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Abstract

Accurate human motion prediction is essential for remote control ap-
plications in robotics and human-computer interaction. Despite this, the
scalability, task-specific accuracy, and performance under varying predic-
tion horizons of existing off-the-shelf forecasting methods remain insuffi-
ciently explored. This technical report evaluates several Machine Learning
(ML) forecasting models, with a particular focus on Recurrent Neural Net-
work (RNN)-based architectures, analyzing their accuracy, strengths, and
limitations across different time horizons and pose complexities. Specifi-
cally, we examine the prediction of hand movement trajectories recorded
using a Rokoko Smartglove connected via WiFi-6 to a Shadow Robot Dex-
terous Hand. Our experiments reveal that RNN-based models exhibit a
Mean Absolute Error (MAE) that increases linearly with the prediction
horizon in a range from 100ms to 500ms. Additionally, as the number of
poses grows, MAE also increases, highlighting potential scalability chal-
lenges towards free movement (unlimited poses). While more complex
models can improve accuracy or mitigate the error growth by scaling with
the number of poses, they also carry higher computational costs. We be-
lieve that these findings can provide valuable insights for developing robust
and scalable forecasting models that improve human motion prediction.

The associated code and data presented in this report are available
here: https://github.com/SIGIPRO/ShadowHandMotionPrediction
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1 Introduction
In recent years, several vertical applications, including healthcare, agriculture,
manufacturing, and transportation and logistics, have been seeking automated
solutions to enhance work efficiency, improve safety, reduce operational costs,
and enable the execution of tasks in remote sites. Autonomous robots can be
used to deliver these benefits as they can perform a wide range of jobs without
human intervention. Via advanced mechanisms that enable real-time data pro-
cessing and adaptive decision-making based on their environment, autonomous
robots are transforming how work is carried out across these sectors. However,
autonomous robots are typically designed to handle more repetitive and sim-
pler tasks and often struggle when deployed in more complex scenarios that
demand high precision and adaptability. To facilitate these more complex use
cases, we focus on empowering and embodying actions in real-time through
remotely-controlled robots. Real-time coordination and interaction through
remote-controlled robotic systems is an area of growing importance across var-
ious fields, including Public Protection and Disaster Relief (e.g., search and
rescue missions in impassable areas struck by disasters), eHealth (e.g., remote
physiotherapy or cybersurgery), and upcoming Industry 5.0 (e.g., manufactur-
ing of parts in factories remotely). Even though these applications differ in
purpose, they share some common requirements: high precision, low latency,
and immersive interaction between the robot and its environment. These re-
quirements are necessary to ensure that remotely-operated robots can perform
tasks accurately and efficiently in real-world scenarios.

One of the primary factors towards achieving optimal conditions for real-time
remote manipulation is the underlying network infrastructure for communica-
tion between the two sides (i.e., human and robot). Recent advancements in
mobile networks, particularly in 5G and B5G, have introduced several tech-
nologies aimed at significantly enhancing network performance on each end.
Such examples include massive Multiple-Input Multiple-Output, beamforming,
network slicing, edge computing, and Machine Learning (ML)-driven network
functions. Together, these innovations aim to reduce latency on the radio site
to a range of 1-50 ms, depending on the environment and distance, meeting the
stringent requirements of Ultra-Reliable Low Latency Communications, while
also minimizing network jitter compared to previous generations. However, even
when peak network performance is achieved, the overall responsiveness of the
system can still be constrained by mechanical limitations on the robot’s side.
For example, in the majority of scenarios motor actuators are not capable of re-
acting to human motions with sufficient speed, thereby introducing delays that
impact real-time interaction, which highlights the need for additional measures
and actions to ensure seamless real-time control.

One of the most effective ways to overcome such limitations is to enforce
motion prediction through the adoption of ML algorithms. Motion prediction
refers to the process of forecasting the subsequent position of a given movement
based on its current state and historical input data. By leveraging accurate
predictions, we can proactively reposition the robot to its expected position,
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effectively masking the end-to-end latency and thus enhancing immersion. Pop-
ular techniques in this field include Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) neural networks, both specialized architectures
of Recurrent Neural Networks (RNN) designed to handle sequential data and
capture long-term dependencies efficiently.

In this paper, we address the challenge of motion prediction using ML within
the context of real-time remote control robotic systems, aiming to provide valu-
able insights on both performance and limitations aspects. Typically, this in-
volves tracking a set of state variables (kinematics expressed in rotations), thus
resulting in a multivariate prediction problem. Our primary focus is to study
and evaluate whether and how accurately we can predict human hand motion
by leveraging four off-the-shelf methods for time series forecasting algorithms.
In particular, by adopting an empirical approach, we conduct a series of experi-
ments to enable human-robot interaction using an end-to-end system composed
of three key components; i) a Rokoko Smartglove that captures human hand
motion and expressing it using quaternions [Kuipers, 1999], ii) an ML frame-
work that processes the input data and generates multivariate models with 24
variables, each representing a distinct degree of freedom of the hand joints, to
predict future positions within a specified time horizon, and iii) a Shadow Robot
Dexterous Hand that executes actions based on the predictions generated by the
ML models.

Figure 1: Example of a pose with the Rokoko Smartglove and the Shadow Robot
Dexterous Hand

The multivariate nature of the collected dataset allows us to analyze the
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joint behavior over time and exploit possible interdependencies. Our study
involves multiple repetitions of five distinct hand movement poses carried out
by five different participants. An example of a single pose is shown in Figure
1). For each pose, we explore the performance boundaries of four ML models in
terms of prediction accuracy. Additionally, we analyze key factors such as the
performance of ML models in relation to the complexity of human poses and
the time horizon over which accurate predictions can be made. This provides
a comprehensive evaluation of the models’ effectiveness in real-world scenarios.
As an additional contribution, we open-source both the dataset and the ML
framework to allow for replicability of the experiments as well as further research
with other ML algorithms.

The rest of the paper is structured as follows. Section 2 presents the re-
lated literature, while Section 3 provides background information on the joint
structure mapping between the human hand and the Shadow Robot as well as
an overview of the ML models employed in this study. Section 4 describes the
experimental setup and outlines the collected dataset, while Section 5 presents
the evaluation of the motion prediction analysis. Section 7 concludes the paper.

2 Related Work
2.1 Remote control and manipulation of robotic systems
Real-time remote coordination of robots has been studied in multiple occasions
in the literature from a plethora of different angles. In [Groshev et al., 2022], a
forecast-based recovery mechanism for real-time remote control of robotic ma-
nipulators (FoReCo) that leverages ML towards inferring lost commands caused
by interference in the wireless channel was proposed. Similar approaches lever-
aging AI and ML techniques for teleoperation tasks are presented in [Solanes
et al., 2020, Rubagotti et al., 2019]. In addition, a lot of focus has been put
into hand gesture recognition in teleoperation scenarios involving robotic sys-
tems and AI [Hu et al., 2003, Qi et al., 2021, Ajili et al., 2017, Gao et al.,
2022, Chamorro et al., 2021]. While these studies offer valuable insights into
enhancing communication and human-robot interaction, they primarily focus
on classification-based methodologies, which restrict the range of movements a
human hand can perform, making it more applicable to the case of autonomous
robots. In our study, we aim to go beyond these approaches and focus on
predicting hand movement trajectories using AI-based methodologies.

2.2 Multivariate time series forecasting
We dissect the time series forecasting models into three categories, which are
not mutually exclusive (some models can fit into several categories), as usually
found in the literature. We review both univariate and multivariate approaches.
Even though most of the univariate approaches can be extended to multivariate
ones in various ways, we are interested in those approaches that can exploit
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Figure 2: Chronology of main forecasting models. The red × indicates that the
model is meant for univariate time series.

multivariate relations off-the-shelf. Fig. 2 illustrates the chronology of some
of the most popular models discussed next to have a better perspective of the
advancements in the field.

Statistical models. Statistical models make use of statistical assump-
tions and mathematical relations that help explain the process generating the
time series data. In this category, one can find exponential smoothing [Brown
and Meyer, 1961], vector autoregressive (VAR) models [Lütkepohl, 2005], and
Prophet [Taylor and Letham, 2018], among others.

Deep learning models. Deep learning (DL) models usually use relatively
large neural networks, i.e., a family of parametric models, that can be tuned
to approximate a functional relationship. Some of the most popular DL-based
models use LSTM-based architectures, which are RNNs designed to capture
temporal dependencies [Hochreiter, 1997]. In this category, one can also find
models using GRUs, which can be seen as a simplified version of LSTMs, which
are usually faster to train while having comparable performance to LSTMs. On
the other hand, Temporal Convolution Networks (TCNs) [Bai et al., 2018] pro-
vide some advantages over RNNs, i) better gradient flow: TCNs avoid issues
such as vanishing or exploding gradients, and ii) faster training: unlike RNNs,
TCNs can process data in parallel, making them potentially faster during train-
ing and inference. On the other hand, TCNs rely on fixed-size convolutions,
requiring padding or other techniques to handle variable-length inputs, making
them less flexible in some cases.

Ensembles and hybrid models. Combining simpler models (e.g., VAR
models) with more sophisticated approaches (e.g., DL) in ensemble frameworks,
can often yield robust predictions for multivariate series. For example, DeepAR
combines RNNs with statistical modeling [Salinas et al., 2020].

2.2.1 Off-the-shelf models

From the approaches discussed before, the VAR, GRU, and LSTM-based fore-
casting models are arguably the most popular choices for multivariate time
series prediction. This may be due to their simplicity or available libraries, e.g.,
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[Paszke et al., 2019], that allow a seamless implementation off-the-shelf.

2.2.2 State-of-the-art models

In the last couple of years, there has been some research towards leveraging the
capabilities of large language models (LLM) for time series prediction. Some
of the first models exploring this research direction are timeGPT [Garza and
Mergenthaler-Canseco, 2023] (proprietary software), lag-Llama [Rasul et al.,
2023], and Chronos [Ansari et al., 2024], among others. However, all these are
intended for univariate time series.

Alternative approaches trying to solve the multivariate setting limitation
above include SOFTS [Han et al., 2024a], xLSTMTime [Alharthi and Mah-
mood, 2024], MCformer [Han et al., 2024b], and Tiny Time Mixers (TTMs)
[Ekambaram et al., 2024].

Zeng et al. [2023] argue that the nature of the permutation invariant self-
attention mechanism in Tranformer-based architectures (used by most LLMs)
inevitably results in temporal information loss. In this regard, they propose
a simple alternative model called Long Term time-Series Forecasting (LTSF)-
Linear that outperforms existing sophisticated Transformer-based LTSF models
in several real-world datasets, often by a large margin. Another relatively ex-
tended drawback of DL models, especially among the state-of-the-art, is data
hungriness [Lee Jr, 1973], i.e., large amounts of training data needed for a model
to generate a prediction within a decent accuracy level.

3 Background
This section’s intent is twofold: first, to provide a high-level overview of the
finger joints mapping between the human hand, the Rokoko Smartglove, and
the Shadow Robot Dexterous Hand, and second, to present the main features
of the ML prediction models employed in this work for multivariate time series
forecasting.

3.1 Mapping of Finger Joints
Both the Rokoko Smartglove and the Shadow Robot are specifically designed
to capture and reproduce the kinematics and dexterity of the human hand,
respectively. While both of these components process hand motion information,
they handle the collected data using different formats. In particular, the Rokoko
glove captures human motion and translates it into quaternion values, which
define the position and rotation of each joint. On the contrary, Shadow Robot
relies on input from the state of the joint expressed in angle degrees, offering 24
degrees of freedom. Figure 3 illustrates the finger joint mapping between the
human hand, the Rokoko Smartglove, and the Shadow Robot Dexterous Hand,
while Table 1 provides an overview of the fingers joints, as expressed by the
Shadow Robot.
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Distal Joint (J1)

Middle Joint (J2)

Proximal Joint (J3)
Adduction/Abduction

Joint (J4)

Base (J5)

Wrist (WR)

Rokoko Smartglove Human Hand Shadow Robot Dexterous Hand

Figure 3: Joint structure mapping of the human hand from the Rokoko Smart-
glove to the Shadow Robot Dexterous Hand

The direction of rotation varies depending on the finger, i.e., for the FF and
MF, anti-clockwise rotation is considered positive, while, for the RF and the LF,
clockwise rotation is considered positive. This distinction in rotational behavior
ensures precise lateral control of individual fingers, allowing the robotic hand
to perform intricate tasks that require coordinated finger movements.

3.2 Prediction models
The prediction models we consider, are trained just to predict the next data
point in the movement trajectory. That is, at time stamp xt ∈ R they aim at
predicting yt+1 ∈ RF . We denote this prediction (the model output) as ot+1

and is also in RF .
To predict for further time horizons, we apply the prediction model recur-

sively on its own predictions.

3.2.1 Linear model

We consider a linear model of the form

ot = A1yt−1 + · · ·+APyt−P , (1)

where the matrices Ai ∈ RF×F for all i ∈ {1, . . . , P} contain the model learnable
parameters, and P is the number of lags, i.e., the number of previous data points
used in the prediction.
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Joint Description FF MF RF LF TH WR
Distal (J1) Located near the finger-

tip and responsible for fine-
tuned movements

X

Middle (J2) Positioned between the
proximal and distal, en-
abling intermediate flexion
and extension

X

Proximal
(J3)

Closest to the palm, allow-
ing forward and backward
bending

X

Adduc-
tion/Ab-
juction (J4)

Located near the proxi-
mal, handling lateral move-
ments, such as spreading
the fingers apart (negative
rotation) or bringing them
together (positive rotation)

X

Base/Palm
(J5)

Used by the thumb to en-
able more precise movement
and by the little finger to
enable palm movement

X X X X

Wrist Represented by two angles,
enabling hand rotation and
positioning

X X X X X

Table 1: Overview of the finger joints states. The following finger notation is
used; First Finger (FF), Middle Finger (MF), Ring Finger (RF), Little Finger
(LF), Thumb (TH), and Wrist (WR).

Note that the linear prediction model in (1) may fall into unstable dy-
namics if we try to predict recursively without guaranteeing stability.
This is because if we recast (1) as


ot

yt−1

...
yt−P+1

 =


A1 A2 · · · AP−1 AP

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0



yt−1

yt−2

...
yt−P

 , (2)

it is only stable iff the spectral radius of the multiplicative matrix, also
known as companion matrix, is within the unit circle.
Let us refer to the companion matrix in (2) as Γ ∈ RF×F ⊗RP×P . Then,
one way of forcing stability is making sure that the model parameters are
chosen such that ρ(Γ) < 1, where ρ refers to the spectral radius.
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hn,t
<latexit sha1_base64="5puECgPbpj2L/U2E6IjUrTWir0A=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQBGW0ItPj0IvHCe4DtlLSNN3C0qQkqTBqD/4rXjwo4tV/w5v/jem2g24+CHm89/uRlxckjCrtON9WaWl5ZXWtvF7Z2Nza3rF399pKpBKTFhZMyG6AFGGUk5ammpFuIgmKA0Y6weim8DsPRCoq+L0eJ8SL0YDTiGKkjeTbB/1AsFCNY3Nlw9zP+Jk+dXPfrjo1ZwK4SNwZqYIZmr791Q8FTmPCNWZIqZ7rJNrLkNQUM5JX+qkiCcIjNCA9QzmKifKySf4cHhslhJGQ5nANJ+rvjQzFqohoJmOkh2reK8T/vF6qoysvozxJNeF4+lCUMqgFLMqAIZUEazY2BGFJTVaIh0girE1lFVOCO//lRdI+r7n1Wv3uotq4ntVRBofgCJwAF1yCBrgFTdACGDyCZ/AK3qwn68V6tz6moyVrtrMP/sD6/AFF7pZG</latexit>

hn,t+1

<latexit sha1_base64="zstTkCkdduKJq/duZWHSX3768Ek=">AAAB/XicbVDNS8MwHE3n15xf8+PmJTgET6MVmR6HXjxOcB/QlZKm6RaWJiVJhVqG/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjStv2t1VZWV1b36hu1ra2d3b36vsHPSVSiUkXCybkIECKMMpJV1PNyCCRBMUBI/1gclP4/QciFRX8XmcJ8WI04jSiGGkj+fUjdxgIFqosNleeTX3t+UZu2E17BrhMnJI0QImOX/8ahgKnMeEaM6SU69iJ9nIkNcWMTGvDVJEE4QkaEddQjmKivHyWfgpPjRLCSEhzuIYz9fdGjmJV5DOTMdJjtegV4n+em+roysspT1JNOJ4/FKUMagGLKmBIJcGaZYYgLKnJCvEYSYS1KaxmSnAWv7xMeudNp9Vs3V002tdlHVVwDE7AGXDAJWiDW9ABXYDBI3gGr+DNerJerHfrYz5ascqdQ/AH1ucPZTaV2g==</latexit>

[yt]n

<latexit sha1_base64="fV2oRqiLj7QU4tLtbQ9WaHSpokE=">AAACAXicbVDLSsNAFJ34rPVVdSO4GSyCIJREpLosunFZwT4gDWEymbRDJzNhZiKUEDf+ihsXirj1L9z5N07aLLT1wDCHc+7l3nuChFGlbfvbWlpeWV1br2xUN7e2d3Zre/tdJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWB8U/i9ByIVFfxeTxLixWjIaUQx0kbya4fuIBAsVJPYfJnI/UyfObnnG6tuN+wp4CJxSlIHJdp+7WsQCpzGhGvMkFKuYyfay5DUFDOSVwepIgnCYzQkrqEcxUR52fSCHJ4YJYSRkOZxDafq744MxarY0VTGSI/UvFeI/3luqqMrL6M8STXheDYoShnUAhZxwJBKgjWbGIKwpGZXiEdIIqxNaFUTgjN/8iLpnjecZqN5d1FvXZdxVMAROAanwAGXoAVuQRt0AAaP4Bm8gjfryXqx3q2PWemSVfYcgD+wPn8AEJqXTA==</latexit>

[ot+1]n

(a) Poorly scalable.

CELL

<latexit sha1_base64="PCP9flApzVtTzicE4P3bcc9HSoo=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KolIdVl047KCfUAbwmQyaYdOZsLMTaGE/okbF4q49U/c+TdO2iy09cAwh3PuZc6cMOVMg+t+W5WNza3tnepubW//4PDIPj7papkpQjtEcqn6IdaUM0E7wIDTfqooTkJOe+HkvvB7U6o0k+IJZin1EzwSLGYEg5EC2x6Gkkd6lpgrH88DCOy623AXcNaJV5I6KtEO7K9hJEmWUAGEY60HnpuCn2MFjHA6rw0zTVNMJnhEB4YKnFDt54vkc+fCKJETS2WOAGeh/t7IcaKLcGYywTDWq14h/ucNMohv/ZyJNAMqyPKhOOMOSKeowYmYogT4zBBMFDNZHTLGChMwZdVMCd7ql9dJ96rhNRvNx+t6666so4rO0Dm6RB66QS30gNqogwiaomf0it6s3Hqx3q2P5WjFKndO0R9Ynz9Mj5Qc</latexit>

ht

<latexit sha1_base64="oVnL6jiNa8NvA1wYtAl0KMpfrQ0=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxubJR7mf6zM19u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gABs5WY</latexit>

ht+1

<latexit sha1_base64="oVnL6jiNa8NvA1wYtAl0KMpfrQ0=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxubJR7mf6zM19u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gABs5WY</latexit>

ht+1

<latexit sha1_base64="QBG7/ZX7/ARdj/0qK7D+ZtAlInA=">AAAB+3icbVBPS8MwHE3nvzn/1Xn0EhyCp9GKTI9DLx4nuDnYSknTdAtLk5KkYin9Kl48KOLVL+LNb2O69aCbD0Ie7/1+5OUFCaNKO863VVtb39jcqm83dnb39g/sw+ZAiVRi0seCCTkMkCKMctLXVDMyTCRBccDIQzC7Kf2HRyIVFfxeZwnxYjThNKIYaSP5dnMcCBaqLDZXnhV+rgvfbjltZw64StyKtECFnm9/jUOB05hwjRlSauQ6ifZyJDXFjBSNcapIgvAMTcjIUI5iorx8nr2Ap0YJYSSkOVzDufp7I0exKuOZyRjpqVr2SvE/b5Tq6MrLKU9STThePBSlDGoByyJgSCXBmmWGICypyQrxFEmEtamrYUpwl7+8SgbnbbfT7txdtLrXVR11cAxOwBlwwSXoglvQA32AwRN4Bq/gzSqsF+vd+liM1qxq5wj8gfX5Azb4lTk=</latexit>yt

CELL

<latexit sha1_base64="PCP9flApzVtTzicE4P3bcc9HSoo=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KolIdVl047KCfUAbwmQyaYdOZsLMTaGE/okbF4q49U/c+TdO2iy09cAwh3PuZc6cMOVMg+t+W5WNza3tnepubW//4PDIPj7papkpQjtEcqn6IdaUM0E7wIDTfqooTkJOe+HkvvB7U6o0k+IJZin1EzwSLGYEg5EC2x6Gkkd6lpgrH88DCOy623AXcNaJV5I6KtEO7K9hJEmWUAGEY60HnpuCn2MFjHA6rw0zTVNMJnhEB4YKnFDt54vkc+fCKJETS2WOAGeh/t7IcaKLcGYywTDWq14h/ucNMohv/ZyJNAMqyPKhOOMOSKeowYmYogT4zBBMFDNZHTLGChMwZdVMCd7ql9dJ96rhNRvNx+t6666so4rO0Dm6RB66QS30gNqogwiaomf0it6s3Hqx3q2P5WjFKndO0R9Ynz9Mj5Qc</latexit>

ht

<latexit sha1_base64="oVnL6jiNa8NvA1wYtAl0KMpfrQ0=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxubJR7mf6zM19u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gABs5WY</latexit>

ht+1

<latexit sha1_base64="oVnL6jiNa8NvA1wYtAl0KMpfrQ0=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxubJR7mf6zM19u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gABs5WY</latexit>

ht+1

<latexit sha1_base64="QBG7/ZX7/ARdj/0qK7D+ZtAlInA=">AAAB+3icbVBPS8MwHE3nvzn/1Xn0EhyCp9GKTI9DLx4nuDnYSknTdAtLk5KkYin9Kl48KOLVL+LNb2O69aCbD0Ie7/1+5OUFCaNKO863VVtb39jcqm83dnb39g/sw+ZAiVRi0seCCTkMkCKMctLXVDMyTCRBccDIQzC7Kf2HRyIVFfxeZwnxYjThNKIYaSP5dnMcCBaqLDZXnhV+rgvfbjltZw64StyKtECFnm9/jUOB05hwjRlSauQ6ifZyJDXFjBSNcapIgvAMTcjIUI5iorx8nr2Ap0YJYSSkOVzDufp7I0exKuOZyRjpqVr2SvE/b5Tq6MrLKU9STThePBSlDGoByyJgSCXBmmWGICypyQrxFEmEtamrYUpwl7+8SgbnbbfT7txdtLrXVR11cAxOwBlwwSXoglvQA32AwRN4Bq/gzSqsF+vd+liM1qxq5wj8gfX5Azb4lTk=</latexit>yt

LL

<latexit sha1_base64="k1AHw6PtqWz17dLFPctk3mRDi7g=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxuTKR+5k+c3Pfrjl1Zwq4SNyS1ECJlm9/DUKB05hwjRlSqu86ifYyJDXFjOTVQapIgvAYDUnfUI5iorxsmj6HJ0YJYSSkOVzDqfp7I0OxKgKayRjpkZr3CvE/r5/q6MrLKE9STTiePRSlDGoBiypgSCXBmk0MQVhSkxXiEZIIa1NY1ZTgzn95kXTO626j3ri7qDWvyzoq4Agcg1PggkvQBLegBdoAg0fwDF7Bm/VkvVjv1sdsdMkqdw7AH1ifPwyAlZ8=</latexit>ot+1

CELL

LL

<latexit sha1_base64="ThzLa1Nj5mu6ZLx+AdmCYv1r0Tg=">AAAB/XicbVDNS8MwHE39nPOrfty8BIfgQUYrMj0OvXic4D5gKyVN0y0sTUqSCrMU/xUvHhTx6v/hzf/GdOtBNx+EPN77/cjLCxJGlXacb2tpeWV1bb2yUd3c2t7Ztff2O0qkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB+Kbwuw9EKir4vZ4kxIvRkNOIYqSN5NuHg0CwUE1ic2Wj3M/4mc59u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gBf3pXW</latexit>

hn,t
<latexit sha1_base64="5puECgPbpj2L/U2E6IjUrTWir0A=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQBGW0ItPj0IvHCe4DtlLSNN3C0qQkqTBqD/4rXjwo4tV/w5v/jem2g24+CHm89/uRlxckjCrtON9WaWl5ZXWtvF7Z2Nza3rF399pKpBKTFhZMyG6AFGGUk5ammpFuIgmKA0Y6weim8DsPRCoq+L0eJ8SL0YDTiGKkjeTbB/1AsFCNY3Nlw9zP+Jk+dXPfrjo1ZwK4SNwZqYIZmr791Q8FTmPCNWZIqZ7rJNrLkNQUM5JX+qkiCcIjNCA9QzmKifKySf4cHhslhJGQ5nANJ+rvjQzFqohoJmOkh2reK8T/vF6qoysvozxJNeF4+lCUMqgFLMqAIZUEazY2BGFJTVaIh0girE1lFVOCO//lRdI+r7n1Wv3uotq4ntVRBofgCJwAF1yCBrgFTdACGDyCZ/AK3qwn68V6tz6moyVrtrMP/sD6/AFF7pZG</latexit>

hn,t+1

<latexit sha1_base64="zstTkCkdduKJq/duZWHSX3768Ek=">AAAB/XicbVDNS8MwHE3n15xf8+PmJTgET6MVmR6HXjxOcB/QlZKm6RaWJiVJhVqG/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjStv2t1VZWV1b36hu1ra2d3b36vsHPSVSiUkXCybkIECKMMpJV1PNyCCRBMUBI/1gclP4/QciFRX8XmcJ8WI04jSiGGkj+fUjdxgIFqosNleeTX3t+UZu2E17BrhMnJI0QImOX/8ahgKnMeEaM6SU69iJ9nIkNcWMTGvDVJEE4QkaEddQjmKivHyWfgpPjRLCSEhzuIYz9fdGjmJV5DOTMdJjtegV4n+em+roysspT1JNOJ4/FKUMagGLKmBIJcGaZYYgLKnJCvEYSYS1KaxmSnAWv7xMeudNp9Vs3V002tdlHVVwDE7AGXDAJWiDW9ABXYDBI3gGr+DNerJerHfrYz5ascqdQ/AH1ucPZTaV2g==</latexit>

[yt]n

<latexit sha1_base64="fV2oRqiLj7QU4tLtbQ9WaHSpokE=">AAACAXicbVDLSsNAFJ34rPVVdSO4GSyCIJREpLosunFZwT4gDWEymbRDJzNhZiKUEDf+ihsXirj1L9z5N07aLLT1wDCHc+7l3nuChFGlbfvbWlpeWV1br2xUN7e2d3Zre/tdJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWB8U/i9ByIVFfxeTxLixWjIaUQx0kbya4fuIBAsVJPYfJnI/UyfObnnG6tuN+wp4CJxSlIHJdp+7WsQCpzGhGvMkFKuYyfay5DUFDOSVwepIgnCYzQkrqEcxUR52fSCHJ4YJYSRkOZxDafq744MxarY0VTGSI/UvFeI/3luqqMrL6M8STXheDYoShnUAhZxwJBKgjWbGIKwpGZXiEdIIqxNaFUTgjN/8iLpnjecZqN5d1FvXZdxVMAROAanwAGXoAVuQRt0AAaP4Bm8gjfryXqx3q2PWemSVfYcgD+wPn8AEJqXTA==</latexit>

[ot+1]n

(b) Moderately scalable.

CELL

<latexit sha1_base64="PCP9flApzVtTzicE4P3bcc9HSoo=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KolIdVl047KCfUAbwmQyaYdOZsLMTaGE/okbF4q49U/c+TdO2iy09cAwh3PuZc6cMOVMg+t+W5WNza3tnepubW//4PDIPj7papkpQjtEcqn6IdaUM0E7wIDTfqooTkJOe+HkvvB7U6o0k+IJZin1EzwSLGYEg5EC2x6Gkkd6lpgrH88DCOy623AXcNaJV5I6KtEO7K9hJEmWUAGEY60HnpuCn2MFjHA6rw0zTVNMJnhEB4YKnFDt54vkc+fCKJETS2WOAGeh/t7IcaKLcGYywTDWq14h/ucNMohv/ZyJNAMqyPKhOOMOSKeowYmYogT4zBBMFDNZHTLGChMwZdVMCd7ql9dJ96rhNRvNx+t6666so4rO0Dm6RB66QS30gNqogwiaomf0it6s3Hqx3q2P5WjFKndO0R9Ynz9Mj5Qc</latexit>

ht

<latexit sha1_base64="oVnL6jiNa8NvA1wYtAl0KMpfrQ0=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxubJR7mf6zM19u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gABs5WY</latexit>

ht+1

<latexit sha1_base64="oVnL6jiNa8NvA1wYtAl0KMpfrQ0=">AAAB/XicbVDNS8MwHE39nPOrfty8BIcgCKMVmR6HXjxOcB+wlZKm6RaWJiVJhVmK/4oXD4p49f/w5n9juvWgmw9CHu/9fuTlBQmjSjvOt7W0vLK6tl7ZqG5ube/s2nv7HSVSiUkbCyZkL0CKMMpJW1PNSC+RBMUBI91gfFP43QciFRX8Xk8S4sVoyGlEMdJG8u3DQSBYqCaxubJR7mf6zM19u+bUnSngInFLUgMlWr79NQgFTmPCNWZIqb7rJNrLkNQUM5JXB6kiCcJjNCR9QzmKifKyafocnhglhJGQ5nANp+rvjQzFqghoJmOkR2reK8T/vH6qoysvozxJNeF49lCUMqgFLKqAIZUEazYxBGFJTVaIR0girE1hVVOCO//lRdI5r7uNeuPuota8LuuogCNwDE6BCy5BE9yCFmgDDB7BM3gFb9aT9WK9Wx+z0SWr3DkAf2B9/gABs5WY</latexit>

ht+1

<latexit sha1_base64="QBG7/ZX7/ARdj/0qK7D+ZtAlInA=">AAAB+3icbVBPS8MwHE3nvzn/1Xn0EhyCp9GKTI9DLx4nuDnYSknTdAtLk5KkYin9Kl48KOLVL+LNb2O69aCbD0Ie7/1+5OUFCaNKO863VVtb39jcqm83dnb39g/sw+ZAiVRi0seCCTkMkCKMctLXVDMyTCRBccDIQzC7Kf2HRyIVFfxeZwnxYjThNKIYaSP5dnMcCBaqLDZXnhV+rgvfbjltZw64StyKtECFnm9/jUOB05hwjRlSauQ6ifZyJDXFjBSNcapIgvAMTcjIUI5iorx8nr2Ap0YJYSSkOVzDufp7I0exKuOZyRjpqVr2SvE/b5Tq6MrLKU9STThePBSlDGoByyJgSCXBmmWGICypyQrxFEmEtamrYUpwl7+8SgbnbbfT7txdtLrXVR11cAxOwBlwwSXoglvQA32AwRN4Bq/gzSqsF+vd+liM1qxq5wj8gfX5Azb4lTk=</latexit>yt
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(c) Scalable.

Figure 4: Several RNN architectures. The first architecture scales poorly with
the output size because the size of the hidden state needs to match it. The
middle architecture detaches the output size from the size of the hidden state
by using a linear layer (LL) that matches the sizes afterward. This allows for
smaller cells, thus helping with scalability (hidden state size smaller than output
size) or allowing for richer features (hidden state size bigger than output size).
The last architecture concurrently reuses the same cell for each component of
the input while maintaining separate hidden states This is the architecture that
scales the best (constant with respect to the output input/size).

3.2.2 Recurrent Neural Network (RNN)-based model

We use an RNN-based architecture as a predictor. The input at time step t is
the data point yt. The hidden state at time step t, i.e., ht is a vector of H
(hidden state size) elements that acts as a memory. The output of the RNN
cell is transformed with a linear layer to match the dimensionality of the data
points. In this way, we can choose a hidden size H independently of the size of
the data point F . Finally, the RNN cell is constituted by L GRU units. The
value L is usually referred to as the number of layers.

In particular, we consider two architectures: a gated recurrent unit (GRU)-
based model and a long short-term memory (LSTM)-based model. The general
idea of the architecture chosen is represented in Figure 4b.

3.2.3 Optimization cost

As mentioned before, the prediction models are trained to predict the next data
point. Formally, the trained parameters of the models are obtained by solving

arg min
θ∈Θ

1

M

M∑
m=1

1

Tm

Tm∑
t=τ

1

F
‖o(m)

t − y
(m)
t ‖1, (3)

where θ is a vector that contains the model parameters, and Θ is the parameter
space, e.g., Θ ⊆ RR where R is the number of learnable parameters. Note that
the initial time step τ may change depending on the model. For example, a
linear model with a lag P = 3 will be trained from the 3rd data point onwards,
i.e., τ = 3.
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We have chosen the `1 norm as the loss mainly because it can be directly
interpreted as the mean absolute error (MAE) over all joint angles and it also
provides robustness against outliers [Jadon et al., 2024].

It should be noticed that, the form of the cost (objective function) in (3)
plays a crucial role in the performance of the trained forecasting models. For
example, in some tasks, one may require predicting certain joint angles more
accurately than others. This can be done with a tailor-devised optimization
cost. However, this is out of the scope of this technical report and is left for
future work.

4 Experimental Setup
Figure 5 depicts the experimental setup adopted in this paper. It consists of
two main parts, namely, i) the server side where motion is generated using the
Rokoko Smartglove, and ii) the client side where motion prediction is carried
out and fed into the Shadow Robot Dexterous Hand. A high-level description
of the experimental flow is described in the following.

The Rokoko Smartglove captures the human hand motion leveraging its suite
of sensors, including inertial measurement units (IMUs), gyroscopes, accelerom-
eters, and magnetometers. These sensors measure linear acceleration, angular
velocity, and orientation to track hand motion and rotational movements with
high precision. The captured motion is then transmitted via a WiFi-6 connec-
tion to a Windows computer (as depicted in the figure) running the Rokoko
Studio, a software application designed for visualizing and editing the data.
Motion data is formatted as time-series and expressed as quaternions, where
each different angle is expressed by using its position (a1, a2, a3) and rotation
(b1, b2, b3, b4) values.

Using its streaming service, the collected data are then forwarded via the
same Wifi-6 connection to an Ubuntu laptop running Robot Operating Sys-
tem (ROS Noetic) that handles all different operations required by the Shadow
Robot Dexterous hand. The received time-series data are filtered to isolate the
hand motion data, sampled, and queued as input to the ML models which pre-
dict the next position of each angle in a discrete time horizon. The output of
the models are fed into a Next Unit of Computing (NUC) which controls the
Shadow Robot’s actuators. Real-time kinematic algorithms, including inverse
kinematics, ensure precise motion replication. Equipped with position sensors,
force sensors, and tactile sensors, Shadow Robot provides feedback on joint an-
gles, applied force, and surface interactions, allowing for highly accurate and
responsive movement replication.

4.1 Data collection
Using the setup described above, we collected a dataset comprising of 125 sam-
ples, with each sample represented as a time series of 5 repetitions of a specific

10



Rokoko Smartglove Shadow Robot Dexterous Hand

WiFi-6 

         Rokoko Studio

Data forwarding

Gazebo Filtering

Data Processing

IMUs (Inertial 
Measurement 

Units)

Sensors

NUC

Robot 
Operating 
System

Wired Connection
Wireless Connection

Figure 5: Robotic hand experimental testbed setup.

pose. In particular, 5 participants performed a set of 5 different poses, each
repeated 5 times, so some seasonality is present in the data.

All experiments commence with the Shadow Robot Dexterous Hand in an
open and neutral position. Then, the recorded movements are as follows:

1. Pose 1: Close and open the hand (without using the thumb)

2. Pose 2: Close the hand to form a fist, lay the thumb on the fingers, and
return to the open hand position.

3. Pose 3: Bend the fingers one by one starting with the little finger and
move towards the thumb. As soon as it is closed, the fingers are straight-
ened one by one, going from the thumb to the little finger.

4. Pose 4: Close the fingers while flexing the wrist. Then, straighten the
fingers while extending the wrist.

5. Pose 5: Close the hand, then extend the thumb, index, and middle finger.

The data was collected using the Rokoko Smartgloves (both medium and
large size gloves were used). Hand motion was tracked using 7 integrated IMU
and EMF sensors, with the positions of all joints streamed in real time as JSON
files containing quaternion data at a frequency of 100 fps to a Windows machine
running the Rokoko Studio, where it was downsampled to 10 fps. Then, the
quaternions were converted to Euler angles using the relative rotation of the
joints, thus resulting to 24 joint angles that were stored in a dataset for training
and testing the motion prediction models described in this work.

4.2 Dataset description
Each sample of the dataset consists of a multivariate time series of 24 features.
Each univariate time series describes a different joint angle of the Shadow Robot
Dexterous Hand, in degrees.
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Joint Name Min degree Max degree
FF1 0 77
MF1 0 82
RF1 0 79
LF1 0 71
FF2 0 114
MF2 0 121
RF2 0 116
LF2 0 105
FF3 -28 84
MF3 -33 92
RF3 -44 101
LF3 -56 106
FF4 -22 14
MF4 -8 33
RF4 -47 0
LF4 -76 0
LF5 0 0
TH1 -18 50
TH2 -27 75
TH3 -63 2
TH4 -34 337
TH5 -335 159
WR1 -179 179
WR2 -179 179

Table 2: Observed motion range of collected data. Min/Max degree indicates
the minimum and maximum degree of the movement range for each joint.
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The amplitude value of the time series is quantized to the units (that is, the
values are integers), and their observed range is presented in Table 2. The time
stamps are uniformly distributed with a separation of 100 ms, and the length
of each sample (that is, the overall time duration of the hand movement poses)
varies along the dataset.

We describe every mth sample as a collection of Tm tuples of time stamps and
data points. Formally, the mth sample is a sequence {(xt, ỹ

(m)
t ) : t = 1, . . . , Tm},

where xt denotes the tth time stamp, and ỹ
(m)
t the corresponding data point,

which is a vector of F = 24 components (one for each univariate time series).
Henceforth, for the sake of simplicity in the notation, we will drop the su-

perindex (m) when we are not referring to any particular mth sample or when
it is clear from the context.

4.3 Data preprocessing
The range of the time series values (i.e., joint angle values in degrees) has been
normalized by dividing the series values by 360. This preprocessing step has
two main benefits: i) It helps the prediction models to focus on the fluctuations
(relative changes) rather than on the magnitude of the values; ii) It reduces
numerical issues during training related to vanishing or exploding gradients. In
this way, the resulting data points, i.e., yt := ỹt ÷ 360, are vectors in R24, and
the range of its components is (roughly) a unit.

On the other hand, the data range observed for the whole dataset (all hand
motion trajectories) is shown in Table 2. The knowledge of this observed range
can be used (being careful not to leak any test data) in the data preprocessing,
or even be used to tailor the optimization cost in Section 3.2.3. However, this
is out of the scope of this technical report and is left for future work.

5 Evaluation of Motion Prediction Analysis
In these experiments, we have trained four models: a linear, stable linear, GRU-
based, and LSTM-based model. Each one of the models has been trained over
five different data settings, thus leading to five different model versions. Specif-
ically, one data setting for the first pose, another one for the two first poses,
and so on until the data setting includes all five poses.

For each experiment, we randomly divide the dataset in a training-validation-
test proportion of 60-20-20 percent. We have used a batch size of 5 regardless of
the dataset size. Lastly, the linear and RNN-based models are trained for 150
and 500 epochs, respectively.

5.1 Hyperparameter optimization
For the hyperparameter optimization, we have used a random search approach
[Bischl et al., 2023]. We have conducted 20 trials per model. In every trial,
we train the model for 1 person and 1 pose (chosen randomly) to reduce the
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Figure 6: Heatmap plot of the MAE incurred for various poses and prediction
horizons. All the models, except the linear one, increase their error with the
number of poses and prediction horizon. This is probably because acute over-
fitting is promoted in simpler settings (less diverse poses) leading to instability.

computation overhead. Then, we choose the hyperparameter configuration with
the lowest validation error.

One person and one pose comes down to a training set of 3 samples and
a validation set of 1 sample. The batch size chosen for all trials is 1. We use
Adam, with the standard configuration [Kingma, 2014], as the optimizer for all
trials. The linear models are trained for 200 epochs, while the RNN-based ones
are trained for 500 epochs.

5.1.1 Search space

For the linear models, the search space consists of the model lag that can take
natural numbers between 1 and 10, and the learning rate, chosen uniformly
randomly between 0.1 and 0.0001.

For the RNN-based models, the search space includes: i) the size of the
hidden state, a value chosen randomly between 16, 32, and 48, ii) the number
of layers, randomly selected to be 1, 2, or 3, iii) the learning rate, in this case
uniformly randomly chosen between 0.001 and 0.00001, and iv) the dropout
rate, uniformly randomly chosen between 0 and 0.3.
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(a) 1 pose. (b) 5 poses.

Figure 7: Unstable forecasting dynamics of the linear model due to overfitting.
The left graph corresponds to a Linear model trained for 1 pose, while the right
one displays a Linear model trained for all 5 poses. As you can see, the model
trained over a more reduced and less diverse training dataset (left) shows a more
prominent unstable behavior.

5.1.2 Best hyperparameter configurations found

These are the best hyperparameter configurations we have found:

• Linear: lag of 1 and learning rate of ∼ 0.032.

• Stable linear: lag of 2 and learning rate of ∼ 0.079.

• GRU-based: hidden state size of 32, 2 layers, a learning rate of ∼ 0.00078,
and a dropout rate of ∼ 0.035.

• LSTM-based: hidden state size of 48, 1 layer, a learning rate of ∼ 0.00027,
and no dropout.

5.2 Results and discussion
Our experiments show that the RNN-based forecasting models trained for all
5 poses can achieve an MAE of approximately 15 degrees over all joints for a
prediction horizon of 500 ms. We also observe that, in general, the error no-
ticeably increases as we add more poses, see Fig. 6. Therefore, it is reasonable
to expect a similar extrapolated behavior as we further increase the number
of poses, potentially up to free movement. This can be solved by enlarging
the parameter size of the model (thus, its model complexity and approxima-
tion capability) but, this does not scale well computationally (i.e., training and
inference computational resources grow superlinearly) with RNN-based models.

On the other hand, the Linear model performs better in terms of the MAE
as the number of poses increases, see Fig. 6 again. We believe that this counter-
intuitive behavior is the result of the limited number of poses in the training set;
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Figure 8: Example of motion prediction. Reconstruction of a test sample with
the GRU-based model trained for all poses.
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Spectral radius ρ(Γ)
Poses Linear Stable Linear

1 ∼ 1.73 ∼ 0.78
1,2 ∼ 1.29 ∼ 0.80

1,2,3 ∼ 1.12 ∼ 0.79
1,2,3,4 ∼ 1.15 ∼ 0.81

1,2,3,4,5 ∼ 1.03 ∼ 0.75

Table 3: Comparison of the spectral radius of the companion matrices of the
Linear models trained over datasets with different amounts of poses. A linear
model producing a stable chain of forecasts requires a spectral radius strictly
less than 1.

thus, less diverse, allows for higher odds of overfitting and such overfitting may
lead to unstable forecasting dynamics. This instability can be observed in the
evolution of the MAE as we increase the horizon, see Fig. 7, and in the spectral
radius of the companion matrix of the trained models, see Table 3. For varying
prediction horizons, this unstable behavior can be addressed by constraining the
feasible set of companion matrices that can be learned to only those that are
stable. However, this increases the MAE incurred at shorter-sighted horizons,
as shown in Fig. 6. In summary, forecasting models can benefit from regular-
ization techniques [Kukačka et al., 2017] (to reduce the risk of overfitting) when
the complexity of the model exceeds the diversity of the dataset.

Finally, it is important to take into account the effects of the optimization
cost, see Section 3.2.3, in the distribution of errors. Even though the mode (the
most likely MAE) of the distribution of errors is to some extent regularly below
the MAE, there is still high variability in the error between some joints. This
can be seen in Fig. 8.

In this case, the unevenly incurred errors are mostly due to the fact that the
optimization cost does not take into account the effective range of motion of
each joint. Therefore, tailored optimization costs for specific tasks, or adaptive
costs for more generic activities, can help to reduce the variability of the error.
Thus, reducing the risk of suffering from isolated error outliers. In this regard,
a thorough design of the optimization cost may benefit future works.

6 Research directions and future work
In this section, we showcase ongoing work that complements the presented re-
sults and that will be reported and completed in future work.

6.1 Task-specific motion prediction
Another important topic is to study how the prediction error distribution (of
the joint angles) influences certain different tasks. In particular, we are focusing
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Figure 9: Forward kinematics for the Shadow Robot, from joint angles to a
hand representation. The image shows three frames for a given motion hand
trajectory.

on those tasks in which a high accuracy in the position of the tips is desired.
This work mainly covers the following research topics:

1. A probabilistic modeling of the prediction error distribution (of the joint
angles). Accordingly, the training loss is typically chosen to minimize some
metric over the prediction error, e.g., the Euclidean norm for a normally
distributed prediction error.

2. A model for the forward kinematics of the Shadow Robot. This allows us
to compute the position of the tips from the joint angles. Concretely, we
use the Denavit and Hartenberg notation and methodology.

3. Studying how the prediction error distribution propagates through the for-
ward kinematics transformation. This knowledge could be used to better
tailor the prediction model for certain tasks. For this, we carry out first
some empirical analysis, which will be followed by a theoretical analysis in
our future work. Another goal is to generalize the presented architectures
to allow them to train with respect to the position of the tips (rather than
only with respect to the joint angles) in order to validate the results of
our analyses experimentally.

6.1.1 A probabilistic modeling of the prediction error

Let us denote by y1,y2, . . . ,yT the sequence of joint angles of a hand motion
trajectory and by o2, . . . ,oT the sequence of predicted joint angles.

Then, the prediction error at the tth time stamp can be modeled as εt =
yt − ot. Identifying how this error is distributed can help us generate better
estimates (under certain metric, e.g., the lowest mean squared error (MSE)) for
the joint angles and for any other magnitude obtained through transformation,
e.g., the finger tip position with respect to the base of the wrist.

6.1.2 Forward kinematics of the Shadow Robot

The term forward kinematics refers to the transformation that determines the
position (and derivatives, e.g., velocity) and orientation of an end-effector, e.g.,
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i ai,i+1 αi,i+1 θi,i+1 di,i+1

0 32 π/2 θWRJ2 0
1 0 π/4 π/2 + θWRJ1 0
2 0 −π/2 θTHJ5 44.7
3 38 π/2 θTHJ4 − π/2 0
4 0 −π/2 θTHJ3 0
5 32 −π/2 θTHJ2 0
6 27.5 π/2 θTHJ1 0

Table 4: DH parameters for the thumb (code: TH). The distances are in mil-
limeters, and the angles are in radians.

i ai,i+1 αi,i+1 θi,i+1 di,i+1

0 34 π/2 θWRJ2 0
1 FF:95 MF:99 −π/2 θWRJ1 FF:34 MF:12
2 0 π/2 θFJ4 0
3 45 0 θFJ3 0
4 25 0 θFJ2 0
5 26 −π/2 θFJ1 0

Table 5: DH parameters for the index (code: FF) and middle fingers (code:
MF). The distances are in millimeters, and the angles are in radians.

i ai,i+1 αi,i+1 θi,i+1 di,i+1

0 34 π/2 θWRJ2 0
1 RF:95 LF:86 π/2 θWRJ1 RF:-12 LF:-34
2 0 −π/2 θFJ4 0
3 45 0 θFJ3 0
4 25 0 θFJ2 0
5 26 −π/2 θFJ1 0

Table 6: DH parameters for the ring (code: RF) and little fingers (code: LF).
The distances are in millimeters, and the angles are in radians.
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the tip of a finger of the Shadow Robot, based on the known joint angles and
parameters of its kinematic chain. In essence, it calculates the position of the
end-effector given the joint angles.

The Denavit–Hartenberg (DH) parameters Denavit and Hartenberg [1955]
are used, along with the DH convention, for attaching reference frames to the
links of a spatial kinematic chain. The DH convention can be summarized in
the following three rules: i) the joints are numbered consecutively, ii) every
ith basis origin (x̂i, ŷi, ẑi) is fixed in the link that has the joints i − 1 and i,
and iii) every joint axis x̂i is perpendicular to ẑi−1 and ẑi. Regarding the DH
parameters:

• ai,i+1 is the distance, along x̂i+1, from ẑi to ẑi+1

• αi,i+1 is the angle from ẑi to ẑi+1 (as seen from x̂i+1)

• θi,i+1 is the angle from x̂i to x̂i+1 (as seen from ẑi)

• di,i+1 is the distance, along ẑi, from x̂i to x̂i+1

We have constructed the DH parameters of the Shadow Robot from the offi-
cial blueprints in https://shadow-robot-company-dexterous-hand.readthedocs-hosted.
com/en/latest/user_guide/md_kinematics.html, and we have summarized
them in Table 4, 5, and 6.

The forward kinematics transformation of a serial chain of L ∈ N links, with
DH parameters τi,i+1 = (ai,i+1, αi,i+1, θi,i+1, di,i+1) for i ∈ {0, . . . , L − 1}, is
given by:

0TL =

L−1∏
i=0

T (τi,i+1), (4)

where

T (τi,i+1) =


cos(θi,i+1) −cos(αi,i+1)sin(θi,i+1) sin(αi,i+1)sin(θi,i+1) ai,i+1cos(θi,i+1)
sin(θi,i+1) cos(αi,i+1)cos(θi,i+1) −sin(αi,i+1)cos(θi,i+1) ai,i+1sin(θi,i+1)

0 sin(αi,i+1) cos(αi,i+1) di,i+1

0 0 0 1

 .

(5)
In this way, we can compute the position of the end-effector eL, e.g., the tip

of the finger, with respect to the position of the basis of the first link e0, e.g.,
the wrist, as:

eL = 0TL e0. (6)

Figure 9 shows a representation of the forward kinematics over a motion
hand trajectory of the Shadow Robot.

6.1.3 Prediction error propagation

Having a model for the forward kinematics, see Sec. 6.1.2, allows us to study
(theoretically and empirically) how the prediction error distribution propagates
when estimating the position of the finger tips of the Shadow Robot.

20

https://shadow-robot-company-dexterous-hand.readthedocs-hosted.com/en/latest/user_guide/md_kinematics.html
https://shadow-robot-company-dexterous-hand.readthedocs-hosted.com/en/latest/user_guide/md_kinematics.html


Figure 10: Example of propagation of the prediction error distribution over the
joint angles using the forward kinematics of the Shadow Robot. This transfor-
mation shows our prediction error distribution over the position of the finger-
tips. For illustration purposes, the noise has been generated synthetically from
a Gaussian distribution N (0, 0.15), with a dispersion of 0.15 rad ' 8.6 degrees.

PM PM PM

FT FT FT FT

LOSS LOSS

TOTAL 
LOSS

Figure 11: Modified architecture for the prediction model (PM) that includes a
feature transformation (FT). The feature transformation (gray elements) is used
only during training. Here, the transformed elements, e.g., from joint angles to
position of the fingertips, are denoted with the tilde symbol ∼.
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This knowledge allows us to have better control not only over the mean of
the prediction error in both domains (joint angles and tip positions), but also
over its dispersion.

Being able to control the distribution of the prediction error over the position
of the fingertips directly from the distribution of joint angles, for example, via
an adequate objective function, is convenient because we communicate with the
Shadow Robot through the joint angles. This methodology can also be extended
to other magnitudes (derived from the joint angles).

To further motivate the convenience of this approach, we can compare it
with two alternative approaches:

Prediction in the domain of the fingertips. One could transform the
motion hand trajectory from joint angles into fingertip positions and then train
a model to predict directly the next fingertip position. However, this approach
requires inverse kinematics to transform the predicted fingertip position into
joint angles when communicating with the Shadow Robot.

A training loss that incorporates the forward kinematics. The for-
ward kinematics can be incorporated as an intermediate step in the already
presented architectures. However, our preliminary results show a noticeable in-
crease in computation time. On the other hand, the gradient computed from the
back propagation over the forward dynamics does not appear to be particularly
affected by the consecutive matrix transformations, e.g., a vanishing gradient,
and the predictor model can be trained as usual.

6.2 Transformer-based Motion prediction
In this report, we have dealt with predetermined hand movements, or poses, for
simplicity. However, the intricate, high-dimensional nature of free hand move-
ments and their (highly likely) non-linear spatio-temporal correlations across
numerous joints still present significant challenges regarding modeling and pre-
diction.

Current advances in the deep learning community promote transformer-
based architectures Vaswani et al. [2017] as a compelling choice for multivariate
time series prediction, and more specifically, for human motion Mao et al. [2019]
or hand motion prediction. Transformer-based architectures inherently possess
the capability to capture long-range dependencies and global interactions across
an entire sequence, regardless of (temporal) distance. This feature has the po-
tential to capture coordinated patterns in hand gestures, where a movement at
one joint can influence many others both synchronously, i.e., at the same time,
and asynchronously, i.e., at different time instants. Moreover, transformers can
attend to all past information simultaneously (rather than through a usually
distorted memory), offering a powerful framework to discern subtle but criti-
cal relationships within multivariate time series data, paving the way for more
accurate and robust hand motion predictions.

On the other hand, transformer-based architectures still face several notable
challenges for their application to multivariate time series prediction. Beyond
the limitations already discussed in Sec. 2.2.2 such as multivariate setting con-
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straints, temporal information losses, and usually requiring large amounts of
data for training, their primary caveat is arguably their computational inten-
sity in the training process. This is because their self-attention mechanism
(at least in the standard form) scales quadratically with both sequence length
and number of time-series, rendering them expensive computationally for long
sequences or real-time applications.

In our future work, we will conduct experiments to evaluate transformer-
based architectures (including optimization approaches to alleviate their com-
plexity) for hand movement trajectory prediction, and will compare it with the
rest of approaches considering the performance-complexity trade-offs.

7 Conclusion
We show that the available off-the-shelf multivariate time series forecasting mod-
els we have tested, may struggle to deliver accurate predictions (depending on
the task) at certain time horizons. Moreover, these models have scalability
issues and suffer accuracy losses as the number of poses (potentially infinite)
increases.

Our future work may be inspired by these experimental observations. We be-
lieve that parallelizable architectures (in training and inference) should be used
to alleviate the scalability issues. It is also important to exploit the nature and
nuances of the motion prediction problem to increase the prediction accuracy
further. For example, this can be done by designing new prediction models that
can effectively incorporate additional information complementary to the motion
trajectory such as brain signals. Furthermore, in real applications, there is a
need to design flexible models that can learn online and adapt across various
subjects, with streaming data and different types of non-stationarities.
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