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Program synthesis with Large Language Models (LLMs) suffers from a “near-miss syndrome”: The generated
code closely resembles a correct solution but fails unit tests due to minor errors. We address this with a multi-
agent framework called Synthesize, Execute, Instruct, Debug, and Repair (SEIDR). Effectively applying SEIDR
to instruction-tuned LLMs requires determining (a) optimal prompts for LLMs, (b) what ranking algorithm
selects the best programs in debugging rounds, and (c) balancing the repair of unsuccessful programs with the
generation of new ones. We empirically explore these tradeoffs by comparing replace-focused, repair-focused,
and hybrid debug strategies. We also evaluate lexicase and tournament selection to rank candidates in each
generation. On Program Synthesis Benchmark 2 (PSB2), our framework outperforms both conventional use of
OpenAI Codex without a repair phase and traditional genetic programming approaches. SEIDR outperforms the
use of an LLM alone, solving 18 problems in C++ and 20 in Python on PSB2 at least once across experiments. To
assess generalizability, we employ GPT-3.5 and Llama 3 on the PSB2 and HumanEval-X benchmarks. Although
SEIDR with these models does not surpass current state-of-the-art methods on the Python benchmarks, the
results on HumanEval-C++ are promising. SEIDR with Llama 3-8B achieves an average pass@100 of 84.2%.
Across all SEIDR runs, 163 of 164 problems are solved at least once with GPT-3.5 in HumanEval-C++, and 162
of 164 with the smaller Llama 3-8B. We conclude that SEIDR effectively overcomes the near-miss syndrome in
program synthesis with LLMs.
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1 Introduction
Automatic programming has been an important goal in the field of artificial intelligence almost
since its inception, promising to reduce the workload of software developers by automatically
solving some of the tasks they face [Manna and Waldinger, 1971]. More recently, program synthesis
has emerged as an interpretable alternative to black-box machine learning methods that lets human
experts understand, validate, and edit the algorithms generated by artificial intelligence [Bastani
et al., 2022]. In addition to the scientific benefits of such knowledge, it extends the benefits of
machine learning to domains, such as embedded systems, where it is technically challenging [Dhar
et al., 2021], or healthcare, where it is avoided for safety reasons [Connolly et al., 2023; Jia et al.,
2022].

The predominant methodology in automatic programming has shifted from deductive pro-
gramming [Alur et al., 2015; Manna and Waldinger, 1992] to genetic and evolutionary methods
[Ahvanooey et al., 2019] to, more recently, large autoregressive language models trained on corpora
of source code [Xu et al., 2022; Zan et al., 2023] to benefit from their remarkable capability for
zero-shot generalization [Chen et al., 2021b]. However, even state-of-the-art models fine-tuned
on a specific class of programming tasks still require costly filtering to discard the outputs that
fail to compile or pass tests [Li et al., 2022]. These outputs tend to be superficially similar to the
correct solutions [Liu et al., 2023b; Ren et al., 2020; Shirafuji et al., 2023] despite failing to produce
the expected output, an issue known as “near-miss syndrome” or “last mile problem” [Bavishi
et al., 2022].

Given these challenges, research in machine learning on source code [Allamanis et al., 2018]
tends to focus on restricted domain-specific languages [Chen et al., 2021a; Liventsev et al., 2021;
Polozov and Gulwani, 2015] or automating specific parts1 of the software development process [Lu
et al., 2021; Niu et al., 2023], such as code search [Di Grazia and Pradel, 2023; Kim et al., 2023], code
translation [Yan et al., 2023], detection of issues [Chakraborty et al., 2022; Fernandes et al., 2016],
improvement [Petke et al., 2018], and repair [Le Goues et al., 2019] rather than fully autonomous
programming in a programming language popular with human developers.2 However, two recent
innovations potentially make the latter task tractable.

One is Synthesize, Execute, Debug [Gupta et al., 2020], a framework that attempts to bridge the
“last mile” gap by introducing program repair into the program synthesis algorithm. A programming
task is specified using both a natural language description and a set of Input/Output (I/O) pairs
that demonstrate what output is expected from the program, thereby combining text-to-code [Iyer
et al., 2018] and programming by example [Gulwani, 2016; Halbert, 1984] paradigms typical for
competitive programming [Zavershynskyi et al., 2018]. Synthesize, Execute, Debug creates a first
draft program using a generative model, compiles and executes it with given input examples. This
is followed by a program repair step to fix the identified errors.

1Similarly to autonomous driving [Grigorescu et al., 2020; Marcano et al., 2020].
2https://www.tiobe.com/tiobe-index/.
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Another relevant innovation is instruction fine-tuned Large Language Models (LLMs) [Zhang
et al., 2024a]. Instruction fine-tuned models use human feedback in their training process and are
designed to explicitly or implicitly admit two inputs: a source text (or code) and a textual command
instructing the model to edit the source in a particular way, e.g., “summarize” or “translate to
Python.” These models have been shown to be highly successful in automatic program repair [Fan
et al., 2023]. However, given the free-form nature of these instructions,3 how one should engineer
instructions that maximize repair performance is an open question.

These innovations have led to the proposal of a framework, Synthesize, Execute, Instruct,
Debug, and Rank (SEIDR),4 initially introduced in our GECCO-2023 paper [Liventsev et al., 2023].
SEIDR is a multi-agent iterative framework that uses feedback from code execution and failing
test cases to update the initially generated buggy code. Our initial explorations cover SEIDR with
Generative Pre-Trained Transformer (GPT)-3 as the bug summarization model and Codex (or
GPT-3 trained on code) as the program generation and debugging model. In addition, by modifying
the tree arity parameter (see Section 2.2), we investigate the tradeoff between generating and
repairing only one program versus regenerating any program that does not pass all the tests, as
well as intermediate configurations, where we build a tree of programs and update the best ones.

While Codex is an early code generation model, the emergence of new models that score better in
programming and natural languages motivates further research into the use of SEIDR with newer
models. To study the generalizability of the initial SEIDR results, we use two other LLMs, Llama 35
and GPT-3.5,6 and an additional dataset, HumanEval-X, with different tree arity parameters [Brown
et al., 2020; Chen et al., 2021b; Zheng et al., 2023]. Moreover, we build up on the initial experiments
with Codex and zoom in on the area with the best-performing tree arities in a hyperparameter
search for a better repair-replace tradeoff resolution.

To reflect on the parent selection strategies used in the Rank agent of SEIDR, we also explore
whether the programs should be chosen based on the average performance across all tests or
whether SEIDR can benefit from keeping such programs in the loop that fully cover individual
tests, but do not perform well on average. Therefore, as an alternative to the tournament selection,
we test the best tree arity setups with lexicase selection-based ranking [Helmuth et al., 2015].
Moreover, since language models bring in stochasticity, we run the experiments several times to
measure the variability of results obtained with fixed hyperparameters and reflect on the results
repeatability.

Overall, the current article contributes to the field of LLMs for Software Engineering with a
framework for code generation and its iterative repair. Compared to the earlier GECCO-2023 paper,
this article refines and extends the preliminary results by providing a more in-depth explanation
of SEIDR as a multi-agent framework for autonomous programming, extending the original ex-
periments and analysis to include HumanEval-X as an additional benchmark, evaluating GPT-3.5
and Llama 3 as additional LLMs, investigating lexicase selection as an alternative to tournament
selection, and conducting a repeatability analysis of the framework’s performance over multiple
independent runs. Overall, this extension adds three ResearchQuestions (RQs) and doubles the
number of configurations considered in these questions compared to our preliminary work.

Section 2 presents a framework that adapts Synthesize, Execute, Debug to instruction-tuned LLMs
in agents that can solve programming tasks in an autonomous fashion. We discuss related work

3Throughout this article we avoid other definitions of instruction, such as an individual operation in code, to prevent
ambiguity.
4Seiðr also refers to a type of Norse magic [Blain, 2002] pertaining to predicting and controlling the future, which we deem
thematically appropriate.
5https://ai.meta.com/blog/meta-llama-3/.
6https://openai.com/form/researcher-access-program/.
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Fig. 1. Overview of SEIDR, a multi-agent iterative framework that uses LLMs to implement the SEIDR
feedback loop.

in Section 3, introduce experiments to explore effective search strategies for this framework in
Section 4. Finally, in Section 5, we demonstrate that our framework outperforms conventional
automatic programming techniques, such as genetic programming and naive application of LLMs
that generate one solution per problem without updating it iteratively.

2 Methodology
The proposed five-agent SEIDR framework is summarized in Figure 1, which we discuss in detail in
Section 2.1. In essence, to solve a programming task defined as a text description and a collection
of I/O examples, we split I/O examples into prompt and validation sets and use the prompt set in a
LLM to SYNTHESIZE a population of candidate solutions. We EXECUTE the solutions, test them
against the validation set, generate a text description of the identified problems used to INSTRUCT
a LLM to produce repaired candidate solutions similar to the way a human developer DEBUGs a
program. We RANK the candidates by correctness, measured as matching I/O pairs, discard the
worst candidates, and repeat until a fully correct solution is found.

2.1 Ingredients
SEIDR makes use of instruction fine-tuned LLMs: a synthesis model ?synth (code, descr), a debugging
model ?debug (code, descr), as well as a model ?explain (code, descr) that can be used for writing
textual instructions, which are forwarded to the code generation model ?debug for code updates.
Therefore, the design can be described as two agents communicating with each other, whereby one
generates code and another provides critical or supervising comments on what should be changed
in the generated code.

The models ?synth, ?debug, and ?explain can be either separate or the same model. The prerequisites
are that ?synth and ?debug models are able to “understand” natural language (descr) and partial
or full programs (code) and generate code based on them. The model ?explain should be able to
“understand” code and natural language and either autocomplete or generate the debugging
instruction from scratch. Note that ?explain is optional, since alternatively the debugging instructions
can be generated from failing tests using static pre-defined templates. In general, SEIDR requires
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Fig. 2. Anatomy of SYNTHESIZE templates.

sequence-to-sequence generative models for these agents. In our experiments, we select models for
?synth, ?debug, and ?explain based on the state-of-the-art transformer architectures [Vaswani et al.,
2017] (see Section 4.2).

Each LLM is a highly parameterized probability distribution over the space of (code, description)-
tuples with parameters estimated on a large diverse (i.e., non-task-specific) corpus. This stochastic
nature of language models is an important prerequisite for SEIDR, since it allows us to sample
batches of diverse candidate solutions from ?synth, ?debug, and ?explain. We denote the number
of outputs generated with #synth, #debug, and #explain, correspondingly. Moreover, each model
generates the most probable and less probable outputs in each batch, which helps diversify problem
solving attempts. In the following implementation-related subsections, we explain how we vary
the number of candidate solutions, debug instructions, and repairs generated in a batch by each
LLM in SEIDR.

While SEIDR is described here as a multi-agent system, it can equally be seen as a form of
evolutionary algorithm or genetic programming, where the initialization and mutation steps of
the system are performed by LLMs, ?synth and ?debug, correspondingly. Throughout this work,
we use agent-oriented programming terminology [Shoham, 1993] and evolutionary optimization
terminology interchangeably to try to bridge the gaps between these domains.

2.1.1 Synthesize. The framework starts with the SYNTHESIZE agent, which is responsible for
generating initial draft solutions. We start with a basic template for a chosen programming language
that contains a number of standard library imports, as shown in Figure 2.

We populate this template with a comment indicating a textual task description and several I/O
examples from the training set. We design the templates with prompt engineering guidelines7 and
prior work [de Bruin et al., 2021] in mind. We then sample #synth programs from ?synth, setting code
to the populated template and description to the natural language description of what the model
should generate. We use spring sampling8: a temperature-based sampling with a monotonically
increasing temperature schedule where the ith program is sampled with temperature C8 ≈ 8−1

#synth

7https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results.
8https://vadim.me/publications/spring/.
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(we use approximate equality to enable efficient implementation by means of batching). Thus,
the sampling procedure for the first programs approximates a deterministic maximum-likelihood
estimation. In combination with the naturalness principle of source code [Allamanis et al., 2018;
Jiang et al., 2022], this approach ensures that the samples are diverse, but always contain the most
likely programs for the given task.

2.1.2 Execute. The EXECUTE agent compiles the programs (if necessary) and launches them
using the standard tools for the programming language. The program is run once for every I/O pair
in the validation set. Its stdin stream receives all input lines in a given input pair, and its stdout
and stderr streams are captured and saved. We then measure the score of the program defined as
the accuracy over the output lines, with O being the expected output, and = =max{|$ |, |stdout|}:

score($, stdout) =
∑=

8 I[stdout8 =$8 ]
=

unless stderr is non-empty during compilation or execution, which is considered to indicate
failure and is assigned a score of 0.

2.1.3 Instruct. The goal of the INSTRUCT agent is to provide instructions that summarize bugs
in a candidate program and suggest a solution for ?debug. The resulting instructions with the bug
summary should indicate what requirement is violated and instruct the LLM to edit the candidate
program accordingly. The input to INSTRUCT consists of failing I/O pairs from the validation set
and stderr output of the candidate execution. In order to represent this heterogeneous input as
text that can be further processed by an LLM, we use template engines that replace placeholders in
files or strings with input values and return a formatted string. In recent chat- and instruction-based
LLMs, the terms template engine and prompt template are used interchangeably.

We consider two different designs of the INSTRUCT agent: INSTRUCTstatic and INSTRUCTLLM

shown in Figure 3. In both cases, if stderr is not empty, i.e., execution exits with code 0 before
getting any output to compare it with the expected output, the stderr-based template engine
generates the instruction to fix the error. However, the designs differ in the way they transform
failing I/O pairs to generate instructions in case stderr is empty.

INSTRUCTstatic uses a fixed template and substitutes placeholders for input and output with the
corresponding strings of the first failing test case in its template engine. For example, we show
the resulting instruction for an exemplar template in Figure 3. In contrast, INSTRUCTLLM uses the
failing I/O pair in the LLM for text completion, thereby prompting the text LLM to produce the bug
explanation and a summary for debugging. In addition to providing a failing test case or stderr,
one may choose to give the model ?explain more context, such as the problem name, task description,
and the code generated so far. Each call to ?explain can result in #explain ≥ 1 instructions, a batch
output of an LLM. The prompt templates used for the experiments are detailed in Section 4.3.

2.1.4 Debug. The main component of SEIDR that addresses the “near-miss syndrome” is the
DEBUG agent. This agent iterates over all programs in the population to repair candidate programs
and pass more tests. It uses the instructions written by INSTRUCT to sample from the ?debug model
#debug times to repair each candidate and create a new population of N candidates. For ?debug, the
parameter code is set to the current version of the candidate solution and descr to the output of
INSTRUCT and any additional context chosen for a specific implementation. The current generation
of candidates is then replaced by N outputs of DEBUG.

2.1.5 Rank. The RANK agent implements what is known in genetic programming as parent
selection [Koza, 1994]: It selects the best, programs to be further improved by the DEBUG agent.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 5, No. 1, Article 8. Publication date: March 2025.
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Fig. 3. Overview of the two designs for the INSTRUCT agent.

We consider two different parent selection algorithms: tournament selection and lexicase selection.
See Section 5.2.2 for their empirical comparison.

Tournament selection variant used in this work sorts the programs according to their average test
score and selects top, candidates. The programs are selected based on the intuition that repair of
the best so far (yet imperfect) programs begets good programs. The simple ranking is also referred
to as tournament selection, where the best-performing candidates are chosen to participate in the
next round. In the classical tournament selection, the first step is to draw n random candidates from
the population. In our implementation, the first step is to generate exactly n candidates that are
needed for the next round. This approach prioritizes candidates that perform the best on average
over all tests.
Lexicase selection [Helmuth et al., 2015] is a ranking approach that maximizes the diversity of

selected candidates in addition to their metric-based score. Lexicase selection ensures diversity by
keeping the program candidates that perform the best on unique tests as opposed to the program
candidates that perform best on average over all tests. The algorithm is as follows:

(1) randomly shuffle the set of tests;
(2) select a program with the best score on test 1;
(3) if several programs are tied, resolve the tie by selecting the best program on test 2;
(4) repeat for tests 3, 4, . . . , until only one program is left;
(5) mark this program as “selected”;
(6) if less than W programs are selected, go back to step 1.

This ensures that even if the average quality of the selected candidates is lower, the batch of,
programs collectively contains a higher number of required “skills,” as measured by tests.
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Fig. 4. Repair-replace tradeoff as a tree search problem.

2.2 Meaning of Hyperparameters
After evaluating a given candidate solution in EXECUTE, SEIDR supports two approaches to
address the candidate’s flaws:

—Replace the candidate with another sample from the current population.
—Use INSTRUCT and DEBUG to repair the candidate.

We refer to this problem as the repair-replace tradeoff, by analogy with production economics [Jack
and Van der Duyn Schouten, 2000].

How does the choice of hyperparameters #, the total number of candidate programs in each
generation, and,, the number of selected repairs to be preserved in a generation, influence the
flow of SEIDR? N and, act as upper bounds on the replace option by limiting the size of the
population. In the edge cases, # =, = 1 corresponds to a repair-only process, while # =, =∞
corresponds to replace-only, as illustrated in Figure 4. Here, the repair-only scenario can also be
seen as an LLM-guided random walk [Xia et al., 2020] and replace-only as random sampling from
the LLM. Strategies with tree arities between 1 and ∞ are similar to population-based evolutionary
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algorithms. Note that # is defined by #synth for the initial draft solutions in the first generation
and #explain · #debug for later generations.

Observe that a mutation-only genetic algorithm with tournament selection with fixed population
size,, such as SEIDR, is equivalent to local beam search with beam width, on an # -ary tree
[Russell, 2010, Section 4.1.4]. This corresponds to a known property of local beam search: It
degenerates into a depth-first search at, = 1, whereas setting, =∞ yields a breadth-first search.

3 Related Work
Until recently, the tasks of neural program synthesis [Gulwani et al., 2017] and program repair [Le
Goues et al., 2012, 2019; Petke et al., 2018; Zhang et al., 2024b] have been considered separately.
However, results from genetic programming [Sobania et al., 2021] suggest that evolution is a crucial
step in synthesis. A number of important studies bridging this gap in the application of LLMs have
been carried out concurrently with this work, discussed below.

The use of LLMs for a program repair step within a program synthesis pipeline has been studied
by Joshi et al. [2022] and Gupta et al. [2020], while the specific case of instruction-driven LLMs has
been explored by Fan et al. [2023], where the initial synthesis is done by the Codex model [Chen
et al., 2021b] and for program repair both Codex and state-of-the-art specialized repair tools such
as TBar and Recoder [Just et al., 2014] are considered and compared. Zhang et al. [2023b] do the
same, but fine-tune PyCodeGPT-110M [Zan et al., 2022] to use it as a repair model. The resulting
framework is a two-step process (one draft step and one debug step), while iterative evolution and
search are not explored.
Evolution through Large Models (ELM) [Lehman et al., 2022] proposes to use a language

model in place of a mutation operator within a traditional genetic programming framework [Koza,
1994]. They use a type of instruction fine-tuned model trained on git commit messages known as a
diff model.9 However, the model is directed neither to solve the programming problem at hand
nor to fix bugs. Instead, it is provided with generic instructions such as “Change function f.” This
approach is meant for the cases where creative freedom [Stanley and Lehman, 2015] is encouraged
rather than satisfying concrete requirements. Liu et al. [2023a] demonstrate the advantages of
applying ELM to modular components of a solution, rather than the entire solution to the given
problem.

Some related work is explicitly guided by the metaphor of conversation between agents. Zhang
et al. [2023a] implement a repair-only program synthesis loop as a conversation between an analyst
agent, a coder, and a tester, while Dong et al. [2024] do the same for tester, developer, and reviewer.
The coder and the developer are roughly equivalent to SYNTHESIZE, the tester to EXECUTE, and
the reviewer to INSTRUCT, while the analyst is an agent that prepares a generation prompt for
the coder. Both testers are language models that predict the output of a program without actual
compilation, execution, or testing, which makes Dong et al. [2024] and Zhang et al. [2023a] specific
cases of chain-of-thought prompting [Yu et al., 2023] for program synthesis.

Several studies explore an iterative approach to program synthesis in a manner similar to SEIDR
[Chen et al., 2023; Shinn et al., 2023; Xia and Zhang, 2023]. However, they do not explore the
repair-replace tradeoff and exclusively implement the repair-only approach that is prone to local
minima. SelfEvolve [Jiang et al., 2023] is a repair-only version of a framework similar to SEIDR.
SelfEvolve demonstrates the benefits of LLMs evolving not just the source code but an additional
natural language text file that acts as the system’s knowledge base and is included in the model
prompt when generating code. Finally, Self-Taught Optimizer [Zelikman et al., 2023] takes the
concept of self-improvement to the meta level and uses a LLM to edit the evolutionary algorithm

9https://carper.ai/diff-models-a-new-way-to-edit-code/.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 5, No. 1, Article 8. Publication date: March 2025.

https://carper.ai/diff-models-a-new-way-to-edit-code/
https://carper.ai/diff-models-a-new-way-to-edit-code/


8:10 A. Grishina et al.

itself (i.e., blocks or contents of Figure 1). Their reflections on the safety implications of such
automated algorithm changes are of particular interest when considering this trajectory [Zelikman
et al., 2023, Section 8]. These concerns do not hold in the context of SEIDR because the algorithm is
fixed. In other words, SEIDR does not self-evolve but creates solutions that it improves, and the
solutions that are synthesized are closely constrained by the validation set used by the EXECUTE
agent.

These efforts to combine LLMs and evolutionary techniques fall within the broader context of the
quest for effective inductive bias in genetic programming [Whigham, 1996]: a crucial property for
any learning algorithm [Haussler, 1988]. Reuter et al. [2023] suggest using graph neural networks
for this purpose, while grammatical evolution methods, such as WHGE [Bartoli et al., 2020] and
c-GE [O’Neill et al., 2004] use the known grammar of the programming language. LLMs are a
novel and promising [Custode et al., 2024] alternative to grammatical evolution that incorporates
semantics and idiom [Allamanis and Sutton, 2014; Orlov, 2020] of a programming language in
addition to its grammar.

4 Experimental Design
To explore the capabilities of SEIDR and its generalizability, we test the framework on two bench-
marks (Program Synthesis Benchmark 2 (PSB2) and HumanEval-X), a total of two different
ranking strategies (tournament selection and lexicase selection), three models in the coding part of
SEIDR (Codex, GPT-3.5, and Llama 3), two programming languages (Python and C++), and various
branching factors. We use three models over the two parts of our experiments: one model in the
initial exploration (also reported by Liventsev et al. [2023]) and two models in the generalizability
part. The problems in the benchmarks originate from coding competitions and human-written
programming assignments.

During our empirical evaluation of SEIDR, we address the following RQs:
RQ1. Repair-replace tradeoff exploration: What is the impact of using different tree search strategies

in the autonomous programming setting? We experiment with six different tree arities but fix the
tournament selection in the ranking part and one prompt. Here, we study the impact of tree arity
on the number of resolved problems as well as the speed of obtaining solutions.
RQ2. Generalizability of the approach to different LLMs and an additional dataset : How does the

choice of an LLM affect the performance of SEIDR? We vary the tree arity and experiment with
two additional LLMs and one additional dataset. By default, we use tournament selection as the
ranking strategy.

RQ3. Repeatability of SEIDR in multiple runs with the same hyperparameters: How does the non-
deterministic nature of LLMs affect SEIDR performance when the method is restarted several times
with the same hyperparameters? We study how SEIDR results vary in different restarts of the
same experiments with unchanged hyperparameters as a result of the LLM non-determinism. The
motivation for RQ3 is that LLMs exhibit stochastic behavior: The same prompt can yield different
responses. Essentially, LLMs generate answers token-by-token and predict the next tokens based
on the probability distribution over a vocabulary of tokens, which is sensitive to the precision
of floating-point operations. If two tokens are predicted to be the next ones, with a very similar
probability, it is likely that either of them will be chosen at each individual run. Further tokens are
generated auto-regressively and depend on the previous tokens, so once one token diverges, the
whole sequence is likely to diverge, too.
RQ4. Effect of changing the parent selection strategy in the RANK agent : How does the lexicase

selection-based ranking strategy impact performance in comparison to tournament selection in
the RANK agent? We use the best-performing tree arities from RQ3 to run the experiments with
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lexicase selection as the ranking strategy instead of tournament selection, to explore whether a
different parent selection algorithm can further improve the results.

4.1 Data
Our experiments use the PSB2 [Helmuth and Kelly, 2022] and HumanEval-X [Zheng et al., 2023] in
C++ and Python. The key criteria for this choice are the availability of task descriptions in English
and unit tests in Python and C++ or language-agnostic unit tests as well as the wide acceptance of
these benchmarks in the areas of generative LLMs (HumanEval) and genetic programming (PSB2).

4.1.1 PSB2. The first dataset is a benchmark suite of 25 problems for program synthesis that
resemble small real-world tasks. PSB2 was developed as a more realistic and challenging version of
PSB1 [Helmuth and Spector, 2015], the latter consisting of textbook problems and is widely used
in genetic programming [Sobania et al., 2022]. The problems require different data structures and
control flows to be used for effective solutions and are taken from sources, such as competitive
programming platforms and educational courses. The problems have descriptions in English, as
well as 1 million (M) tests for training and 1M testing-stage tests, including edge or corner cases
that test the resulting program on complicated inputs. The tests are provided as I/O pairs and are
distributed together with the problem descriptions as a PyPI package.10

In PSB1, the training set consists of the edge test cases and is augmented by random test cases if
the number of edge tests is not enough.The test set is formed by random test cases.This terminology
is preserved in PSB2. We use the PSB2 training set for ranking and selection of programs (validation)
within an experiment and the test set for reporting the result thereof (testing). Thus, we will refer
to the PSB2 training set as the validation set, to be more consistent with how it is used in SEIDR.

4.1.2 HumanEval-X. The second dataset that we use is a development from the original set of
human-written programming tasks in HumanEval [Chen et al., 2021b], which is a standard code
generation benchmark for LLMs. HumanEval consists of 164 problems with a docstring representing
problem description, a function signature, a correct solution, and unit tests in Python. HumanEval-X
is the result of translating correct HumanEval programs and unit tests into five programming
languages [Zheng et al., 2023]. We use HumanEval-Python for experiments in Python to ensure
a comparison with other models in the setup without SEIDR. In addition, we test SEIDR on the
HumanEval-C++ part of HumanEval-X.

The test functions of HumanEval-X contain all tests in one function. We split the aggregated
test functions into separate tests so that the RANK agent can evaluate the score. On average, the
number of tests in HumanEval-Python is 7.25 and 6.95 in HumanEval-C++, which is appointed
to a repeated additional test present in some HumanEval-Python examples of the following type:
assert True, “This prints if this assert fails 1 (good for debugging!).” This test
type is not present in HumanEval-C++.

To reiterate, we keep the original HumanEval-Python setup for direct comparison with the
models tested on this benchmark without SEIDR. Because of the limited number of tests, we pass
up to five tests to the draft prompt and make all tests visible to SEIDR for the debugging loop. In
other words, we do not have a held-out test split for HumanEval-X in the same manner as we do
for PSB2.

4.2 Models
SEIDR uses up to three LLMs—?synth, ?explain, and ?debug—in SYNTHESIZE, INSTRUCTLLM, and
DEBUG, respectively. The main prerequisite is that ?synth and ?debug are a text-to-code models

10https://pypi.org/project/psb2/.
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which take both a textual description and a draft code as input. Therefore, ?synth and ?debug can
be a chat model, a code completion model, an instruction fine-tuned, or a foundation generative
language model pre-trained on code in addition to text. By analogy, the text-to-text ?explain can be
a chat, instruction fine-tuned, a text completion, or a text generation model pre-trained on text and
code.

In our experiments, we use Open AI GPT models by Open AI and Llama 3 by Meta [Rozière et al.,
2023]. GPT models are auto-regressive transformer models that have the decoder-only architecture
as opposed to the original full encoder-decoder transformer. They are pre-trained on both text and
code and excel at sequence-to-sequence generative tasks, including code-to-code, text-to-code, and
code-to-text.

In our initial experiments, we use Codex-edit11 as the LLM for writing and debugging programs
and GPT-312 for bug summarization via text completion [Brown et al., 2020]—both being 175B-
parameter models. In our generalizability experiments, we use the GPT-3.5 model13 for program
synthesis, bug summarization, and debugging. The GPT-3.5 model is an improvement over GPT-3
that is optimized for chat and available through an API. This switch is mainly motivated by rapid
model updates, an OpenAI announcement that GPT-3 was due to become obsolete, i.e., not actively
supported by the company, along with the company’s recommendation to switch to GPT-3.5.

To further evaluate the generalization capabilities of SEIDR, we have chosen Llama 3-8B [Rozière
et al., 2023], an open source alternative to GPT models with the same standard decoder-only trans-
former architecture. Compared to Llama 2 [Touvron et al., 2023], Llama 3 introduces improvements
to the architecture and the training process, such as grouped query attention.

4.3 Prompts
4.3.1 Prompts in the Initial Exploration of SEIDR. The prompt for the LLM model is static and

consists of the input for editing—candidate program generated so far—and a debug instruction to
repair the candidate. The debug instructions are formulated as templates. The instructions describe
the violated requirements in terms of the wrong output in a failing I/O test or summarize the
bug to capture issues in code logic. We present debug instructions using the template engine
format: the brackets { } denote that the placeholder in the brackets will be replaced with the value
generated during execution, {Ival} and {Oval} stand for values of the validation set I/O pair. As shown
in Figure 3, the instruction to fix execution errors that abort the program before the resulting output
is obtained with stderr lines: Fix {stderr}. Debug instruction that uses the output of candidate
program execution is static, formulated as follows:

Make sure that Ival -> Oval. (S0)

4.3.2 Prompts for Instruction Fine-Tuned and Chat Models. The prompts presented in this section
are used in the experiments with GPT-3.5 and Llama 3. This implementation is optimized for
instruction and chat models, which use prompts as inputs represented as text, partially with code
fragments. The models use a system message that describes the “role” of the LLM and a regular
message that works as an instruction or a chat message from a user. To provide more context,
we always use a problem description, problem name, and programming language to the model as
textual input (descr). As code, we also add an initial template depicted in Figure 2 to ?synth and the
current program candidate to ?explain and ?debug. The resulting prompts are as follows:

11code-davinci-edit-001.
12text-davinci-003.
13gpt-3.5-turbo.
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The input to ?synth looks as follows:

Bug explanations are generated with ?explain using the following instructions:

4.4 Repair-Replace Tradeoff Settings
The settings for tree arity will also be divided into two experiment sets: the ones for GPT-3 and
Codex, and the ones for the GPT-3.5 and Llama 3 experiments.

4.4.1 Tree Arity for the Initial Exploration of SEIDR. As described in Section 2.2, the population
size (number of parents to choose from in the tournament selection or beam width from the beam
search perspective), and tree arity # define the repair-replace tradeoff, where higher, and #

correspond to repair over replace. We evaluate four options for these hyperparameters as shown in
Table 1. We only run the experiments once, due to the experimental timeline and the discontinuation
of model support by the model provider.

Because we aim to compare tree search parameters, we fix one default debugging instruction S0
and use the INSTRUCTstatic agent. Moreover, we set the upper limit for the total number of generated
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Table 1. Initial Exploration of SEIDR: Hyperparameters in the Tree Arity Experiments

Experiment # 1 2 3 4

Population size (beam width),, 1 10 100 ∞ (1,000)
Tree arity, # 1 10 100 ∞ (1,000)

Max programs generated 1,000
Prompt S0
Models Codex as ?synth and ?debug

# Restarts (or runs) 1with the same hyperparameters
Datasets PSB2

Languages Python, C++

program candidates to 1,000 to limit the experimentation time. Although some solutions may not
be found within the hard limit, we assume14 that 1,000 program candidates form a sufficiently large
search space for our experiments., = # =∞ is achieved in implementation by setting equal,
and, equal to the upper limit of the program count of 1,000. This ensures that a second generation
of programs does not exist.

4.4.2 Tree Arity for SEIDR Generalizability Experiments. With the shift to chat and instruction
models in the generalizability part of our study, we move from generating one bug explanation and
one code draft or update to a batch of those. Specifically, each of the three LLMs in SYNTHESIZE,
INSTRUCT, and DEBUG can generate sequences in batches. We generate #synth programs in the
first generation with ?synth model, #explain bug explanations with ?explain for each program in
a generation, and #debug candidate repairs for each of the debugging instructions using ?debug.
A new generation of #explain · #debug ·, programs created from each of, parents in a previous
generation is ranked and filtered to keep the best-performing, candidates for generating the next
candidates.

To balance between a reasonable number of experiments and diverse sets of hyperparameters, we
fix #explain = 2 to moderately vary the bug descriptions and set #synth = #debug = # . As a reference,
in the experiments with GPT-3 and Codex, we generated only one bug explanation (#explain = 1)
and used #synth = #debug = # setting, too. We evaluate six options of # as shown in Table 2 and
use tournament selection as the ranking strategy.

The choice of these tree branching hyperparameters and the maximum number of generated pro-
grams is motivated by the experiments with GPT-3 and Codex, where the best results were obtained
for # = 10. Therefore, we explore the area around this value more closely in the generalizability
experiments. In the same experiments, the majority of problems in PSB2 were solved within the
first 100 generated programs. Therefore, the upper limit for the total number of generated program
candidates is set here to 100 to limit the experimentation time.

To account for the stochasticity of language models and the fact that OpenAI’s models do not
support setting the effective sampling temperature to zero to force deterministic behavior,15 we ran
the experiments six times with each set of hyperparameters. This number of runs was selected to
hit a sweet spot between the overall running time and costs of the experiments, while at the same
time achieving confidence in the stability of the results in the presence of non-determinism. Note
that reporting results over six runs is considerably better than the common practice of having only
14This assumption is later confirmed in Section 5.1.1.
15https://community.openai.com/t/observing-discrepancy-in-completions-with-temperature-0/73380.
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Table 2. SEIDR Generalizability Experiments: Hyperparameters in the
Tree Arity Grid Search

Experiment # 16 17 18 19 20 21

Population size (beam width),, 1 4 8 10 16 ∞ (100)
# Programs in the 1st generation, #synth 1 4 8 10 16 ∞ (100)

# Bug explanations for candidate, #explain 2 2 2 2 2 -
# Repairs for each explanation, #debug 1 4 8 10 16 -

Max programs generated 100
Prompts See Section 4.3.2

Models (a) GPT-3.5 as ?synth, ?debug, ?explain,
(b) Llama 3 as ?synth, ?debug, ?explain

# Runs per experiment 6
Datasets PSB2, HumanEval-X

Languages Python, C++

one run for every selection of hyperparameters, and it is in line with the best-of-class practice in
the field of LLMs for code generation [Ouyang et al., 2023].

The total cost of running the experiments with GPT-3 and Codex was around 550 USD, and
the experiments with GPT-3.5 amounted to 266 USD.16 Moreover, the time to finish one run
with several branching factors and all the tests amounts to ca. 42 h for PSB217 and ca. 156 h for
HumanEval-X. Overall, we restart experiments with GPT-3.5 six times for each of the tree arities
#synth = #debug = # ∗ ∈ {1, 2, 4, 10, 16, 100} and the same for Llama 3, with a total of 6 × 6 × 2 = 72
experiments. For the lexicase selection experiments, we have six runs per model but one best-
performing tree arity, which adds 12 experiments to the total count.

4.5 Performance Indicators
In our experiments, we compare the number of fully solved programs obtained with SEIDR with
different values of hyperparameters. For a more detailed analysis of results, we use Test Pass Rate
(TPR) and Excess Programs Generated (EPG). TPR reflects the percentage of fully passed test
cases based on the exact match of program output and test output. The TPR metric is used for
the final evaluation of generated programs and does not reflect partial passing of the I/O test as
opposed to the score as calculated by the RANK agent (see Section 2.1.2).

We define pass@k as the number of problems that have )%' = 1 if SEIDR is stopped after
generating k programs, following Kulal et al. [2019] “success rate at budget of k programs.” Note that
Jiang et al. [2023] and Chen et al. [2023] define k as the number of restarts of the iterative method, the
budget in terms of trees of programs. We choose against this approach, since it threatens the validity
of the comparison between iterative tree-based program synthesis and repair-only baseline by
giving the iterative approach additional budget in terms of the number of programs it can generate.

Codex [Chen et al., 2021b] calculates pass@n>k and constructs an unbiased estimator of pass@k
with lower variance, ensuring statistically robust results. We cannot apply this adjustment for
SEIDR, since the adjustment assumes that the programs are independent and identically distributed,
while SEIDR is a Markov chain with dependencies between iterations.

16For comparison, one run with GPT-4o cost us 315 USD (early July 2024), so further use of this model was discarded.
17Due to the local setup for testing, API call limits, and the number of tests.
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EPG reflects the number of programs generated before the first occurrence of the program that
passes all validation test cases. EPG is indicative of the computational cost of solving a problem
distributed in terms of LLM inferences and program compilations and executions. For a single
execution of SEIDR, EPG is equivalent to the smallest k at which pass@k = 1.

4.6 Implementation Details
To summarize the setup, in this study, we have two groups of experiments. The first group of
experiments is dedicated to the initial exploration of RQ1 with Codex-edit (code-davinci-edit-001)
as the LLM for writing and debugging programs. We have referred to these experiments as Initial
Exploration of SEIDR with Codex and GPT-3, and test the hyperparameter choices only on PSB2 as
detailed in Table 1. Here, we use wide steps between tree arity values (see Section 4.4.1).

The second set of experiments mainly focuses on the generalizability (RQ2) of SEIDR and its
robustness to restarting experiments with the same hyperparameters (RQ3). The motivation here
is to potentially improve on GPT-3 with a newer, generally more powerful version, GPT-3.5,
and its smaller open source competitor, Llama 3. GPT-3.5 and Llama 3 are used in more fine-
grained repair-replace tradeoff exploration and ranking experiments (RQ1). We have referred to
these experiments as SEIDR Generalizability Experiments and test SEIDR both on PSB2 and Hu-
manEval. Building on the findings of the initial exploration, we use more fine-grained tree arity
values (see Section 4.4.2, Table 2) and use the prompts from Section 4.3.2. Thus, INSTRUCT is
represented by the INSTRUCTLLM agent and creates #debug bug summaries. Each program up-
date creates # child programs from one parent with the SYNTHESIZE and DEBUG agents. We
also compare the performance of SEIDR with the current state-of-the-art without SEIDR (see
Section 5.2.1).

The second set of experiments is further updated with an alternative ranking strategy, lexicase
selection (RQ4). For each model, dataset, and language, we choose the best-performing tree arity
from RQ2 and exchange the tournament selection algorithm with the lexicase selection. This
selection step chooses parents for debugging updates in each generation.

In all experiments, we set the limit to generate a maximum of M program candidates during
the search for the candidate that passes all validation tests. If we reach M candidates and none
of them pass all validation tests, we store the TPR for the last generated candidate and the best
TPR achieved throughout the search. For the first set of experiments, we set " = 1,000, and for
the generalizability ones, we limit M to 100, after finding out that for the majority of problems, a
solution is found among the first 100 programs or not found at all.

Following Helmuth and Kelly [2021], we use 2,000 I/O pairs ((� ,$)C4BC in Figure 1) from the test
split of PSB2 to evaluate the candidate program that has passed all validation test cases ((� ,$)E0;
in Figure 1) during debugging. Due to repetitive calls to EXECUTE, we have to resolve the speed of
testing versus precision tradeoff while choosing the number of validation test pairs. We resolve the
tradeoff by fixing the validation set size at 100 for the initial experiments and 50 for the generalizabil-
ity exploration, which has more runs with the same hyperparameters. We have run a preliminary
experiment to confirm that we do not lose the final TPR points on 2,000 tests when we decreased
the validation test set size from 100 (which was used in the GECCO-2023 paper) to 50 for the gen-
eralizability exploration. Due to a small number of tests in HumanEval-X, all tests are made visible
to the debugging LLM and during the validation step. To operate with the chosen LLMs in SEIDR,
we use ollama18 and LangChain.19 To ensure that the program candidates generated from the same
parent program are different from each other, we change the temperature parameter of the LLMs.

18https://ollama.ai/.
19https://www.langchain.com/.
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Fig. 5. Number of solved PSB2 problems depending on tree arity in beam search for prompt type S0.

5 Results and Discussion
In this section, we present the results of the initial exploration, where we investigate the repair-
replace tradeoff in SEIDR with Codex and GPT-3 (RQ1) using the PSB2 benchmark. We then
continue with generalizability (RQ2) and repeatability (RQ3) experiments with GPT-3.5 and Llama
3 on PSB2 and HumanEval. Finally, we test lexicase selection as the ranking strategy (RQ4).

5.1 Initial Exploration
5.1.1 Repair-Replace Tradeoff in the Initial Exploration of SEIDR. We compare the number of

solved problems in the experiments with tree arity of 1, 10, 100, and ∞ and fixed debug instruction
S0 in Python and C++ in Figure 5. The results of SEIDR are compared to the baseline performance
of PushGP on the PSB2 benchmark, which solves 17 out of 25 problems. Note that experiments
with # = 1 and # =∞ can be considered as ablation studies, where the replace option and repair
option are turned off correspondingly.

The results highlight the benefit of compromise strategies with tree arity of 10 and 100 over
repair-only (# = 1) and replace-only (# = ∞) strategies. The results show that the repair-only
scheme is outperformed by other strategies. We explain the poor performance of the repair-only
strategy by the fact that the search space is under-explored. Specifically, the replace scenario
ensures that the LLM for the debugging component represented by Codex-edit in our experiments
generates different updates of program candidates using variable temperatures. The probability of
finding a better fix is higher when more alternatives are generated to update the draft program
at # > 1 compared to # = 1. The search strategy with # = 10 yields the best results: It performs
on par with PushGP for C++ and outperforms the baseline during Python program synthesis by
+2 problems, resulting in a total of 19 programs that pass all test cases. The results imply that
generating a moderate number of programs in parallel during the DEBUG step works better than
the policies in which more updates are generated for each program (100 or 1,000), or those in which
only one program is updated iteratively.

We present the analogy of the solution speed for all four arities and the fixed default debug
instruction in Figure 6. In detail, we show the distribution of EPG values in all experiments to
explore how many candidate updates are generated before the solution is found. We zoom in to the
cases with solutions found with up to the first 10 program candidates in Figure 6(a) and show the
EPG distribution with the step of 100 candidates in Figure 6(b). In addition, we break down
the results into each tree arity in Figure 7, showing the EPG on a heatmap scale and the TPR as a
number between 0 and 1, or the signs “+” if a problem is solved and “−” if the final TPR is 0.

Out of 100 experiments for each language, in 21–24% of runs in Python and C++, the draft
program is already the solution (EPG = 0). For 31–33% of the experiments, the solution is found
after discarding five candidates. Around half of the experiments do not generate more than 100
programs. However, 5 problems are solved with more than 500 generated programs in Python and 1
problem in C++ (with # = 10). The results imply that the first steps in updating the draft program
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Fig. 6. Distribution of the number of generated programs during each problem-solving attempt in the
experiments with different tree arities where a problem solution is found.

are crucial for solving the problem. The chances of solving the problem in later stages of the search,
such as after 100 programs have been generated, are low. This confirms our initial assumption in
Section 4.4 that 1,000 programs are sufficient.

To briefly analyze Figure 7, we observe that some problems are solved in both languages,
whereas some others—only in Python. In addition, only five problems are not solved in any SEIDR
configuration in Python (bouncing-balls, bowling, cut-vector, dice-game, and leaders) and seven in
C++ (bouncing-balls, cut-vector, dice-game, leaders, shopping-list, snow-day, and vector-distance).
Upon closer inspection of generated programs, we have noticed that in bouncing-balls, the programs
have logical errors and differ considerably between programming languages, as well as in the
majority of unsolved problems. Test cases and debug instructions in bowling frequently skewed
the resulting programs to return answers to individual bowling score strings instead of writing an
algorithm to calculate the score based on each next character. The latter mistake happened in other
unresolved problems, such as cut-vector. Qualitative analysis has also shown that some programs
failed to read input from the user and instead defined input strings within the code, which limited
the program to testing only one I/O pair, although the algorithm was correct.

Repair-Replace Tradeoff in the Initial Exploration (RQ1): SEIDR with Codex as the coding LLM
outperforms the PushGP baseline on PSB2 in Python and performs on par with it in C++
experiments with tree arity of 10. Search strategies with tree arity larger than one benefit from
the replace possibility of the SEIDR framework as a consequence of using variable temperature
for Codex-edit.The repair component is also crucial for the framework because the replace-only
search policy (with tree arity of ∞) performs worse than the policies that alternate between
replace and repair during the program update (with tree arity of 10 or 100).
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Fig. 7. Number of EPG (in color) and TPR (as numbers) depending on tree arity. Higher EPG values are shown
in darker shades. We denote solved problems with “+” (TPR = 1), unsolved problems with “−” (TPR = 0), and
show the TPR for partially solved problems.

5.2 Generalizability Experiments
In this section, we present and discuss replace-repair tradeoff results obtained with GPT-3.5 and
Llama 3 and the effect of switching from tournament selection to lexicase selection with the best
hyperparameter settings found for the tradeoff. We count the number of fully solved problems
(i.e., reached )%' = 1) in experiments with the hyperparameter settings described in Table 2 in
six runs and present the language-specific results for PSB2 and HumanEval. We also explore the
total number of programs that need to be generated before a solution is obtained, as well as in
how many of the six runs each problem is fully solved. The figures are described in detail in the
dedicated sections.

5.2.1 Repair-Replace Tradeoff and Robustness to Restarts in the Generalizability Experiments. We
compare the number of solved problems in the experiments with #synth = #debug values of 1, 2,
4, 10, 16, ∞ (100) and #explain = 2 in Python and C++ and tournament selection ranking strategy
in Figure 8. We will refer to the equally set values of #synth and #debug as # ∗ hereafter. As before,
experiments with # ∗ = 1 and # ∗ = ∞ correspond to ablation studies, where the replace option
or the repair option is turned off. The results of SEIDR are compared to the baseline performance
of PushGP on the PSB2 benchmark, which solves 17 out of 25 problems. The boxplots show the
inter-quartile range between the first and third quartiles observed in six runs and the median values
as horizontal lines within the boxes.
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Fig. 8. Repair-replace tradeoff as a tree search problem in SEIDR: the total number of solved problems as
measured by )%' = 1 using SEIDR with GPT-3.5 and Llama 3 depending on tree arity # ∗.

The trend present for all the datasets and models is that the results for Python are more condensed
over six runs than for C++. Since access to statistics about the training data for Llama 3 and GPT-3.5
is not provided, reasons for more stable performance in Python across runs can possibly lie in the
training data distribution but cannot be confirmed. However, the fact that HumanEval-Python is a
popular code generation benchmark against which models are compared may affect the results
on this and other Python benchmarks. In the same line of comparison of results between two
programming languages, SEIDR with GPT-3.5 performs better in Python than in C++ on PSB2.

Llama 3 performs worse than GPT-3.5 on PSB2 in both languages. This dataset has more test
cases in stock than HumanEval and can be considered a more thorough test of the coding and
debugging capabilities of LLMs. Following a recent trend, where larger models outperform smaller
ones, the results of SEIDR on PSB2 confirm that the smaller model (Llama 3) performs worse than
the larger one (GPT-3.5).

Looking back at the initial experiments with Codex and PSB2, we notice the degradation of
performance from Codex to GPT-3.5: SEIDR with Codex solved 19 problems in Python and 17 in
C++ with tree arity 10, while the best-performing result of SEIDR GPT-3.5 is 16 (tree arity of 10,
too) in Python and 11 in C++ (several tree arities, but not 10). This result can be explained by
the focus of LLM builders on the generalization of knowledge and performance on a variety of
tasks, while Codex specializes in code generation. Moreover, due to increased costs from Codex to
GPT-3.5, we decrease the maximum number of generated program candidates from 1,000 for Codex
to 100 for GPT-3.5. However, only two problems are solved with Codex with �%� > 100: indices
of substring (at program candidate #510) and substitution cipher (at candidate #210) in Python,
bowling (candidate #912), and indices of substring (#410) in C++. Meanwhile, some problems are
solved by Codex earlier than at the debugging attempt #100 and not solved by GPT-3.5 and vice
versa. Therefore, the reduction of the maximum generated programs has only a partial effect on
the difference between the results of the two models.
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Fig. 9. Repair-replace tradeoff as a tree search problem in SEIDR: mean TPR measured in % obtained using
SEIDR with GPT-3.5 and Llama 3 depending on tree arity # ∗.

In addition to reporting the number of fully solved problems, Figure 9 also reports the mean
TPR measured in %. For HumanEval-C++, SEIDR with GPT-3.5 has better results with smaller tree
arity values than with larger ones. In Python, experiments with 1 < # ∗ < 100 (i.e., non-corner
case values of # ∗) yield better mean TPR for SEIDR with GPT-3.5 on PSB2 and with Llama 3—for
HumanEval-Python. SEIDR with Llama 3 performs with slightly better mean TPR towards larger
# ∗ on PSB2-C++, and at the same time, it performs well on HumanEval-C++, so the difference
between results with different # ∗ is small. The maximum of mean TPR for both datasets and
models and max number of solved problems are obtained with # ∗ = 16 or less, except for Llama
3 in PSB2-C++. From this part of the experiments, we notice that moderate or small tree arities
(# ∗ ≤ 16) are preferred, but there is no one leading tree arity.

The number of runs in which a problem is solved and the average speed of finding those solutions
is shown in Figure 10 for PSB2, Figure 11 for HumanEval-Python, and Figure 12 for HumanEval-
C++. These figures show which problems were not solved in any run of any experiment (a row
with zeros colored white) and what problems are easier to solve than others (e.g., solved in all runs,
or at least one with each tree arity # ∗, or earlier in the search tree and shown in brighter rather
than darker color but not white). We also show the results of lexicase selection runs marked with
“lex.” in these three figures, but will discuss them in a separate section.

The majority of solved PSB2 problems are solved in more than one run per setting with GPT-3.5
and faster (with fewer attempts) in Python than in C++ as illustrated in Figure 10. For Llama 3,
most of the solutions are obtained in one to three runs. The trend for both datasets is that, for
problems where a solution is found, SEIDR with GPT-3.5 makes fewer attempts in Python (brighter
colors prevail in the corresponding parts of Figures 10 and 11) than SEIDR with GPT-3.5 in C++ or
SEIDR with Llama 3 in both languages (darker shades in the GPT-3.5 on C++ and Llama 3 parts of
Figures 10 and 12).
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Fig. 10. PSB2: mean EPG (in color) and the number of runs in which a task is solved. The experiments in
which a specific problem is not solved in any run are shown in white.

To explore the capabilities of SEIDR with the studied models, we can take a union over ex-
periments and count the number of problems solved at least once across 3620 restarts with a
fixed dataset, language, and model. In this way, in addition to reporting the number of prob-
lems solved in each run in the boxplot, we can derive the number of problems solved in any run
with any set of hyperparameter using information in Figures 10–12. For example, SEIDR with
GPT-3.5 does not solve only 7 problems out of 25 PSB2-Python tasks (see Figure 10). Namely,
bouncing-balls, cut-vector, dice-game, indices-of-substring, middle-character, solve-Boolean, and
substitution-cipher are solved in 0 runs with all the variations of # ∗. In other words, 18 unique
problems are solved in the collection of all the experiments using SEIDR with GPT-3.5 on PSB2-
Python. SEIDR with GPT-3.5 does not solve 12 out of 25 PSB2-C++ tasks with any hyperparameter
settings. The number of solved problems in any run with SEIDR and Llama 3 is 10 for PSB2 in
both languages. To support the finding about degradation of performance happening in a non-
specialized model GPT-3.5 compared to the code-specialized Codex, we calculate the number of
solved problems in any run with Codex and obtain 20 problems solved at least once in Python and
18 in C++.

Similarly, SEIDR with GPT-3.5 solves 141 out of 164 HumanEval-Python problems at least once
in all runs, collectively, and 128 problems with Llama 3 (see Figure 11). In HumanEval-C++, SEIDR
with GPT-3.5 solves 163 out of 164 problems (except CPP/137) in the union of all runs and 162 with
Llama 3 (except CPP/137 and CPP/151) as follows from Figure 12.

20We have six runs and six different values of # ∗.
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Fig. 11. HumanEval-Python: mean EPG (in color) and the number of runs in which a task is solved. The
problems that are not solved in any run are colored white.
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Fig. 12. HumanEval-C++: mean EPG (in color) and the number of runs in which a task is solved. The problems
that are not solved in any run are colored white.
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Fig. 13. Distribution (in %) of the number of generated programs with GPT-3.5 and Llama 3 during each
problem-solving attempt on average over six runs with different tree arities #synth, #debug.

In Figure 13, we present the analogy of the speed of obtaining solutions, EPG. We zoom in to the
cases with solutions found with up to the first 10 program candidates in Figure 13(a) and (c) for
PSB2 and HumanEval-X, respectively. The coarser-grained EPG distribution with the step of 10
candidates is shown in Figure 13(b) and (d).

In detail, we show the distribution of EPG values in all experiments to explore what proportion
of candidate updates is made before a solution is found. For example, on average, over 70% of
Python solutions by SEIDR with GPT-3.5 are solved from the first attempt, i.e., have EPG = 0 (see
Figure 13(a)). Python solutions are more frequently found from the first attempt by SEIDR with
Llama 3 than later in the tree, although less frequently than with GPT-3.5. Most of solutions found
by SEIDR benefit from the iterative repair and generate up to 10 extra programs with both models
(see Figure 13(b) and (d)). However, some solutions are also found later in the tree search.

The EPG distribution results for correctly solved problems with )%' = 1 imply that the first
steps in the update of the draft program are crucial for solving the problem. The chances of solving
the problem in the later stages of the search are low. This confirms our assumption in Section 4.4
that 100 programs are sufficient in the generalizability experiments.
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Table 3. SEIDR Generalizability Experiments: Hyperparameters in the Lexicase Selection
Experiments

Experiment # 22 23 24 25 26 27 28 29

Datasets PSB2 HumanEval

Models GPT-3.5 Llama 3 GPT-3.5 Llama 3

Language C++ Python C++ Python C++ Python C++ Python

Population size (beam width),, 2 16 16 16 2 4 10 10
# Programs in the 1st generation, #synth 2 16 16 16 2 4 10 10

# Bug explanations for candidate, #explain 2 2 2 2 2 2 2 2
# Repairs for each explanation, #debug 2 16 16 16 2 4 10 10

Max programs generated 100
Prompts See Section 4.3.2

# Runs per experiment 6

Repair-Replace Tradeoff for SEIDR with GPT-3.5 and Llama 3 in the Generalizability Experiments
(RQ1, RQ2, RQ3): Unlike for SEIDR with Codex and a fixed debugging instruction (see Section
5.1.1), SEIDR with GPT-3.5 and Llama 3 does not show any distinct trend for all the languages
and datasets in terms of the preferred tree arity value. Results over a number of runs with the
same hyperparameter settings are more condensed for Python than for C++, which can be a
result of optimizing LLMs for high performance on popular coding benchmarks in Python. If
solutions to problems are found by SEIDR, it is done at an earlier tree search step for Python
than for C++ (i.e., with a smaller EPG). The majority of solutions are found within the first 10
updates of program candidates. SEIDR solves 163 out of 164 HumanEval-C++ problems with
GPT-3.5 at least once over all runs with all restarts and hyperparameter sets, and 162—with
Llama 3.

5.2.2 Parent Selection Strategies within the Ranking Agent in the Generalizability Experiments.
Based on the mean TPR over all runs reported in Figure 9, we fix the best-performing # ∗ for each
dataset, language, and model and run the experiments with lexicase selection instead of tournament
selection as a parent selection strategy. The hyperparameters are shown in Table 3. We compare
the number of problems solved with these settings and two types of parent selection algorithms in
Figure 14 and mean TPR in Figure 15. Mean TPR with lexicase selection and the best tournament
selection configuration are similar for two selection strategies for most of the experiments. Similar
results are obtained for the number of fully solved problems, with the exception of C++ results of
SEIDR with GPT-3.5 on both datasets, where lexicase selection improved the results.

To zoom in on the improvement details, we refer back to Figures 10–12, where separate columns
are dedicated to lexicase selection experiments (marked with “lex.”). We do not observe different
programs solved with lexicase selection than with tournament selection. Some problems are solved
in all six runs with lexicase selection and in fewer runs with tournament selection, such as find-pair
and fizz-buzz in the C++ experiments with GPT-3.5.

To confirm the effect of lexicase selection on the program candidate search, we have explored the
TPR dynamics. An example run of SEIDR with GPT-3.5 on HumanEval is shown in Figure 16. We
observe that in the vast majority of cases, the test score jumps from 0 to 1 directly, not as a result of
reordering candidates, but as a result of SEIDR bug summarization and candidate update. Therefore,
we appoint differences in results between lexicase and tournament parent selection primarily to the
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Fig. 14. Number of solved problems in lexicase and tournament selection experiments for SEIDR with GPT-3.5
and Llama 3 and fixed tree arity # ∗.

Fig. 15. Mean TPR (measured in %) in lexicase and tournament selection experiments for SEIDR with GPT-3.5
and Llama 3 and fixed tree arity # ∗.

Fig. 16. The best score on validation tests ( y-axis) obtained up to an indicated logging step (x-axis) for
problems solved from the second or later attempts with lexicase selection using SEIDR with GPT-3.5. Results
are obtained for HumanEval. “Step” on the x-axis corresponds to logging settings and roughly indicates the
speed of finding solutions to different problems. Each line stands for a unique solution.

LLMs themselves and the debugging loop rather than to the parent selection strategy. Specifically,
when an LLM gets the prompt that fixes exactly the error in a program candidate, the score jumps
to 1 because of the correct prompt provided to the model more frequently than because a better
candidate is chosen on a previous step.
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Parent Selection Strategies for SEIDRwith GPT-3.5 and Llama 3 in the Generalizability Experiments
(RQ2, RQ3, RQ4): No leading ranking strategy is found for SEIDR experiments with GPT-3.5 and
Llama 3 as measured by the average TPR and the average number of solved problems over six
runs. In the vast majority of experiments where a solution is found and at least one debugging
attempt is made the score jumps from 0 to 1 as opposed to climbing up incrementally and
makes the ranking strategy less impactful than effective prompting.

5.2.3 Overall Generalizability of SEIDR with Parent Selection Strategies and Repair-Replace
Tradeoff. We combine all results in Table 4 for PSB2 and Table 5 for HumanEval-X, where we
show the number of solved problems at different cutoffs (k). An average is taken over all runs
for the experiments with multiple restarts, and the results for one run are shown for SEIDR
with Codex.

Note that at cutoff : = 1, iterations of SEIDR are not taken into account, because the first
program candidate is the one LLMs generate from a template, and the trees at cutoff : = 1
have only one program in each of them, regardless of the parent selection strategy or tree arity.
Here, the difference between pass@1 results with different parent selection and tree arity is
explained by the stochastic behavior of the underlying LLMs. We keep pass@1 results to inform
the reader about the stochasticity of the models and for the ease of visual comparison of values in
each row.

We compare the performance of PSB2 solutions synthesized with SEIDR to the PushGP genetic
programming system with down-sampled lexicase selection [Helmuth and Spector, 2022]. To
compare the performance of SEIDR with other LLMs without SEIDR, we report the average
percentage of solved problems for HumanEval-X. For HumanEval-X, we cite the performance of
the state-of-the-art models as reported by their authors without SEIDR, such as CodeGeex [Zheng
et al., 2023], GPT-3.5 and GPT-4 [OpenAI, 2023], for reference, and compare SEIDR with GPT-3.5
and Code Llama [Rozière et al., 2023] results at different cutoffs (k for ?0BB@:). Furthermore, we
report the number of solved problems in the union of all experiments for a given dataset, model,
and language, because different problems are solved in different restarts of the method. We refer to
these results as “solved at least once” hereafter.

In PSB2-Python experiments, SEIDR with Codex has a higher pass@1,000 than the maximum
pass@100 measured for SEIDR with GPT-3.5. SEIDR with Codex also solves 20 problems at least
once, whereas SEIDR with GPT-3.5 solves 18. SEIDR with Codex also outperforms other LLMs on
PSB2 in C++. No parent selection strategy or tree arity # ∗ is leading across all PSB2 experiments.

In the HumanEval-C++ experiments, SEIDR performs well at larger k, i.e., when debugging steps
are made. Remarkably, the union of SEIDR experiments with both GPT-3.5 and a much smaller
Llama 3 solve 163 problems (or 99.4% in Table 5) and 162 problems (or 98.8%) in HumanEval-
C++, correspondingly. SEIDR does not outperform other LLMs on HumanEval-Python, which, as
mentioned earlier, could be the effect of HumanEval-Python being a popular benchmark for testing
LLMs and indirectly optimizing the models.

Direct comparison of SEIDR results with other iterative program synthesis frameworks is chal-
lenging because, in addition to differences in benchmarks used, Jiang et al. [2023] and Chen et al.
[2023] do not always report the number of generated programs, which is the primary metric that
we use to compare iteration against a replace-only baseline.21

21Chen et al. [2023] do have a sentence “Note that typically one debugging turn is sufficient.”

ACM Transactions on Evolutionary Learning and Optimization, Vol. 5, No. 1, Article 8. Publication date: March 2025.



Fully Autonomous Programming Using Multi-Agent Debugging with LLMs 8:29

Table 4. Average Number of Solved PSB2 Problems Using SEIDR with Different LLMs and
PushGP

Language Model in SEIDR # ∗ Parent selection Pass@1 Pass@10 Pass@100

Python GPT-3.5 1 Tournament 10.5 12.0 12.0
2 Tournament 9.3 11.5 12.0
4 Tournament 9.8 12.2 13.3
10 Tournament 10.7 12.7 14.5
16 Tournament 10.0 11.3 13.3
16 Lexicase 10.2 12.3 14.2
100 Tournament 10.8 12.2 13.7

Solved at least once by SEIDR with GPT-3.5 13 17 18

Codex 10 Tournament 5 10 14 (pass@1,000 = 19)

Solved at least once by SEIDR with Codex 8 13 17 (pass@1,000 = 20)

PushGP (no SEIDR) - - - - (17)

Llama 3 1 Tournament 1.2 1.3 2.3
2 Tournament 1.0 1.5 1.5
4 Tournament 1.0 1.5 2.3
10 Tournament 1.5 2.0 2.2
16 Tournament 1.7 2.8 2.8
16 Lexicase 1.0 1.7 2.0
100 Tournament 1.0 1.0 3.8

Solved at least once by SEIDR with Llama 3 4 5 11
C++ GPT-3.5 1 Tournament 0.0 5.6 5.5

2 Tournament 1.0 5.0 6.0
2 Lexicase 1.3 9.0 10.0
4 Tournament 1.0 4.6 6.8
10 Tournament 1.0 1.3 5.6
16 Tournament 1.0 1.2 8.3
100 Tournament 1.0 1.2 2.3

Solved at least once by SEIDR with GPT-3.5 2 13 13

Codex 10 Tournament 3 12 14 (pass@1,000 = 17)

Solved at least once by SEIDR with Codex 10 12 15 (pass@1,000 = 18)

PushGP (no SEIDR) - - - - (17)

Llama 3 1 Tournament 0.0 1.0 2.0
2 Tournament 0.0 2.0 2.8
4 Tournament 1.0 2.0 2.6
10 Tournament 1.0 1.4 4.0
16 Tournament 0.0 1.8 3.8
16 Lexicase 1.0 1.4 3.5
100 Tournament 0.0 0.0 3.7

Solved at least once by SEIDR with Llama 3 4 5 11

The best results among SEIDR-only experiments at each k are highlighted in bold. If pass@100 is not
available, we cite the best available results in brackets. # ∗ stands for the number of debug candidates and
debug instructions to generate (tree arity).
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Table 5. Percentage of Solved Tasks in HumanEval-X Using SEIDR with Different
LLMs

Language Model in SEIDR # ∗ Ranking Pass@1 Pass@10 Pass@100

Python GPT-3.5 1 Tournament 53.4 60.4 63.3
2 Tournament 51.3 58.2 63.7
4 Tournament 52.1 58.4 64.8
4 Lexicase 52.5 59.6 66.1
10 Tournament 51.1 58.3 61.7
16 Tournament 53.0 59.6 63.5
100 Tournament 54.0 56.7 62.5

Solved at least once by SEIDR with GPT-3.5 70.7 84.1 87.8

Llama 3 1 Tournament 22.0 44.0 47.1
2 Tournament 24.0 48.5 51.8
4 Tournament 22.5 43.1 51.8
10 Tournament 24.0 42.9 53.3
10 Lexicase 26.2 44.1 54.1
16 Tournament 23.5 41.6 51.5
100 Tournament 21.4 26.3 48.0

Solved at least once by SEIDR with Llama 3 56.7 73.8 79.3

LLM results without SEIDR
GPT-3.5 (ChatGPT) - - 48.1 - -
GPT-4 - - 67.0 - -
Code Llama 34B - - 48.8 76.8 93.0
Unnatural Code Llama 34B - - 62.2 85.2 95.4
CodeGeeX - - 22.89 39.57 60.92

C++ GPT-3.5 1 Tournament 3.4 55.9 78.5
2 Tournament 4.7 36.6 69.6
2 Lexicase 4.3 35.9 73.6
4 Tournament 4.5 27.7 62.9
10 Tournament 3.6 13.7 49.7
16 Tournament 4.5 13.2 51.1
100 Tournament 3.6 7.1 31.3

Solved at least once by SEIDR with GPT-3.5 20.1 89.0 99.4

Llama 3 1 Tournament 29.6 59.5 79.5
2 Tournament 18.6 51.6 71.4
4 Tournament 20.0 50.6 73.9
10 Tournament 25.6 56.4 80.0
10 Lexicase 25.9 60.9 84.2
16 Tournament 20.9 53.0 75.5
100 Tournament 27.1 39.7 79.2

Solved at least once by SEIDR with Llama 3 72.0 97.6 98.8

LLM results without SEIDR
Code Llama 34B - - 47.8 - -
CodeGeeX - - 17.06 32.21 51.00

The best results among SEIDR-only experiments at each k are highlighted in bold. # ∗ stands for
the number of debug candidates and debug instructions to generate (tree arity).
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Summary of SEIDR Results: SEIDR with Codex benefits from the repair-replace tradeoff when
building a search tree of PSB2 solutions. The best results on PSB2 are achieved with Codex, tree
arity of 10, and a maximum of 1,000 programs generated. A trend of having the best tree arity
set to 10 does not fully hold for other tested models, GPT-3.5 and Llama 3, where different tree
arities performed better in different settings, e.g., depending on the parent selection algorithm,
dataset, and programming language. Due to increasing costs of newer models time required
for testing, we have run GPT-3.5 and Llama 3 six times with each set of hyperparameters and
stopped building the search tree at 100 programs. In HumanEval-C++, the union of these runs
has solved 163 problems with GPT-3.5, 162 problems with a much smaller Llama 3-8B model.
SEIDR runs have also solved 18 PSB2 problems in C++ and 20 in Python with Codex at least
once in all the experiments. The numbers for SEIDR with GPT-3.5 are lower than for Codex,
possibly due to the focus of GPT-3.5 on general reasoning and of Codex—on coding. A smaller
Llama 3 model performs poorly on PSB2, which we appoint to the difficulty of the benchmark
and the popularity of HumanEval and to the fact that the models can be indirectly optimized
for higher performance on HumanEval than on other programming benchmarks.

5.3 Threats to Validity
External threats to validity concern SEIDR performance with benchmarks and language models
different from those tested. Specifically, PSB2 and HumanEval-X contain programming tasks that
require smaller functions to be generated than production-scale software. Although some canonical
solutions in HumanEval-Python have been criticized [Liu et al., 2023b], we primarily use unit tests
to evaluate the output of SEIDR and do not compute the exact match. Therefore, these weaknesses
do not impact our results.

Internal threats relate to the implementation. We use PSB2, which has both corner cases and
regular tests available. To ensure a fair comparison with other studies on PSB2, we evaluate and
report results on the provided test set of PSB2, of which we randomly pick 2,000 tests. A risk that a
program does not pass tests other than the ones picked persists but is assumed to be low given the
large enough number of 2,000 tests.

The LLMs for code editing and text completion used in this study are non-deterministic, which
can affect the results. Due to prohibitive model inference costs and discontinuation of support
for earlier models, each experiment with Codex and GPT-3 is run only once. Experiments with
Llama 3 and GPT-3.5 are restarted six times. We acknowledge that more restarts can provide a more
complete picture of the approach performance, although this is not the standard practice in the
LLM domain [Ouyang et al., 2023] and can come at considerable financial and environmental costs.
Our temperature-based sampling procedure described in Section 2.1.1 reduces this stochasticity
significantly, especially for low-EPG results, because earlier solutions in the search tree are obtained
with lower temperatures, and lower temperature limits the stochasticity. Codex, GPT-3, and GPT-3.5
are black-box models and can generate malicious code [Pearce et al., 2022]. Therefore, when coding
in real life, the LLM output should be carefully reviewed before running it.

The results can be skewed towards high performance in the programming languages prevailing
in the pre-training dataset used by the authors of the tested LLMs—an issue also known as data
contamination. However, if the models were able to directly reproduce the solutions seen in the
training data, these problems would have been solved from the first attempt. Since we observe
�%� > 1 values, data contamination is likely to have only a partial effect on the results. Moreover,
the results can be affected by popular evaluation benchmarks: Even though the benchmarks
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themselves are usually not parts of the pre-training dataset, the published LLMs are likely to be
optimized for high performance on these benchmarks.

6 Conclusion
In this study, we propose SEIDR, amulti-agent framework to solve the challenge of fully autonomous
programming. In SEIDR, the program synthesis procedure is augmented from the direct generation
of code with LLMs instructions to iterative calls to a DEBUG agent followed by the RANK agent.
The DEBUG agent performs a tree search across program candidates generated by a LLM for
code. The LLM used for code repair takes imperfect program candidates and instructions for their
improvement as prompts. The instructions are obtained from both static templates with failing test
case descriptions and templates with auto-generated bug summaries by a text completion language
model.

In addition to the initial exploration of hyperparameters that influence the population size at
each generation and the number of children for each parent in SEIDR iterations, we extend the
framework to test two different ranking strategies (tournament selection and lexicase selection),
three models in the coding part of SEIDR (Codex, GPT-3.5, and Llama 3), two datasets (PSB2 and
HumanEval-X), two programming languages (Python and C++), and various branching factors.
With the update to newer models, the prompts and parameters of the tree search are updated
accordingly.

Contributions. We run one set of initial exploration experiments and two sets of generalizability
experiments. In the initial exploration, we test SEIDR with Codex-edit as the model for draft
program synthesis and debugging in Python and C++ on the PSB2 benchmark. In our experiments,
SEIDR outperforms the PushGP baseline and achieves the state-of-the-art result with 19 solved
problems out of 25. It requires under 1,000 program executions to solve them, in stark contrast
to billions22 of executions in PushGP, making it feasible in the areas with costly testing, such
as robotics. Investigation of the repair-replace tradeoff shows that SEIDR with tree arity of 10
outperforms both the replace-only strategy and the repair-only approach.

To study the generalizability of SEIDR, we experiment with GPT-3.5 and Llama 3-8B as the
models for draft program synthesis, explaining errors in synthesized programs and their debugging
in Python and C++ on the PSB2 and HumanEval-X benchmarks. Our experiments with lexicase
and tournament parent selection in the RANK agent do not show consistent improvement with
either policy or any tree arity. One observation is that program candidates in generations prior to
the final solution do not pass any test in the test suite in the vast majority of cases. The TPR for the
final solution abruptly increases in one generation from 0 to all tests passed.

In our generalizability experiments, SEIDR shows better performance than using LLMs without
SEIDR with the same prompts and the same budget in terms of programs to generate. The method
achieves high results of 78.5% average pass@100 on HumanEval-C++ with GPT-3.5 and 84.2% with
Llama 3. Remarkably, in HumanEval-C++, the union of SEIDR restarts with different hyperparam-
eters has solved 163 problems with GPT-3.5, 162 problems with a much smaller Llama 3-8B model.
The union of SEIDR runs has solved 18 PSB2 problems in C++ and 20 in Python with Codex.
Future Work. Further investigation of SEIDR generalizability and ranking strategies are some

of the areas for future work. Benchmarks with more tests than in HumanEval-X may shed more
light on the most effective choice of the number of programs generated from each bug explanation,
as well as the framework’s comparison on large-context projects. As an agent-based framework,

22A problem is considered “solved” by PushGP if at least 1 of 100 runs, each with a limit of 60 million programs, was
successful.
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SEIDR shows how LLM-based agents and other non-LLM agents or components can collaboratively
interact and solve software engineering tasks.

Data Availability Statement
To support open science and allow for replication and verification of our work, a replication package
containing the code and results is publicly available in Zenodo.23
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