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Abstract—Recent advances in defect detection use language
models. Existing works enhanced the training data to improve
the models’ robustness when applied to semantically identical
code (i.e., predictions should be the same). However, the use of
semantically identical code has not been considered for improving
the tools during their application - a concept closely related to
metamorphic testing.

The goal of our study is to determine whether we can
use semantic-preserving transformations, analogue to mutation
operators, to improve the performance of defect detection tools in
the testing stage. We first collect existing publications which im-
plemented semantic-preserving transformations and share their
implementation, such that we can reuse them. We empirically
study the effectiveness of three different ensemble strategies
for enhancing defect detection tools. We apply the collected
transformations on the Devign dataset, considering vulnerabilities
as a type of defect, and two fine-tuned large language models for
defect detection (VulBERTa, PLBART).

We found 28 publications with 94 different transformation.
We choose to implement 39 transformations from four of the
publications, but a manual check revealed that 23 out 39
transformations change code semantics. Using the 16 remaining,
correct transformations and three ensemble strategies, we were
not able to increase the accuracy of the defect detection models.
Our results show that reusing shared semantic-preserving trans-
formation is difficult, sometimes even causing wrongful changes
to the semantics.

Index Terms—defect detection, language model, semantic-
preserving transformation, ensemble

I. INTRODUCTION

Among others, defect detection models should be accurate
(good at detecting defective code snippets) and robust (making
the same prediction for functions that are doing the same
thing). Existing research measured how robust defect detection
models are [1] and improved robustness via the training pro-
cess (e.g., adversarial training) by incorporating code snippets
that look different but have the same functionality [1], [2].
One approach to obtain such snippets is the use semantic-
preserving transformations (e.g., changing a for loop to a while
loop), which do not change the code snippets’ functionality.
An unexplored aspect is whether “unrobust” models can be
improved by using the diverse predictions made on code
transformed with semantic-preserving transformations.

This intuition is inspired by metamorphic testing, which
instead of ground truth datasets, has access to inputs which
should generate the same output [3], [4]. Models are then
evaluated by their ability to make the same predictions for such
input pairs. Rather than comparing the predictions made on
multiple inputs, as done in metamorphic testing, we use them
to improve the performance of LLMs for defect detection.

As an example, imagine you have written code which a
defect detection model predicts as “correct”. You now go
ahead and change a variable name. All of a sudden the
prediction changes to defective. Surprised, you repeat the
same procedure another 5 times but the prediction remains
as defective. This raises the question whether to trust the first
prediction, as it was performed on the original code snippet
or the majority of tests, which were labeled as defective.
Following this intuition, we study the following: What is the
impact of semantic-preserving transformations on defect
detection tool performance?

To answer this question, we focus on Large Language
Models (LLMs) as defect detection tools. First, we review
existing literature that applied semantic-preserving transfor-
mations. Then we check whether they share resources to find
transformations we can replicate and apply for our experi-
ments. Using LLMs as defect detection models and existing
approaches for generating semantic-preserving transforma-
tions, we focus on combining the two parts and investigate
the ability of semantic-preserving transformations to enhance
and improve the defect detection models. For this purpose,
we use ensemble techniques, which make predictions under
consideration of the original code snippet and mutated variants
with semantic-preserving transformations. Figure 1 outlines
the current process of using LLMs for defect detection and our
novel approach, using semantic-preserving transformations for
mutating source code, and ensemble learning. We apply the
ensembles to the Devign dataset [5], a dataset for detecting
vulnerability defects, which categorises functions as vulnera-
ble and non-vulnerable.

We make the following contributions:
• We collect 28 publications that applied semantic-

preserving transformations.
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Fig. 1: Overview of the proposed approach for applying semantic-preserving transformation for testing defect detection models.

• We implement 39 semantic-preserving transformations
shared by four publications. For each transformation, we
check up to 20 transformed functions manually to verify
their correctness.

• We evaluate the usability of semantic-preserving trans-
formations for improving defect detection tools in an
empirical study with three ensemble techniques and two
LLMs using the transformations.

• We share our results and all transformations applied to
the Devign dataset to enable a replication and verification
of our results.1

Main findings: We have found 28 publications with 94
semantic-preserving transformations. When implementing the
transformations of four of these repositories, we encountered
difficulties. Critically, 23 out of 39 transformations did not
pass our manual validation, as they changed semantics. We
are left with 16 out of 39 transformations for our empirical
study. While our investigated ensemble techniques were not
able to improve the accuracy, we provide insights on imple-
mentation difficulties (Section V-C).

II. RELATED WORK

A. Data Augmentation for Software Engineering

Data augmentation is used to increase the amount of data
available for training or testing of machine learning models.
Here we outline approaches for software engineering tasks.
Sampling: The first set of approaches are concerned with the
sampling of existing instances in the training dataset. When
treating sampling as a data augmentation approach, we focus
on the oversampling of data (i.e., the addition of duplicates)
rather than downsampling (i.e., removal of samples) [6], [7].

1 https://figshare.com/s/f9b93d9d549f316b1e5d.

Sampling is in particular useful when dealing with imbal-
anced datasets, which frequently is the case for vulnerability
detection tasks. For instance, datasets might only have 10% of
functions labeled as vulnerable [8]. When collecting programs
from online sources, such as Github, the proportion of correct
samples is much larger than defective programs. Oversampling
can balance the two classes [9].

In addition to random sampling, more complex methods
have been applied, such as fuzzy-based oversampling [10]
or Synthetic Minority Over-Sampling (SMOTE) [11], [12].
SMOTE selects a sample from the under-represented group
and one of its closest neighbors (from the same group).
The new sample is created by interpolating between the
two selected data samples [13]. For such an interpolation
to work, one needs to represent programs and code snippets
numerically. This has been done with vector embeddings [11],
[12] or based on source code metrics [14]–[16]

Regular oversampling is not able to generate new programs.
SMOTE can generate new data but represents programs as
vector embeddings rather than source code.
Neural Approaches: Neural approaches use LLMs to learn
how to modify existing code snippets and create new snippets
from scratch. For example, Richter and Wehrheim [17] used
LLMs to learn how to mutate tokens in a code snippet to
generate more natural bugs.

Another approach has been followed by Zirak and Hem-
mati [18], who trained an LLM on a reverse program repair
dataset such that they can use the LLM to generate faulty
examples (e.g., learn how to create bugs rather than learning
how to fix them). For the bug detection and repair task,
Allamanis et al. [19] trained two models, one to detect and
repair bugs and a second one the learn how to best insert bugs
to be used as training data. An adaptation of this approach
is introduced by Yasunaga and Jiang [20]. They employed
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the iterative approach break-it-fix-it (BIFI) for data generation.
BIFI uses a fixer, which learns to repair buggy code, and a
breaker which learns to insert bugs in fixed code. In an iterative
process, both these models are used to improve one another
(e.g., the fixer learns from the code “broken” by the breaker
and vice versa).

While neural approaches are able to generate new source
code samples, which look natural, they are usually applied
to create datasets for program repair tasks (i.e., insert natural
bugs for good code). Thereby, the created programs aim at
breaking the code and do not maintain the functionality of the
original code snippets.
Rule-based transformations: Previous described approaches
for data augmentation generate new, unseen samples but are
not able to guarantee their behavior (e.g., neural approaches)
or are not applicable to source code (e.g., SMOTE). One
approach to address this shortcoming are rule-based trans-
formations. By carefully defining the modifications, one can
ensure that the functionality of modified snippets is not altered
(e.g., change for loops to while loops). We note that one can
also apply rule-based transformations to insert faults, but our
focus here is the use of semantic-preserving transformations,
transformation which can change the syntax of a code snippet
but not the functionality.

Semantic-preserving transformations have been applied to a
variety of software engineering tasks, including code clone
detection [2] and code authorship disguise [21], [22]. The
application ranges from the creation or extension of datasets to
robustness evaluation and changes to pre-training procedures.
For example, Jing [23] used transformations to increase the
complexity of samples in a vulnerability detection dataset.
Other works tested the robustness of LLMs to small changes
in the input. This means that a model should return the same
prediction when faced with a code snippet and a transformed
one with the same semantics [24]. Semantic-preserving trans-
formations used to test the robustness can also be used to
extend the training dataset and in turn improve a models’ ro-
bustness [1], [25]. Lastly, semantic-preserving transformation
have been used to modify the loss function when training
LLMs for software engineering tasks, one example being
contrastive pre-training. Contrastive pre-training [2], [26], [27]
guides the training of LLMs such that semantically-identical
code snippet are embedded close to one another. Thereby,
predictions by the model should be less dependent on syntax.

While rule-based semantic-preserving transformations have
been applied to test the robustness of models, create or extend
training datasets, they have not been applied to enhance and
improve the testing itself. In this work, we are the first to
use semantic-preserving transformations to extend the testing
procedure, similar to metamorphic testing. We apply this
to the defect detection task, in particular the detection of
vulnerabilities.

B. Ensemble Learning for Defect Detection

Ensemble models combine predictions made by multiple
models. This combination is carried out to address limita-

tions of machine learning models and can achieve higher
accuracy than a single classifier [28]. In particular, multiple
classification models can be used to complement one another,
for example in situation where identifiers are able to detect
different types of defects [29], [30]. An ensemble of such
classifiers could make for more robust defect detection models,
for instance when dealing with vulnerabilities.

A survey on ensembles for defect prediction by Matloob
et al. [31] found that the most frequent ensemble techniques
to improve the performance of defect detection tools were
random forests, boosting, and bagging. There was no mention
of ensembles of different defect detection tools.

Di Nucci et al. [30] proposed ASCI (Adaptive Selection
of ClassIfiers in bug prediction), an approach which instead
of combining multiple classifiers into an ensemble, predicts
the most suitable classifier to use. This approach was able to
outperform a majority voting baseline.

In 2016, Petrić et al. [32] stated that “Almost all previous
work using ensemble techniques in defect prediction rely on
the majority voting scheme for combining prediction outputs”.
Instead of applying a majority voting scheme, they used a
stacking ensemble. The first layer of a stacking approach
contains predictions made by individual classification models.
This is used as an input to the second layer, which learns to
make the final prediction.

Further approaches for defect detection with ensemble
learning used weighing [33], [34], averaging prediction proba-
bilities [35], and stacked learning with different neural network
architectures [36]. Barbez et al. [37] used an ensemble of
feature extraction tools to generate a comprehensive input for
defect detection. Other than predicting whether a function is
vulnerable, Ding et al. [38] used ensemble learning to detect
vulnerabilities on a statement level.

III. TRANSFORMATIONS

In this section, we present an overview of semantic-
preserving transformations that have been applied in existing
works. For this, we performed and exploratory literature search
in addition to backward snowballing. We found 28 publications
that have applied a total of 94 different transformations. Table I
and Table II list the 94 transformations. A description of each
transformation can be found in our online appendix.1

We further divide the transformations in six categories,
inspired by Quiring et al. [21] and Liu et al. [22]: API,
Formatting, Control Flow, Function, Data and Declaration,
Dead/bogus code, Trivial.

API transformations are concerned with API use, mainly for
input and output processing. Formatting transformations do
not change any of the tokens of code snippets, but rather adjust
spacing. Control Flow transformations describe modifications
to the snippets control flow, such as modification of if-
statements or the processing order of loop operations. These
are often times bi-directional, such as the conversion of for
loops to while loops and vice-versa. Function transformations
are concerned with transformations that address the modifica-
tion of functions (e.g., function parameters) or the creation of
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TABLE I: Semantic-preserving transformations - Part 1.

Types Transformation # Reference

Replace variable name 25 [1]–[4], [19], [21],
[22], [24]–[27], [39]–
[52]

Replace argument/parameter 8 [1], [2], [4], [39],
[41], [45], [51], [53]

Replace function name 8 [1], [3], [21], [22],
[26], [39], [51], [53]

Object field renaming 3 [41], [45], [50]
Split/aggregate declarations 3 [22], [44], [54]
Split/aggregate multi-variable assignment 3 [42], [44], [54]
API renaming 3 [1], [39], [51]
Swap operands 3 [19], [22], [42]
Undo or introduce type alias 3 [21], [22], [44]
Split/aggregate assignment initialization 2 [44], [54]
Prefix / suffix operator swap 2 [44], [54]
Separate/attach elaborated type declaration 1 [22]
Replace a class 1 [3]
Property assignment renaming 1 [50]
Use namespace 1 [44]
Use macros 1 [44]
Use alternative tokens 1 [22]
Use converse-negative expressions 1 [22]
Use equivalent computations 1 [22]
Numerical calculation transformation 1 [48]
Self-increasing/decreasing unfolding 1 [54]
Ternary expressions 1 [50]
Array access 1 [50]

Trivial

Array indexing/pointer 1 [44]

Add neutral element 5 [3], [4], [39], [51],
[52]

If enhancement 3 [1], [39], [51]
Convert int literals into expressions, vice versa 2 [2], [22]
Convert between bool literals and int literals 2 [21], [22]
Replace bool literals 2 [41], [45]
Boolean exchange 2 [24], [40]
For loop enhancement 2 [39], [51]
Convert integers into hexadecimal numbers 1 [22]
Promote data types 1 [21]
Convert char literals into ASCII values 1 [22]
Convert string literals to char arrays 2 [21], [22]
Convert array to vector 1 [21]
Declaration of loop variables 1 [21]
Type upconversion 1 [2]
Use cast expressions 1 [22]

Data and
Declaration

Use typeid expression 1 [22]

Input API transformation 3 [21], [44], [54]
Output API transformation 3 [21], [44], [54]
Input interface transformer 2 [21], [44]
Output interface transformer 2 [21], [44]

API

Sync-with-stdio transformer 2 [21], [44]

new functions (e.g., the conversion of statements to functions
or the merging of two functions). Data and Declaration
addresses transformations such as the declaration of variables
(e.g., defining multiple variables in a single statement) and
the conversion of different data types (e.g., casting integers
to floats). Dead/bogus Code describes the addition of useless
statements to the code, which do not change the execution,
such as duplicating assignments or modifying comments.
Unused code can describe a multitude of constructs, such
as if, for, if else, switch or while statements [39], [51],
[52]. Trivial transformations include all other, small modi-
fications to the code, such as renaming (functions, variable
names, arguments), rewriting of operands (i++ is changed to
i+=1), or the splitting/aggregation of statements. The most
frequently applied transformation belongs to this category, i.e.,
the renaming of variable names. Variable renaming has been
performed by 25 out of 28 publications, following different
strategies, such as the use of synonyms [1], setting the variable
name to V ARi [42], adversarial selection [43] and random
generation [52].

TABLE II: Semantic-preserving transformations - Part 2.

Types Transformation # Reference

Convert for-statement to while-statement 9 [1], [21], [22], [24], [27],
[42], [44], [48], [54]

Convert while-statement to for-statement 9 [1], [21], [22], [24], [27],
[42], [44], [48], [54]

Convert switch-case to if-else 6 [22], [24], [27], [40], [44],
[54]

Reorder statements 5 [24], [26], [27], [40], [44]
Convert if-else to switch-case 4 [22], [27], [44], [54]
Split conditions of if-statements 4 [21], [22], [44], [54]
Swap if-else bodies 3 [19], [22], [42]
Convert ternary to if 2 [42], [54]
If-true 2 [3], [4]
Lambda-identity 2 [3], [4]
Combine if statement 2 [44], [54]
Convert if-else to conditional expression 1 [22]
Convert conditional expression to if-else 1 [22]
Convert if-else(if) to if-if 1 [48]
Unroll while loop 1 [45]
Insert multiple loops 1 [23]
Wrap Try Catch 1 [45]

Control
flow

Delegation-method 1 [3]

Add function arguments 5 [1], [3], [22], [39], [51]
Function creation 3 [21], [44], [53]
Reorder function arguments 2 [22], [53]
Add input checking for function parameters 2 [39], [51]
Merge function arguments 1 [22]
Convert statements into functions 1 [22]
Convert binary expressions into functions 1 [22]
Merge functions 1 [22]
Hide API calls 1 [22]

Function

Merge function arguments 1 [22]

Add dead code 12 [2], [23], [26], [27], [39]–
[42], [45], [51]–[53]

Add unused variable 10 [1], [3], [4], [24], [39],
[49]–[53]

Add temp variables 5 [21]–[23], [44], [48]
Add print statement 5 [1], [39], [41], [45], [51]
Add, remove, move comments 5 [2], [3], [19], [26], [53]
Return optimal 3 [1], [39], [51]
Duplication 3 [39], [51], [52]
Add libraries/includes 3 [21], [22], [44]
Add global declarations 3 [21], [22], [44]
Remove dead code 3 [2], [21], [22]
Add return statement 2 [21], [44]
Add redundant operands 2 [22], [52]
Add type alias 2 [21], [22]
Add/remove compound statement 1 [21]
Add unused object expression 1 [50]
Add function declarations in classes 1 [22]

Dead/bogus
code

Add void function 1 [53]

Add whitespace 2 [3], [53]
Remove whitespace 1 [3]
Reformatting 1 [2]
Beautification 1 [2]

Formatting

Compression 1 [2]

A. Publications with Shared Artifacts

In addition to collecting publications with semantic-
preserving transformation, we are particularly interested in the
ones that share their implementation. A shared implementa-
tion allows for a reproduction of the results and application
of transformations without incurring large implementation
overheads and the risk of errors or different implementation
choices. Among the 28 publications that applied semantic-
preserving transformations, we found 19 which share code,
such that one can apply their transformations. Table III
provides details on each of the 19 publications. For each
publication, we describe the task to which they have been
applied to (e.g., code search, clone detection), the number
of implemented transformations (according to Table I and
Table II), the respective programming languages as well as
a link to their resources.

From Table III, we can observe that the shared transforma-
tion have been applied to various tasks, ranging from defects
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TABLE III: Overview of publications with shared source code for transformations and the respective programming languages
(PLs), including the number of implemented transformations (#).

Author, year Topic # PLs Link

Zhen et al. [44], 2022 Authorship attribution 26 C/C++, Java https://github.com/RoPGen/RoPGen
Quiring et al. [21], 2019 Authorship attribution 24 C/C++ https://github.com/EQuiw/code-imitator
Dong et al. [55], 2023 Code classification, Defect detection 14 Java, Python https://github.com/zemingd/Mixup4Code
Applis et al. [3], 2021 Code summarization 12 Java https://github.com/ciselab/Lampion/tree/main/Transformers
Pour et al. [1], 2021 Method name prediction, code captioning,

code search, documentation generation
11 Java https://github.com/MaryamVP/Guided-Mutation-ICST-2021

Jain et al. [2], 2021 Code clone detection, type inference, Ex-
treme code summarization

10 JavaScript, TypeScript https://github.com/parasj/contracode

Risse and Boehme [53], 2023 Vulnerability detection 9 C/C++ https://github.com/niklasrisse/LimitsOfML4Vuln
Ramakrishnan et al. [45], 2022 Method name prediction 8 Java, Python https://github.com/jjhenkel/averloc
Chakraborty et al. [42], 2022 Text to code generation, code translation,

bug fixing
8 Java, Python, C, C#, Go,

JavaScript, Ruby, PHP
https://github.com/saikat107/NatGen

Rabin et al. [24], 2021 Method name prediction 7 Java https://github.com/mdrafiqulrabin/tnpa-generalizability/
Bielik et al. [50], 2020 type prediction 7 JavaScript, TypeScript https://github.com/eth-sri/robust-code
Wei et al. [52], 2021 NL summary, Method name prediction 6 Java https://zenodo.org/record/4000441#.ZEeX2-xByX0
Srikant et al. [41], 2021 Method name prediction 6 Java, Python https://github.com/ALFA-group/adversarial-code-generation
Liu et al. [26], 2023 Clone detection, defect detection, code

translation, code search
5 Java, Python, Ruby, Go,

PHP, JavaScript
https://github.com/shangqing-liu/ContraBERT

Allamanis et al. [19], 2021 Bug detection, program repair 4 Python https://github.com/microsoft/neurips21-self-supervised-bug-detection-and-repair
Yefet et al. [49], 2020 Code classification, Bug detection 2 Java, C# https://github.com/tech-srl/adversarial-examples
Zhang et al. [25], 2020 Source code classification 1 C/C++ https://github.com/SEKE-Adversary/MHM
Yang et al. [43], 2022 Vulnerability prediction, Clone detection,

Authorship attribution
1 C, Python, Java https://github.com/soarsmu/attack-pretrain-models-of-code

Yang et al. [46], 2023 Code summarization NL, method name pre-
diction

1 Python https://figshare.com/articles/dataset/ICSE-23-Replication 7z/20766577/1

(vulnerability detection, program repair), code translation to
code clone detection and authorship attribution. Moreover,
there are several publications that applied a single transfor-
mation, i.e., variable renaming.

In total, shared transformations have been applied to 9
programming languages. The most frequently used program-
ming language is Java, with 12 out of 19 publications. The
next popular programming language is Python (8 publications)
followed by C/C++ (6 publications) and JavaScript (4 publica-
tions). In 9 out of 19 cases, transformations have been applied
to a single programming language, the remaining 10 consider
at least two and at most 8.

IV. EMPIRICAL STUDY DESIGN

A. Research Questions

We set out to answer two research questions in our study:
RQ1. What is the impact of semantic-preserving trans-

formation operators on the predictions made by defect
detection tools?
In the first RQ, we investigate whether semantic-preserving
transformations lead to changes in the predictions of defect
detection tools. In particular, we are interested in vulnerability
defects in code snippets. This question is important to verify
the viability of our approach for improving vulnerability detec-
tion (e.g., if the transformed code does not change predictions,
the information cannot be used for improvement). Moreover,
we investigate how often each transformation can be applied to
the functions of the considered dataset (Section IV-B). These
insights support our second research question:

RQ2. To what extent can transformation be used to
improve defect detection tools?
To answer this question, we augment the defect detection
tools, normally applied to a single function, to incorporate
predictions performed on the transformations. This resembles
an ensemble strategy (e.g., consider the majority prediction

of the original and x transformed functions). More details
on the implemented ensemble approaches are provided in
Section IV-E.

B. Dataset
We use the Devign [5] vulnerability detection dataset to

evaluate semantic preserving transformations, which is part of
the ML benchmark collection CodeXGLUE [56]. The Devign
dataset [5] includes 27, 318 C/C++ functions from open-
source projects, labeled vulnerable or non-vulnerable (54%
of the functions are labeled non-vulnerable).2 Here, the label
1 indicates a vulnerable and the label 0 a non-vulnerable
function. The data is split as follows: 80% training, 10%
testing, 10% validation.3 To determine the quality of defect
detection tools applied to the Devign dataset, we measure their
accuracy (i.e., the proportion of correctly labeled functions),
in accordance with CodeXGLUE [56].

C. Models
Table IV provides an overview of all the LLMs applied

to the defect detection task on CodeXGLUE [56]. We list
LLMs according to their accuracy on the Devign test set and
provide details on the type of artifacts shared. For each LLM,
source code, pre-trained models and/or fine-tuned variants can
be shared. Here, fine-tuned indicates whether a model has
been fine-tuned on the Devign training set and shared. We
observe that there are only two LLMs for which fine-tuned
versions are shared: VulBERTa and PLBART. Therefore, we
use VulBERTa-MLP (the better performing variant of both
VulBERTa versions) and PLBART to investigate semantic
preserving transformations without incurring training costs.

We have run these models on one NVIDIA Tesla V100
SXM3 32 GB GPU.

2https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF
3 https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/

Defect-detection

341
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on May 27,2025 at 07:47:35 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Vulnerability detection models and their shared resources. Accuracy is given in accordance with CodeXGLUE.

Model Accuracy Fine-tuned Pre-trained Code URLs

UniXcoder-nine-MLP [57] 69.29 https://github.com/microsoft/CodeBERT/tree/master/UniXcoder
CoTexT [58] 66.62 https://huggingface.co/razent/cotext-1-ccg
C-BERT [59] 65.45
A-BERT 65.37
RefactorBERT 65.08
VulBERTa-MLP [60] 64.75 https://github.com/ICL-ml4csec/VulBERTa
VulBERTa-CNN [60] 64.42 https://github.com/ICL-ml4csec/VulBERTa
ContraBERT C [26] 64.17 https://github.com/shangqing-liu/ContraBERT
ContraBERT G [26] 63.32 https://github.com/shangqing-liu/ContraBERT
PLBART [61] 63.18 https://github.com/wasiahmad/PLBART
code2vec [62], [63] 62.48 https://github.com/dcoimbra/dx2021, https://github.com/tech-srl/code2vec
CodeBERT [64] 62.08 https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection

D. Semantic Preserving Transformations

To determine semantic-preserving transformations to imple-
ment from existing works (Table I & II), we first select relevant
publications to replicate according to three criteria:

1) Implementation is available.
2) Multiple transformations are implemented.
3) Transformations are applicable to C/C++.

The first stage of filtering leaves us with 19 publications, which
can be seen in Table III. Seven of these can be applied to
C/C++ code, which is required given the Devign dataset (Sec-
tion IV-B). Next, we filter publications that implemented only
a single transformation. We decided for this filtering to achieve
a good trade-off between the effort required to implement
shared repositories and the total number of transformations.
This leaves us with repositories from four publications: Nat-
Gen [42], CodeImitator [21], LimitsOfML4Vuln [53], RoP-
Gen [44]. These publications provide a total of 39 transfor-
mations, for which we obtained implementations from the
shared repositories. Lastly, we perform another filtering stage
to determine which of these 39 transformations to keep:

4) A manual check confirms that the transformations are
indeed semantically-preserving.

For this purpose, we apply the transformations to functions of
the Devign dataset and manually checked the correctness of up
to 20 of them (i.e., we checked at least 20 transformed func-
tions to confirm correctness but might terminate earlier when
we have encountered incorrect transformations). We perform
this check for each the the 39 transformations. If any of those
did change the semantics of the function, we excluded the
transformation for further experiments, which was the case
for 23 of them. We are left with 16 transformations without
encountered errors. These constitute all transformation that we
could implement from the four existing publications without
encountering errors (i.e., the other 23 transformations changed
semantics contrary to their claim). We provide an overview of
the investigated transformed functions and our verdict, whether
they are semantic-preserving, in our online appendix.1

E. Ensemble Strategies

We consider three types of ensembles (see Figure 1):
1) Ensemble with a single model and multiple functions;

2) Ensemble with multiple models and a single function;
3) Ensemble with multiple models and multiple functions.
We follow popular ensemble approaches, such as majority

voting and weighting [28], [65]. Majority Voting makes
predictions based on the majority prediction from a collection
of prediction (e.g., if 7 out of 10 predictions are positive, the
final verdict is positive). We consider two variants of majority
voting, depending on the strategy to break ties: selecting the
label 0 or the label 1.

The second strategy we employ is averaging. Rather than
considering predictions as binary values (either 0 or 1), aver-
aging uses the predicted probabilities (ranging from 0 to 1),
and averages them among all available predictions. A potential
advantage of averaging is that it takes “certainty” in account,
e.g., a value of 0.52 receives the prediction 1 while being close
to the decision boundary (0.5) is treated identical to 0.98.

Lastly, we employ a weighting strategy. Weighting can be
compared to stacking, which builds a prediction model on
top of the available predictions. While majority voting and
averaging give an equal weight to all available predictions,
weighting assigns specific weights to each:

pred = w17∗predV ulberta+w18∗predP lbart+
16∑

n=1

wn∗predTn (1)

Here, predTn shows the predictions made on a trans-
formed function, using transformation Tn. predV ulberta and
predP lbart are the predictions performed on the original
function by the two LLMs. The final prediction (pred) requires
a total of 18 weights (w1, ..., w18): original prediction from
VulBERTa, prediction from PLBART, 16 transformations.4

We follow two strategies to handle weighting: based on
labels, based on probabilities. When treating the predictions
based on labels, we convert the label 0 to -1 while a label of
1 remains unchanged. This allows us to sum up predictions
and better aggregate the predictions obtained on transformed
functions. For instance, if T1 can be applied to a function
four times, for which converted labels are [-1,-1,-1,1], predT1

is assigned a score equal to the sum of predicted labels:

4In our implementation, w1 and w2 are used for the original functions and
the later 16 for the transformations.
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Fig. 2: RQ1: Number of transformations per function in the
Devign test set.

predT1 =
∑

[−1,−1,−1, 1] = −2. Without converting
labels, we would receive predTn =

∑
[0, 0, 0, 1] = 1.

Similarly, we adjust predictions based on probabilities in a
range of −0.5 to 0.5. We do this by subtracting 0.5 from
the probability of predicting the label 1. For example, if the
probabilities to predict each of the two labels is [0.2, 0.8], we
treat it as 0.3 (0.8− 0.5).

To find the weights, we treat the Equation 1 as an optimiza-
tion problem to find weights which maximize accuracy on the
validation set. We use optimizers from SciPy [66] to obtain
the weights.5

F. Threats to Validity

Here we address threats with regards to our implementation
and analysis (threats to internal validity) and the generalizabil-
ity of results (threats to external validity).

To reduce threats to internal validity, we use existing repos-
itories and implementations for our experiments. In particular,
every semantic-preserving transformation we applied is based
on the implementation shared by published work. To verify
whether the transformations indeed preserve semantics, we
carried out a manual check of up to 20 transformed functions.
While we were able to exclude 23 incorrect transformations
in this way, there might still be undiscovered faults which
more extensive checks might be able to expose. Moreover, the
two investigated LLM have already been fine-tuned, removing
the risk of any mistakes in the training procedure. Given the
benchmarking provided by CodeXGLUE and the fact that the
Devign dataset is balanced, we opted for using accuracy to
determine the performance of LLMs. However, we note that
other metrics, such as F-score, could be considered as well.
Lastly, we share our results online to allow for replicability.

To reduce threats to external validity, we applied a wide
range of semantic-preserving transformations, three ensemble
strategies and two pre-trained LLMs. The performance is
evaluated on the Devign dataset, a defect detection datasets
with real-world bugs. An extension of experimental artifacts
could further improve the generalizability of results.

V. RESULTS & DISCUSSION

A. RQ1: Semantic-Preserving Transformations

In this research question, we address how the 16 semantic
preserving transformations impact the predictions made by two

5We used the following eight optimizers: Nelder-Mead,Powell,CG,BFGS,L-
BFGS-B,TNC,COBYLA,SLSQP

LLMs (VulBERTa, PLBART). For this purpose, we apply each
transformation to every function in the Devign test set, if they
are applicable.

First, we consider how frequently each transformation can
be applied. Figure 2 illustrates the number of transformations
applied to each of the 2732 functions in the Devign test set.
We can observe that, each function can be transformed 6.3
times on average, with values ranging from 4 to 12. Only
three functions received 12 transformations, which means
that we obtain 12 transformed variants on which a single
transformation has been applied to.

Figure 3 (leftmost chart) shows how often each of the
transformation can be applied. We were able to apply four
out 16 transformations to each of the functions in the Devign
test set. These modify whitespaces, comments and dead code.
Transformation to the initialization of variables, as provided
by RopGen, can be applied to 60% of the functions. The
remaining transformations can only be applied rarely, with
some being applied only three times. Moreover, Figure 3
presents the predictions made on the transformed functions and
whether they change the prediction of the original function. In
particular, we illustrate whether a predicted label remains at
1 (“1->1”), changes from a 1 to a 0 (“1->0”), changes from
a 0 to a 1 (“0->1”) or remains at 0 (“0->0”). 1 indicates
that a function was labeled as vulnerable, while a label of 0
indicates a non-vulnerable function. Here, the ratios of the four
groups varies between the respective transformations with 51%
of labels not changing after applying transformations (either
“0->0” or “1->1”). The behavior differs between VulBERTa
and PLBART, as can be seen in the insert unexecuted code
(LimitsOfML4Vuln). The majority of functions labeled as non-
vulnerable by VulBERTa remain unchanged, while PLBART
is more likely to predict them as vulnerable. We continue
to investigate the ability of transformations to correct defect
detection tools in RQ2.

Answer to RQ1: Semantic-preserving transformation
change predictions made by the two LLMs in 49% of the
cases. These can either change vulnerable to non-vulnerable
predictions (25%) or vice-versa (24%).

B. RQ2: Defect Detection Ensembles

In the second research question, we investigate the use
of semantic-preserving transformations to enhance the testing
of defect detection tools. For this purpose, we employ three
different ensemble strategies (Section IV-E) based on com-
binations of transformations and LLMs. Table V compares
the accuracy of the original defect detection tools (VulBERTa,
PLBART) with the accuracy of the ensemble approaches.
Unfortunately, we observe that our ensemble strategies have
not been able to increase the accuracy over the original
VulBERTa model while performing better than PLBART.

Among the two strategies for ties, breaking ties at 0 always
performs better than breaking ties at 1, meaning that the a
predicted label of 0 (non-vulnerable) is preferred. This can be
explained by the fact that the majority class is 0, and thereby
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Fig. 3: RQ1: Illustration of the frequency each transformation can be applied (left) and resulting impact on the predicted labels
for VulBERTa and PLBART (center and right). For example, “0->1” means that prediction for the original function was 0 and
is 1 for the transformation. Here, 0 means the function is non-vulnerable and 1 means vulnerable.

more functions should be labeled as non-vulnerable to achieve
a high accuracy. Weighted approaches seem beneficial when
dealing with a higher number inputs (i.e., the 16 transforma-
tions). However, the highest accuracy of ensemble approaches
is achieved by averaging the two LLM predictions, without
considering transformations. A reason for this could be that
results are difficult to generalize.

Generally speaking, averaging prediction probabilities per-
forms better than simply relying on labels for voting. The
advantage of averaging is that the certainty of predictions is
taken into account.

Answer to RQ2: Our investigated ensemble strategies were
not able to increase the accuracy of defect detection tools.

C. Replication Difficulty

We have found 94 transformations from 28 publications
(Section III). Among these, 9 publications did not share
their code, which complicates a replication. The remaining
19 studies consider different programming languages, which
limits their applicability. In the end, we considered four
publications in detail, as they are applicable for C/C++ code
and implemented several transformations. 39 of the transfor-
mations provided by the four publications were applicable to
the Devign dataset (e.g., changes to functions). We were able
to re-implement and confirm the semantic-preserving behavior
for 16 of these (i.e., by manually checking up to 20 results for
each transformation), none of which were part of NatGen [42].

We found that transformations can be task-dependent and
therefore not always easy to transfer. For example, Quiring
et al. [21] applied transformations for authorship disguise. At

TABLE V: RQ2: Performance of ensemble strategies.

VulBERTa PLBART

Original 64.71 61.79
CodeXGLUE 64.75 63.18

Data ensemble Majority - Ties 0 51.43 48.13
Majority - Ties 1 51.39 47.91
Average 52.49 50.84
Weighted - Labels 52.34 54.28
Weighted - Probability 52.12 59.19

Model ensemble Majority - Ties 0 58.86
Majority - Ties 1 54.54
Average 62.52
Weighted - Labels 61.79
Weighted - Probability 61.75

Data and model Majority - Ties 0 52.12
Majority - Ties 1 51.79
Average 52.12
Weighted - Labels 60.03
Weighted - Probability 60.61

times, this requires the presence of a source file (file to be
transformed) and target file (style information). Given that we
only have a single function at hand, we were not able to use
all available transformations.

We have also observed some edge cases, which do not
seem to have been considered in the original publications.
This can be explained by the different datasets being used. For
instance, functions in the Devign dataset can contain assembly
code which the variable renaming function of RoPGen did not
consider. Another example can be seen in the following code
snippet which outlines an erroneous transformation of moving
variable definitions inside control statements:
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1 // Before transformation
2 unsigned i;
3 for (i = 0; i < 10; i++)
4 foo();
5 for (i = 0; i < 10; i++)
6 bar();
7

8 // After transformation
9 for (unsigned i = 0; i < 10; i++)

10 foo();
11 for (i = 0; i < 10; i++)
12 bar();

As can be seen from this example, the second for loop, after
transformation, is referring to the variable i, however it is only
defined in the loop and therefore causes errors due to accessing
an undefined variable.

Lastly, the scope of transformations can be different. For
example, some transformations are applied on a file-level,
while we are focused on functions. Transformations that
require files, such as the addition of imports, the use of main
functions, or the presence of multiple functions in general,
could not be implemented. This shows that one needs to be
careful when transferring semantic-preserving transformations
from one application to another.

Replicability: Existing semantic-preserving transformations
are difficult to replicate due to missing implementations,
different programming languages and application scenarios
as well as potential incorrect behavior when dealing with
edge cases.

VI. CONCLUSIONS

We investigated the use of semantic-preserving transforma-
tions for mutating source code to enhance the testing of defect
detection tools. We first searched and found 28 publications
which implemented such transformations and picked four to
implement for our experiments. Overall, it appears challenging
to reuse existing methods, due to differences in application
scenarios, programming languages or errors due to edge
cases. In the end, we were able to successfully use 16 out
of 39 available transformations and used them in ensemble
approaches for defect detection. While we provide insights
on the usefulness of transformations and replication difficulty,
we were not able to improve the accuracy of the considered
defection detection tools with mutations and ensembles.

Future work efforts can strive to extend the empirical eval-
uation of transformations for defect detection. This includes
additional LLMs, datasets and transformations (e.g., error-
inducing transformations). Moreover, one could apply more
than a single transformation for each of the functions [1], [21].

The 94 transformations we found stem from 28 publications,
some of which do not provide implementations. Therefore,
we believe a consolidated framework of semantic-preserving
transformation, for different modalities (function or file-level)
and programming languages, could benefit the community.
One important consideration of such a framework is the provi-
sion of proofs to guarantee the correctness of transformations.

VII. DATA AVAILABILITY

We share our results and all transformations applied to the
Devign dataset to enable a replication and verification of our
results: https://figshare.com/s/f9b93d9d549f316b1e5d.
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