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 A B S T R A C T

A variety of commercial and open-source software packages exist for modeling blood flow dynamics and 
vascular wall mechanics of cardiovascular systems via fluid–structure interaction simulations (FSI). While these 
existing tools are feature-rich, this breadth often comes at the cost of increased complexity and large codebases, 
which, combined with implementation in low-level programming languages, effectively limit transparency and 
accessibility. Moreover, many of these software packages primarily rely on graphical user interfaces for a 
more intuitive experience; however, this can hinder reproducibility and automation of research workflows. 
Here, we present Vascular Fluid–Structure Interaction Pipeline (VaSP), a transparent, flexible, and compact 
Python package with a command-line interface. In contrast to the vast majority of existing software, VaSP is 
tailored for transitional flow and high-frequency vascular wall vibrations. VaSP takes a medical image-derived 
surface model as input, generates a volumetric mesh with fluid and solid domains for FSI simulations, and 
post-processes the results for hemodynamic and wall mechanical analyses. By leveraging high-level Python 
packages such as FEniCS and VMTK, VaSP ensures accessibility for users of diverse expertise levels and 
promotes reproducible, scriptable workflows.
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. Motivation and significance

Computational modeling of blood flow and/or the vascular wall 
n the cardiovascular system is actively used to gain a fundamental 
nderstanding of healthy and diseased states [1–3]. In particular, FSI 
imulations have been utilized to provide more realistic estimates of 
all shear stress than rigid wall simulations [4], to understand the long-
erm remodeling of the vascular wall [5], or to estimate wall stress 
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that results in mechanical failure of aneurysm wall [6]. In practice, 
performing physiologically plausible simulations consists of multiple 
steps, including generating a high-quality mesh and post-processing the 
results. While dedicated open-source software packages have been used 
for each individual step, a single, streamlined pipeline that integrates 
these processes is essential for improving research efficiency.
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Fig. 1. An illustration of modular architecture of VaSP, consisting of three functionalities: pre-processing, vascular FSI simulation, and post-processing, as indicated 
in the top box. Within the middle box, selected key features of each functionality are further shown, using a diseased blood vessel (aneurysm) in the brain as an 
example. The bottom box indicates the primary dependencies for each functionality.
The majority of FSI studies in cardiovascular research use commer-
cial software such as ANSYS [7], Abaqus [8], and COMSOL [9]; how-
ever, there are now several excellent open-source software packages for 
performing FSI simulations in anatomically realistic geometries, such as 
SimVascular [10], CRIMSON [11] and FEBio [12]. While these software 
packages are feature-rich, offer a user-friendly workflow from pre-
processing to post-processing, and are partially scriptable in Python, 
the source code is written in low-level languages such as Fortran and 
C++, consisting of hundreds of thousands of lines. The complexity and 
volume of its codebase limit the practical transparency and flexibility 
of the software. For example, implementing new material models or 
modifying boundary conditions would require extensive knowledge 
of the code structure and considerable development effort, making 
it difficult to adapt the software to new research goals beyond the 
existing capabilities. Moreover, most of the packages rely on a graphical 
user interface (GUI), which, while user-friendly, is also inherently 
operator dependent, leading to variability in results and hindering 
reproducibility [13].

Therefore, the objective of developing the Vascular Fluid–Structure 
Interaction Pipeline (VaSP) is to provide flexible, transparent, and 
compact software written in a high-level language (i.e., Python). VaSP 
offers a command-line interface, which avoids operator-dependency 
and enhances the reproducibility of the research through scriptable 
and traceable processes. We leveraged FEniCS [14] for a numerical 
implementation that closely resembles mathematical notation, making 
VaSP easily accessible to students and educators with various lev-
els of knowledge in numerical methods and programming. Owing to 
the high-performance computing capabilities inherent from FEniCS, 
VaSP can efficiently perform physiologically plausible FSI simulations, 
with anatomically realistic geometries, over a time window of sev-
eral cardiac cycles with sufficient spatial and temporal resolution. 
Lastly, conventional software packages for modeling blood flow and 
vascular walls have been primarily designed to study laminar flow, 
time averaged wall shear stress, and strain/stress associated with pul-
satile wall deformation. In addition to these capabilities, VaSP has the 
unique capability to analyze transitional flow and high-frequency wall 
vibrations that remain largely unexplored, opening avenues for new 
mechanobiological investigations.
2 
2. Software description

2.1. Software architecture

VaSP is a Python package with three main functionalities: pre-
processing, FSI simulations, and post-processing, as illustrated in Fig.  1. 
At its most fundamental level, VaSP relies on two widely used packages: 
Vascular Modeling Toolkit (VMTK) [15] and FEniCS.

VMTK provides a collection of tools, covering segmentation of 
medical images, geometric analysis of surface data, mesh generation, 
and post-processing of data obtained from CFD simulations. However, 
for those new to cardiovascular simulations, adjusting the meshing 
parameters for generating a high-quality mesh can be challenging. To 
overcome this barrier, we created a streamlined meshing pipeline in 
VaSP, where meshing parameters, such as the length of flow extensions, 
are pre-determined based on our rigorous research experience.

FEniCS is an open-source software for solving partial differential 
equations with the finite element method and is mainly used in the 
FSI solver and post-processing component of VaSP. FEniCS uses unified 
form language (UFL) [16] to define variational problems in a way that 
closely resembles the mathematical representation.

VaSP integrates two other open-source Python packages: turtleFSI
[17] and Vascular Modeling Pypeline (VaMPy) [18]. The FEniCS-based 
solver turtleFSI is verified, validated, and space/time centered, offering 
second-order accuracy in time and P + 1 in space. Users only need to 
provide the mesh, define parameters (e.g., time step, constitutive model 
for structures), and specify boundary conditions to perform numerically 
complex FSI simulations. VaMPy is an automated computational fluid 
dynamics (CFD) pipeline for modeling cardiovascular flow and serves 
as the precursor to VaSP.

2.2. Software functionalities

2.2.1. Pre-processing
The pre-processing module of VaSP accepts surface meshes in VMTK 

compatible formats such as .vtp or .stl. These surface meshes are 
typically segmented from medical images, a process that can be per-
formed using various open-source software packages such as VMTK, 3D 
Slicer [19], and Medical Imaging Interaction Toolkit [20]. The simplest 
approach for running the pre-processing is to call
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Fig. 2. An overview of the automated meshing pipeline in VaSP, using a diseased blood vessel (aneurysm) in the brain as an example. The pipeline generates 
a volumetric mesh from a triangulated surface with three steps. A illustrates the general process. B shows how users can define regions of high mesh density 
(refinement) using an interactive window. C demonstrates a variable wall thickness generation with a pre-defined mesh.
1 $ vasp-generate -mesh --input-model mesh.stl

from a terminal. Here --input-model specifies the path to the 
input surface mesh (in this case mesh.stl). While the exact procedure 
of pre-processing can vary depending on the specified meshing choices, 
such as variable mesh density and wall thickness, Fig.  2A summarizes 
the automated meshing pipeline.

The first step of meshing, which is automated and requires no user 
interaction, is to compute the centerline that contains a vessel diameter 
(Fig.  2A step1). The latter can be used to generate a variable density 
mesh in the subsequent process. The surface mesh is then smoothed, as 
high-frequency features, such as artifacts from medical image segmen-
tation, are unphysiological and can cause problems when generating 
volumetric meshes. The level of smoothing can be adjusted by changing 
the number of iterations (--smoothing-iterations). After the 
smoothing, the next step of the pipeline is to add cylindrical flow 
3 
extensions with flat surfaces at the automatically annotated inlet(s) and 
outlet(s)(Fig.  2A step2). Medical image-derived models are typically 
cut at arbitrary sections of the vasculature and have non-circular cross 
sections, where the spatial or temporal distribution of the flow is 
unknown. Cylindrical inlets, positioned a few diameters upstream of 
the region of interest, enable us to impose analytically derived velocity 
profiles, such as parabolic and Womersley flows. Note that users can 
adjust the smoothing method (Laplace, Taubin, and Voronoi) and the 
length of flow extensions. For example, the following command will 
add flow extensions with a length of eight (if not specified, the default 
value is five) times the local radius at both the inlet and the outlet.

1 $ vasp-generate -mesh --input-model mesh.stl
--smoothing -method laplace --add-
flowextensions --inlet-flowextension 8 --
outlet-flowextension 8
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See the VaMPy documentation [21] for more examples of different 
smoothing methods and flow extensions. The last step before generating 
the volumetric mesh is to determine the local mesh size and solid thick-
ness, controlled by --meshing-method and --solid-thickness 
flags, respectively (Fig.  2A step3). VaSP provides three automatic meth-
ods and one manual method for controlling the local mesh size. The 
automatic methods determine the local mesh density based on constant 
edge length, surface curvature, or vessel diameter, ensuring objectivity 
and reproducibility of the final mesh, and are explained in the VaMPy 
documentation [22]. It is important here to note that users can also 
choose a specific region for mesh refinement interactively by placing 
seed points, as shown in  Fig.  2B. Similarly, VaSP has three methods 
for specifying the local wall thickness: constant, painted, or interactive. 
The first option only requires a single value as an input, whereas 
the second option, painted, necessitates a surface mesh with locally 
predefined wall thickness, as shown in Fig.  2C. The last option is similar 
to the interactive refinement of mesh density (Fig.  2B) and will be 
explained in detail with illustrative examples (see Section 3.3 and Fig. 
8).

Finally, an unstructured volumetric mesh, consisting of tetrahedral 
cells, is generated. The output mesh from pre-processing is saved 
in hierarchical data format 5 (HDF5) [23], containing three objects: 
mesh, domains, and boundaries, following the syntax of turtleFSI. The 
mesh object contains geometrical and topological information, such as 
cell coordinates and connectivity. Meanwhile, domains and boundaries 
hold unique markers to distinguish the fluid and solid domains, as well 
as their boundaries (e.g., inlet, outlet, and interface). These markers are 
used later in the FSI simulations to define governing equations for fluid 
and solid domains and to specify boundary conditions. Listing 1 shows 
the list of mesh files generated, where mesh.stl is an example input 
surface mesh and mesh.h5 is the resulting volumetric mesh that will 
be used as an input to FSI simulations. The purpose of the other files is 
explained in the VaSP documentation [24].
1

2 mesh.stl
3 mesh.h5
4 mesh.vtu
5 mesh.xml.gz
6 mesh_domains.pvd/.vtu
7 mesh_boundaries.pvd/.vtu
8 mesh_edge_length.xdmf/.h5
9 mesh_info.json
0 mesh_probe_point.json

Listing 1: An example of files generated as a result of pre-processing, 
where mesh.stl is an input surface mesh and mesh.h5 is an output 
volumetric mesh.

While the process of meshing is as described above, there is one 
remaining procedure before running a FSI simulation, which is to 
pre-deform the mesh. This process is essential because the medical 
images capture the vascular wall in an in vivo stress equilibrium state, 
where both the blood pressure and wall stress are unknown. A detailed 
description is given in the online documentation [25].

2.2.2. FSI simulations
VaSP uses turtleFSI, a FEniCS-based open-source package, for per-

forming FSI simulations. While turtleFSI is a generic FSI solver, it has 
been primarily used in the context of transitional blood flow and soft 
tissue mechanics [26]. This monolithic solver couples equations for 
fluid, solid, and mesh motion to form a single non-linear system. Its 
modular structure enables a wide range of simulations, including rigid-
wall or moving-domain CFD, structural mechanics only, and FSI, all 
possible within the same framework. This flexibility is important, for 
example, to directly compare CFD and FSI simulations under equivalent 
conditions or to perform a numerical uniaxial tension test on the 
structural domain alone to fit material parameters against experimental 
4 
data, as previously presented [26,27]. To further demonstrate the usage 
of turtleFSI as a CFD solver, we added new problem files for rigid-wall 
and moving-domain simulations: the 2D Taylor–Green vortex problem 
(Appendix A) and the 2D oscillating cylinder problem (Appendix B), 
respectively.

In practice, users configure turtleFSI through a problem file, written 
in Python, which specifies a set of parameters, loads the mesh, and 
defines boundary and initial conditions. While a detailed explanation 
of how to create a problem file is covered in the turtleFSI docu-
mentation [28], we provide five problem files in VaSP under the 
src/vasp/simulations folder that can be used as a template for 
new problems. A detailed explanation of how to apply physiologically 
plausible boundary conditions is also provided in the VaSP documen-
tation [29]. Some of the problems will be further explained in detail as 
illustrative examples in Section 3.

turtleFSI leverages the entry-level high-performance computing ca-
pabilities of FEniCS via the Message Passing Interface [30]. To further 
support cluster-based simulations, we developed a diagnostic tool, 
accessible via the vasp-log-plotter command, allowing users to 
visually inspect critical information, such as the Courant number and 
the convergence of Newton iterations, directly from simulation log files, 
as shown in Listing 2 and Fig.  3. For example, the following command 
will plot the Courant number from the second to last cardiac cycle:
1 $ vasp-log-plotter log_file.txt --plot-cfl --

start-cycle 2

This diagnostic information can be used to monitor the progress of 
simulations and also to modify the problem setup in case of divergence.
1 Newton iteration 0: r (atol) = 6.336e-02, r (

rel) = 1.018e-03
2 Newton iteration 1: r (atol) = 1.623e-05, r (

rel) = 4.127e-04
3 Newton iteration 2: r (atol) = 2.529e-07, r (

rel) = 2.581e-06
4

5 Flow Properties:
6 Flow Rate at Inlet: 1.48e-06
7 Velocity (mean, min, max): 0.073, 1.69-06,

0.479
8 CFL (mean, min, max): 0.0323, 7.47e-07,

0.212
9 Reynolds Numbers (mean, min, max): 100,

0.00232, 659
0

1 Solved for timestep 1848, t = 0.3515 in 4.9 s

Listing 2: An example of output during the FSI simulations written to 
a log file.

2.2.3. Post-processing
The post-processing part of VaSP is divided into three subcategories 

with the tree structure shown in Listing 3.
1 src/
2 vasp/
3 postprocessing/
4 postprocessing_mesh/...
5 postprocessing_fenics/...
6 postprocessing_h5py/...

Listing 3: Directory tree strucutre of post-processing part of VaSP.

The first category addresses the mesh. Since turtleFSI is a mono-
lithic solver, all variables (displacement, velocity, and pressure) are 
defined and saved across the entire domain during simulations. How-
ever, it is preferable to separate variables by domain so that fluid- 
and solid-related post-processing can be performed independently and 
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Fig. 3. Diagnostic plots generated based on a log file using vasp-log-plotter. A the convergence of Newton iterations where the tolerance was set as 10−6.
B flow rate at the inlet over the cardiac cycle. C mean, minimum, and maximum Courant number over the entire domain. D CPU time spent per time-step.
Fig. 4. An example of post-processing the mesh by refining the original mesh first and then separating fluid (blue) and solid (red) domains.
 

simultaneously, thereby enhancing efficiency. As a prior step for sepa-
rating variables, users need to obtain fluid- and solid-only meshes using 
the vasp-separate-mesh command. Moreover, turtleFSI includes a 
feature that maps solutions from higher- to lower-order elements on a 
refined mesh. This ensures that all the degrees of freedom are saved 
for post-processing. While not strictly required, to take full advantage 
of higher-order solutions, it is recommended to generate a refined 
mesh for the rest of post-processing using the vasp-refine-mesh 
command. Fig.  4 illustrates the procedure of refining and separating 
the mesh and Listing 4 shows the list of mesh files generated.
1 Mesh/
2 mesh.h5
3 mesh_fluid.h5
4 mesh_solid.h5
5 mesh_refined.h5
6 mesh_refined_fluid.h5
7 mesh_refined_solid.h5

Listing 4: Mesh files generated as a result of refining and separating 
original mesh.

The second component of post-processing is to compute hemody-
namic indices (e.g., wall shear stress and oscillatory shear index) and 
wall strain/stress (e.g., Green–Lagrange strain and Cauchy stress) using 
FEniCS. By default, fluid velocity and solid displacement are automati-
cally separated during post-processing. However, if needed, this separa-
tion can be performed using the vasp-create-hdf5 command. This 
5 
process involves reading the original simulation results obtained with 
the entire mesh and then extracting fluid and solid components using 
segregated meshes. Then, VaSP uses fluid velocity and solid displace-
ment combined with a fluid- and solid-only mesh to compute hemody-
namic indices (vasp-compute-hemo) and wall strain/stress (vasp-
compute-stress), respectively, as illustrated in Fig.  5. Mathemati-
cal definitions of computed hemodynamic and solid-mechanical indices 
are available in the VaMPy documentation [31] and Appendix C, 
respectively.

The third component of post-processing is to perform signal process-
ing tasks, including computing power spectral density (vasp-create 
-spectrum), generating spectrograms (vasp-create -spectro
 grams-chromagrams), and applying low/high-pass filtering to re-
sults (vasp-create-hi-pass-viz). This post-processing compo-
nent originated from recent CFD and FSI studies reporting flow in-
stabilities and high-frequency wall vibrations in various vascular sys-
tems [26,32]. VaSP uses a periodogram for estimating power spectral 
density, short-time Fourier Transform for generating spectrograms [33],
and Butterworth filters for low-pass, high-pass, bandpass, and bandstop, 
all implemented using scipy.signal [34]. Additionally, VaSP can 
compute the spectral bandness index and generate chromagrams [35].

3. Illustrative examples

This section presents three examples to demonstrate the key capa-
bilities of VaSP using vascular problems, provided as Python scripts 
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Fig. 5. An example of separating solid displacement and fluid velocity and post-processing independently for domain specific metrics.
under the simulations folder and as a tutorial in the online VaSP 
documentation along with corresponding commands [36]. The first 
example, offset stenosis, is a computationally efficient problem, al-
lowing novice users to experiment with VaSP on a standard laptop. 
Here, we focus on one of the unique features of VaSP, i.e. the signal 
processing component of the post-processing as the fluid and solid 
exhibit flow instabilities and high-frequency wall vibrations, respec-
tively. The second example, a patient-specific cerebral aneurysm model, 
previously used in several publications [26,37,38], is presented to 
demonstrate hemodynamic and solid mechanics analyses that are typi-
cally of physiological interest. The third example, arteriovenous fistula 
(AVF), highlights advanced meshing features like multi-solid domains 
and variable wall thickness, showcasing VaSP’s capability to represent 
heterogeneous physiological systems.

3.1. Offset stenosis

This offset stenosis model is a synthetic geometry that can be 
analytically described and has long been studied in the fluid mechanics 
community [39,40]. The area reduction with an offset in the stenotic 
region causes three dimensional flows that transition to turbulence at 
a low Reynolds number.

As shown in Fig.  6A, the flow inside the stenosis is character-
ized by the unstable post-stenotic jet. The spectrogram (Fig.  6B) of 
fluid velocity reflects unstable flow as a continuous and broad fre-
quency band. In contrast, pressure and displacement spectrograms ex-
hibit narrow-frequency bands, indicating the wall vibration. As shown 
in Fig.  6C, the vibration motion can be band-pass filtered to extract di-
rectional motions associated with modal frequencies. In this case, mode 
1 (70–90 Hz) and 2 (150–170 Hz) correspond to contraction/expansion 
and side-to-side motions, consistent with previous studies [37,38].

3.2. Cerebral aneurysm

A cerebral aneurysm is a pathological dilation of an artery in the 
brain. It has been extensively studied using CFD [32,41,42] and FSI [4,
6,43] simulations. Given the research interest in cerebral aneurysms 
from both computational and physiological perspectives, it serves as 
an excellent example to showcase the functionalities of VaSP.  Fig. 
7 displays fluid velocity, solid displacement, hemodynamic and solid-
mechanical indices, and high-pass filtered displacement/strain.
6 
3.3. Arteriovenous fistula

An AVF, shown in Fig.  8A, is a surgically-created vascular con-
nection between an artery and a vein. To independently assign phys-
iologically plausible wall stiffness and thickness to each vessel, it is 
necessary to construct a mesh with unique domain markers. VaSP lever-
ages the ‘‘branch splitting’’ functionality in VMTK, which objectively 
splits branches with individual markers, as shown in Fig.  8B. VaSP 
uses the split centerlines to assign different solid domain markers. 
Additionally, VaSP can generate a mesh with different wall thicknesses 
for each branch. As shown in Fig.  8C, variable wall thickness can 
be interactively defined with spheres. Specifically, users need to pro-
vide minimum and maximum thickness, and VaSP assigns local wall 
thickness to all surface points based on the Euclidean distance from 
the spheres. Fig.  8D is a volumetric mesh, where the blue and red 
domains represent the artery of 0.3 mm and 0.15 mm wall thickness, 
respectively, as highlighted in Fig.  8E.

4. Impact

Setting aside the strength of VaSP as a flexible, transparent, and 
compact software, it is, to the author’s knowledge, the first cardio-
vascular software designed to analyze flow instabilities and associated 
high-frequency wall vibrations. The first work that formed the basis 
of VaSP was by Souche et al. [26], who reported cerebral aneurysm 
wall vibration using patient-specific geometry. In contrast to previous 
FSI studies of cerebral aneurysms that simulated blood flow as laminar 
and focused on low-frequency pulsatile deformation, and time-averaged 
quantities [4,6], Souche et al. employed high-fidelity FSI simulations, 
revealing transitional flows and non-linear, two-way coupling between 
fluid pressure and solid displacement. Later, Bruneau et al. [37] de-
veloped a methodology for computing vibration amplitude, extracting 
mode shapes, and provided a mechanistic explanation for aneurysm 
wall vibrations. Furthermore, Bruneau et al. [38] incorporated pulsatile 
inflow, improving the physiological realism of the FSI simulations, 
and offered a plausible explanation for clinically reported aneurysm 
sounds [44,45]. Wall vibrations could also be relevant in other vascular 
diseases, such as AVF. Bozzetto et al. [46] were the first to demonstrate 
flow-induced wall vibrations in AVF, whereas a recent study by Soliveri 
et al. [27] introduced a more advanced model by assigning different 
wall stiffnesses to the artery and vein and incorporating perivascu-
lar tissues. Similarly, in contrast to previous work on AVF [47,48], 
Bozzetto et al. and Soliveri et al. were the first to consider transitional 
flow and flow-induced vibrations. These studies suggested that the 
latter could indeed cause degenerative changes in the vascular wall. To 
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Fig. 6. Depictions of flow instability and high-frequency wall vibrations in an offset stenosis. A displays a volumetric rendering of instantaneous velocity 
magnitude, with probe points and corresponding velocity plots. B shows spectrograms of fluid velocity, pressure, and wall displacement, illustrating the evolution 
of frequency over time. C visualizes the first two mode shapes (70–90 Hz and 150–170 Hz), with displacement vectors amplified to show the specific patterns of 
vibration.
Fig. 7. Examples of post-processed hemodynamic and solid-mechanical indices, as well as high-pass filtered displacement and strain.
provide a unified platform for investigating potential flow-induced wall 
vibrations in the cardiovascular system, all the components developed 
and presented in those studies have been incorporated into VaSP.

5. Conclusions

VaSP is an open-source, flexible, and intuitive Python package that 
streamlines all the complex processes of performing vascular FSI sim-
ulations. The meshing pipeline is automated, reducing the variability 
across users and ensuring the reproducibility of simulation results. A 
7 
verified and validated monolithic FSI solver with high-performance 
computing capabilities is integrated to perform vascular FSI simula-
tions, where several problem files are provided as a template. More-
over, a diagnostic tool is added to support simulations. A wide range of 
post-processing functionalities is also provided for hemodynamic anal-
ysis and characterizing flow instabilities and high-frequency vascular 
wall vibrations. VaSP originated from research activities with several 
journal publications, and new features are continuously added to the 
pipeline as a result of active use. In conclusion, VaSP is a valuable 
resource that can produce publication-standard results by students and 
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Fig. 8. Advanced meshing functionalities exemplified with an arteriovenous fistula model. A is an input surface mesh, B is a centerline with different marker for 
artery and vein, C demonstrates an interactive way of specifying variable wall thickness using spheres in red, D shows a volumetric mesh with unique domain 
marker for artery (blue) and vein (red) based on branch splitting, and E shows clipped a solid mesh, showing arterial and venous wall thickness of 0.3 mm and 
0.15 mm, respectively.
researchers with diverse backgrounds, and has a novel capability to 
investigate high-frequency flow-induced vascular wall vibrations.
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