
Mesh Motion in Fluid-Structure Interaction with DeepONets
Ottar Hellan, Dept. of Numerical Analysis and Scientific Computing, Simula Research Laboratory,

hellanottar@simula.no

MESH MOTION

Mesh motion is a sub-problem in a num-
ber of applications involving a change-of-
coordinates between reference and target do-
mains. The change-in-coordinates in mesh
motion methods is often given by the solution
of PDEs, with Dirichlet boundary conditions
representing the deformation of the domain
boundary [3].
A mesh motion operator is a mapping g 7→ u,
where g : ∂Ω → Rd represents the deforma-
tion of the boundary ∂Ω of the reference do-
main and the resulting u : Ω → Rd defines the
change-of-coordinates χ : Ω → Rd, χ(x) =

x + u(x). For this change-of-coordinates to
be well defined and suitable for computations,
some requirements are that it is bijective, that
u|∂Ω = g, and that J = det(∇χ) > 0 every-
where in Ω.

↓

Figure 1: Illustration of mesh mo-
tion using biharmonic model. All
mesh vertices are moved by a de-
formation field u : Ω → Rd com-
puted from boundary deformation
(red), such that deformed mesh is
non-degenerate.

Mesh motion operators used
Harmonic
• fast, easy to compute
• can only handle relatively small domain
deformations

Biharmonic
• hard to solve (mixed formulation, H2-
conforming elements, DG-formulation)

• can robustly handle large deformations
DeepONet-corrected harmonic [1]
• harmonic mesh motion plus DeepONet
correction

• exact satisfaction of boundary condition
u|∂Ω = g by modifying trunk output

Harmonic with DeepONet source
term
• a DeepONet defines a source term for a
Poisson equation

• equivalent to DeepONet-corrected har-
monic

−∆u = 0 in Ω,

u = g on ∂Ω

∆2u = 0 in Ω,

u = g on ∂Ω,

∇u · n = 0 on ∂Ω

u = harm(g) + l ·D(g)

l = 0 on ∂Ω, l > 0 in Ω

−∆u = divD(g) in Ω

u = g on ∂Ω

Branch Network

   Trunk Network

Figure 2: Illustration of DeepONet model.

FLUID-STRUCTURE INTERACTION TEST PROBLEM

We train on data from and evaluate against biharmonic mesh motion on com-
mon fluid-structure interaction (FSI) benchmark problem [2]. In FSI prob-
lems, the movement of the solid domain changes the geometry of the fluid
domain over time. In certain formulations of the FSI equations, mesh mo-
tion is used to solve the fluid equations over the time-varying domain by
constantly updating a reference mesh of the initial domain.

Figure 3: Two snapshots of fluid velocity magnitude in FSI benchmark problem before
(left) and after (right) oscillations have developed. The solid domain (white and gray) is
slightly off-center and a parabolic fluid inflow from the left causes periodic oscillations.

Randomly generated training set

A training set of plausible solid deformations is made using Gaussian pro-
cesses. A nonlinear elasticity problem with sampled Dirichlet boundary
conditions for the center line of the solid gives the fluid domain boundary
deformations to create the training set.

MESH QUALITY COMPARABLE WITH BIHARMONIC

Mesh quality of DeepONet-corrected harmonic mesh motion is on par with
biharmonic mesh motion on the FSI benchmark test data
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Figure 4: Quantiles of scaled Jacobian mesh quality over training set from 20 initializations
of chosen DeepONet architecture (left) and histogram of scaled Jacobian mesh quality over
training set for biharmonic (middle) and best performing DeepONet (right) mesh motion.

IMPLEMENTATION FOR FLUID-STRUCTURE INTERACTION
For FSI and other problems, g is an unknown and solved for simultaneously
with the mesh motion. Thus we need to solve the nonlinear problem

−∆u = divD(u) in Ω, u = g on ∂Ω.

The Jacobian of this problem is dense, due to the non-local basis of the trunk
network, and a standard Newton solver is therefore inefficient. We use an
approximated Newton solver where the DeepONet’s contribution to the Ja-
cobian is neglected and observe fast convergence.

QUANTITIES OF INTEREST VALIDATED ON BENCHMARK

Quantities of interest for the FSI2 benchmark problem, such as drag and lift
forces, agree with the reference values and those computed using biharmonic
mesh motion, validating the DeepONet mesh motion models.
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Figure 5: y-displacement
of flag in warming up (top
left) and reference win-
dow (bottom left), drag
(top right) and lift (bottom
right) from FSI2 bench-
mark computed with dif-
ferent mesh motion mod-
els.

COMPUTATIONAL COST COMPARABLE WITH HARMONIC

In a monolithic ALE-formulation FSI solver, the DeepONet mesh mo-
tion model is faster than biharmonic and competitive with harmonic mesh
motion. This also holds with increasing number of parallel processes.
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Figure 6: Newton iterations per time step in FSI2 benchmark (left) and mean time per
Newton iteration in linear (middle) and log (right) scale. Simulation run with 50458 de-
grees of freedom for harmonic and DeepONet mesh motion and 71658 degrees of freedom
for biharmonic mesh motion. Total simulation time: 2714 s for biharmonic and 2423 s on 20
processes.
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