ̸=i

∫
Γij

ujϕi ds = −
∑
j ̸=i

∫
Γij

fijϕi ds,

for all test functions ϕi ∈ Vi(Ωi). We refer to [46, Section 6.2.1] for boundedness and
coercivity results for this formulation. According to (2.5), the right hand side of (3.1)
can be rewritten as

(3.2) −
∑
j ̸=i

∫
Γij

fijϕi ds = −
∑
i<j

∫
Γij

gϕi ds+
∑
i>j

∫
Γij

gϕi ds.

For each subdomain Ωi we construct a conforming tessellation Ti. We then
introduce a yet unspecified discretization via finite element basis functions {ϕi,j}ni

j=1

(e.g. Lagrangian elements of order p ∈ N) for Vi,h ⊂ Vi:

Vi,h = span ({ϕi,k}ni

k=1) , and ui(x) ≈ ui,h(x) =

ni∑
k=1

ui,kϕi,k(x),

with ni ∈ N denoting the number of degrees of freedom in the corresponding sub-
domain Ωi and ui,k ∈ R the unknown coefficients. Even if the presented theory is
general, in the numerical experiments, we consider the natural choice of tessellations
matching at each interface Γi. From (3.1) we define the following discrete operators
for i = 0, . . . , N : bulk Laplacians

(3.3) Ai =

[∫
Ωi

∇ϕi,ℓ(x) · ∇ϕi,k(x) dx
]ni

ℓ,k=1

∈ Rni×ni ,

and membrane mass matrices:

(3.4) Mi =

[∫
Γi

ϕi,ℓ(x)ϕi,k(x) ds

]ni

ℓ,k=1

∈ Rni×ni .

We then define coupling matrices for i, j = 0, . . . , N and i ̸= j:

(3.5) Bi,j = −

[∫
Γij

ϕi,ℓ(x)ϕj,k(x) ds

](ni,nj)

(ℓ,k)=(1,1)

∈ Rni×nj ,

5
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and membrane source vectors

(3.6) fi = −

∑
j ̸=i

∫
Γij

fij(x)ϕi,k(x) ds

ni

k=1

∈ Rni .

Let us remark that the matricesMi andBij are possibly both low rank, since have non-
zero entries only corresponding to membranes Γi degrees of freedom, cf. eq. (3.9). We

also note that Bi,j = BT
j,i. We write the symmetric linear system of size n =

∑N
i=0 ni

corresponding to (3.1):
(3.7)

D0 B0,1 B0,2 · · · B0,N

B1,0 D1 B1,2
. . .

...

B2,0 B2,1 D2
. . . B2,N

...
. . .

. . .
. . . BN−1,N

BN,0 · · · BN,N−2 BN,N−1 DN





u0

u1

u2

...
uN−1

uN


=



f0

f1

f2

...
fN−1

fN


⇐⇒ Anu = f ,

with the diagonal blocks defined by

(3.8) Di = τiAi +Mi, for i = 0, . . . , N,

and ui = [ui,0, ui,1, . . . , ui,ni ] ∈ Rni collecting the finite element coefficients correspon-
ding to Ωi. We label the coefficient matrix in (3.7) as An, where n is the vector n =
(n0, n1, . . . , nN ) containing the sizes of the matrices D0, D1, . . . , DN . By summing the

entries of n, we obtain the size n =
∑N

i=0 ni of An. Notice that if we fix the number
of cells N , the domains, the type of tessellation, and the type of finite element basis
functions, and only the mesh size varies, then the number n uniquely determines the
vector n. In this setting, we can refer to the corresponding coefficient matrix sequence,
as {An}n. Furthermore, notice that each ni, for i = 0, . . . , N , is also determined by
various approximation and problem parameters as the degree p, the regularity k of
the global approximated solution (e.g. k = 0 for standard Lagrangian finite elements,
k = −1 for discontinuous Galerkin, and k = p−1 in the isogeometric analysis case) and
on the dimensionality d of the domain. Moreover, making the entries corresponding
to Γi denoted explicitly (with subscript Γ), for i = 0, . . . , N , we can write

(3.9) Di =

[
Di,b Di,c

DT
i,c Di,Γ

]
, Bi,j =

[
0 0
0 Bij,Γ

]
, Mi =

[
0 0
0 Mi,Γ

]
,

where Di,b are bulk blocks, Di,c are coupling blocks, and Di,Γ, Bij,Γ and Mi,Γ are
blocks corresponding to Γ, with size ni,Γ. For notational convenience, we define the
total number of intracellular and membrane points,

nin =

N∑
i=1

ni, nΓ =

N∑
i=1

ni,Γ.

3.1. Nervous system setting. In this setting, we have Γij = ∅ for i, j ̸= 0, i.e.
the extra-diagonal blocks vanish for i > 0, i.e. Bi,j = 0 for i, j > 0 and, with abuse

6
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of notation, the coefficients matrix An has the following block arrowhead form:

(3.10) An =



D0 B1 B2 · · · BN

BT
1 D1 0 · · · 0

BT
2 0 D2

. . .
...

...
...

. . .
. . . 0

BT
N 0 · · · 0 DN

 ,

where Bj ≡ B0,j = BT
j,0 for notational convenience. Analytical inverses of block

arrowhead matrices [42], depending only on sub-blocks inversions, can be obtained
via the Sherman–Morrison–Woodbury (SMW) formula (a.k.a. Woodbury matrix
identity), depending on a decomposition in the form:

(3.11) An = Dn + UnVn,

with Dn, Un, Vn conformable matrices. According to (3.7), in the EMI case the
following decomposition is a natural choice:
(3.12)

Dn =


D0

D1

. . .

DN

 , Un =


In0 0
0 BT

1
...

...
0 BT

N

 , Vn =

[
0 B1 · · · BN

In0 0 · · · 0

]
.

Crucially, the D1, . . . , DN blocks are singular, since they correspond to sub-problems
with unspecified boundary conditions (i.e. a rank-one deficiency), and therefore the
block diagonal matrix Dn is also singular, with rank(Dn) = n −N , while UnVn has
rank 2nΓ (by numerical inspection). Thus, to apply the SMW formula, given ϵ > 0,
we define a full rank correction of Dn as

Dn,ϵ = Dn + ϵIn,

and the corresponding block arrowhead matrix

An,ϵ = Dn,ϵ + UnVn,

with limϵ→0 An,ϵ = An. Notice that the term ϵIn could also be replaced by any term
ϵEn such that Dn + ϵEn is invertible for any ϵ > 0. We can then apply the SMW
formula to obtain A−1

n,ϵ as

(3.13) A−1
n,ϵ = D−1

n,ϵ −D−1
n,ϵVn(I2n0 + VnD

−1
n,ϵUn)

−1UnD
−1
n,ϵ,

which depends on D−1
n,ϵ, i.e. N independent inversions D−1

0 , . . . , D−1
N , and the solution

of a linear system of size 2n0. Moreover, given limϵ→0 A−1
n,ϵ = A−1

n , the form of A−1
n,ϵ

can be used to design preconditioners, cf. equation (5.1). Alternatively, we introduce
the following decomposition of An as

An = Dn + En − En + UnVn,

with the rank N correction:

En =


0 0 0 0
0 eT1,1e1,1 0 0

0 0
. . . 0

0 0 0 eT1,Ne1,N

 ,
7
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where e1,i = [1, 0, . . . , 0] ∈ Rni . We can then write

An = D̃n + ŨnṼn,

with D̃n = Dn + En,

Ũn =


0 0 0 0

eT1,1 0 0 0
Un 0 eT1,2 0 0

0 0
. . . 0

0 0 0 eT1,N

 , Ṽn =


Vn

0 e1,1 0 0 0
0 0 e1,2 0 0

0 0 0
. . . 0

0 0 0 0 e1,N

 ,

where D̃n has full rank and ŨnṼn is a 2nΓ +N rank correction. Again, applying the
SMW formula we obtain a closed equation for A−1

n :

(3.14) A−1
n = D̃−1

n − D̃−1
n Ṽn(I2n0+N + ṼnD̃

−1
n Ũn)

−1ŨnD̃
−1
n .

We emphasize that both formulae (3.13) and (3.14) are of concrete algorithmic interest
when either 2n0 or 2n0 + N are negligible compared with global matrix-size n.
However, the size n0, i.e. the number of extra-cellular degrees of freedom, still
corresponds to a d-dimensional discrete Laplacian block (D0) with d = 2, 3. Hence,
unless one uses a symbol approach as in the Schur complement computation in [34]
by means of circulant or τ based approximations, these formulae do not offer a clear
efficient solution strategy.

3.2. Cardiac setting. In the cardiac setting, cells can be in direct contact,
i.e. with a non-empty Γij , and the block structure in (3.10) is lost. In particular,
the structure of An remains general but block sparse. More precisely, the resulting
sparsity pattern has a multilevel band shape: for instance, a two-level tridiagonal
with tridiagonal blocks is encountered when considering a structured cell reticulum
for d = 2. In that specific setting, the nondiagonal blocks are essential for determining
the global spectral distribution and this is the reason why a pure block diagonal
preconditioner might not be effective in this case, cf. Section 5.

4. Spectral analysis. In this section, we study the spectral distribution of the
matrix sequence {An}n in (3.10) under various assumptions for determining the global

behaviour of the eigenvalues of An as the matrix-size n =
∑N

i=0 ni tends to infinity
and for a fixed number of cells N , potentially large: the limit case of N → ∞ is briefly
discussed in Remark 4.11. The spectral distribution is given by a smooth function
called the (spectral) symbol as it is customary in the Toeplitz and Generalized Locally
Toeplitz (GLT) setting [24, 25, 5, 4].

We consider in detail the setting describing cells in the nervous system, with An

given by (3.10). A short discussion on the cardiac setting is contained in Remark 4.12.
Regarding the needed notions, we give the formal definition of Toeplitz structures,
eigenvalue (spectral) and singular value distribution, few connected basic tools, and
finally, we provide the specific analysis of EMI matrix sequences under a variety of
assumptions.

4.1. Toeplitz structures, spectral symbol, GLT tools. We provide the
definition of block Toeplitz sequences associated with a matrix-valued Lebesgue inte-
grable function over [−π, π]d, d ≥ 1. Subsequently, we introduce the notion of
eigenvalue (spectral) and singular value distribution, and we report few tools taken
from the relevant literature.

8
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Definition 4.1. [Toeplitz sequences (generating function of)] Denote by f a d-
variate complex-valued integrable function, defined over the domain Qd = [−π, π]d, d ≥
1, with d-dimensional Lebesgue measure µd(Q

d) = (2π)d. Denote by fk the Fourier
coefficients of f ,

fk =
1

(2π)d

∫
Qd

f(θ)e−i (k,θ) dθ, k = (k1, · · · , kd) ∈ Zd, i2 = −1,

where θ = (θ1, · · · , θd), (k, θ) =
∑d

j=1 kjθj. By following the multi-index notation in
[47][Section 6], with each f we can associate a sequence of Toeplitz matrices {Tν}ν ,
with ν = (ν1, · · · , νd) being a multi-index, with the formula

Tν = {fk−ℓ}νk,ℓ=eT ∈ CN(ν)×N(ν),

with e = [1, 1, · · · , 1] ∈ Nd and N(ν) = ν1 × · · · × νd.
For d = 1

Tν =


f0 f−1 · · · f−ν+1

f1 f0
. . .

...
...

. . . f0 f−1

fν−1 · · · f1 f0

 ,
or for d = 2, i.e. the two-level case, and for example ν = (2, 3), we have

Tν =

[
F0 F−1

F1 F0

]
, Fk =

fk,0 fk,−1 fk,−2

fk,1 fk,0 fk,−1

fk,2 fk,1 fk,0

 , k = 0,±1.

The function f is referred to as the generating function (or the symbol of) Tν . Using
a more compact notation, we say that the function f is the generating function of the
whole sequence {Tν}ν and we write Tν = Tν(f).

If f is d-variate, Cs1×s2 matrix-valued, and integrable over Qd, d, s1, s2 ≥ 1, i.e.
f ∈ L1(Qd, s1 × s2), then we can define the Fourier coefficients of f in the same
way (now fk is a matrix of size s1 × s2) and consequently Tν = {fk−ℓ}νk,ℓ=eT ∈
Cs1N(ν)×s2N(ν), then Tν is a d-level block Toeplitz matrix according to Definition 4.1
in [9]. If s1 = s2 = s then we write f ∈ L1(Qd, s).

As in the scalar case, the function f is referred to as the generating function of
Tν . We say that the function f is the generating function of the whole sequence {Tν}ν ,
and we use the notation Tν = Tν(f).

Definition 4.2. Let f : D → Cs×s be a measurable matrix-valued function with
eigenvalues λi(f) and singular values σi(f), i = 1, . . . , s. Assume that D ⊂ Rd is
Lebesgue measurable with positive and finite Lebesgue measure µd(D). Assume that
{An}n is a sequence of matrices such that dim(An) = dn → ∞, as n → ∞ and with
eigenvalues λj(An) and singular values σj(An), j = 1, . . . , dn.

• We say that {An}n is distributed as f over D in the sense of the eigenvalues,
and we write {An}n ∼λ (f,D), if

(4.1) lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

µd(D)

∫
D

1

s

s∑
i=1

F (λi(f(t))) dt,

for every continuous function F with compact support. In this case, we say
that f is the spectral symbol of {An}n.

9
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• We say that {An}n is distributed as f over D in the sense of the singular
values, and we write {An}n ∼σ (f,D), if

(4.2) lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

µd(D)

∫
D

1

s

s∑
i=1

F (σi(f(t))) dt,

for every continuous function F with compact support. In this case, we say
that f is the singular value symbol of {An}n.

• The notion {An}n ∼σ (f,D) applies also in the rectangular case where f is
Cs1×s2 matrix-valued. In such a case the parameter s in formula (4.2) has to

be replaced by the minimum between s1 and s2: furthermore An ∈ Cd(1)
n ×d(2)

n

with dn in formula (4.2) being the minimum between d
(1)
n and d

(2)
n . Of course

the notion of eigenvalue distribution does not apply in a rectangular setting.

Throughout the paper, when the domain can be easily inferred from the context, we
replace the notation {An}n ∼λ,σ (f,D) with {An}n ∼λ,σ f .

Remark 4.3. If f is smooth enough, an informal interpretation of the limit relation
(4.1) (resp. (4.2)) is that when n is sufficiently large, the eigenvalues (resp. singular
values) of An can be subdivided into s different subsets of the same cardinality. Then
dn/s eigenvalues (resp. singular values) of An can be approximated by a sampling of
λ1(f) (resp. σ1(f)) on a uniform equispaced grid of the domain D, and so on until
the last dn/s eigenvalues (resp. singular values), which can be approximated by an
equispaced sampling of λs(f) (resp. σs(f)) in the domain D.

Remark 4.4. We say that {An}n is zero-distributed in the sense of the eigenvalues
if {An}n ∼λ 0. Of course, if the eigenvalues of An tend all to zero for n → ∞, then
this is sufficient to claim that {An}n ∼λ 0.

For Toeplitz matrix sequences, the following theorem due to Tilli holds, which genera-
lizes previous research along the last 100 years by Szegő, Widom, Avram, Parter,
Tyrtyshnikov, and Zamarashkin (see [25, 4] and references therein).

Theorem 4.5. [44] Let f ∈ L1(Qd, s1 × s2), then {Tν(f)}ν ∼σ (f,Qd). If s1 =
s2 = s and if f is a Hermitian matrix-valued function, then {Tν(f)}ν ∼λ (f,Qd).

The following theorem is useful for computing the spectral distribution of a
sequence of Hermitian matrices. For the related proof, see [33, Theorem 4.3] and
[34, Theorem 8]. Here, the conjugate transpose of the matrix X is denoted by X∗.

Theorem 4.6. [33, Theorem 4.3] Let {An}n be a sequence of matrices, with An

Hermitian of size dn, and let {Pn}n be a sequence such that Pn ∈ Cdn×δn , P ∗
nPn = Iδn ,

δn ≤ dn and δn/dn → 1 as n→ ∞. Then {An}n ∼λ f if and only if {P ∗
nAnPn}n ∼λ

f .

With the notations of the result above, the matrix sequence {P ∗
nAnPn}n is called a

compression of {An}n and the single matrix P ∗
nAnPn is called a compression of An.

In what follows we take into account a crucial fact that is often neglected: the
generating function of a Toeplitz matrix sequence and even more the spectral symbol
of a given matrix sequence is not unique, except for the trivial case of either a
constant generating function or a constant spectral symbol. In fact, here we report
and generalize [16, Remark 1.3] and the discussion below [18, Theorem 3].

Remark 4.7. We remark that the presented tools are general and can be applied to
matrix sequences stemming from a variety of discretization schemes such as isogeome-
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tric analysis or finite volumes, in the spirit of the sections of books [25, 4] dedicated
to applications and of the exposition paper [27].

4.2. Symbol analysis. Here, we state and prove three results which hold under
reasonable assumptions. The first is provided in the maximal generality, while the
second and the third can be viewed as special cases of the first. The results extend
substantially those in [9][Section 4.2] where a single cell in the EMI model is considered,
while the other level of generalization concerns the larger range of relations among all
the various scaled time-steps and space-steps, τi = σiτ, hi, i = 0, . . . , N .

Theorem 4.8. For i = 0, . . . , N assume that

ni,Γ = o(min{ni, n0}) for ni,Γ, ni → ∞,

lim
ni→∞

ni
n

= ri ∈ (0, 1),

n = n0 + nin =

N∑
i=0

ni,

N∑
i=0

ri = 1.

Also assume

(4.3) {Di}n ∼λ (f i, Di),

with Di ⊂ Rki , given f i the ith cell symbol. Taking into consideration the matrix
structures given in (3.11)-(3.12), it follows that

{Dn}n ∼λ (g, [0, 1]×D),

{An}n ∼λ (g, [0, 1]×D),

{An −Dn}n ∼λ (0, [0, 1]×D),

where D = D0 ×D1 ×D2 × · · · ×DN with

g(x, t0, t1, . . . , tN ) =

N∑
i=0

f i(ti)ψ[r̂i−1,r̂i](x),

x ∈ [0, 1], ti ∈ Di and r̂−1 = 0, r̂i = r̂i−1+ ri, r̂N = 1, ψZ denoting the characteristic
function of the set Z.

Proof As a preliminary observation, the employed Galerkin approach, independently
of the specific method, and the structure of the equations imply that all the involved
matrices are real and symmetric. Hence the symbols f i, i = 0, . . . , N , are necessarily
Hermitian matrix-valued. For the sake of notational simplicity we assume that all f i

take values into Cs×s with a fixed s independent of the various parameters: the latter
can be forced without loss of generality thanks to Remark 4.3 and Remark 4.6 in [9],
where the case of different matrix-sizes in the symbols can be reduced to the same
matrix-size with a trick based on the non-uniqueness of the spectral symbols. Taking
into account Definition 4.2 and the assumptions, we have

lim
ni→∞

1

ni

ni∑
j=1

F (λj(Di)) =
1

µki(D
i)

∫
Di

1

s

s∑
m=1

F (λm(f i(ti))) dti,(4.4)

11
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for i = 0, . . . , N and for any continuous function F with bounded support. Now we
consider the (N + 1)× (N + 1) block diagonal matrix as in (3.12)

Dn = diagNi=0(Di)

and a generic continuous function F with bounded support. By defining

∆(Dn, F ) =
1

n

N∑
i=0

ni∑
j=1

F (λj(Di)),

by exploiting the block diagonal structure of Dn, we infer

∆(Dn, F ) =

N∑
i=0

ni
n

1

ni

ni∑
j=1

F (λj(Di)).

As a consequence, according to (4.4) and using the spectral symbol notion, we
obtain that the limit of ∆(Dn, F ) for ni → ∞ with i = 0, . . . , N exists and

(4.5) lim
ni→∞

∆(Dn, F ) =

N∑
i=0

ri
µki(D

i)

∫
Di

1

s

s∑
m=1

F (λm(f i(ti))) dti.

When looking at Definition 4.2, the quantity (4.5) is not in the form of the righthand
side of (4.1): in fact, we observe a summation with N + 1 different terms. The
difficulty is not serious and can be overcome by enlarging the space with a fictitious
domain [0, 1] and interpreting the sum in (4.5) as the global integral involving a step
function. By leveraging the previous statement, we rewrite (4.5) as

1

µk+1(D̂)

∫ 1

0

dx

∫
D

1

s

s∑
m=1

F

(
N∑
i=0

λm(f i(ti)ψ[r̂i−1,r̂i](x))

)
dt0dt1 . . . dtN ,

with D̂ = [0, 1]×D and k =
∑N

i=0 ki. As a consequence,

{Dn}n ∼λ (g, [0, 1]×D)

is complete.
For the study of An we notice that rank(An − Dn) depends on the matrix-

sizes associated with the membrane terms. Therefore, by using the first assumption,
rank(An − Dn) ≤ 2

∑N
i=1 ni,Γ = o(n), n =

∑N
i=0 ni. The latter is sufficient, by

explicit computation, to claim that the related matrix-sequence is zero-distributed in
the eigenvalue sense i.e. {An −Dn}n ∼λ 0. Since An = Dn + Rn, Rn = An −Dn,
the statement in [24, Exercise 5.3] implies directly that {An}n and {Dn}n share the
same distribution i.e. {An}n ∼λ (g, [0, 1]×D) and the proof is concluded. •

The following two corollaries simplify the statement of Theorem 4.8, under special
assumptions which are satisfied for few basic discretization schemes and when dealing
with elementary domains. The argument behind the possibility of writing several
(indeed infinitely many) spectral symbols relies on the non-uniqueness of the spectral
symbol and on the rearrangement theory: for a discussion on the matter refer to
[18, 2].
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Corollary 4.9. With the same notations and assumptions as in Theorem 4.8,
assuming that ri =

1
N+1 , i = 0, . . . , N and Di = D̃ ⊂ Rk, i = 0, . . . , N , we deduce

that

{Dn}n ∼λ

(
diag(f0, f1, . . . , fN ), D̃

)
,

{An}n ∼λ

(
diag(f0, f1, . . . , fN ), D̃

)
,

and {An −Dn}n ∼λ 0.

Proof Under the given assumptions, the thesis of Theorem 4.8 is equivalent to the
main statement, taking into account Definition 4.2 in the matrix-valued setting, i.e.
relation (4.1) with diagonal matrix-valued spectral symbol and s = N+1. For the last
statement, {An − Dn}n ∼λ 0, it is sufficient to follow verbatim the same reasoning
as in Theorem 4.8. •

Corollary 4.10. With the same notations and assumptions as in Theorem 4.8,
assuming f i = f , Di = D̃ ⊂ Rk, i = 0, . . . , N , we deduce that

{Dn}n, {An}n ∼λ (f, D̃)

and {An −Dn}n ∼λ 0.

Proof The proof of the relation {Ãn}n, {An}n ∼λ (f, D̃) follows directly from
the limit displayed in (4.5), after replacing f i with f and necessarily Di with D,
i = 0, . . . , N . The rest is again obtained verbatim as in Theorem 4.8. •

Few remarks are in order.

Remark 4.11. According to the study in [18, 2], the spectral symbol in the Weyl
sense stated Definition 4.2 is far from unique and in fact any rearrangement is still
a symbol. Therefore we have infinitely many choices. For a fixed value of N , the
expressions in Theorem 4.8 and Corollary 4.9 are satisfactory, but they cannot be
used as N tends to infinity since either the domain D0×D1×D2×· · ·×DN changes
dramatically with N or the size of the symbol explodes with N . However, when
considering the univariate nondecreasing rearrangement ϕN of the symbol and under
mild assumptions, the limit as N tends to infinity can be computed and this allows
to understand the limit spectral symbol when the number of cells is extremely large,
so allowing to treat very realistic situations.

Remark 4.12. In the cardiac setting, due to the direct contact of the cells, the
block structure in (3.10) is lost and the important part of the matrix has a sparsity
pattern of d-level tridiagonal type with d ≥ 2. Hence the nondiagonal blocks are
essential for determining the global spectral distribution and this is the reason why a
pure block diagonal preconditioner is not robust with respect to the main parameters,
since the related matrix-sequence does not capture the symbol of the discretization
matrix-sequence. The analysis is not carried out in detail here and it will be the
subject of further investigations.

4.3. Varying and adapting the symbol analysis. The symbol analysis given
in the previous section is now critically discussed in terms of the meaning of the
assumptions. First, we should consider the significance of assuming the existence of
the distribution symbols f i, Di ⊂ Rki , i = 0, . . . , N , related to the various sequences
{Di}n, associated with the blocks of {Dn}n, namely, equation (4.3). Looking at the
structure of Di, as reported in (3.8), assumption (4.3) holds if and only if

lim
hi,τi→0

τi
h2i

= ci ∈ [0,∞), i = 0, . . . , N.
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Indeed, the GLT analysis of stiffness matrices arising from various discretizations (see
e.g. [17, 10] for discontinuous Galerkin, [26, 16] for finite elements of any order, [15,
23, 27] for the isogeometric analysis both in Galerkin and collocation form) guarantees
that there exist f i and Di such that

(4.6)
{
h2iAi

}
n
∼λ (f i, Di), i = 0, . . . , N,

and so we have

{τiAi}n =

{
τi
h2i
h2iAi

}
n

∼λ (cif
i, Di).

Moreover, the rank of Mi in (3.8) is equal to the rank of Mi,Γ, which, in turn, is
bounded by ni,Γ = o(min{ni, n0}) for ni,Γ, ni → ∞. Therefore, the related matrix
sequence is zero-distributed in the eigenvalue sense, i.e., {Mi}n ∼λ 0. Since Di =
τiAi +Mi, applying the statement in [24, Exercise 5.3] we get {Di}n ∼λ (cif

i, Di).
However, we note that if ci = 0 for some i, then the corresponding matrix

sequences {Di}n are zero-distributed in the eigenvalue sense. According to Theorem
4.8, this leads to the problem being severely ill-posed. Consequently, we choose to
exclude this case from our practical consideration.

In the case where
lim

hi,τi→0

τi
h2i

= ∞, i = 0, . . . , N,

or where the limit above holds for some of the values i = 0, . . . , N , we need to scale
the matrices Di by a factor of h2i /τi for equation (4.3) to hold. So, we perform the
following scaling to the global matrix An

As
n = diagNi=0

(
hi√
τi
Ini

)
An diagNi=0

(
hi√
τi
Ini

)
and, following the same reasoning as in the proof of Theorem 4.8, we notice that

As
n = diagNi=0

(
hi√
τi
Ini

)
Dn diagNi=0

(
hi√
τi
Ini

)
+Rn

with rank(Rn) ≤ 2
∑N

i=1 ni,Γ = o(n), n =
∑N

i=0 ni. The statement in [24, Exercise
5.3] implies again that

{An}sn and

{
diagNi=0

(
hi√
τi
Ini

)
Dn diagNi=0

(
hi√
τi
Ini

)}
n

share the same distribution, namely

(4.7) {An}sn ∼λ

N∑
i=0

f iψ[r̂i−1,r̂i],

with r̂−1 = 0, r̂i = r̂i−1 + ri, r̂N = 1.
In all cases, for symbols f i, where i = 0, . . . , N , each f i maps to Csi×si , where the

dimension si is determined by GLT theory as si = (pi − ki)
d. Here, d is the physical

dimension of the domain (generally d = 2 or d = 3), while pi is the degree of the
polynomial in the Galerkin approach, ki the global regularity of the approximated
solution. More precisely we have ki = 0 in standard Lagrangian finite elements,
ki = −1 in the discontinuous Galerkin method, ki = pi − 1 when using isogeometric
analysis, and 0 < ki < pi − 1, pi ≥ 2, in the case of intermediate regularity: see [27]
for detailed exposition and review paper when d = 1 and the sections of applications
in [4] for problems in multidimensional domains when d > 1.
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Cells N 1 25 441 7225 116281
Extracell. dofs n0 789504 647400 626824 696600 934344
Intracell. dofs nin 263169 416025 480249 924800 1046529
Membrane dofs nΓ 2048 12800 56448 231200 930248
Total dofs n = n0 + nin 1052673 1063425 1107073 1621400 1980873
nΓ/n 0.002 0.012 0.051 0.143 0.470

Table 1: Model A: example of number of degrees of freedom corresponding to various
regions for Nh = 1024, i.e. (Nh + 1)2 = 1050625 grid points, varying the number of cells N .

5. Solution strategy and numerical experiments.

5.1. Problem and discretization settings. For i = 0, . . . , N we set σi = 1
in (2.1)-(2.2) so that τi = τ for all i. If not mentioned otherwise, we set τ = 0.01 in
(2.4)-(2.6). We set a passive ionic current in (2.6), i.e. Iion(v) = v, and an oscillating
initial membrane stimulus

vin =
1

2
sin (10∥x∥2) for x ∈ Γ,

resulting in the right hand side g = vin(1− τ), with reference to (2.5),(2.6) and (3.2),
cf. Figure 4. We remark that different choices of right hand sides would not alter
the essence of this work. In terms of geometry, we consider three different settings:
idealized (model A and B) or realistic (model C), described in the following sections.

5.2. Model A: idealized nervous system setting. In the context of Section
3.1, we consider the domain Ω = (0, 1)2. We define the N -cells partitioning function

ψ(x, y) = (x(3N + 1) mod 3, y(3N + 1) mod 3),

and the extra- and intracellular regions are respectively given by:

Ω0 = {(x, y) ∈ Ω | min(ψ(x, y)) ≤ 1},
Ω1 ∪ Ω2 ∪ . . . ∪ ΩN = {(x, y) ∈ Ω | min(ψ(x, y)) ≥ 1}

cf. Figure 3. The domain Ω is discretized with with a triangular tessellation with Nh

elements per side, with a total number of degrees of freedom n = n0 + nin =
∑N

i=0 ni
given (Nh + 1)2 grid points. Assuming that Nh is a power of 2, the number of cells

is chosen of the form N =
(

22k−1
3

)2
, with k = 1, 2, . . . , ⌈(log2Nh)/2⌉, so that the

geometry is compatible with the tessellation and the interfaces Γi are well defined
on the mesh. In this setting, the same number of degrees of freedom ni = nin/N
corresponds to all cells i = 1, . . . , N , and n0, nin, and nΓ depend on N cf. Table 1 and
Figure 3. The overall solution, denoted by u, including u0, . . . , uN and the membrane
initial condition vin are shown in Figure 4 for N = 1 and N = 25.

5.3. Model B: idealized myocytes. In the context of Section 3.2, we consider
the domain Ω = (0, 1)2 and the intracellular subdomains Ω1∪Ω2∪· · ·∪ΩN = (1/8, 7/8)2.
Again, Ω is discretized using a triangular tessellation with Nh elements per side, with
Nh a power of two. The N cells are disposed in a regular

√
N ×

√
N grid. Each cell

corresponds to (1+ 3Nh

4
√
N
)2 degrees of freedom, so that the total number of intracellular

degrees of freedom is nin = N ·(1+ 3Nh

4
√
N
)2 and extracellular ones n0 = 7

2Nh(Nh/8+1).

Examples of this geometry and corresponding solutions are reported in Figure 5.
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N = 25 N = 441 N = 7225

Fig. 3: Model A: two dimensional geometry varying the number of cells N . The extra-
cellular space Ω0 is colored in blue, while cells Ω1,Ω2, . . . ,ΩN in red. No gap junction are
present, i.e. Γij = varnothing for i, j ̸= 0.

Cells N 10 50 100 200
Extracell. dofs n0 185918 371684 467421 635518
Intracell. dofs nin 139677 364293 487399 319302
Membrane dofs nΓ 104547 298463 423930 609369
Total dofs n = n0 + nin 325595 735977 954820 1327301
nΓ/n 0.32 0.41 0.44 0.46

Table 2: Model C: number of degrees of freedom corresponding to various regions varying
the number of cells N .

5.4. Model C: mouse visual cortex tissue. We consider tetrahedral meshes
of a dense reconstruction of the mouse visual cortex at extreme resolution. The dataset
is based on the Cortical MM3 dataset1 centred at position (225182,107314,22000) with
a resolution of 32× 32× 40 nm3. The meshed domains are cubes with side length 10
µm and include the largest 10, 50, 100 and 200 cells in the respective tissue volume,
respectively, cf. Figure 6 and Table 2 for geometrical data. The domain is scaled so
that Ω = (0, 1)3. We show a model C solution and membrane potential in Figure 7.
We remark that the geometrical setting is different w.r.t. Table 1 for model A, since
the tessellation in model C is changing to accommodate for new cells and the insertion
of new cells does not modify the existing ones.

5.5. Implementation and solution strategies. We use FEniCS [1, 32] for
parallel finite element assembly and multiphenics2 to handle multiple meshes with
common interfaces and the corresponding mixed-dimensional weak forms3. FEniCS
wraps PETSc parallel solution strategies. For multilevel preconditioning, we use a
single iteration of hypre boomerAMG algebraic multigrid4 (AMG1) [22]. For compara-
tive studies, we use incomplete LU (ILU) preconditioning with zero fill-in. Parallel ILU
is obtained via a block Jacobi preconditioner, where each block inverse is approximated

1https://www.microns-explorer.org/cortical-mm3
2https://multiphenics.github.io/index.html
3For the corresponding open software visit https://github.com/pietrobe/EMIx
4We use default options, only for d = 3 we set the strong coupling threshold to 0.5.
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Fig. 4: Model A. First row: overall initial conditions vin(x, y) for N = 1 (left) and N = 25
(right). While vin is imposed only for (x, y) ∈ Γ, we also show it in the whole domain Ω.
Second row: corresponding solutions for Nh = 128.

by ILU. For iterative strategies, as stopping criteria, we use a tolerance of 10−9 for
the relative residual. Given the pure Neumann boundary conditions (2.7), uniqueness
is enforced by setting a point-wise boundary condition u0(0) = 0. Run-times are
reported for a 2021 MacBook Pro with an M1 Pro chip, 8 cores, and 16 GB of
memory. When not mentioned otherwise, experiments are performed in serial.

Following (3.14), the analysis in [9], and Theorem 4.8, we also introduce the block
diagonal preconditioner, for ϵ > 0,

(5.1) Pϵ,n = τ


A0 + ϵM̃0

A1 + ϵM̃1

A2 + ϵM̃2

. . .

AN + ϵM̃N

 ∈ Rn×n,

where the bulk LaplaciansAi, for i = 0, . . . , N , are regularized adding the corresponding
bulk mass matrices

M̃i =

[∫
Ωi

ϕi,ℓ(x)ϕi,k(x) dx

]ni

ℓ,k=1

∈ Rni×ni .
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N = 4 N = 16

Fig. 5: Model B. First row: 2D geometry with N = 4 and N = 16 cells; the extra-cellular
space Ω0 is colored in blue, while cells Ω1, . . . ,ΩN in red and membranes in white. Second
row: corresponding solutions u0, . . . , uN for Nh = 512.

Let us remark that, while Mi corresponds to degrees of freedom in Γi, the matrix M̃i

refers to Ωi, and is necessary as a full-rank correction to Ai, which is rank-1 deficient,
lacking boundary conditions.

From a theoretical point of view, a few facts have to be emphasized as a consequen-
ce of the theoretical analysis. First, we notice that

(5.2) {An − Pϵ,n}n ∼λ 0

for any ϵ > 0 thanks to the different scaling of the mass and stiffness matrices, in
accordance with the analysis in Section 4.2 and especially in Section 4.3. Therefore
the two matrix-sequences {An}n, {Pϵ,n}n share the same distribution and more
importantly

(5.3) {P−1
ϵ,nAn − In}n ∼λ 0

because both {An}n, {Pϵ,n}n are sparsely vanishing (see [24, Definition 8.2]), i.e. its
common distribution has a determinant vanishing in a set of zero Lebesgue measure in
agreement with [4, Proposition 2.27]. We remark that (5.3) is an important indication
that the considered preconditioning strategy is effective. For more analysis, also in
connection with outliers, we refer to [9, Section 4.4], where the case of a single cell
(N = 1) was treated in detail.

5.6. Results. We test the convergence of various preconditioners for the CG
solver, to highlight which is the more appropriate, depending on the application
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N = 10 N = 50

N = 100 N = 200

Fig. 6: Model C. For N = 10 the largest ten cells in the dataset are included; four neuronal
somas and few glial cells are visible. As N increases the extracellular space is filled with
more and more glial cells.

of interest. The block diagonal preconditioner Pϵ,n is solved to full precision with
Cholesky from MUMPS and labelled as Pϵ-CG, using ϵ = 10−4 for models A,B,
and ϵ = 1 for model C. As a preliminary experiment, in Table 3, we consider both
model A and B, with a fixed number of cells N and refining the mesh. Compared to
CG or ILU-CG, both the block preconditioned CG and the multilevel preconditioner
are essentially robust w.r.t. Nh. Interestingly, Pϵ-CG is less effective and robust in
the cardiac setting (Model B), for which the latter theory cannot be directly applied.
The direct computation of P−1

ϵ An spectrum shows a constant number of outliers (e.g.
outside the interval [1−ϵ, 1+ϵ]), which are not captured by the spectral analysis, and
can explain the observed convergence. The analysis of the outliers is quite involved
especially in the preconditioned case and need specific tools; see [37, 39, 40] and
references therein. In Table 4, we asses robustness w.r.t. the temporal discretization
parameter τ for the preconditioning strategies. As expected from equation (3.8) and
the discussion in Section 4.3, the block diagonal preconditioner is not robust as τ → 0.
Surprisingly, AMG1-CG is effective also in this scenario.

19

This manuscript is for review purposes only.



Fig. 7: Model C with N = 200 cells: potentials u0, . . . , uN on the clipped 3D domain (left)
and a 2D domain slice (right), additionally highlighting the membrane potential vi0 with
i = 1, . . . , N . For the extracellular space Ω0, the corresponding mesh is shown. The colorbar
for the potential applies to the intra- and extracellular potential in both plots.

Nh 64 128 256 512 1024

Model A CG 392 743 1437 2725 5471
N = 441 ILU-CG 103 178 320 600 1694

Pϵ-CG 46 53 58 61 61
AMG1-CG 8 8 9 10 10

Model B CG 535 954 1810 3506 6931
N = 576 ILU-CG 129 188 327 627 1235

Pϵ-CG 1040 1129 1221 1256 1352
AMG1-CG 9 9 10 10 12

Table 3: Iterations to convergence for various iterative methods with a fixed number of
cells N = 441 (resp. N = 576) for model A (resp. B) and refining spatial discretization via
Nh.

In the following results, we consider an increasing number of cells N for a fixed
discretization. These experiments are of interest for at least two reasons:

(i) relevant portions of realistic tissue are typically densely populated by many
different cells. In particular, in the neuroscience context, membranes have
complex morphologies and the membrane degrees of freedom nΓ are not
negligible w.r.t. n, unless aggressive mesh refinement is used, cf. Figure 6
and Table 2;

(ii) as N increases, also nΓ increases, challenging the hypothesis of Theorem 4.8.
According to Tables 5-6, the block diagonal preconditioner Pϵ is effective only for
model A, and the monolithic multilevel strategy AMG1-CG is effective and robust in
both cases.This superior performance of AMG1-CG can be attributed to the spectral
properties of the whole coefficient matrix-sequence, which exhibits Laplacian-like
characteristics in the related eigenvalue distribution, regardless of the specific setting.
As expected from theory, Pϵ-CG is less effective asN increases, since the first hypothesis
in Theorem 4.8 is no longer satisfied. Furthermore, as already observed at the
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τ 0.1 0.01 0.001 0.0001 0.00001
ILU-CG 1208 943 786 763 787
Pϵ-CG 27 61 139 211 226
AMG1-CG 11 9 8 8 7

Table 4: Model A: iterations to convergence for various iterative methods with fixed spatial
discretization Nh = 512, the number of cells N = 441, and varying time step τ . Results
using 8 cores.

beginning of Section 3.2 and in Remark 4.12, the block diagonal preconditioner cannot
be satisfactory for model B, since it does not capture the spectral distribution of the
original coefficient matrices.

Similarly, for the realistic model C, we report run-times and iteration counts in
Table 6 for an increasing number of cells N , showing robustness and efficiency for both
the ILU and the AMG1 preconditioners (competitive, e.g., w.r.t. the timing results
in [30]). In this case the block preconditioner Pϵ is never viable. Let us remark that
multilevel monolithic solution strategies showcase good scalability when employed on
large-scale problems using massively parallel machines [7, 8].

N 1 25 441 7225 116281
ILU-CG 1796 1713 1920 1909 2353
Pϵ-CG 57 129 276 610 1112
AMG1-CG 9 9 11 11 8

Table 5: Model A: iterations to convergence of various iterative schemes fixing the spatial
discretization with Nh = 1024, i.e. (Nh + 1)2 = 1050625 grid points. Results using 8 cores.

N 1 16 256 576 4096
ILU-CG 577 588 614 627 704
Pϵ-CG 65 305 969 1256 2295
AMG1-CG 8 9 10 10 11

Table 6: Model B: iterations to convergence of various iterative schemes fixing the spatial
discretization with Nh = 512, i.e. (Nh + 1)2 = 263169 grid points.

6. Concluding remarks. We described a numerical scheme for approximating
the solution of the EMI equations under the assumptions of N distinct cells. We
showed the structure and spectral features of the coefficient matrices obtained from
Galerkin discretizations, which are spectrally described by an appropriate linear combi-
nation of Laplacian symbols, cf. Theorem 4.8. This information suggests the use of
both block diagonal preconditioners and multilevel strategies to accelerate Krylov
solvers, when the spectral analysis hypotheses are satisfied. Realistic settings might
challenge these hypotheses and we can expect degradation of block preconditioner
performance, as we observe in the numerical experiments. In practice, a single
monolithic multigrid iteration is the most robust strategy, according to the presented
tests. Geometrical dependencies on convergence have yet to be fully understood. In
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N 10 50 100 200
ILU-CG 0.9 [248] 3.0 [320] 3.9 [257] 6.3 [368]
Pϵ-CG 66 [1069] 397 [2220] 812 [2344] 1224 [2452]
AMG1-CG 1.4 [11] 4.2 [12] 6.3 [13] 9.2 [12]

Table 7: Model C: run-times (s) and iterations (in square brackets) to convergence of ILU
and AMG1 preconditioners, compered to a direct approach, increasing the number of cells
N with geometries according to Table 2. Results using 8 cores.

general, many open problems remain, e.g., the precise study of the outliers, of their
number, and of the asymptotic behavior with respect to the matrix-size and fineness
parameters: using, e.g., the tools given in [37, 39, 40]. Finally, with regard to the
SMW formulae (3.13) and (3.14), beside their algebraic structure, it is of interest to
perform a GLT based spectral analysis. The difficulty is represented by the presence
of rectangular terms (as Un, Vn, Ũn, Ṽn), but this can be overcome by using quite
recent extensions of the GLT theory as that in [3]. However, the GLT analysis and
the design of symbol-based preconditioners as in [34] are not immediate and they are
beyond the scope of the current work.
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