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Abstract—Software is used in critical applications in our day-
to-day life and it is important to ensure its correctness. One
popular approach to assess correctness is to evaluate software on
tests. If a test fails, it indicates a fault in the software under test;
if all tests pass correctly, one may assume that the software is
correct. However, the reliability of these results depends on the
test suite considered, and there is a risk of false negatives (i.e.
software that passes all available tests but contains bugs because
some cases are not tested). Therefore, it is important to consider
error-inducing test cases when evaluating software.

To support data-driven creation of such a test-suite, which is
especially of interest for testing software synthesized from large
language models, we curate a dataset (Codehacks) of programming
problems together with corresponding error-inducing test cases
(i.e., “hacks”). This dataset is collected from the wild, in particular,
from the Codeforces online judge platform. The dataset comprises
288,617 hacks for 5,578 programming problems, each with a
natural language description, as well as the source code for 2,196
submitted solutions to these problems that can be broken with
their corresponding hacks.
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I. INTRODUCTION

Large Language Models (LLMs) are increasingly being used
to support us in our daily lives and have achieved high
competitive performance on a variety of software engineering
tasks (e.g., bug fixing, defect detection, program synthesis,
program translation) [1]. However, LLMs have been shown to
‘hallucinate’ or ‘confabulate’, generating responses that may
appear plausible but are incorrect. Although this has been
mostly discussed in the context of natural language chats, it
can also cause problems for software engineering tasks, such
as code synthesis [2]. Therefore, it is of great importance to
verify and ensure the correctness of the synthesized code [3].
One approach frequently used in practice is execution-guided
evaluation [4], which applies a pre-defined test suite (e.g., unit
tests, input-output pairs) to the generated code. If one of the
tests fails, the snippet is treated as incorrect. If all tests pass,
it is treated as a correct program synthesized by an LLM.

However, tests and, in particular, failure-inducing tests, are
expensive and time-consuming to create [4], [5], [6]. As a result,
there is a risk of false negatives where the code passes all

available tests but still contains bugs because some cases were
overlooked. To find such false negatives and ensure correctness
of the code, additional tests are needed.

An unexploited resource in this regard is the online judge
platform Codeforces. Online judges are platforms that allow
users to participate in programming competitions and solve
programming tasks, often in the programming language of
their choice. User submissions are evaluated on predefined test
suites, and much care is taken to ensure that the test suites are
comprehensive [7]. However, it has recently been shown that
these test suites do not always cover all cases, allowing false
negative submissions to slip through [7], [8].

Unlike other online judge platforms, Codeforces provides
competitors the opportunity to identify such false negative
submissions during a competition as a means to increase their
score. They can do this by “hacking” the submissions of other
competitors that already passed the predefined test suite. The
submission of user A is hacked by user B, if B can find an input
for which the submission fails (e.g., it generates a different
output than a pre-specified solution). Figure 1 illustrates an
example hack obtained from a Codeforces contest. It should be
noted that an unsuccessful hacking attempt by user B results in
a penalty to their score. The successful hacks from Codeforces
provide a valuable learning resource to support the data-driven
creation of test inputs to find false negative submissions and
evaluate the quality of synthesized code.

This paper introduces Codehacks, a novel dataset curating
failure-inducing test cases based on “hacks” that are auto-
matically collected from the Codeforces coding platform. As
online judges already evaluate submissions with a multitude
of tests, these represent edge cases that are costly to create
manually and are valuable resources for future test generation
and validation approaches for synthesized code, in particular by
LLMs. At the initial release, the dataset comprises of 288,617
hacks for 5,578 programming problems, each with a natural
language description, as well as the source code for 2,196
submitted solutions to these problems that can be broken with
their corresponding hacks. The necessary resources (dataset
and scripts) to update, replicate and build on our work are
provided at: https://doi.org/10.6084/m9.figshare.24773754
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(a) Problem description.

(b) Accepted solution. (c) Successful hacking attempt.

Fig. 1. Example of a hacked Codeforces submission with corresponding
problem description and hacking attempt.

II. RELATED WORK

A. Online Judge Datasets

Online judges provide programming problems to a wide
audience and allow them to submit their own solutions which
are evaluated on test suites to verify their correctness. The
public sharing of this data allowed for the creation of multiple
datasets that provide ample resources to support software
engineering tasks. Over the last few years, datasets have been
created that utilize data from online judge platforms such as
Codewars, AtCoder, Kattis, Codeforces, Google Code Jam,
CodeChef, and Hackerearth [9], [10], [11].

One of the largest and most frequently used data sets is
CodeNet by Puri et al. [12]. CodeNet consists of over 14 million
code samples in 55 programming languages, with sample input
and output pairs (tests) for 98.5% of the code. These data are

crawled from the Aizu and AtCoder online judge platforms.
Subsets of CodeNet have been used to create program repair
datasets [13], as well as incorporated in CodeContests, the
dataset created for training the AlphaCode language model [11].
The complete CodeContests dataset contains problem descrip-
tions, submissions, and test cases that were collected from
the Aizu, AtCoder, CodeChef, Codeforces, and HackerEarth
platforms.1 The collected submissions are written in the three
most frequently used programming languages: Python, Java,
and C++.

To evaluate whether the tests for AtCoder are effective in de-
tecting false negatives, Liu et al. [7] extracted 541,552 accepted
solutions from 939 coding problems from the CodeContests
dataset. After randomly generating additional tests, they found
false negative submissions for 43.1% of the problems. A subset
of these data containing 3,043 false negative submissions is
shared as “TrickyBugs” to stimulate future research [14].

In addition, there are datasets that are completely based
on Codeforces problems. An early dataset created in 2017 by
Tan et al. [15] is called CodeFlaws. CodeFlaws is designed to
support program repair tasks and consists of 7,436 programs
from Codeforces (i.e., a user submission to a specific problem).
Each submission consists of a rejected submission, classified
in one of 39 defect classes, and an accepted one. Code4Bench
introduced a richer dataset with 3,421,357 Codeforces programs
written in 28 programming languages [16].

However, none of the existing works made use of the
“hacking” functionality that Codeforces provides to curate their
datasets. In particular, unlike the randomly generated tests by
Liu et al. [7], these hacks are submitted by human contestants,
which is helpful when evaluating code synthesis tools, trained
on human-written code.

B. Program Synthesis
Program synthesis aims at the generation of a program with a
specified target language, based on natural language descrip-
tions or specifications of input-output pairs [17]. Advances in
LLMs for code synthesis introduced well-performing models,
such as AlphaCode which was able to rank in the top
54.3% in Codeforces coding competitions [11]. AlphaCode
is a transformer model pre-trained on source code from
GitHub repositories and fine-tuned on the CodeContests dataset.
Another LLM for code generation is Codex [18], a GPT model
fine-tuned on GitHub repositories for writing Python code.

Jain et al. [19] proposed an interactive system for code
synthesis called Jigsaw. Jigsaw allows users to describe the
program they want to generate with natural language and test
cases (input and output pairs). Generation is then carried out
by integrated LLMs, such as GPT-3 and Codex.

While Li et al. [11] evaluate AlphaCode on Codeforces
contests, they mention that hacking was not performed during
their evaluation of AlphaCode (i.e., the solutions submitted
by AlphaCode to the contests cannot be hacked unlike regular
submissions). The use of hacks as an additional resource for
training was not considered.

1 https://github.com/deepmind/code contests
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C. Test Generation

Tests are required to ascertain the correctness of software.
Given the effort, cost, and time required to generate suitable
tests for source code, test generation techniques have been
developed to support software engineers with this task. Here,
we outline recent approaches for test generation that utilize
LLMs and could benefit from our Codehacks dataset.

Tufano et al. [20] proposed ATHENATEST which treats
unit test generation as a sequence-to-sequence learning task.
Schaefer et al. [5] introduced TESTPILOT, a unit test generator
based on Codex [18]. Codex is utilized without further
retraining, solely by prompts including the respective function
and examples.

Liu et al. [8] proposed a benchmarking framework (EvalPlus)
to assess the correctness of LLM-synthesized code. EvalPlus
employs both LLMs and mutation-based strategies to generate
additional tests. In particular, ChatGPT is used to generate seed
tests that are modified by mutation strategies. The prompt for
ChatGPT includes the program solution, example test inputs,
as well as an encouragement to generate interesting test inputs.

In many studies, the LLMs are used off-the-shelf, and the
investigation is aimed at finding suitable prompts for the
generation of tests [4]. Our work is orthogonal to such studies,
as we aim to curate a high-quality dataset that can then be used
to fine-tune an LLM for the task of generating failure-inducing
tests given a natural language description of a programming
problem.

III. CODEFORCES DATASET - COLLECTION AND CURATION

Codeforces is a platform designed for practicing and par-
ticipating in programming contests [16], [21]. Codeforces
hosts contests consisting of multiple problems. Users can
join a contest live, during which they can work on the
problems for a designated time duration, but they can also
solve problems offline, after the contests are over. Competitors
have a free choice of programming language, while test inputs
are independent of the programming language used [16]. During
the duration of the contest, users can hack the submission of
other contestants to gain additional points and improve their
ranking. Hereby, an incorrect hacking attempt causes a point
deduction. In addition, there are educational contests that allow
for hacking up to 12 hours after contest completion for learning
purposes.2

In the following, we outline the steps that were performed
to collect hacks and submissions from competitions held on
Codeforces and create the Codehacks dataset (Section III-A).
Section III-B provides details on the collected hacking attempts,
as well as a discussion of our choices on which hacks to
include in the dataset. Section III-C describes the programming
problems for which hacks were collected, and Section III-D
discusses possible limitations of the collection process.

2 https://codeforces.com/blog/entry/107753

Fig. 2. Structure of the collected dataset.

A. Data Collection

To collect relevant data from Codeforces, we use their API3

and a publicly available crawler.4 With help of the Codeforces
API, we obtain information about hacks. In particular, we
first used the API to find the IDs for every contest held on
Codeforces and afterwards obtain a list of hacking attempts
for each contest. In total, from the 1, 928 contests currently on
Codeforces, 1, 647 contests have hacking attempts from users,
resulting in 393,382 successful hacks.5

While the API call provides useful information, such as
the input used for a hacking attempt, the problem description
is not provided. Therefore, we follow Tan et al. [15], to use
and modify a publicly available crawler4 to extract problem
descriptions for each of the 5,578 problems with successful
hacks. A description of the information obtained for hacks and
problems is shown in Figure 2.

Continuing the crawling process to gather further details
on submissions, such as their source code, turned out in-
feasible as they are part of the “robots.txt”. Therefore, we
used Code4Bench [16], a dataset from 2018 with 3, 421, 357
submissions, to match the submission for our hacks with the
already collected dataset. In total, the hacks from our dataset
matched with 2,196 submissions from Code4Bench. We add
the respective source code and programming language used to
our dataset, as outlined in Figure 2.

According to the Codeforces data sharing guidelines, we
provide the URL to each problem description crawled.6 An
explanation of the required steps and relevant source code is
provided in our online Appendix.7

B. Hack Verdicts

Each hacking attempt is evaluated by the Codeforces
platform to determine whether it was successful or not (i.e.,
whether the hacker is able to show erroneous behavior of an
accepted submission). For example, to make a submission fail

3 https://codeforces.com/apiHelp
4 https://github.com/Nymphet/codeforces-crawler/tree/master
5 We accessed the API on the 18th of November 2024.
6 https://codeforces.com/blog/entry/967
7 https://doi.org/10.6084/m9.figshare.24773754
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Fig. 3. Verdicts of the submitted hacks.

due to a “time limit exceeded” error, one often needs to create
as many inputs lines as allowed by the problem specification.
To make a submission fail due to a wrong answer, one needs
to find an input that is not covered by the online judges test
set. Figure 3 illustrates the distribution of the verdicts among
the 1,002,339 hacking attempts, of which 393,382 (42.1%)
are successful. The majority of successful attempts force the
submission to generate a wrong answer (31.4% of total) and
the next most successful type group makes the submission
exceed predefined time limits (9.1% of total). The remaining
types of errors that are induced include runtime errors and
exceeding memory limits. 39.2% of the submitted hacks are not
able to point out errors in the submissions (hack unsuccessful),
while 15.4% do not conform to the input specifications of the
problems and are therefore not executed (invalid input). We
also observed that 3.2% of the hacking attempts received other
tags (i.e., generator incompilable, generator crashed, ignored,
other, testing). We treat these, as well as invalid inputs, as
unsuccessful hacking attempts and exclude them from the
dataset.

We note that the Codeforces API abbreviates long input
sequences (e.g., an input can consist of more than 10,000
lines) by substituting parts of the input with “...” [16]. This is
the case for 104,765 of 393,382 successful hacking attempts.
These are omitted from the collection as their input cannot be
reproduced, leaving 288,617 hacks for the dataset collection.

C. Problem Types

Each Codeforces problem is categorized based on different tags
that indicate the type of problem (e.g., dynamic programming).
Moreover, problems have a certain difficulty level ranging from
800 to 3500, to indicate how difficult it is for a user to solve this
problem.8 In Figure 4, we illustrate frequency of problem types
and their respective difficulty level for the collected hacks. The
tags are ordered by frequency in the datasets, showing that the
most frequently used tags to describe problems with successful

8 Note that 2,415 of the problems did not have a specified difficulty level.
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Fig. 4. Distribution of hacks per problem tag (y-axis) and difficulty (x-axis).

hacks are: implementation, math, greedy. Moreover, we can
observe that there is a larger number of hacks for problems
with lower difficulty levels, which could be caused by the
overall distribution of problems on Codeforces (e.g., there
are more problems with lower difficulty), or the proficiency
level of contestants (e.g., contestants that solve problems with
low difficulty levels have a lower rating and therefore create
solutions that are “hackable”).

D. Limitations

The quality of the successful hacks depends on the pre-defined
test suite employed by Codeforces for each of the problems.
There are no regulations on how many tests a problem should
include, and therefore it is not possible to judge the coverage
or completeness of the test suites. This could lead to some of
the hacks collected being “easy” due to small initial test suites,
while other problems with more extensive test suites may not
be covered because no successful hacks were submitted for
them.

IV. CONCLUSIONS AND FUTURE USAGE

This paper introduces Codehacks, a dataset of user-submitted
hacks that reveal errors in submissions to programming
problems that the standard test suites on Codeforces are not able
to cover. In total, this data set comprises 288,617 successful
hacking attempts and 2,196 source code submissions for 5,578

745
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on May 27,2025 at 07:47:19 UTC from IEEE Xplore.  Restrictions apply. 



programming problems. For each of the problems, we include
the natural language description.

Curating a collection of failure-inducing test cases for
programming problems is of interest, as such test cases can be
difficult and costly to find. We hope that the provided dataset
can function as a valuable resource for software testing and
test generation.

One promising application area is to improve code synthesis.
It is known that high-quality tests can help improve code
synthesis [22], and that it is important to consider edge cases
when testing programs, as these are the most likely to point out
flaws in the program logic. Our dataset can be used to fine-tune
an LLM for generating such edge cases (i.e., generate likely
error-inducing tests), based on natural language descriptions
of the problem for which code is synthesized.

Another promising field for applying our dataset is test
generation in an adversarial setting. In this case, an LLM
such as AlphaCode or Codex is used to synthesize code
from natural language descriptions, while another model is
trained to generate challenging test inputs from natural language
descriptions. These test inputs are then used to determine the
quality of the code generated by the first model. Similarly to the
iterative approach of Liventsev et al. [23], who generated code
and utilized feedback from failed tests for iterative debugging
and repair, this adversarial framework can be extended to
iteratively generate novel challenging tests, forcing the code
synthesizer to generate more robust code.
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