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Abstract
Large language models (LLMs) have gained widespread attention and user adoption. These models, when
trained on source code from platforms like GitHub, acquire a deep understanding of both the semantic
and syntactic structures of code (i.e., code language models or CLMs). While CLMs offer tremendous
assistance in software engineering tasks, their massive data requirements result in substantial energy
consumption and CO2 emissions. In this work, we aim to find solutions to help reduce the environmental
impact of training CLMs. Rather than following the conventional wisdom that “more data is better”,
we advocate for a refined approach to data in the training of CLMs. We propose that by intentionally
decreasing training data volume while simultaneously enhancing data quality through data refinement
techniques, we can reduce energy consumption while maintaining or even improving performance on
software engineering tasks.
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1. Relevance and Novelty

Large Language Models (LLMs), like ChatGPT,1 have garnered significant media attention and
attracted a growing user base. These models can be trained on source code from platforms
like GitHub,2 enabling them to acquire both semantic and syntactic structure of code [1]. As a
result, they can assist with various Software Engineering (SE) tasks, ultimately saving software
developers valuable time on laborious tasks, such as bug fixing and code writing. Such Code
Language Models (CLMs) rely on extensive pre-training corpora, but the sheer scale of these
data and models leads to prolonged training times and high energy consumption. For instance,
training a Transformer model can result in CO2 emissions up to 17 times the average annual
per-capita consumption in America [2]. More recent models, like BLOOM, trained on 46 natural
and 13 programming languages, surpass this level, requiring more than a million GPU hours,
433,196 kWh of energy, and producing 81 tons of CO2 [3, 4]. This prompts the question of
whether it is necessary to use all available data for CLM training or if it is possible to reduce
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the data volume to decrease energy consumption while maintaining high performance. Current
practices are based on the assumption that more data is better [5]. However, we suggest a
different approach: refining datasets to reduce data volume and energy consumption while
improving data quality (e.g., removal of low-quality data). Consequently, we aim to create
sustainable CLMs by intentionally decreasing training data volume, with data refinement
techniques, while maintaining competitive performance on SE tasks.

2. Research Opportunities

While machine learning and LLM research is growing and sustainability is becoming a relevant
factor, we believe that the research efforts on sustainability for CLMs are trailing behind. To
address this, we outline three research opportunities:
Survey of refinement approaches: To gain a better understanding of the state-of-the-art
for data refinement, and potential research gaps to fill, we aim to carry out a survey on data
refinement techniques for CLMs. This can be seen as an addition to a recent survey performed
by Albalak et al. [6], who described existing methods for data selection for language models.
This study focused on LLMs trained on natural text, and techniques applied for source code play
only a small role, which should be extended. Moreover, investigating further modalities, such
as images, for data reduction strategies could provide a better understanding and inspiration
for a more sustainable training of CLMs.
Understanding energy consumption: As a second research opportunity, we investigate data-
centric factors contributing to the energy consumption in CLMs. Specifically, we will examine
characteristics of data that lead to higher energy consumption during training and inference
for downstream tasks. This investigation aims to provide insights into which data properties
influence higher energy consumption, enabling informed decisions on which samples to remove
for more sustainable training. The removal of samples that lead to high energy consumption
holds promise for subsequent refinement of training data, such as focusing on Python samples
if they require more energy for training CLMs compared with other programming languages.
Applying data refinement: While refinement techniques have shown success for NLP tasks
and LLMs trained on text, they are relatively new and have not yet been applied to CLMs.
Techniques such as distillation and coresets (a weighted subset of the datasets) [7] have proven
successful in various ML tasks, yet they remain unexplored in the realm of language models, let
alone CLMs [8]. These techniques can be applied for a sustainable training of CLMs.

Moreover, we aim to extend the range of data refinement strategies applied for training CLMs,
for instance, by taking code quality into account (i.e., removing low-quality samples), which
can improve effectiveness (e.g., achieve better performance with a lower number of samples).

3. Related Work

Training CLMs: Transformer-based CLMs are commonly trained on GitHub corpora, such as
the CodeSearchNet dataset, which contains 8.5 million functions in 6 programming languages [9].
Simply randomly removing training data can negatively affect performance. However, em-
ploying systematic data refinement approaches can mitigate these effects or even improve



performance by eliminating low-quality training data, including duplicated samples [10]. This
approach reduces the volume of training data, thereby lowering CO2 emissions during the
training process while improving data quality.

To maintain quality control, several filtering stages have been applied in shared pre-trained
models, including deduplication, filtering based the proportion of alphanumeric characters
and the exclusion of code from GitHub repositories with a low number of stars [11, 12, 13, 14].
However, these filtering stages have not undergone systematic investigation (e.g., a single
threshold is often chosen for filtering GitHub repositories based on stars without comparing
performance before and after filtering).
Sustainable Machine Learning: The computational costs associated with training state-of-
the-art Machine Learning (ML) and Deep Learning (DL) models increased by a factor of 300,000
between 2012 and 2018 [15, 16], a concerning trend highlighted in various studies [17, 18, 19].
This surge in computational costs poses challenges for researchers with limited computational
resources [20], and also raises environmental concerns due to the associated CO2 emissions[2].
Therefore, it is imperative to assess ML model quality and performance not only on metrics
such as accuracy, but also on energy consumption. Techniques to improve training efficiency
include quantization, model pruning, algorithm optimisation and dataset reduction [21]. For
instance, Verdecchia et al. achieved a 92% improvement in energy efficiency when training DL
models on structured data by reducing dataset size and number of features, [17].
Efficient and sustainable training of language models: The sustainable training of LLMs
has been investigated from various perspectives, most notably: hardware design, parallelisation,
batch sizing, layer dropping and data selection [22, 23, 24]. Another promising approach for
promoting efficient training, with less data, is the BabyLM Challenge [25], which restricted the
amount of training data for a text corpus to 10 million and 100 million words.
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