
O

V
K
K
a

b

c

d

e

A

K
F
F
V
V

C

1

i
u
s
w
t

h
R

SoftwareX 32 (2025) 102392

2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

aSP: Vascular Fluid–Structure Interaction Pipeline
ei Yamamoto a,e ,∗, David A. Bruneau b , Johannes Ring c , Jørgen S. Dokken d ,
ristian Valen-Sendstad a
Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
Administration and Management, Simula Research Laboratory, Oslo, Norway
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
Department of Mathematics, University of Oslo, Oslo, Norway

 R T I C L E I N F O

eywords:
luid-structure interaction
EniCS
MTK
ascular research

 A B S T R A C T

A variety of commercial and open-source software packages exist for modeling blood flow dynamics and
vascular wall mechanics of cardiovascular systems via fluid–structure interaction simulations (FSI). While these
existing tools are feature-rich, this breadth often comes at the cost of increased complexity and large codebases,
which, combined with implementation in low-level programming languages, effectively limit transparency and
accessibility. Moreover, many of these software packages primarily rely on graphical user interfaces for a
more intuitive experience; however, this can hinder reproducibility and automation of research workflows.
Here, we present Vascular Fluid–Structure Interaction Pipeline (VaSP), a transparent, flexible, and compact
Python package with a command-line interface. In contrast to the vast majority of existing software, VaSP is
tailored for transitional flow and high-frequency vascular wall vibrations. VaSP takes a medical image-derived
surface model as input, generates a volumetric mesh with fluid and solid domains for FSI simulations, and
post-processes the results for hemodynamic and wall mechanical analyses. By leveraging high-level Python
packages such as FEniCS and VMTK, VaSP ensures accessibility for users of diverse expertise levels and
promotes reproducible, scriptable workflows.
ode metadata

Current code version v1.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00427
Permanent link to Reproducible Capsule https://github.com/KVSlab/VaSP/archive/refs/tags/v1.1.zip
Legal Code License GPL-3.0 license
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Linux, MacOS, Windows, MPI, FEniCS, VMTK, turtleFSI, VaMPy
If available Link to developer documentation/manual https://kvslab.github.io/VaSP/
Support email for questions keiya@simula.no, kvs@simula.no
. Motivation and significance

Computational modeling of blood flow and/or the vascular wall
n the cardiovascular system is actively used to gain a fundamental
nderstanding of healthy and diseased states [1–3]. In particular, FSI
imulations have been utilized to provide more realistic estimates of
all shear stress than rigid wall simulations [4], to understand the long-
erm remodeling of the vascular wall [5], or to estimate wall stress

∗ Corresponding author at: Department of Mathematics, University of Oslo, Oslo, Norway.
E-mail address: keiya@math.uio.no (K. Yamamoto).

that results in mechanical failure of aneurysm wall [6]. In practice,
performing physiologically plausible simulations consists of multiple
steps, including generating a high-quality mesh and post-processing the
results. While dedicated open-source software packages have been used
for each individual step, a single, streamlined pipeline that integrates
these processes is essential for improving research efficiency.
ttps://doi.org/10.1016/j.softx.2025.102392
eceived 23 June 2025; Received in revised form 9 September 2025; Accepted 30
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
September 2025
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0009-0005-3590-1938
https://orcid.org/0000-0002-8612-1959
https://orcid.org/0000-0001-5346-9310
https://orcid.org/0000-0001-6489-8858
https://orcid.org/0000-0002-2907-0171
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00427
https://github.com/KVSlab/VaSP/archive/refs/tags/v1.1.zip
https://kvslab.github.io/VaSP/
mailto:keiya@simula.no
mailto:kvs@simula.no
mailto:keiya@math.uio.no
https://doi.org/10.1016/j.softx.2025.102392
https://doi.org/10.1016/j.softx.2025.102392
http://creativecommons.org/licenses/by/4.0/

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Fig. 1. An illustration of modular architecture of VaSP, consisting of three functionalities: pre-processing, vascular FSI simulation, and post-processing, as indicated
in the top box. Within the middle box, selected key features of each functionality are further shown, using a diseased blood vessel (aneurysm) in the brain as an
example. The bottom box indicates the primary dependencies for each functionality.
The majority of FSI studies in cardiovascular research use commer-
cial software such as ANSYS [7], Abaqus [8], and COMSOL [9]; how-
ever, there are now several excellent open-source software packages for
performing FSI simulations in anatomically realistic geometries, such as
SimVascular [10], CRIMSON [11] and FEBio [12]. While these software
packages are feature-rich, offer a user-friendly workflow from pre-
processing to post-processing, and are partially scriptable in Python,
the source code is written in low-level languages such as Fortran and
C++, consisting of hundreds of thousands of lines. The complexity and
volume of its codebase limit the practical transparency and flexibility
of the software. For example, implementing new material models or
modifying boundary conditions would require extensive knowledge
of the code structure and considerable development effort, making
it difficult to adapt the software to new research goals beyond the
existing capabilities. Moreover, most of the packages rely on a graphical
user interface (GUI), which, while user-friendly, is also inherently
operator dependent, leading to variability in results and hindering
reproducibility [13].

Therefore, the objective of developing the Vascular Fluid–Structure
Interaction Pipeline (VaSP) is to provide flexible, transparent, and
compact software written in a high-level language (i.e., Python). VaSP
offers a command-line interface, which avoids operator-dependency
and enhances the reproducibility of the research through scriptable
and traceable processes. We leveraged FEniCS [14] for a numerical
implementation that closely resembles mathematical notation, making
VaSP easily accessible to students and educators with various lev-
els of knowledge in numerical methods and programming. Owing to
the high-performance computing capabilities inherent from FEniCS,
VaSP can efficiently perform physiologically plausible FSI simulations,
with anatomically realistic geometries, over a time window of sev-
eral cardiac cycles with sufficient spatial and temporal resolution.
Lastly, conventional software packages for modeling blood flow and
vascular walls have been primarily designed to study laminar flow,
time averaged wall shear stress, and strain/stress associated with pul-
satile wall deformation. In addition to these capabilities, VaSP has the
unique capability to analyze transitional flow and high-frequency wall
vibrations that remain largely unexplored, opening avenues for new
mechanobiological investigations.
2
2. Software description

2.1. Software architecture

VaSP is a Python package with three main functionalities: pre-
processing, FSI simulations, and post-processing, as illustrated in Fig. 1.
At its most fundamental level, VaSP relies on two widely used packages:
Vascular Modeling Toolkit (VMTK) [15] and FEniCS.

VMTK provides a collection of tools, covering segmentation of
medical images, geometric analysis of surface data, mesh generation,
and post-processing of data obtained from CFD simulations. However,
for those new to cardiovascular simulations, adjusting the meshing
parameters for generating a high-quality mesh can be challenging. To
overcome this barrier, we created a streamlined meshing pipeline in
VaSP, where meshing parameters, such as the length of flow extensions,
are pre-determined based on our rigorous research experience.

FEniCS is an open-source software for solving partial differential
equations with the finite element method and is mainly used in the
FSI solver and post-processing component of VaSP. FEniCS uses unified
form language (UFL) [16] to define variational problems in a way that
closely resembles the mathematical representation.

VaSP integrates two other open-source Python packages: turtleFSI
[17] and Vascular Modeling Pypeline (VaMPy) [18]. The FEniCS-based
solver turtleFSI is verified, validated, and space/time centered, offering
second-order accuracy in time and P + 1 in space. Users only need to
provide the mesh, define parameters (e.g., time step, constitutive model
for structures), and specify boundary conditions to perform numerically
complex FSI simulations. VaMPy is an automated computational fluid
dynamics (CFD) pipeline for modeling cardiovascular flow and serves
as the precursor to VaSP.

2.2. Software functionalities

2.2.1. Pre-processing
The pre-processing module of VaSP accepts surface meshes in VMTK

compatible formats such as .vtp or .stl. These surface meshes are
typically segmented from medical images, a process that can be per-
formed using various open-source software packages such as VMTK, 3D
Slicer [19], and Medical Imaging Interaction Toolkit [20]. The simplest
approach for running the pre-processing is to call

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Fig. 2. An overview of the automated meshing pipeline in VaSP, using a diseased blood vessel (aneurysm) in the brain as an example. The pipeline generates
a volumetric mesh from a triangulated surface with three steps. A illustrates the general process. B shows how users can define regions of high mesh density
(refinement) using an interactive window. C demonstrates a variable wall thickness generation with a pre-defined mesh.
1 $ vasp-generate -mesh --input-model mesh.stl

from a terminal. Here --input-model specifies the path to the
input surface mesh (in this case mesh.stl). While the exact procedure
of pre-processing can vary depending on the specified meshing choices,
such as variable mesh density and wall thickness, Fig. 2A summarizes
the automated meshing pipeline.

The first step of meshing, which is automated and requires no user
interaction, is to compute the centerline that contains a vessel diameter
(Fig. 2A step1). The latter can be used to generate a variable density
mesh in the subsequent process. The surface mesh is then smoothed, as
high-frequency features, such as artifacts from medical image segmen-
tation, are unphysiological and can cause problems when generating
volumetric meshes. The level of smoothing can be adjusted by changing
the number of iterations (--smoothing-iterations). After the
smoothing, the next step of the pipeline is to add cylindrical flow
3
extensions with flat surfaces at the automatically annotated inlet(s) and
outlet(s)(Fig. 2A step2). Medical image-derived models are typically
cut at arbitrary sections of the vasculature and have non-circular cross
sections, where the spatial or temporal distribution of the flow is
unknown. Cylindrical inlets, positioned a few diameters upstream of
the region of interest, enable us to impose analytically derived velocity
profiles, such as parabolic and Womersley flows. Note that users can
adjust the smoothing method (Laplace, Taubin, and Voronoi) and the
length of flow extensions. For example, the following command will
add flow extensions with a length of eight (if not specified, the default
value is five) times the local radius at both the inlet and the outlet.

1 $ vasp-generate -mesh --input-model mesh.stl
--smoothing -method laplace --add-
flowextensions --inlet-flowextension 8 --
outlet-flowextension 8

K. Yamamoto et al.

1

1

1

SoftwareX 32 (2025) 102392
See the VaMPy documentation [21] for more examples of different
smoothing methods and flow extensions. The last step before generating
the volumetric mesh is to determine the local mesh size and solid thick-
ness, controlled by --meshing-method and --solid-thickness
flags, respectively (Fig. 2A step3). VaSP provides three automatic meth-
ods and one manual method for controlling the local mesh size. The
automatic methods determine the local mesh density based on constant
edge length, surface curvature, or vessel diameter, ensuring objectivity
and reproducibility of the final mesh, and are explained in the VaMPy
documentation [22]. It is important here to note that users can also
choose a specific region for mesh refinement interactively by placing
seed points, as shown in Fig. 2B. Similarly, VaSP has three methods
for specifying the local wall thickness: constant, painted, or interactive.
The first option only requires a single value as an input, whereas
the second option, painted, necessitates a surface mesh with locally
predefined wall thickness, as shown in Fig. 2C. The last option is similar
to the interactive refinement of mesh density (Fig. 2B) and will be
explained in detail with illustrative examples (see Section 3.3 and Fig.
8).

Finally, an unstructured volumetric mesh, consisting of tetrahedral
cells, is generated. The output mesh from pre-processing is saved
in hierarchical data format 5 (HDF5) [23], containing three objects:
mesh, domains, and boundaries, following the syntax of turtleFSI. The
mesh object contains geometrical and topological information, such as
cell coordinates and connectivity. Meanwhile, domains and boundaries
hold unique markers to distinguish the fluid and solid domains, as well
as their boundaries (e.g., inlet, outlet, and interface). These markers are
used later in the FSI simulations to define governing equations for fluid
and solid domains and to specify boundary conditions. Listing 1 shows
the list of mesh files generated, where mesh.stl is an example input
surface mesh and mesh.h5 is the resulting volumetric mesh that will
be used as an input to FSI simulations. The purpose of the other files is
explained in the VaSP documentation [24].
1

2 mesh.stl
3 mesh.h5
4 mesh.vtu
5 mesh.xml.gz
6 mesh_domains.pvd/.vtu
7 mesh_boundaries.pvd/.vtu
8 mesh_edge_length.xdmf/.h5
9 mesh_info.json
0 mesh_probe_point.json

Listing 1: An example of files generated as a result of pre-processing,
where mesh.stl is an input surface mesh and mesh.h5 is an output
volumetric mesh.

While the process of meshing is as described above, there is one
remaining procedure before running a FSI simulation, which is to
pre-deform the mesh. This process is essential because the medical
images capture the vascular wall in an in vivo stress equilibrium state,
where both the blood pressure and wall stress are unknown. A detailed
description is given in the online documentation [25].

2.2.2. FSI simulations
VaSP uses turtleFSI, a FEniCS-based open-source package, for per-

forming FSI simulations. While turtleFSI is a generic FSI solver, it has
been primarily used in the context of transitional blood flow and soft
tissue mechanics [26]. This monolithic solver couples equations for
fluid, solid, and mesh motion to form a single non-linear system. Its
modular structure enables a wide range of simulations, including rigid-
wall or moving-domain CFD, structural mechanics only, and FSI, all
possible within the same framework. This flexibility is important, for
example, to directly compare CFD and FSI simulations under equivalent
conditions or to perform a numerical uniaxial tension test on the
structural domain alone to fit material parameters against experimental
4
data, as previously presented [26,27]. To further demonstrate the usage
of turtleFSI as a CFD solver, we added new problem files for rigid-wall
and moving-domain simulations: the 2D Taylor–Green vortex problem
(Appendix A) and the 2D oscillating cylinder problem (Appendix B),
respectively.

In practice, users configure turtleFSI through a problem file, written
in Python, which specifies a set of parameters, loads the mesh, and
defines boundary and initial conditions. While a detailed explanation
of how to create a problem file is covered in the turtleFSI docu-
mentation [28], we provide five problem files in VaSP under the
src/vasp/simulations folder that can be used as a template for
new problems. A detailed explanation of how to apply physiologically
plausible boundary conditions is also provided in the VaSP documen-
tation [29]. Some of the problems will be further explained in detail as
illustrative examples in Section 3.

turtleFSI leverages the entry-level high-performance computing ca-
pabilities of FEniCS via the Message Passing Interface [30]. To further
support cluster-based simulations, we developed a diagnostic tool,
accessible via the vasp-log-plotter command, allowing users to
visually inspect critical information, such as the Courant number and
the convergence of Newton iterations, directly from simulation log files,
as shown in Listing 2 and Fig. 3. For example, the following command
will plot the Courant number from the second to last cardiac cycle:
1 $ vasp-log-plotter log_file.txt --plot-cfl --

start-cycle 2

This diagnostic information can be used to monitor the progress of
simulations and also to modify the problem setup in case of divergence.
1 Newton iteration 0: r (atol) = 6.336e-02, r (

rel) = 1.018e-03
2 Newton iteration 1: r (atol) = 1.623e-05, r (

rel) = 4.127e-04
3 Newton iteration 2: r (atol) = 2.529e-07, r (

rel) = 2.581e-06
4

5 Flow Properties:
6 Flow Rate at Inlet: 1.48e-06
7 Velocity (mean, min, max): 0.073, 1.69-06,

0.479
8 CFL (mean, min, max): 0.0323, 7.47e-07,

0.212
9 Reynolds Numbers (mean, min, max): 100,

0.00232, 659
0

1 Solved for timestep 1848, t = 0.3515 in 4.9 s

Listing 2: An example of output during the FSI simulations written to
a log file.

2.2.3. Post-processing
The post-processing part of VaSP is divided into three subcategories

with the tree structure shown in Listing 3.
1 src/
2 vasp/
3 postprocessing/
4 postprocessing_mesh/...
5 postprocessing_fenics/...
6 postprocessing_h5py/...

Listing 3: Directory tree strucutre of post-processing part of VaSP.

The first category addresses the mesh. Since turtleFSI is a mono-
lithic solver, all variables (displacement, velocity, and pressure) are
defined and saved across the entire domain during simulations. How-
ever, it is preferable to separate variables by domain so that fluid-
and solid-related post-processing can be performed independently and

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Fig. 3. Diagnostic plots generated based on a log file using vasp-log-plotter. A the convergence of Newton iterations where the tolerance was set as 10−6.
B flow rate at the inlet over the cardiac cycle. C mean, minimum, and maximum Courant number over the entire domain. D CPU time spent per time-step.
Fig. 4. An example of post-processing the mesh by refining the original mesh first and then separating fluid (blue) and solid (red) domains.

simultaneously, thereby enhancing efficiency. As a prior step for sepa-
rating variables, users need to obtain fluid- and solid-only meshes using
the vasp-separate-mesh command. Moreover, turtleFSI includes a
feature that maps solutions from higher- to lower-order elements on a
refined mesh. This ensures that all the degrees of freedom are saved
for post-processing. While not strictly required, to take full advantage
of higher-order solutions, it is recommended to generate a refined
mesh for the rest of post-processing using the vasp-refine-mesh
command. Fig. 4 illustrates the procedure of refining and separating
the mesh and Listing 4 shows the list of mesh files generated.
1 Mesh/
2 mesh.h5
3 mesh_fluid.h5
4 mesh_solid.h5
5 mesh_refined.h5
6 mesh_refined_fluid.h5
7 mesh_refined_solid.h5

Listing 4: Mesh files generated as a result of refining and separating
original mesh.

The second component of post-processing is to compute hemody-
namic indices (e.g., wall shear stress and oscillatory shear index) and
wall strain/stress (e.g., Green–Lagrange strain and Cauchy stress) using
FEniCS. By default, fluid velocity and solid displacement are automati-
cally separated during post-processing. However, if needed, this separa-
tion can be performed using the vasp-create-hdf5 command. This
5
process involves reading the original simulation results obtained with
the entire mesh and then extracting fluid and solid components using
segregated meshes. Then, VaSP uses fluid velocity and solid displace-
ment combined with a fluid- and solid-only mesh to compute hemody-
namic indices (vasp-compute-hemo) and wall strain/stress (vasp-
compute-stress), respectively, as illustrated in Fig. 5. Mathemati-
cal definitions of computed hemodynamic and solid-mechanical indices
are available in the VaMPy documentation [31] and Appendix C,
respectively.

The third component of post-processing is to perform signal process-
ing tasks, including computing power spectral density (vasp-create
-spectrum), generating spectrograms (vasp-create -spectro
 grams-chromagrams), and applying low/high-pass filtering to re-
sults (vasp-create-hi-pass-viz). This post-processing compo-
nent originated from recent CFD and FSI studies reporting flow in-
stabilities and high-frequency wall vibrations in various vascular sys-
tems [26,32]. VaSP uses a periodogram for estimating power spectral
density, short-time Fourier Transform for generating spectrograms [33],
and Butterworth filters for low-pass, high-pass, bandpass, and bandstop,
all implemented using scipy.signal [34]. Additionally, VaSP can
compute the spectral bandness index and generate chromagrams [35].

3. Illustrative examples

This section presents three examples to demonstrate the key capa-
bilities of VaSP using vascular problems, provided as Python scripts

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Fig. 5. An example of separating solid displacement and fluid velocity and post-processing independently for domain specific metrics.
under the simulations folder and as a tutorial in the online VaSP
documentation along with corresponding commands [36]. The first
example, offset stenosis, is a computationally efficient problem, al-
lowing novice users to experiment with VaSP on a standard laptop.
Here, we focus on one of the unique features of VaSP, i.e. the signal
processing component of the post-processing as the fluid and solid
exhibit flow instabilities and high-frequency wall vibrations, respec-
tively. The second example, a patient-specific cerebral aneurysm model,
previously used in several publications [26,37,38], is presented to
demonstrate hemodynamic and solid mechanics analyses that are typi-
cally of physiological interest. The third example, arteriovenous fistula
(AVF), highlights advanced meshing features like multi-solid domains
and variable wall thickness, showcasing VaSP’s capability to represent
heterogeneous physiological systems.

3.1. Offset stenosis

This offset stenosis model is a synthetic geometry that can be
analytically described and has long been studied in the fluid mechanics
community [39,40]. The area reduction with an offset in the stenotic
region causes three dimensional flows that transition to turbulence at
a low Reynolds number.

As shown in Fig. 6A, the flow inside the stenosis is character-
ized by the unstable post-stenotic jet. The spectrogram (Fig. 6B) of
fluid velocity reflects unstable flow as a continuous and broad fre-
quency band. In contrast, pressure and displacement spectrograms ex-
hibit narrow-frequency bands, indicating the wall vibration. As shown
in Fig. 6C, the vibration motion can be band-pass filtered to extract di-
rectional motions associated with modal frequencies. In this case, mode
1 (70–90 Hz) and 2 (150–170 Hz) correspond to contraction/expansion
and side-to-side motions, consistent with previous studies [37,38].

3.2. Cerebral aneurysm

A cerebral aneurysm is a pathological dilation of an artery in the
brain. It has been extensively studied using CFD [32,41,42] and FSI [4,
6,43] simulations. Given the research interest in cerebral aneurysms
from both computational and physiological perspectives, it serves as
an excellent example to showcase the functionalities of VaSP. Fig.
7 displays fluid velocity, solid displacement, hemodynamic and solid-
mechanical indices, and high-pass filtered displacement/strain.
6
3.3. Arteriovenous fistula

An AVF, shown in Fig. 8A, is a surgically-created vascular con-
nection between an artery and a vein. To independently assign phys-
iologically plausible wall stiffness and thickness to each vessel, it is
necessary to construct a mesh with unique domain markers. VaSP lever-
ages the ‘‘branch splitting’’ functionality in VMTK, which objectively
splits branches with individual markers, as shown in Fig. 8B. VaSP
uses the split centerlines to assign different solid domain markers.
Additionally, VaSP can generate a mesh with different wall thicknesses
for each branch. As shown in Fig. 8C, variable wall thickness can
be interactively defined with spheres. Specifically, users need to pro-
vide minimum and maximum thickness, and VaSP assigns local wall
thickness to all surface points based on the Euclidean distance from
the spheres. Fig. 8D is a volumetric mesh, where the blue and red
domains represent the artery of 0.3 mm and 0.15 mm wall thickness,
respectively, as highlighted in Fig. 8E.

4. Impact

Setting aside the strength of VaSP as a flexible, transparent, and
compact software, it is, to the author’s knowledge, the first cardio-
vascular software designed to analyze flow instabilities and associated
high-frequency wall vibrations. The first work that formed the basis
of VaSP was by Souche et al. [26], who reported cerebral aneurysm
wall vibration using patient-specific geometry. In contrast to previous
FSI studies of cerebral aneurysms that simulated blood flow as laminar
and focused on low-frequency pulsatile deformation, and time-averaged
quantities [4,6], Souche et al. employed high-fidelity FSI simulations,
revealing transitional flows and non-linear, two-way coupling between
fluid pressure and solid displacement. Later, Bruneau et al. [37] de-
veloped a methodology for computing vibration amplitude, extracting
mode shapes, and provided a mechanistic explanation for aneurysm
wall vibrations. Furthermore, Bruneau et al. [38] incorporated pulsatile
inflow, improving the physiological realism of the FSI simulations,
and offered a plausible explanation for clinically reported aneurysm
sounds [44,45]. Wall vibrations could also be relevant in other vascular
diseases, such as AVF. Bozzetto et al. [46] were the first to demonstrate
flow-induced wall vibrations in AVF, whereas a recent study by Soliveri
et al. [27] introduced a more advanced model by assigning different
wall stiffnesses to the artery and vein and incorporating perivascu-
lar tissues. Similarly, in contrast to previous work on AVF [47,48],
Bozzetto et al. and Soliveri et al. were the first to consider transitional
flow and flow-induced vibrations. These studies suggested that the
latter could indeed cause degenerative changes in the vascular wall. To

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Fig. 6. Depictions of flow instability and high-frequency wall vibrations in an offset stenosis. A displays a volumetric rendering of instantaneous velocity
magnitude, with probe points and corresponding velocity plots. B shows spectrograms of fluid velocity, pressure, and wall displacement, illustrating the evolution
of frequency over time. C visualizes the first two mode shapes (70–90 Hz and 150–170 Hz), with displacement vectors amplified to show the specific patterns of
vibration.
Fig. 7. Examples of post-processed hemodynamic and solid-mechanical indices, as well as high-pass filtered displacement and strain.
provide a unified platform for investigating potential flow-induced wall
vibrations in the cardiovascular system, all the components developed
and presented in those studies have been incorporated into VaSP.

5. Conclusions

VaSP is an open-source, flexible, and intuitive Python package that
streamlines all the complex processes of performing vascular FSI sim-
ulations. The meshing pipeline is automated, reducing the variability
across users and ensuring the reproducibility of simulation results. A
7
verified and validated monolithic FSI solver with high-performance
computing capabilities is integrated to perform vascular FSI simula-
tions, where several problem files are provided as a template. More-
over, a diagnostic tool is added to support simulations. A wide range of
post-processing functionalities is also provided for hemodynamic anal-
ysis and characterizing flow instabilities and high-frequency vascular
wall vibrations. VaSP originated from research activities with several
journal publications, and new features are continuously added to the
pipeline as a result of active use. In conclusion, VaSP is a valuable
resource that can produce publication-standard results by students and

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Fig. 8. Advanced meshing functionalities exemplified with an arteriovenous fistula model. A is an input surface mesh, B is a centerline with different marker for
artery and vein, C demonstrates an interactive way of specifying variable wall thickness using spheres in red, D shows a volumetric mesh with unique domain
marker for artery (blue) and vein (red) based on branch splitting, and E shows clipped a solid mesh, showing arterial and venous wall thickness of 0.3 mm and
0.15 mm, respectively.
researchers with diverse backgrounds, and has a novel capability to
investigate high-frequency flow-induced vascular wall vibrations.

CRediT authorship contribution statement

Kei Yamamoto: Writing – original draft, Visualization, Software,
Methodology. David A. Bruneau: Writing – review & editing, Software,
Methodology, Conceptualization. Johannes Ring: Writing – review &
editing, Software, Methodology. Jørgen S. Dokken: Writing – review
& editing, Software, Methodology. Kristian Valen-Sendstad: Writing –
review & editing, Supervision, Funding acquisition, Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work, the author(s) used ChatGPT to
check grammar, clarity, and coherence. After using this tool/service,
the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the content of the published article.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This project is supported by the EU Horizon 2020 SimCardioTest
project (101016496). D.A.B. acknowledges the support of an NSERC
Canada Graduate Scholarship. The simulations were performed on
the Saga cluster, with resources provided by UNINETT Sigma2 – the
National Infrastructure for High Performance Computing and Data
Storage in Norway, grant number nn9249k. The authors would like
to thank Dr. Daniel E. MacDonald for the contribution to the soft-
ware implementation, Dr. Luca Soliveri, Sofia Poloni, and Dr. Michela
Bozzetto for fruitful discussions, and Dr. Henrik Nicolay Finsberg and
Dr. Mohammad Javad Sadeghinia for providing insightful comments on
earlier versions of the manuscript.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.softx.2025.102392.
8
References

[1] Steinman DA, Taylor CA. Flow imaging and computing: Large artery hemody-
namics. Ann Biomed Eng 2005;33:1704–9. http://dx.doi.org/10.1007/s10439-
005-8772-2.

[2] Holzapfel GA, Ogden RW. Constitutive modelling of arteries. Proc R Soc A:
Math Phys Eng Sci 2010;466(2118):1551–97. http://dx.doi.org/10.1098/rspa.
2010.0058.

[3] Taylor CA, Petersen K, Xiao N, Sinclair M, Bai Y, Lynch SR, UpdePac A,
Schaap M. Patient-specific modeling of blood flow in the coronary arteries.
Comput Methods Appl Mech Engrg 2023;417:116414. http://dx.doi.org/10.
1016/j.cma.2023.116414.

[4] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Computer mod-
eling of cardiovascular fluid-structure interactions with the deforming-spatial-
domain/stabilized space-time formulation. Comput Methods Appl Mech Engrg
2006;195(13–16):1885–95. http://dx.doi.org/10.1016/j.cma.2005.05.050.

[5] Baumler K, Rolf-Pissarczyk M, Schussnig R, Fries TP, Mistelbauer G, Pfaller MR,
Marsden AL, Fleischmann D, Holzapfel GA. Assessment of aortic dissec-
tion remodeling with patient-specific fluid-structure interaction models. IEEE
Trans Biomed Eng 2024;72(3):953–64. http://dx.doi.org/10.1109/TBME.2024.
3480362.

[6] Bazilevs Y, Hsu MC, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen JG.
Computational vascular fluid-structure interaction: Methodology and application
to cerebral aneurysms. Biomech Model Mechanobiol 2010;9(4):481–98. http:
//dx.doi.org/10.1007/s10237-010-0189-7.

[7] Madenci E, Guven I. The finite element method and applications in engineering
using ANSYS®. Springer; 2015.

[8] Smith M. ABAQUS/standard user’s manual, version 6.9. United States: Dassault
Systèmes Simulia Corp; 2009.

[9] Multiphysics C. Introduction to COMSOL multiphysics®. 1998,
[10] Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. SimVas-

cular: An Open Source Pipeline for Cardiovascular Simulation. Ann Biomed Eng
2017;45(3):525–41. http://dx.doi.org/10.1007/s10439-016-1762-8.

[11] Arthurs CJ, Khlebnikov R, Melville A, Marčan M, Gomez A, Dillon-Murphy D,
Cuomo F, Vieira MS, Schollenberger J, Lynch SR, Tossas-Betancourt C, Iyer K,
Hopper S, Livingston E, Youssefi P, Noorani A, Ahmed SB, Nauta FJ, van
Bakel TM, Ahmed Y, van Bakel PA, Mynard J, Di Achille P, Gharahi H,
Lau KD, Filonova V, Aguirre M, Nama N, Xiao N, Baek S, Garikipati K,
Sahni O, Nordsletten D, Alberto Figueroa C. CRIMSON: An open-source software
framework for cardiovascular integrated modelling and simulation. PLoS Comput
Biol 2021;17(5):1–21. http://dx.doi.org/10.1371/journal.pcbi.1008881.

[12] Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: Finite elements for
biomechanics. J Biomech Eng 2012;134(1):1–10. http://dx.doi.org/10.1115/1.
4005694.

[13] Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J,
Pallares J, Cito S, Piskin S, Pekkan K, Geers AJ, Larrabide I, Rapaka S, Mihalef V,
Fu W, Qiao A, Jain K, Roller S, Mardal K-A, Kamakoti R, Spirka T, Ashton N,
Revell A, Aristokleous N, Houston JG, Tsuji M, Ishida F, Menon PG, Browne LD,
Broderick S, Shojima M, Koizumi S, Barbour M, Aliseda A, Morales HG, Lefèvre T,
Hodis S, Al-Smadi YM, Tran JS, Marsden AL, Vaippummadhom S, Einstein GA,
Brown AG, Debus K, Niizuma K, Rashad S, Sugiyama S-i, Owais Khan M,
Updegrove AR, Shadden SC, Cornelissen BMW, Majoie CBLM, Berg P, Saalfield S,

https://doi.org/10.1016/j.softx.2025.102392
http://dx.doi.org/10.1007/s10439-005-8772-2
http://dx.doi.org/10.1007/s10439-005-8772-2
http://dx.doi.org/10.1007/s10439-005-8772-2
http://dx.doi.org/10.1098/rspa.2010.0058
http://dx.doi.org/10.1098/rspa.2010.0058
http://dx.doi.org/10.1098/rspa.2010.0058
http://dx.doi.org/10.1016/j.cma.2023.116414
http://dx.doi.org/10.1016/j.cma.2023.116414
http://dx.doi.org/10.1016/j.cma.2023.116414
http://dx.doi.org/10.1016/j.cma.2005.05.050
http://dx.doi.org/10.1109/TBME.2024.3480362
http://dx.doi.org/10.1109/TBME.2024.3480362
http://dx.doi.org/10.1109/TBME.2024.3480362
http://dx.doi.org/10.1007/s10237-010-0189-7
http://dx.doi.org/10.1007/s10237-010-0189-7
http://dx.doi.org/10.1007/s10237-010-0189-7
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb7
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb7
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb7
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb8
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb8
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb8
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb9
http://dx.doi.org/10.1007/s10439-016-1762-8
http://dx.doi.org/10.1371/journal.pcbi.1008881
http://dx.doi.org/10.1115/1.4005694
http://dx.doi.org/10.1115/1.4005694
http://dx.doi.org/10.1115/1.4005694

K. Yamamoto et al. SoftwareX 32 (2025) 102392
Kono K, Steinman DA. Real-World Variability in the Prediction of Intracranial
Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
Cardiovasc Eng Technol 2018;9(4):544–64. http://dx.doi.org/10.1007/s13239-
018-00374-2.

[14] Logg A, Mardal K-A, Wells G. Automated solution of differential equations by the
finite element method, vol. 84, Berlin, Heidelberg: Springer Berlin Heidelberg;
2012, http://dx.doi.org/10.1007/978-3-642-23099-8.

[15] Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L. A framework
for geometric analysis of vascular structures: Application to cerebral aneurysms.
IEEE Trans Med Imaging 2009;28(8):1141–55. http://dx.doi.org/10.1109/TMI.
2009.2021652.

[16] Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN. Unified form language: A
domain-specific language for weak formulations of partial differential equations.
ACM Trans Math Software 2014;40(2). http://dx.doi.org/10.1145/2566630.

[17] Bergersen A, Slyngstad A, Gjertsen S, Souche A, Valen-Sendstad K. turtleFSI: A
Robust and Monolithic FEniCS-based Fluid-Structure Interaction Solver. J Open
Source Softw 2020;5(50):2089. http://dx.doi.org/10.21105/joss.02089.

[18] Kjeldsberg HA, Bergersen AW, Valen-Sendstad K. VaMPy: An Automated and
Objective Pipeline for Modeling Vascular Geometries. J Open Source Softw
2023;8(85):5278. http://dx.doi.org/10.21105/joss.05278.

[19] Kapur T, Egger J, Jayender J, Toews M, Wells WM. Registration and Segmen-
tation for Image-Guided Therapy. In: Intraoperative imaging and image-guided
therapy. Springer; 2014, p. 79–91. http://dx.doi.org/10.1007/978-1-4614-7657-
3_5.

[20] Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D,
Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I.
The medical imaging interaction toolkit: Challenges and advances: 10 years of
open-source development. Int J Comput Assist Radiol Surg 2013;8(4):607–20.
http://dx.doi.org/10.1007/s11548-013-0840-8.

[21] Kjeldsberg H. Pre-processing. 2024, https://kvslab.github.io/VaMPy/preprocess.
html#smoothing.

[22] Kjeldsberg H. High-resolution CFD simulation in the internal carotid artery. 2024,
https://kvslab.github.io/VaMPy/artery.html.

[23] Koranne S. Hierarchical Data Format 5 : HDF5. In: Handbook of open source
tools. Boston, MA: Springer US; 2011, p. 191–200. http://dx.doi.org/10.1007/
978-1-4419-7719-9_10.

[24] Yamamoto K. VaSP preprocess. 2025, https://kvslab.github.io/VaSP/preprocess.
html.

[25] Yamamoto K. VaSP prestress. 2025, https://kvslab.github.io/VaSP/prestress.html.
[26] Souche A, Valen-Sendstad K. High-fidelity fluid structure interaction simulations

of turbulent-like aneurysm flows reveals high-frequency narrowband wall vibra-
tions: A stimulus of mechanobiological relevance? J Biomech 2022;145:111369.
http://dx.doi.org/10.1016/j.jbiomech.2022.111369.

[27] Soliveri L, Bruneau D, Ring J, Bozzetto M, Remuzzi A, Valen-Sendstad K. Toward
a physiological model of vascular wall vibrations in the arteriovenous fistula.
Biomech Model Mechanobiol 2024;23(0123456789). http://dx.doi.org/10.1007/
s10237-024-01865-z.

[28] Bergersen AW, Gjertsen S, Souche A, Slyngstad A. Create your own prob-
lem file. 2024, https://turtlefsi2.readthedocs.io/en/latest/using_turtleFSI.html#
create-your-own-problem-file.

[29] Yamamoto K. VaSP boundary conditions. 2025, https://kvslab.github.io/VaSP/
aneurysm.html#fluid-boundary-conditions.

[30] Forum MPI. MPI: A message-passing interface standard version 4.0. 2021.
[31] Kjeldsberg H. Computed quantities. 2024, https://kvslab.github.io/VaMPy/

quantities.html.
[32] Valen-Sendstad K, Mardal KA, Mortensen M, Reif BAP, Langtangen HP. Direct nu-

merical simulation of transitional flow in a patient-specific intracranial aneurysm.
J Biomech 2011;44(16):2826–32. http://dx.doi.org/10.1016/j.jbiomech.2011.08.
015.
9
[33] Natarajan T, MacDonald DE, Najafi M, Khan MO, Steinman DA. On the
spectrographic representation of cardiovascular flow instabilities. J Biomech
2020;110:109977. http://dx.doi.org/10.1016/j.jbiomech.2020.109977.

[34] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M,
Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J,
Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH,
Pedregosa F, van Mulbregt P, SciPy 10 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods 2020;17:261–72.
http://dx.doi.org/10.1038/s41592-019-0686-2.

[35] MacDonald DE, Najafi M, Temor L, Steinman DA. Spectral Bandedness in High-
Fidelity Computational Fluid Dynamics Predicts Rupture Status in Intracranial
Aneurysms. J Biomech Eng 2022;144(6). http://dx.doi.org/10.1115/1.4053403.

[36] Yamamoto K. VaSP tutorial. 2025, https://kvslab.github.io/VaSP/tutorials.html.
[37] Bruneau DA, Valen-Sendstad K, Steinman DA. Onset and nature of flow-induced

vibrations in cerebral aneurysms via fluid–structure interaction simulations.
Biomech Model Mechanobiol 2023;22(0123456789). http://dx.doi.org/10.1007/
s10237-022-01679-x.

[38] Bruneau DA, Steinman DA, Valen-Sendstad K. Understanding intracranial
aneurysm sounds via high-fidelity fluid-structure-interaction modelling. Commun
Med 2023;3(1):1–11. http://dx.doi.org/10.1038/s43856-023-00396-5.

[39] Varghese SS, Frankel SH, Fischer PF. Direct numerical simulation of stenotic
flows. Part 1. Steady flow. J Fluid Mech 2007;582:253–80. http://dx.doi.org/10.
1017/S0022112007005848.

[40] Khan MO, Valen-Sendstad K, Steinman DA. Direct Numerical Simulation of
Laminar-Turbulent Transition in a Non-Axisymmetric Stenosis Model for New-
tonian vs. Shear-Thinning Non-Newtonian Rheologies. Flow, Turbul Combust
2019;102(1):43–72. http://dx.doi.org/10.1007/s10494-018-9905-7.

[41] Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW. Image-based
computational simulation of flow dynamics in a giant intracranial aneurysm. Am
J Neuroradiol 2003;24(4):559–66.

[42] Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM.
Characterization of cerebral aneurysms for assessing risk of rupture by us-
ing patient-specific computational hemodynamics models. Am J Neuroradiol
2005;26(10):2550–9. http://dx.doi.org/10.1016/s0098-1672(08)70473-9.

[43] Sanchez M, Ecker O, Ambard D, Jourdan F, Nicoud F, Mendez S, Lejeune JP,
Thines L, Dufour H, Brunel H, Machi P, Lobotesis K, Bonafe A, Costalat V.
Intracranial aneurysmal pulsatility as a new individual criterion for rupture
risk evaluation: Biomechanical and numeric approach (IRRAs Project). Am J
Neuroradiol 2014;35(9):1765–71. http://dx.doi.org/10.3174/ajnr.A3949.

[44] Ferguson GG. Turbulence in human intracranial saccular aneurysms. J Neurosurg
1970;33(5):485–97. http://dx.doi.org/10.3171/jns.1970.33.5.0485.

[45] Kurokawa Y, Abiko S, Watanabe K. Noninvasive detection of intracranial vascular
lesions by recording blood flow sounds. Stroke 1994;25(2):397–402. http://dx.
doi.org/10.1161/01.STR.25.2.397.

[46] Bozzetto M, Remuzzi A, Valen-Sendstad K. Flow-induced high frequency vascular
wall vibrations in an arteriovenous fistula: a specific stimulus for stenosis
development? Phys Eng Sci Med 2024;47(1):187–97. http://dx.doi.org/10.1007/
s13246-023-01355-z.

[47] McGah PM, Leotta DF, Beach KW, Aliseda A. Effects of wall distensibil-
ity in hemodynamic simulations of an arteriovenous fistula. Biomech Model
Mechanobiol 2014;13(3):679–95. http://dx.doi.org/10.1007/s10237-013-0527-7.

[48] de Villiers AM, McBride AT, Reddy BD, Franz T, Spottiswoode BS. A validated
patient-specific FSI model for vascular access in haemodialysis. Biomech Model
Mechanobiol 2018;17(2):479–97. http://dx.doi.org/10.1007/s10237-017-0973-8.

http://dx.doi.org/10.1007/s13239-018-00374-2
http://dx.doi.org/10.1007/s13239-018-00374-2
http://dx.doi.org/10.1007/s13239-018-00374-2
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1109/TMI.2009.2021652
http://dx.doi.org/10.1109/TMI.2009.2021652
http://dx.doi.org/10.1109/TMI.2009.2021652
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.21105/joss.02089
http://dx.doi.org/10.21105/joss.05278
http://dx.doi.org/10.1007/978-1-4614-7657-3_5
http://dx.doi.org/10.1007/978-1-4614-7657-3_5
http://dx.doi.org/10.1007/978-1-4614-7657-3_5
http://dx.doi.org/10.1007/s11548-013-0840-8
https://kvslab.github.io/VaMPy/preprocess.html#smoothing
https://kvslab.github.io/VaMPy/preprocess.html#smoothing
https://kvslab.github.io/VaMPy/preprocess.html#smoothing
https://kvslab.github.io/VaMPy/artery.html
http://dx.doi.org/10.1007/978-1-4419-7719-9_10
http://dx.doi.org/10.1007/978-1-4419-7719-9_10
http://dx.doi.org/10.1007/978-1-4419-7719-9_10
https://kvslab.github.io/VaSP/preprocess.html
https://kvslab.github.io/VaSP/preprocess.html
https://kvslab.github.io/VaSP/preprocess.html
https://kvslab.github.io/VaSP/prestress.html
http://dx.doi.org/10.1016/j.jbiomech.2022.111369
http://dx.doi.org/10.1007/s10237-024-01865-z
http://dx.doi.org/10.1007/s10237-024-01865-z
http://dx.doi.org/10.1007/s10237-024-01865-z
https://turtlefsi2.readthedocs.io/en/latest/using_turtleFSI.html#create-your-own-problem-file
https://turtlefsi2.readthedocs.io/en/latest/using_turtleFSI.html#create-your-own-problem-file
https://turtlefsi2.readthedocs.io/en/latest/using_turtleFSI.html#create-your-own-problem-file
https://kvslab.github.io/VaSP/aneurysm.html#fluid-boundary-conditions
https://kvslab.github.io/VaSP/aneurysm.html#fluid-boundary-conditions
https://kvslab.github.io/VaSP/aneurysm.html#fluid-boundary-conditions
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb30
https://kvslab.github.io/VaMPy/quantities.html
https://kvslab.github.io/VaMPy/quantities.html
https://kvslab.github.io/VaMPy/quantities.html
http://dx.doi.org/10.1016/j.jbiomech.2011.08.015
http://dx.doi.org/10.1016/j.jbiomech.2011.08.015
http://dx.doi.org/10.1016/j.jbiomech.2011.08.015
http://dx.doi.org/10.1016/j.jbiomech.2020.109977
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1115/1.4053403
https://kvslab.github.io/VaSP/tutorials.html
http://dx.doi.org/10.1007/s10237-022-01679-x
http://dx.doi.org/10.1007/s10237-022-01679-x
http://dx.doi.org/10.1007/s10237-022-01679-x
http://dx.doi.org/10.1038/s43856-023-00396-5
http://dx.doi.org/10.1017/S0022112007005848
http://dx.doi.org/10.1017/S0022112007005848
http://dx.doi.org/10.1017/S0022112007005848
http://dx.doi.org/10.1007/s10494-018-9905-7
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb41
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb41
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb41
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb41
http://refhub.elsevier.com/S2352-7110(25)00358-9/sb41
http://dx.doi.org/10.1016/s0098-1672(08)70473-9
http://dx.doi.org/10.3174/ajnr.A3949
http://dx.doi.org/10.3171/jns.1970.33.5.0485
http://dx.doi.org/10.1161/01.STR.25.2.397
http://dx.doi.org/10.1161/01.STR.25.2.397
http://dx.doi.org/10.1161/01.STR.25.2.397
http://dx.doi.org/10.1007/s13246-023-01355-z
http://dx.doi.org/10.1007/s13246-023-01355-z
http://dx.doi.org/10.1007/s13246-023-01355-z
http://dx.doi.org/10.1007/s10237-013-0527-7
http://dx.doi.org/10.1007/s10237-017-0973-8

	VaSP: Vascular Fluid–Structure Interaction Pipeline
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Pre-processing
	FSI simulations
	Post-processing

	Illustrative examples
	Offset stenosis
	Cerebral aneurysm
	Arteriovenous fistula

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

