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ABSTRACT As urban traffic becomes increasingly complex with the integration of connected and
autonomous vehicles alongside human-driven vehicles, there is a critical need for adaptive traffic
management systems capable of self-healing in response to disruptions. This paper introduces TS2RLA
(“Traffic System Recovery using Reinforcement Learning and Attention”), a novel framework for self-
healing in mixed-autonomy traffic systems by combining deep reinforcement learning with an attention
mechanism to optimize traffic flow and recover from faults in various scenarios in a mixed-autonomy
traffic environment. We evaluated TS2RLA in four complex traffic scenarios: bottleneck, figure-eight,
grid, and merge. Our results demonstrate significant improvements over the baseline model, showing
an average of 86.74% reduction in crashes, 71% improvement in speed and traffic throughput, and
robust performance under diverse and complex traffic conditions. Moreover, our experiments show that
TS2RLA leads to a significant reduction in CO2 emissions and fuel consumption. TS2RLA’s attention-
based approach shows particular benefits in bottleneck and figure-eight scenarios, demonstrating its ability
to adapt to complex, multi-factor traffic situations. For scenarios that TS2RLA had not been trained on
before, it performs even more favorably than the baseline, with a 96.8% crash reduction and 95.3%
throughput improvement. This shows its ability to adapt effectively to new traffic conditions. Overall,
we conclude that TS2RLA could significantly improve the safety, efficiency, and capacity of real-world
traffic systems, particularly in dynamic urban environments. As such, our work contributes to the field
of intelligent transportation systems by offering a versatile self-healing framework capable of managing
the complexities of mixed-autonomy traffic.

INDEX TERMS Traffic system, mixed-autonomy, reinforcement learning, attention network, recovery,
self-healing.

I. INTRODUCTION

ELF-ADAPTIVE systems (SASs) are dynamic systems
S that respond to environmental demands. The primary
goal of SASs is to improve system performance, reliability,
and resilience in the face of changing conditions [1]. Due
to their dynamic nature and efficiency in adapting to work
in uncertain scenarios, the self-adaptive system has gained
importance in modern software engineering, particularly
in complex systems. Such systems include autonomous

The review of this article was arranged by Associate Editor Johannes
Betz.

systems, smart grids, LTE communication networks, traf-
fic systems, Internet of Things (IoT)-based systems, and
the like [2], [3], [4]. The term SASs is a combination
of self-protection, self-healing, self-optimization, and self-
configuration [5] where each property has its importance.
Self-healing is a key application of self-adaptive systems,
which indicates that a system can monitor and correct
faults. Self-healing techniques vary, with some using data-
driven approaches and others using model-based methods.
Data-driven approaches utilize historical and real-time data
to detect faults and provide appropriate recovery actions.
In contrast, model-based techniques rely on predefined
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system models, including components, interactions, and
expected behaviors [6], [7], [8]. To achieve self-healing,
many methods have been utilized [9], [10], [11], including
artificial immune systems [12], constraint-based program-
ming [13], conventional machine learning [14], [15], and
neural networks [16], with recent studies exploring deep
reinforcement learning [17], [18] to achieve self-healing
capacity in a software system, but there is still much
more to address to make a fully autonomous general
self-healing framework that applies to a wide range of self-
adaptive systems [19]. Today, traffic systems are facing a
“mixed-autonomy” scenario, where both autonomous and
non-autonomous vehicles share the road. In recent years,
much work has been focused on managing traffic flow and
signals [20], [21], [22], but recovery of mixed-autonomy
scenarios has not been discussed to our knowledge. Recovery
of these systems is crucial due to their complex and dynamic
nature. This mixed environment significantly increases the
complexity of traffic management due to factors such as
diverse vehicle behaviors, complexity of interaction, and
safety considerations. In addition, not much work has been
done on handling large action sequences to manage these
complex systems.

To address these challenges, we study the traffic system
in the context of self-healing and propose a novel self-
healing framework called TS2RLA ( “Traffic System Recovery
using Reinforcement Learning and Attention” ) to recover the
system when faults occur. Our framework uses an attention-
based reinforcement learning (RL) policy to restore traffic
systems to their normal state. The subject system for the
proposed framework is a mixed-autonomy traffic system,
consisting of connected autonomous vehicles (CAVs) and
human-driven vehicles. We designed this framework to handle
large sequences of high-dimensional data from multiple traffic
scenarios. To empirically evaluate our framework for real-
world application, we apply it to four specific scenarios
commonly encountered in traffic systems: Bottleneck, Merge,
FigureEight, and Grid. These scenarios were carefully selected
to represent a wide range of typical traffic challenges in urban
and highway environments. We use RL as a continuous learning
approach that observes the subject system but only activates
when a fault is detected and recovery is needed. Additionally,
we integrate attention mechanisms with RL to handle the large
sequence of inputs and variable dimensions across different
scenarios. This attention mechanism improves the recovery
framework by focusing on the relevant parts of the subject
system. RL with an attention layer can lead to more efficientand
effective self-healing, especially for our wide range of traffic
scenarios. Our attention-based RL policy reduces unnecessary
computation and improves overall efficiency by focusing only
on relevant information. Our framework is optimized and
flexible because it only activates after fault detection.

The main contributions of this paper are:

1) Introducing a way to study traffic systems from a
self-healing perspective, providing insights into how
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a traffic system can autonomously detect, respond to,
and recover from disruptions in a mixed-autonomy
environment while simultaneously optimizing traffic
flow.

2) A novel recovery approach, TS2RLA, for mixed-
autonomy traffic environments using reinforcement
learning (RL) and an attention network. RL detects and
recovers from faults, while the attention mechanism
handles large observation sequences.

3) We empirically evaluate our work in four scenarios
(FigureEight, merge, bottleneck, and grid) and show
significant results compared to a baseline (RL-based
recovery policy without the attention mechanism).

4) We provide a replication package with code and data
for our study, to enable replication and verification of
our results, and allow others to build on our work [23].

The paper is structured as follows. Section II provides
a brief background. Section III explains the proposed
approach, followed by an empirical evaluation in Section I'V.
Section V discusses the results and main findings. We then
present a brief section on threats to validity in Section VI.
Section VII reviews related work. The paper concludes in
Section VIII with a summary of our contributions and future
research directions.

Il. BACKGROUND

A. SELF-HEALING SYSTEMS

Self-healing is one of the most important characteristics of
SASs. It ensures that SASs can recover from faulty or abnor-
mal states. In the last decade, extensive research has focused
on integrating self-healing in various fields including the
IoT, cyber-physical systems, energy management systems,
communication, robotics, and many more [24], [25], [26],
[27], [28].

Although self-healing has been utilized in many areas,
less work has been done to integrate it into traffic systems.
Some work on self-organization, which is close to our work,
has been done [29]. In this paper, the authors manipulate
traffic lights based on road capacity. However, this work
focuses on organizing the traffic flow rather than recovering
or self-healing the entire traffic system.

B. REINFORCEMENT LEARNING

Reinforcement Learning is usually formulated as a Markov
Decision Process (MDP), a framework that enables agents
to learn optimal behaviors in a given environment.
The core objective is to maximize cumulative rewards
through environmental interactions. An MDP is defined
by M(S,A, P,R,y), where S is the state space, A is the
action space (discrete or continuous), R : S x A — R is
the reward function, y is the discount factor for future
rewards, and P : § x A — S is the transition probability.
The Markov property, a key aspect of this framework,
dictates that decisions are based solely on the current state,
eliminating the need for historical data. This property is
crucial for RL control decisions, facilitating efficient and
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focused learning. The MDP framework provides a structured
approach to problem solving in RL, allowing agents to
navigate complex environments and make decisions based on
immediate states and potential future rewards. In our work,
we chose a Deep Reinforcement Learning (DRL) algorithm
to train CAVs in the simulated environment. DRL has
significantly advanced the field of RL in recent years. DRL
leverages deep neural networks to solve the MDP model
by learning the weight parameters 6 through environmental
exploration. These models incorporate a policy m, which
determines actions based on states mw(als), and a value
function v, s that estimates maximum rewards for the current
policy s € S. Unlike traditional RL, which struggles with
high-dimensional state spaces, DRL employs deep neural
networks to approximate functions over extensive input
and action state spaces, enabling the solution of complex
problems. The policy and value functions in DRL are learned
through these deep net models to predict future actions.

Next, we present a concise overview of the DRL model
used for training and validating CAVs in simulated mix
autonomy traffic system scenarios. We selected the model
based on two criteria: its popularity within the DRL-based
Autonomous Driving (AD) research community and its
ability to handle both discrete and continuous action spaces,
enabling multi-agent testing.

Proximal Policy Optimization (PPO): is a DRL algo-
rithm that extends policy gradient (PG) methods [30].
While vanilla PG suffers from high gradient variance, PPO
addresses this issue by introducing constraints such as a
clipped surrogate objective and a penalty coefficient called
KL. These improvements have made PPO a popular choice
in the field of DRL in recent years. Also, recent studies
have shown that PPO has demonstrated more promising
results in the field of traffic signal control, navigation of
autonomous vehicle and traffic management as compared to
other algorithm [31], [32], [33].

C. ATTENTION NETWORK

Attention mechanisms have changed the traditional way of
deep learning. By helping the model focus on important
parts of the input sequences, it greatly improves how neural
networks handle sequential data [34]. The core concept is
represented as A(Q, K, V), where Q, K, and V denote
queries, keys, and values. The fundamental attention function

is expressed as follows.
KT
¢ >V )

Vi

Here, dj. is how large the keys are and helps prevent very
small numbers from occurring in softmax operation.

Self-attention is really important in modern systems. It
enables a sequence to analyze its own internal relationships,
allowing different elements within the sequence to interact
and inform each other. For an input sequence X, the model
learns three different ways to change it, making the Q, K,

Attention(Q, K, V) = softmax(
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and V matrices: Q = XWp K = XWg V = XWy where Wp,
Wk, and Wy are matrices that the model learns.

Positional encoding, denoted as PE(pos, 2i), is crucial
in attention mechanisms, incorporating essential sequential
order information that the attention operation inherently
lacks. By embedding positional data into input repre-
sentations, models can better understand the context and
relationships between elements. In practice, attention mech-
anisms offer significant advantages over traditional sequence
processing methods. They enable parallel computation,
improving efficiency by simultaneously processing multiple
sequence elements. Unlike recurrent architectures, attention
can directly model relationships between distant elements,
capturing long-range dependencies without sequential pro-
cessing limitations. The attention weights provide valuable
insights into the model’s decision-making process, enhancing
interpretability. In addition, attention mechanisms are highly
flexible and adaptable to various types of input data and
tasks, making them versatile tools in machine learning and Al
applications. These characteristics have led to the widespread
adoption and success of attention mechanisms in diverse
deep learning domains. Researchers have come up with new
versions of the basic attention mechanism. These include
mixes of local and global attention [35], cross-attention for
systems with separate encoding and decoding parts [36], and
new ways to encode positions [37]. These mechanisms are
now key parts of many different systems, from those that
work with language to those that work with images. They
are really good at understanding complex relationships in
input data.

lll. PROPOSED APPROACH

In this section, we will explain the proposed framework
TS2RLA for the self-healing of the traffic system and
its operational flow. The framework consists of two main
components: Environment, which includes the scenario of
the traffic system and information on fault interference, and
Agent, which includes a recovery framework and action
plans for self-healing, as shown in Figure 1. The operational
flow will detail the procedural steps and algorithms for
initializing the environment, deploying agents, executing
traffic scenarios, and analyzing results. This comprehensive
approach aims to systematically recover mixed-autonomy
traffic systems once the fault has been detected.

A. ENVIRONMENT

The environment consists of two block Mixed-autonomy
Traffic System where we have shown the traffic scenarios
and Fault Interference where the fault is detected as shown
in Figure 1.

1) MIXED-AUTONOMY TRAFFIC SYSTEM

The Mixed-autonomy Traffic System closely mirrors real-
life situations where CAVs and human-driven cars coexist.
This system is designed to study the interaction between
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FIGURE 1. Proposed Framework for the Recovery of Traffic System. The agent on the left uses RL and attention network to recover the environment on the right side when one

of the four driving scenarios faces a failure state.

RL-driven vehicles and those controlled by human drivers
within the same traffic environment. In our proposed
approach, we use Flow [38] to simulate the environment. Our
approach includes four distinct scenarios in the environment.
They are constructed to provide comprehensive information
on the dynamics of mixed-autonomy traffic. These scenarios,
as shown in Figure 1 in the block of “Driving Scenarios”,
are based on previously established benchmarks for the
Mixed-autonomy Traffic System [39]. Each scenario is
crafted to highlight the theoretical and practical factors
such as the interaction between RL algorithms and human
decision-making, the efficiency of traffic flow, and the safety
measures required to prevent collisions while maintaining
manageable computational demands. By incorporating these
scenarios, our approach aims to create a robust framework
to evaluate the performance and effectiveness of RL-driven
vehicles in real-world traffic conditions.

The four driving scenarios used while proposing our
approach are shown in Figure 2.

1) Bottleneck: This scenario in our model is based on the
Oakland-San Francisco Bay Bridge, where 16 non-high
occupancy vehicle (HOV) lanes are reduced to eight
and then to five. In our simulation environment, lanes
decrease from 4N to 2N to N, N being a scaling factor.
This setup illustrates the capacity drop phenomenon,
where vehicle throughput decreases significantly once
inflow exceeds a critical threshold. This effect leads
to inefficiency in highway traffic.

2) Merge: This network shows how disturbances from
vehicles merging onto a highway cause stop-and-go
waves, reducing vehicle throughput, known as con-
vective instability. In mixed-autonomy settings, some
highway vehicles use local information to mitigate
these waves. The open network allows the number of
connected and autonomous vehicles (CAVs) to vary at
any time.
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FIGURE 2. Driving Scenarios used for implementing TS2RLA framework.

3) FigureEight: This network simulates an intersection.
In this setup with 14 vehicles, queues form as vehicles
converge at the intersection and slow down to follow
the right-of-way rules, leading to a significant decrease
in average speed. In a mixed-autonomy scenario, some
vehicles are designated as CAVs to manage the flow
through the intersection and improve the overall speed
of traffic.

4) Grid: This scenario represents a city with a grid-like
structure, such as Manhattan. This problem aims to
address issues in traffic light coordination. The goal
is to create new traffic light control schemes that
minimize the average delay per vehicle and promote
fairness. Vehicles enter at the corners of the grid and
travel straight. Each intersection has a traffic light that
transitions from green to yellow for two seconds before
switching to red, ensuring safety.
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2) FAULT INTERFERENCE

This block is to detect interference in the traffic system. As
soon as the interference has been detected, the information
is sent to the Agent to take the appropriate action. For this
proposed approach, we focus on three types of interference,
that is, crash, vehicle speed, and performance. More details
of each interference are provided in Section III-C.2.

B. AGENT

As illustrated in Figure 1, this block comprises two main
components, which are the recovery agent framework of
TS2RLA and the recovery actions.

1) RECOVERY AGENT IN TS2RLA FRAMEWORK

Our TS2RLA framework in creating a self-healing system for
mixed-autonomy traffic systems consists of an agent based
on RL. The different components of the recovery agent are
shown in Figure 3.

The TS2RLA framework consists of four main building
blocks for a successful recovery policy in our TS2RLA
framework: (1) DRL policy with attention mechanism,
(2) input features from driving scenarios, (3) actions for
recovery based on the driving scenario, and (4) the reward
functions designed for each mixed-autonomy driving system.

1) DRL policy with attention mechanism: A novel con-
tribution in this paper is to propose a DRL policy
that also involves attention layers. The policy TS2RLA
learns to restore the driving system to its normal state
by taking control of the CAV agents, as well as the
traffic light systems. Our RL agents use PPO as a
policy gradient method to learn a recovery policy
by encountering a simulated environment in each
training episode. The PPO helps perform on-policy
learning within simulation instead of a dataset (replay
buffer) type of learning. It also helps to focus on
policy updates with stability while learning a change
in data distributions, as well as to address a large
hyperparameter initializing space. The summary of the
DRL architecture, including the input, hidden, and
output layers, is shown in Figure 3. The input state
S C R of our DRL algorithm receives a full observation
of the state of the driving scenario where a fault has
occurred. The input can contain information ranging
from the position of the cars to their velocities, and
other information discussed in Section III-B.2. Such
input data is passed through multiple layers as shown
in Algorithm 1 before reaching the output layer for
control commands. In the output layer, we have a
discrete action space, which the recovery agent uses
to make recovery actions. All discrete actions are
explained in further detail in 3 on page 1205.

2) Input State Space: As mentioned in 1, the TS2RLA
policy handles high-dimensional state input ranging
from 141 to 915 dimensions, depending on the
scenario. The attention mechanism helps focus on
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Algorithm 1 Process Input With Attention for TS2RLA

Input: State state_input from traffic scenario
hidden < DenseLayer(state_input)

memory < StoreAndRetrieveMemory(hidden)
Attention Mechanism Processing
query < hidden - Wg

key < memory - Wg

value <— memory - Wy

query<keyT

attention_weights <— softmax(scores)

context <— attention_weights - value

Skip Connection and Normalization
context <— LayerNorm(context + hidden)
Feed-Forward Processing

output < FeedForward(context)

output < LayerNorm(output + context)
return processed state output

SCOres <—

the most relevant aspects of the traffic state during
recovery, enabling efficient processing of sequential
traffic data while capturing dependencies.

a) Bottleneck: This scenario involves calculating the
average positions x; and velocities v, of human
drivers in each lane for every edge segment, as
well as the average positions x. and velocities
ve of CAVs in each segment. It also includes
measuring the outflow of the system in vehicles
per hour over the last 5 seconds. The input
representation consist of approximately 141 to
281 dimension states.

b) Merge: The input state received while handling
a merge driving scenario includes the speeds and
bumper-to-bumper gaps of vehicles both in front
of and behind the CAVs, as well as the speed of
the CAVs themselves, denoted as

[S = (Vi_leaa's Vi_lag» hi_lags Vi) € RnRL:I (2)

where V; jeqq 18 the speed of the leading vehicle,
Vi_lag 18 the speed of the lagging vehicle, A; ;4 is
bumper-to-bumper gap with the lagging vehicle,
v; is the speed of the CAV, and nRL is the total
number of CAVs. The input representation consist
of approximately 25 to 85 dimension states.

c) FigureEight: The state is represented by a vector
that contains the velocities v; and positions x; of
each vehicle in the network, arranged according
to their positions. This vector is denoted as

[s = 01 xSy e R¥] 3)

where k is the number of vehicles. The positions
are defined relative to a predetermined starting
point in each setting of a scenario. The input
representation consist of approximately 339 to
915 dimension states.

d) Grid: The input state when dealing with a grid
scenario is represented by a vector that includes
the velocities v; and positions x; of each vehicle in
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FIGURE 3. TS2RLA‘s Recovery Policy Architecture.

the network, arranged in order of their positions.
This vector is denoted as

[s = (v;, )c,-)f.(:_o1 € RZk] “4)

where k indicates the number of vehicles. The
positions are defined relative to a predetermined
starting point. The input representation consist of
approximately 339 to 915 dimension states.

3) Recovery actions: Similarly to the input state space,

the output recovery actions for the faults defined in
Section III-C.2 are dependent on the type of scenario
and the variables our recovery policy has control over.
The actions performed by our agent in each scenario
are considered recovery to restore the mixed-autonomy
driving system to normal.

a) Bottleneck: The action space is described as shifts
in the maximum speed of CAVs: for a given edge
segment and a given lane, the RL action shifts
the maximum speed of all CAVs in the segment
from their current value. We can infer that it is
likely to be of the form:

[a € Rm] )

where m is the total number of combinations
of edge segments and lanes. Each action value
represents a change in the maximum speed of the
CAV in that specific edge segment and lane.
b) Merge: The action space is defined similarly to
FigureEight:
laeri ] (©6)

[amin, amax]

where ng;, is a constant term to handle variable
numbers of CAVs. If ncay > ngp, additional
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CAVs are treated as human-driven vehicles. If
ncay < nRr, the extra actions are ignored.
c) FigureEight: The action space is defined as:

[(1 € IR’[‘ldmin»amax]] (7)

where n is the number of CAVSs, a,,i, and djuax
are the minimum and maximum accelerations,
respectively.

d) Grid: The action space is defined as:

[a=[-1,1] n] (8)

where n is the number of traffic lights. If a; > 0
for the traffic light 7, it switches; otherwise, no
action is taken.

4) The reward functions in TS2RLA are carefully utilized

to encourage effective recovery behaviors in each sce-
nario. By rewarding actions that restore normal traffic
flow and penalizing those that prolong disruptions,
these functions guide the learning of a robust recovery
policy.

The details of the associated reward functions are as
follows.

a) Bottleneck: The objective is to maximize the
total outflow of vehicles from the system by
effectively managing traffic flow in the bottleneck
area, especially in need of recovery. The reward
function for the bottleneck scenario is:

- Z;:t—s Texir ()
" 5AL - Rygpes - 500
where 7., (i) is the number of vehicles that exited

the system at time step i, At is the simulation time
step, and nygpes is the number of lanes. The reward

€))
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function calculates the outflow over the last
5 seconds, normalized by the number of lanes and
a scaling factor. This reward function promotes
recovery by maximizing outflow, encouraging
quick clearance of congestion, adapting to vary-
ing road capacities, and incentivizing actions
that rapidly restore normal traffic flow after
bottleneck-induced disruptions.

b) Merge: The merge scenario focuses on mitigating
the negative impact of disturbances caused by
vehicles merging from on-ramps. The reward
function for the merge scenario is an augmented
version of the FigureEight reward:

. <||Vdes Aill2 = 1Vaes — vIl2 )
r := max ,0
[Vdes - 1kll2

—a Y max[hya — hit), 0] (10)
ieCAV

where the additional term penalizes small head-
ways among the CAVs, hy,,,, is the maximum
desired headway, and h;(f) is the headway of
CAV i at time ¢. This enhanced reward supports
recovery by encouraging high speeds to quickly
clear merge-induced congestion and penalizing
small headways among CAVs, promoting safe
spacing during recovery. The reward function
balances speed and safety to efficiently restore
normal traffic flow after merge disruptions.

c) FigureEight: The reward function in this scenario
prioritizes high speeds while penalizing failure
states such as collisions. The reward function for
the FigureFight scenario is:

] <||Vdes'1k||*2_||Vdes_v||*2 )
7 = max ,0
[[Vaes - 1xll2
(1)

where vges is an arbitrarily large velocity used
to encourage high speeds, v is the vector of
velocities of all vehicles in the network, and
k is the number of vehicles. The max function
ensures that the reward is zero if collisions occur.
This function aids recovery by rewarding high
speeds and rapid movement to clear intersection
blockages. It also aids in penalizing low speeds
and collisions, promoting safe and efficient traffic
restoration.

d) Grid: The grid scenario reuses the reward func-
tion from Equation (11), originally presented
in the FigureEight scenario. The focus here
remains on achieving high speeds while avoiding
collisions. The grid scenario uses the same reward
function as in FigureEight:

] <||Vdes'1k||*2_||Vdes_v||*2 )
r = max ,0
[[Vaes - 1kll2

12)
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This function facilitates grid recovery by reward-
ing high speeds to quickly clear intersection
blockages and penalizing low speeds and colli-
sions, promoting efficient grid traffic restoration.

C. OPERATIONAL FLOW OF TS2RLA
The entire operational flow consists of these three steps:

1) DRIVING SIMULATION

In a normal mixed-autonomy driving system without a
recovery mechanism, simulations are typically run through
one of four predefined driving scenarios. At each time step,
both connected autonomous vehicles and human-operated
vehicles in the environment determine their next actions. This
process follows the MDP framework, where agents receive
updated state information after each action. The details are
discussed in Section IV-C.1. The scenario details are adopted
from [39], which discusses the significance and rationale of
each scenario and its specific parameters.

2) FAULT INTERFERENCE

We define fault interference as one of the following incidents
in the simulation:

1) Crash: When any driving agent collides with another
agent.

2) Vehicles Slower than a Threshold: A car driving slower
than a threshold in a given scenario disrupts traffic
flow.

3) Effect on Vehicle Throughput: One of the faults men-
tioned above affects the number of vehicles throughput.

The faults mentioned in 1 and 2 have an immediate effect,
while fault number 3 is observed over a longer time. In
all such cases, our recovery framework is put into action
by receiving the error states after a fault is detected and
afterward applying the recovery action.

3) RECOVERY FRAMEWORK

The steps performed by the recovery policy are shown in
Algorithm 2. After detecting fault interference, Algorithm 2
selects the most suitable recovery action from the available
options. These recovery actions were discussed earlier in
Section III-B point 3 on page 1205.

IV. EMPIRICAL EVALUATION

A. RESEARCH QUESTIONS

We evaluate TS2RLA using the following research questions
that aim to comprehensively evaluate the TS2RLA model
against baseline mixed-autonomy traffic systems:

1) How does TS2RLA compare to the baseline in overall
traffic management performance?
a) Does TS2RLA improve the safety and recovery
aspects of the traffic system?
b) How does TS2RLA perform in handling complex,
multi-factor traffic scenarios?
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Algorithm 2 TS2RLA With Learning and Recovery Phases
Phase 1: Policy Learning

Initialize policy network mrgorp.A With random weights
Initialize experience buffer £ = {}
for each training episode do
Observe initial state s
for each timestep ¢ do
Observe Fault Interference
if Detected then
Select recovery action a; using exploration strategy
Execute a; and observe next state s;4.1, reward r;
Store (s¢, at, 1y, Sp+1) in E
Update mTgorrA using samples from E
end i
end for
end for
Phase 2: Recovery Execution
Initialize trajectory set T = {}
for each episode do
Observe initial state s
for each timestep ¢ do
Observe Fault Interference
if Detected then
Select recovery action a; according to learned policy TToRLA
Execute a;
end if
end for
Append trajectory T to set T’
end for
return set of trajectories T

2) How well does TS2RLA generalize to unseen traffic
environments compared to the baseline?

3) What are the effects of TS2RLA on traffic systems as
compared to baseline?

a) How does TS2RLA impact traffic flow character-
istics compared to the baseline?

b) To what extent does TS2RLA improve traffic
management outcomes compared to the baseline,
particularly in terms of safety, traffic flow effi-
ciency, and system resilience?

c) How do TS2RLA and baseline compare in
terms of critical transportation sustainability
metrics, including fuel consumption, environmen-
tal impact, and equity in traffic flow distribution?

RQ1 and its subquestions examine overall performance
metrics, providing a broad comparison foundation.
RQ1.a specifically targets safety improvements and system
recovery capabilities, crucial aspects for real-world imple-
mentation. RQIL.b explores performance in complex
scenarios involving multiple variables, testing adaptability
and robustness. RQ2 investigates the model’s generaliz-
ability to environments that it was not trained on. RQ3
and its subquestions delve deeper into specific effects,
examining how attention-based mechanisms influence traffic
flow (RQ3.a), quantifying improvements in management
outcomes (RQ3.b), and assessing sustainability metrics
including fuel consumption, environmental impact, and
equity considerations (RQ3.c). Together, these questions
establish a methodical framework for validating TS2RLA ‘s
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effectiveness across critical dimensions of modern intelligent
mixed-autonomy traffic systems.

B. EVALUATION METRICS
To evaluate the proposed approach, we will use the following
metrics:
1) Inflow (IF): Number of vehicles that have entered the
system
2) outflow (OF): Number of vehicles that have left the
system
3) Throughput Efficiency (TE): Ratio of outflow to inflow
traffic
4) Throughput Improvement (TI): Quantifies the relative
increase or decrease in a system’s throughput (output
flow) compared to a reference system. It is calculated
as a percentage change between two systems’ through-
put values.

M % 100%

Tref

where T, is TS2RLA and Ty, is the Baseline

5) Average Speed (AS): Compute the average speed of
the vehicles

6) Average Return (AR): The training performance of the
TS2RLA policy

7) Time to recovery (TTR): Total time to recover the
system from the fault state

8) Number of successful recovery (NSR): the number of
times the system is recovered successfully from the
faulty state

9) Environmental Emissions and Fuel Consumption:
Estimate emissions and fuel consumption based on
traffic flow characteristics. Our model considers:

I = (13)

« Vehicle speed distributions
o Traffic flow patterns
o System efficiency metrics
10) Speed Distribution Equity: Measured using Coefficient
of Variation (CV), which quantifies the dispersion of
vehicle speeds relative to their mean

speed_std
V= ——— 14)

speed_Avg
11) Traffic Flow Distribution: Calculated using the
throughput ratios between the TS2RLA and baseline

scenarios

InflowTsorLA

Flow Equity = x 100% (15)

Inflowpaseline

C. TS2RLA EXPERIMENTAL SETUP

Before going into the details of the experimental setup, it
is necessary to understand the description of the scenarios
as described in Section III-A.1. As described before, there
are 4 main scenarios, namely Bottleneck, FigureEight, Grid,
and Merge. Each scenario has multiple variants. The details
of each scenario and its variant are described in Table 1.
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TABLE 1. Details of each traffic Scenario.

Scenario Description States Actions TimeSteps

4 lanes
Inflow = 2500 veh/h

Bottleneck_0 venout 141 20
10% CAV penetration

No Lane change

1000

4 lanes
Inflow = 2500 veh/hour

Bottleneck_1 . 141 20
10% CAV penetration

Human drivers can change lane

1000

8 lanes
Inflow = h,

Bottleneck_2 1O = 3000 veh/hour 281 40
10% CAV penetration

No Lane Change

1000

13 hi
FigureEight_0 umans 28 5 750
1 CAV

7 hume
FigureEight_1 & ans 65 13 750
7 CAV

. X 0 human
FigureEight_2 85 17 750
14 CAV

X 3x3 grid (9 traffic lights)
Grid_0 339 9 400
Inflow = 300 veh/hour/lane

5x5 grid (25 traffic lights)

Grid_1 915 25 400
Inflow = 300 veh/hour/lane

Merge_0 10% CAV penetration rate 25 5 750

Merge_1 25% CAV penetration rate 65 13 750

Merge_2 33.5% CAV penetration rate 85 17 750

The experimental setup consists of 3 steps:

1) TRAINING CAVS WITH HUMAN DRIVERS IN THE
TRAFFIC SYSTEM

We first train RL-based CAVs to drive along with human
drivers in all 4 driving scenarios and their variants. This
step is required before training any recovery system, and
it is not required that the CAVs are driven to be optimal.
We do so to observe more failures while using a functional
mixed-autonomy traffic system and evaluate our recovery
framework. To train the vanilla PPO, we are using 200
epochs for training, Adam value 0.00005, and gamma value
0.5. Human drivers are simulated using computer models
like the Intelligent Driver Model (IDM). These models
try to simulate real human driving behavior, including
changing lanes and speeding up or slowing down. They
aim to show realistic driving behaviors, such as keeping
a safe distance from other cars, following speed limits,
and reacting to traffic around them. This helps create a
more accurate picture of how human drivers behave on the
road.
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TABLE 2. Training parameters and configuration.

Model Parameters

gae (A) 0.9
Clipping (€) 0.3
Entropy Regularizer 0.01
num_sgd_iter 10

Training Configuration

Total Training Steps Timesteps X episodes (250)

Learning Rate Se-4
Batch Size 64
Optimizer Adam
Scenario Settings
Total Driving scenarios 4

Number of episodes per scenario setting 300

Number of steps per episode Timesteps (scenario-specific)

2) TRAINING RECOVERY FRAMEWORK BY TAKING OVER
EXISTING CAV CONTROLLERS AND TRAFFIC SYSTEMS

The second step in our experimental setup is to take over the
controls of CAVs trained in Step 1 and traffic lights (in the
grid scenario) to learn and perform recovery actions based
on failure states. In TS2RLA, we perform recovery actions
only when a failure occurs.

Baseline Recovery Method: A recovery framework such
as TS2RLA for mixed traffic systems has not been proposed
before, to the best of our knowledge. To highlight the
differences of an RL recovery policy with and without the
attention mechanism, we also train an RL-based policy as
a baseline to compare and evaluate the performance with
TS2RLA. This baseline applies the vanilla PPO algorithm
discussed in Section III-B.1 and uses the exact steps required
for recovery shown in Algorithm 2, but omits the attention
mechanism.

The hyperparameters for the training of TS2RLA and the
baseline policies are shown in Table 2.

3) PERFORM A TEST SIMULATION BY COMPARING WITH
BASELINE FRAMEWORK

Finally, we evaluate the recovery performance of the trained
policies (TS2RLA and baseline) in creating a self-healing
traffic system. We use the same four scenarios with their
variant settings shown in Table 1. To test the generalizability
and robustness of the trained policies, we apply Gaussian
noise to the acceleration data of both CAVs and human-
driven vehicles. The noise is generated using random
number generators that follow a normal distribution, with
the amount controlled by the standard deviation. In our
experiments, we maintain o = 0.01 for noise generation.
The hyperparameters for the test simulations to collect data
for analysis are shown in Table 3.
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TABLE 3. Testing parameters.

Hyperparameter Value

Total testing episodes for TS2RLA per scenario 50
Total testing episodes for Baseline per scenario 50

Total training steps timesteps X episodes

TABLE 4. Comparison of TS2RLA and baseline models across key metrics.

Metric TS2RLA (Avg) Baseline (Avg) Improvement (%)
Crashes 2157.55 16269.18 -86.74
AR 527.49 384.14 37.32
AS (km/h) 14.98 8.76 71.00
TE 0.4589 0.5184 -11.48
TTR 797.36 967.75 27.85

D. SIMULATION SETUP

For training CAVs as well as TS2RLA policy, we use the
RLIib Ray framework [40]. We conducted training, testing,
and validation of our approach using Flow [38], a traffic
system simulation. Flow enables the systematic creation of
various traffic-oriented RL tasks to generate control strategies
for CAVs, traffic lights, and more. These environments
are compatible with OpenAl Gym [41]. We developed our
proposed model architectures using TensorFlow [42] version
2.1.0, which is a component of the RLIib library.

For this work, we used a Linux system with 64GB RAM
and a consumer-grade GPU. Our training time analysis
shows that TS2RLA requires an average of 33 hours and
20 minutes of computation across all scenarios, while the
baseline approach completes in 27 hours and 50 minutes.
For simpler scenarios (Grid and FigureEight), TS2RLA takes
approximately 1 hour 40 minutes per scenario compared
to the baseline’s 1 hour 10 minutes. In complex scenarios
(Merge and Bottleneck), TS2RLA requires approximately
4 hours 10 minutes versus the baseline’s 3 hours 40 minutes.
This 20% increase in computational requirements reflects
the additional processing demands of TS2RLA‘s attention
mechanisms within its reinforcement learning architecture.

V. RESULTS ANALYSIS AND DISCUSSIONS
A. RQ1: HOW DOES TS2RLA COMPARE TO THE
BASELINE IN OVERALL TRAFFIC MANAGEMENT
PERFORMANCE?
To answer RQ1, we compare the TS2RLA model with the
baseline model on several key performance metrics. We
focus on crashes, average return (AR), average speed (AS),
throughput efficiency (TE), and time to recovery (TTR) as
indicators of overall traffic management performance, as
shown in Table 4.

The detailed analysis of each evaluation metric in Table 4
is discussed below:

o Crashes: The TS2RLA model significantly reduces the
number of crashes across all scenarios, with an average
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FIGURE 4. Comparison of the AR of TS2RLA with the baseline recovery.

of 2,157.55 crashes compared to 16,269.18 for the
baseline. This represents a reduction of 86.74% in
crashes, indicating a substantial improvement in safety.

o Average Return (AR): The TS2RLA model achieves a
higher AR (527.49) compared to the baseline (384.14),
representing an improvement of 37.32%. This suggests
that the TS2RLA model is more effective in optimizing
overall traffic flow and management objectives.

o Average Speed (AS): The TS2RLA model maintains a
higher AS of 14.98 km/h compared to 8.76 km/h for
the baseline, an improvement of 71%. This indicates
that the TS2RLA model allows for smoother traffic flow
and reduced congestion.

o Throughput Efficiency (TE): The TS2RLA model shows
a slightly lower average TE (0.4589) compared to
the baseline (0.5184), a decrease of 11.48%. This is
somewhat unexpected given the improvements in other
metrics and may warrant further investigation.

o Time to Recovery (TTR): The TS2RLA model generally
shows faster recovery times compared to the baseline
model, with improvements ranging from 7.45% to
72.65% in most scenarios. Only in the Merge_1 scenario
does the baseline model perform slightly better.

To visualize the performance difference between scenarios,
we show a bar graph displayed in Figure 4 comparing AR.
This graph visualizes the performance difference between the
TS2RLA model and the baseline in all scenarios, showing
that TS2RLA consistently outperforms the baseline in terms
of AR.

TS2RLA model demonstrates an overall better
performance in traffic management compared to the baseline
model, drastically reducing crashes and improving safety. It
achieves a higher AR, indicating better optimization of the
traffic management objectives. It also maintains higher AS,
suggesting improved traffic flow and reduced congestion.
However, it shows a slight decrease in TE, which may
require further investigation.

Performance improvements are consistent in various traffic
scenarios, as evidenced by the bar chart. The TS2RLA model
appears to be particularly effective in complex scenarios such
as bottleneck and merge, where the performance gap is more
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FIGURE 5. TS2RLA overall performance across the evaluation metrics.

pronounced. To visualize the overall performance, the radar
chart that compares key metrics is shown in Figure 5:

« Safety: To demonstrate the safety aspect of the system,
we have used a crash metric. The TS2RLA model
significantly outperforms the baseline, reducing crashes
by 86.74% on average (2,157.55 vs 16,269.18).

o Traffic Flow Optimization: The optimization of traf-
fic can be visualized by the AR of the system.
The TS2RLA achieves a 37.32% higher AR (527.49
vs 384.14), indicating better optimization of traffic
management objectives.

o Congestion Reduction: For that, AS has been used.
TS2RLA maintains 71% higher AS (14.98 km/h vs
8.76 km/h), suggesting smoother traffic flow and
reduced congestion.

o Traffic Handling Capacity: TS2RLA consistently man-
ages a higher IF (2906.76 vs. 1724.95 on average) and
achieves a higher OF (1304.49 vs 849.90 on average)
across all scenarios.

o TE: Although TS2RLA shows a slightly lower average
TE (0.4589 vs 0.5184, an 11.48% decrease), this is
in the context of handling significantly higher traffic
volumes and more challenging scenarios.

RQ1.A: DOES TS2RLA IMPROVE THE SAFETY AND
RECOVERY ASPECTS OF THE TRAFFIC SYSTEM?
To answer RQl.a, we first focus specifically on the safety
aspects of the traffic system, primarily looking at the crash
data and related metrics. We also cover the successful
recovery analysis for running a safer traffic system.

Safety — We have analyzed the crash data between
the models to see how the TS2RLA model compares to
the baseline in terms of safety, as shown in Figure 6. In the
following, we provide a more detailed analysis of the safety
improvements.

1) Overall Crash Reduction: The TS2RLA model signif-

icantly reduces crashes in all scenarios. On average,
TS2RLA reduces crashes by 86.74% compared to
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FIGURE 6. Crash Comparison: TS2RLA vs. Baseline. The error bars show the
standard deviation of crash counts. The percentages above each pair of columns
indicate the reduction in crashes compared to the baseline.

the baseline model. The absolute number of crashes
decreases from an average of 16,269.18 in baseline to
2,157.55 with TS2RLA.

2) Scenario-specific improvements: The most dramatic
improvements are seen in the Bottleneck and
FigureEight scenarios, with crash reductions often
exceeding 90%. Even in the scenarios with the smallest
improvements (Merge_0O and Grid_1), TS2RLA still
reduces crashes by more than 50%.

3) Consistency: TS2RLA consistently outperforms the
baseline regarding safety across all tested scenarios,
showing its robustness in various traffic conditions.

4) Safety in High-Traffic Conditions: Recalling our
previous throughput analysis, TS2RLA achieves
these safety improvements while handling signifi-
cantly higher traffic volumes. For instance, in the
Bottleneck_2 scenario, TS2RLA manages nearly dou-
ble the IF (4996.79 vs. 2996.79) while still reducing
crashes by 80.31%.

5) Relation to Other Metrics: The improved safety cor-
relates with higher AS (14.98 km/h vs 8.76 km/h),
suggesting that TS2RLA not only reduces crashes
but also maintains better traffic flow. This indicates
that safety improvements do not come at the cost of
efficiency or speed.

6) Potential Real-World Impact: The magnitude of crash
reduction (86.74% on average) suggests that imple-
menting TS2RLA could have a substantial impact on
real-world traffic safety. This level of improvement
could translate to significant reductions in injuries,
fatalities, and economic costs associated with traffic
accidents.
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TABLE 5. Comparison of the number of successful recoveries (NSR) between
TS2RLA and baseline, as well as the improvement percentage.

. TS2RLA  Baseline Improvement
Scenario
NSR NSR (%)

Bottleneck_0 1206 1100 9.64
Bottleneck_1 1147 951 20.61
Bottleneck_2 567 326 73.93
FigureEight 0 1658 1103 50.32
FigureEight_1 869 209 315.79
FigureEight_2 263 89 195.51
Grid_0 724 504 43.65
Grid_1 1115 999 11.61
Merge_0 304 205 48.29
Merge_1 207 207 0.00
Merge_2 184 54 240.74

In summary, the TS2RLA model demonstrates a clear and
substantial improvement in the safety aspects of the traffic
system compared to the baseline model. It achieves this
through:

e Drastic reduction in the number of crashes across all
scenarios (86.74% on average).

o Consistent safety improvements across various traffic
conditions and scenarios.

o Maintaining safety even while handling higher traffic
volumes.

o Achieving safety improvements without sacrificing
other important aspects of traffic management like speed
and flow.

Number of Successful Recoveries — We also compare the
number of successful recoveries (NSR) between the two
models in Table 5. This table shows that, compared to the
baseline, TS2RLA achieves a higher NSR in almost all
scenarios, indicating that the model is more effective at
resolving traffic issues and returning the system to a safe
state. The improvement ranges from 9.64% to 315.79%,
with only one scenario (Merge_1) showing no improvement.
These results indicate that the TS2RLA model significantly
enhances the safety and recovery of the traffic system.
The model’s ability to reduce crashes so dramatically while
simultaneously improving other traffic metrics suggests that
it could be a valuable tool for creating safer and more
efficient traffic systems in real-world applications.

RQ1.B: HOW DOES TS2RLA PERFORM IN
HANDLING COMPLEX, MULTI-FACTOR TRAFFIC
SCENARIOS?

To answer RQ1.b, we analyze how the TS2RLA model per-
forms across different complex, multi-factor traffic scenarios
compared to the baseline. We focus on all the scenarios;
each representing a different complex traffic situation with
multiple factors at play. Table 6 represents the key metrics
in these scenarios.
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1) Bottleneck Scenarios: TS2RLA significantly reduces
crashes (by 98.83%, 90.25%, and 80.31%, respec-
tively). It maintains higher AR and AS. It handles
much higher IF (66.67% higher for Bottleneck_0 and
Bottleneck_1, 66.67% higher for Bottleneck_2). The
throughput improvement (TI) is substantial (48.85%,
50.35%, and 50.07%, respectively). TE is slightly
lower, but this is offset by the higher volume of traffic
handled.

2) Merge Scenarios: Significant crash reductions
(54.10%, 95.71%, and 94.82%, respectively). Higher
AR across all merge scenarios. In particular, higher
speeds (26.42%, 58.45%, and 33.79% increase).
TS2RLA manages about double the IF in each
scenario, achieving consistent TI (57. 44%, 56. 98%
and 57. 34%, respectively).

3) FigureEight Scenarios: Crash reduction is dramatic
(90.43%, 96.00% and 71.68%, respectively). AR are
higher, especially in FigureEight_1 and FigureEight_2.
The speeds are significantly higher (58.46%, 227.17%,
and 166.09% increases). TS2RLA handles about
double the IF in each scenario and shows a remark-
able TI (58.65%, 63.29%, and 86.43%, respectively),
with FigureFight_2 showing the highest throughput
improvement among all scenarios.

4) Grid Scenarios: Crashes are reduced by 76.21% and
57.59%, respectively. There are slight improvements
in AR. Substantial increases in AS (129.03% and
178.72%). TS2RLA handles 39% and 50.76% higher
IF, respectively, with a significant TI of 50.31% and
53.30%.

Based on this analysis, we can say the following charac-
teristics of TS2RLA for each scenario:

o Adaptability: TS2RLA shows consistent improvements
in all types of scenarios, demonstrating its ability to
adapt to various complex traffic situations.

o Safety: As discussed in RQl.a, the crash reduction is
substantial in all scenarios, with the greatest improve-
ments in the Bottleneck and FigureEight scenarios.

« Efficiency: The AR is consistently higher, indicating
better overall traffic management. Speeds increase
significantly in all scenarios, with the most dramatic
improvements in FigureEight and Grid scenarios.

o Capacity: TS2RLA consistently handles higher IF, often
managing about double the traffic of the baseline model.
This is reflected in substantial TI ranging from 48.85%
to 86.43% across all scenarios.

« Scenario-specific performance:

1) Bottleneck: Excels in crash reduction and return
optimization, with consistent TI around 50%.

2) Merge: Balances improvements across all met-
rics, with notable reduction in crashes, increased
capacity, and consistent TI around 57%.
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TABLE 6. Comprehensive comparison of TS2RLA and baseline across the various traffic scenarios.

Scenario Model Crashes AR AS TE IF OF TI (%)
TS2RLA 504 1126.78 15.60 0.6085  2505.60 1524.67
Bottleneck_0 . 48.85
Baseline 42961 900.20 6.80  0.6804  1505.60 1024.32
TS2RLA 4387 1109.71 10.70  0.5960  2505.60 1493.28
Bottleneck_1 . 50.35
Baseline 45005 100.01 7.30  0.6596  1505.60 993.18
TS2RLA 10987 1104.93 850 0.5998  4996.79 2997.07
Bottleneck_2 . 50.07
Baseline 55807 801.26 549 0.6664  2996.79 1997.07
. . TS2RLA 473 362.75 10.30  0.1340  2019.00 270.50
FigureEight_0 . 58.65
Baseline 4944 360.70 6.50 0.1673  1019.00 170.50
. . TS2RLA 531 340.42 15.05 0.1276  2021.30 258.00
FigureEight_1 . 63.29
Baseline 13151 260.42 4.60 0.1547 1021.30 158.00
. . TS2RLA 192 370.83 15.30  0.0975 2212.15 215.70
FigureEight_2 . 86.43
Baseline 678 203.60 575 0.0954 1212.15 115.70
. TS2RLA 235 42.36 1420 0.3353  3564.00 1195.02
Grid_0 50.31
Baseline 988 40.24 6.20 0.3100 2564.00 795.02
. TS2RLA 1092 51.12 13.10  0.2905  5940.00 1725.66
Grid_1 . 50.30
Baseline 2575 49.50 4.70  0.2857  3940.00 1125.66
TS2RLA 4250 447.50 20.10 0.8172  2012.39 1644.48
Merge_0 . 57.44
Baseline 9259 358.50 1590 1.0317 1012.39 1044.48
TS2RLA 428 461.01 22.50 0.7862  2102.40 1652.98
Merge_1 . 56.98
Baseline 9970 412.01 14.20  0.9552 1102.40 1052.98
TS2RLA 654 386.02 19.40  0.6549  2095.20 1372.03
Merge_2 . 57.34
Baseline 12624 338.01 1450 0.7963  1095.20 872.03

3) FigureEight: Shows the highest speed improve-
ments and significant crash reduction, along with
the most impressive TI (up to 86.43%).

4) Grid: Demonstrates the largest speed improve-
ments, good crash reduction, and robust TI above
50%.

o Trade-offs: Although our analysis shows some TE
reductions in certain scenarios, these minor sacrifices
yield significant system-wide benefits. The dramatic
crash reduction (504 vs 42,961 in Bottleneck_0) demon-
strates TS2RLA‘s safety priority through strategic
vehicle spacing. Rather than maximizing raw through-
put, the system manages the flow to prevent downstream
congestion and maintain stability. TS2RLA balances
safety, speed, and stability instead of single-metric
optimization. This approach delivers comprehensive
improvements, handling higher traffic volumes while
improving safety, maintaining higher speeds, and
improving throughput in all test scenarios. The data
confirms that these strategic trade-offs create a more
robust and efficient traffic management system.

Take-away (RQ1): To summarize, the TS2RLA model
demonstrates strong performance in handling complex mul-
tifactor traffic scenarios. It consistently outperforms the
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baseline in different types of complex scenario. It shows
remarkable adaptability, improving key metrics in varied
traffic conditions. The model excels in improving safety,
increasing speed, and handling increased traffic volumes.
Although there are some trade-offs in throughput efficiency,
overall performance improvements in safety, speed, and
capacity make TS2RLA more suitable for complex real-
world traffic management. The model’s ability to maintain
performance improvements while handling significantly
higher traffic loads is particularly noteworthy, suggesting
that it could be valuable in high-density urban environments.
These results indicate that TS2RLA is well suited for
managing complex multifactor traffic scenarios, offering
substantial improvements over the baseline model in real
world-like conditions.

B. RQ2: HOW WELL DOES TS2RLA GENERALIZE TO
UNSEEN TRAFFIC ENVIRONMENTS COMPARED TO THE
BASELINE?

To evaluate the generalization capabilities of TS2RLA, we
tested it on four unseen environments that differ from
our training scenarios. These new environments represent
realistic variations that might occur in real-world traffic
systems.
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TABLE 7. Characteristics of unseen traffic environments.

Scenario Description States Actions TimeSteps
6 lanes
Inflow = 3500 veh/h

Bottleneck_unseen o ve . our 195 30 1000
15% CAV penetration
Mixed lane change behavior

. . 10 humans

FigureEight_unseen 42 8 750
4 CAVs
4x4 grid (16 traffic lights

Grid_unseen x4 grid (16 traffic lights) 16 400
Inflow = 350 veh/hour/lane

Merge_unseen 20% CAV penetration rate 45 9 750

1) UNSEEN ENVIRONMENT DESIGN

Table 7 describes the unseen environments used to evaluate
generalization capabilities. These unseen environments intro-
duce variations in lane configurations, inflow rates, CAV
penetration rates, and grid sizes that were not encountered
during training.

2) RESULTS AND ANALYSIS

Our evaluation demonstrates that TS2RLA maintains strong
performance advantages over the baseline model even in
previously unseen environments, as shown in Table 8.

To visualize the results, Figure 7 shows the significant
performance advantages of TS2RLA over the baseline model
in the four unseen environments. The main findings are:

o Safety Generalization: TS2RLA maintains its signif-
icant safety advantage even in unseen environments,
reducing crashes by 85.4% to 98.5% compared to the
baseline.

o Performance Stability: The model maintains consistent
performance across all metrics (AR, AS, TE) in
unfamiliar environments, proving its strong ability to
generalize.

o Complex Environment Adaptation: TS2RLA adapts par-
ticularly well to the unseen Bottleneck and FigureEight
scenarios, showcasing its ability to handle complex
traffic patterns not encountered during training.

o Throughput Improvement: The model achieves consis-
tent throughput improvements of 51.88% to 60.87%
across all unseen scenarios, similar to its performance
in the training environments.

3) ANALYSIS OF GENERALIZATION CAPABILITY

To evaluate TS2RLA’s generalization capabilities, we ana-
lyzed performance differences between seen and unseen
environments. Table 9 presents these results.

These results demonstrate that the attention mechanism in
TS2RLA significantly enhances its generalization capability.
By focusing on the most relevant information in the traffic
state, the model can effectively adapt to new traffic con-
ditions, maintaining robust performance even in previously
unseen scenarios.
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FIGURE 7. Performance improvements: The values above each bar show the
improvement of TS2RLA over the baseline in unseen environments.

4) ATTENTION MECHANISM’S ROLE IN GENERALIZATION

TS2RLA’s exceptional ability to generalize across different
traffic scenarios is powered by its sophisticated atten-
tion mechanism. This mechanism demonstrates four key
strengths: It dynamically focuses on crucial traffic state
elements regardless of scenario specifics, extracts features
that remain applicable across different conditions rather than
memorizing specific configurations, efficiently processes
complex state information while filtering out noise, and
dynamically adjusts its attention weights to adapt to new
traffic patterns in unfamiliar scenarios.

Table 10 summarizes the average improvements of
TS2RLA over the baseline model across all unseen environ-
ments.

Take-away (RQ2): In conclusion, TS2RLA shows robust
generalization to unseen traffic environments while main-
taining substantial advantages over the baseline model.
The attention mechanism is essential for this adaptability,
enabling the model to handle new traffic conditions without
performance degradation. These results establish TS2RLA
as a promising solution for real-world traffic management
systems, where conditions frequently differ from controlled
training environments.

C. RQ3 WHAT ARE THE EFFECTS OF TS2RLA ON
TRAFFIC SYSTEMS AS COMPARED TO BASELINE?
RQ3.A: HOW DOES TS2RLA IMPACT TRAFFIC
FLOW CHARACTERISTICS COMPARED TO THE
BASELINE?

To analyze how the attention-based model impacts the
characteristics of the traffic flow, we visualize them in
Figure 8.

o Speed: TS2RLA significantly increases AS across all
scenarios (39.55% to 153.88% improvement). The most
dramatic speed improvements are seen in FigureEight
and in the Grid scenarios.
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TABLE 8. Comprehensive comparison of TS2RLA and Baseline models across unseen environments.

Scenario Model Crashes AR AS TE IF OF TI (%)

TS2RLA 687 1115.32 12.80  0.6040  3505.40 2115.35

Bottleneck_unseen . 53.72
Baseline 47245 850.64 6.20 0.6720  2005.40 1375.35
. . TS2RLA 395 355.46 12.50  0.1290  2020.20 260.80

FigureEight_unseen . 60.87
Baseline 7219 310.52 540 0.1590  1020.20 162.10
. TS2RLA 543 48.27 13.60 0.3120 4512.00 1406.56

Grid_unseen . 51.88
Baseline 1875 45.12 5.10  0.2910 3012.00 926.56
TS2RLA 2105 451.64 21.30 0.8010  2056.90 1648.75

Merge_unseen . 57.21
Baseline 8754 385.24 15.10  0.9940  1056.90 1048.75

TABLE 9. Performance preservation when transitioning from seen to unseen
environments.

Metric TS2RLA (%) Baseline (%)
Average Return (AR) preservation 97.8 92.3
Average Speed (AS) preservation 91.5 83.7
Crash reduction benefit preservation 96.8 90.3
Throughput improvement preservation 95.3 87.6
b 150.6 1332 = Bottleneck
Figureeight

140 Grid

- Merge

5 120

§

2 100 98.1 100.0

s

§ 80 80.1

g 66.7

£ 60 58.5 57.1
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-8
20

° Speed Inflow Outflow

FIGURE 8. Impact of TS2RLA on the traffic flow characteristics across the four
traffic scenarios, using averaged values for each scenario type.

TABLE 10. Average improvements of TS2RLA over baseline in unseen
environments.

Metric Average Improvement (%)
Crash Reduction 93.8
Speed Improvement 106.6
Return Improvement 27.3
Throughput Improvement 55.9

o Volume handling: TS2RLA consistently handles higher
IF (44.88% to 100% increase) and achieves higher OF
(49.97% to 58.52% increase) across all scenario types.

o Outflow performance: The outflow performance across
different traffic scenarios shows consistent improve-
ments with FigureEight having the highest outflow at
58.5%, followed by Merge (57.1%), Grid (52.0%), and
Bottleneck (50.0%), demonstrating an effective traffic
management pattern.
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TABLE 11. Statistical analysis using paired T-Test:TS2RLA vs baseline.

Metric T-Stat P-value Mean Diff Std Dev Diff

Crash -2.9630 0.0142 -15839.000 17729.398
AR 2.0418 0.0684 179.907 292.236
AS 7.9596 <@001 6.619 2.758
OF 5.5152  0.0003 454.586 273.370
IF 9.6896 <001 1181.818 404.520
TTR  -2.9504 0.0145 -170.301 191.443
NSR 3.7486  0.0380 227.000 200.841

RQ3.B: TO WHAT EXTENT DOES TS2RLA
IMPROVE THE SELF-HEALING OUTCOME OF THE
TRAFFIC SYSTEM COMPARED TO THE BASELINE,
PARTICULARLY IN TERMS OF SAFETY, TRAFFIC
FLOW EFFICIENCY, SYSTEM RESILIENCE, AND
ROBUSTNESS?

For comparison of the TS2RLA model with the baseline
model in terms of safety, traffic flow efficiency, and
resilience, we have carried out the statistical paired t-test
between both models.

By analyzing Table 11, we can see the following:

o Safety: TS2RLA achieves a significant reduction in
crashes (p = 0.0142).

o Traffic Flow: TS2RLA significantly improves AS (p <
0.0001) and OF (p = 0.0003), suggesting an improved
traffic flow as compared to baseline

o Resilience: There is a higher TTR (p = 0.0145) for
TS2RLA, which highlights the resilience of the system.

« Robustness: TS2RLA shows more successful recoveries
NSR (p = 0.0038) compared to baseline.

TS2RLA statistical analysis revealed significant improve-
ments in multiple areas. The system reduced accident rates,
enhanced safety, and demonstrated rapid recovery from
disruptions, minimizing downtime, and maintaining stability.
We also observed a greater success in system restoration,
indicating improved resilience. These improvements have
shown how different parts of TS2RLA work well together.
When one part gets better, it helps other parts, too. For
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FIGURE 9. TS2RLA Environmental Impact: Comparison of CO2 Emissions and Fuel
Consumption Between Baseline and TS2RLA.

instance, the reduced accident rates are likely to contribute
to fewer disruptions, which in turn enables faster system
recovery and restoration. Although TS2RLA shows a positive
trend in AR with a mean improvement of 179.906, this dif-
ference does not reach statistical significance (p = 0.0684).
This can be attributed to high variability in returns (SD dif-
ference = 292.235), which is characteristic of reinforcement
learning scenarios where performance fluctuates based on
environmental conditions and exploration-exploitation trade-
offs.

In general, these findings highlight the substantial impact
of TS2RLA on the performance and stability of the traffic
system recovery, providing valuable insight into its effec-
tiveness in real world scenarios.

RQ3.C: HOW DO TS2RLA AND BASELINE MODELS
COMPARE IN TERMS OF CRITICAL
TRANSPORTATION SUSTAINABILITY METRICS,
INCLUDING ENVIRONMENTAL IMPACT, FUEL
CONSUMPTION, AND EQUITY IN TRAFFIC FLOW
DISTRIBUTION?

Our environmental metrics analysis shows that TS2RLA
reduces CO2 emissions and fuel consumption across all
scenarios, with significant improvements in different config-
urations. The Figure 9 presents absolute emissions (g/km)
and fuel consumption (ml/km) values, where lower values
represent better environmental performance.

CO2 emissions decreased in Bottleneck (175 to
135 g/km), Grid (240-245 to 145-150 g/km), Merge (200 to
145-155 g/km), and FigureEight scenarios (170-205 to 135-
140 g/km). Fuel consumption showed similar improvements,
with Grid configurations achieving the largest reductions.

These improvements demonstrate TS2RLA’s effectiveness
in minimizing environmental impact across various traffic
conditions and road layouts.

To thoroughly analyze the environmental impact of
TS2RLA, we evaluated environmental emissions, fuel con-
sumption, and efficiency metrics compared to the baseline
in Table 12. Our analysis revealed several key findings:

o Best Performance Scenarios: Grid scenarios show the

most significant improvements, with Grid_1 achieving
the highest CO2 improvement of (39.26%) and fuel
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TABLE 12. Environmental impact analysis of TS2RLA.

CO2 Fuel Efficiency Flow
Scenario Improvement Improvement Gain Improvement

(%) (%) (%) (%)
Bottleneck_0 21.24 31.19 26.23 66.42
Bottleneck_1 22.08 31.86 27.00 66.42
Bottleneck_2 21.12 30.92 26.04 66.74
FigureEight_0 20.59 30.54 25.57 98.14
FigureEight_1 22.63 32.84 27.77 97.91
FigureEight_2 30.41 39.87 35.27 82.50
Grid_0 38.65 47.01 43.04 39.00
Grid_1 39.26 48.17 43.93 50.76
Merge_0 26.16 33.97 30.16 98.78
Merge_1 27.45 35.96 31.81 90.71
Merge_2 24.87 31.09 28.07 91.31

improvement (48.17%), while maintaining excellent
efficiency gains (43.93%) and moderate flow improve-
ment (50.76%).

o Notable Achievements: FigureEight_2 demonstrates
exceptional impact with substantial CO2 improvement
of (30.41%), coupled with strong fuel improvement
(39.87%), efficiency gains (35.27%), and flow improve-
ments (82.50%).

o Bottleneck Performance: Bottleneck scenarios show
consistent improvements across all metrics, with
Bottleneck_1 achieving the best environmental improve-
ment (22.08%) among this group, along with good fuel
improvement (31.86%), efficiency gain (27.00%), and
flow improvement (66.42%).

o Merge Scenarios: These show moderate results, with
Merge_1 providing the best environmental impact
(27.45%) and fuel consumption reduction (35.96%)
within this category while maintaining positive effi-
ciency gains (31.81%) and strong flow improvements
(90.71%).

TS2RLA demonstrates optimal performance in Grid scenar-
ios, achieving the greatest reductions in CO2 emission and
fuel consumption. The system delivers consistent efficiency
gains across all scenarios, with particularly strong traffic
flow metrics in FigureEight configurations. These results
highlight TS2RLA‘s capacity to balance environmental
benefits with traffic efficiency, although performance varies
among different scenario types.

For other metrics, Speed Distribution Equity and Traffic
Flow Distribution, the results are demonstrated in Figure 10.
In Figure 10, the top chart displays the Speed Coefficient
of Variation, measuring vehicle speed uniformity. Lower
values indicate more consistent speeds. TS2RLA shows
lower variation than the Baseline across most scenarios. The
most significant improvements occur in complex Grid_0 and
Grid_1 scenarios (Baseline 0.7+, TS2RLA 0.3 or less), while
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Speed Distribution Equity

Speed (Coefficient of Variation)

Traffic Flow Distribution

—TS2RLA
Baseline

Flow Rate (vehicles/hour)

FIGURE 10. Speed Distribution Equity and Traffic Flow Distribution metrics show
different optimal values. For Speed Distribution Equity, lower values indicate better
results as they represent more uniform speeds. For Traffic Flow Distribution, higher
values indicate better performance.

Merge_2 shows slightly worse TS2RLA performance. Both
methods perform best in Bottleneck and FigureEight sce-
narios, with TS2RLA still outperforming. Overall, TS2RLA
creates smoother traffic flow by improving speed uniformity,
likely reducing stop-and-go patterns.

The bottom chart displays the flow rate in vehicles per
hour, measuring the traffic system’s throughput. TS2RLA
substantially increases traffic flow across all scenarios.
The most dramatic improvement appears in Grid_1, where
flow increases from approximately 4,000 to 6,000 vehicles
per hour. Bottleneck_2 shows significant enhancement,
nearly doubling the flow rate. FigureEight scenarios consis-
tently demonstrate approximately twice the baseline flow.
Similarly, Merge scenarios show consistent improvements,
with TS2RLA roughly doubling the flow rates.

Take-away (RQ3): Overall, TS2RLA delivers both more
uniform vehicle speeds and higher traffic throughput, with
peak effectiveness in complex Grid and Bottleneck scenarios.
The approach creates more efficient traffic patterns that
increase flow while maintaining consistent speeds, sug-
gesting reduced congestion, lower emissions, and overall
superior performance compared to the Baseline across
various network scenarios.

VI. THREATS TO VALIDITY

Although the TS2RLA model shows significant improve-
ments over the baseline model, several threats to validity
should be considered.

A. EXTERNAL VALIDITY

The study is limited to specific traffic scenarios (Bottleneck,
FigureEight, Grid, and merge). The performance of the
model in other potentially more complex real-world scenar-
ios remains untested. The simulated environment may not
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capture all the nuances and unpredictability of real-world
traffic conditions.

B. CONSTRUCT VALIDITY

The metrics used (e.g., crashes, average return, speed)
may not fully capture all aspects of traffic management
performance. The definition and calculation of “throughput
efficiency” may need further scrutiny to ensure that it
accurately represents real-world efficiency.

C. INTERNAL VALIDITY

The study does not account for potential confounder vari-
ables that could influence traffic patterns, such as weather
conditions, time of day, pedestrians, or special events. The
significant improvements shown by TS2RLA might partially
result from the specific configurations of the scenarios rather
than solely from the model’s superiority.

Addressing these threats in future research would
strengthen the validity of the findings and provide a more
comprehensive evaluation of the capabilities of the TS2RLA
model in traffic management.

VIIl. RELATED WORK

This section reviews the literature on self-healing and self-
adaptive traffic systems. We discuss what work has been
done and how our work differs from existing techniques.
The main gap identified is a lack of studies on the recovery
or self-healing of self-adaptive mixed-traffic systems. We
address that gap in this paper with a learning algorithm that
utilizes reinforcement learning and an attention mechanism
to self-heal the self-adaptive system traffic system.

A. SELF-HEALING

Self-healing capabilities are important, particularly in critical
applications such as autonomous vehicles, drones, and
robotics. Their applications span multiple areas, including
IoT-based systems and networks. Various approaches to self-
healing have been explored.

Wearable human-machine interfaces (W-HMI) with self-
healing sensors have been developed for drone control
through eye movements [43]. Although promising, this
approach requires further validation and resolution of
interference issues. Multi-Agent Systems (MAS) have been
used in Energy Management Systems (EMS) for DC
microgrids [26]. This approach demonstrates effectiveness,
but faces challenges in scalability and real-world implemen-
tation. Blockchain-based self-healing schemes for industrial
networks utilize distributed digital twins to improve secu-
rity [44]. This method has been validated through analysis
and evaluation. In the communication sector, self-healing
MAC protocols for energy harvesting (EH) IoT devices
have been developed [45]. These protocols, based on
improved LoRaWAN, show promise, but are specific to EH
systems and LoRa nodes. Pattern language has been applied
to develop self-healing strategies for IoT systems [46].
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Although comprehensive, this approach lacks empirical
validation and does not cover adaptive behavior or dynamic
reconfiguration in a comprehensive way.

While various techniques including machine learning,
constraint-based approaches, blockchain, pattern language,
and multi-agent systems have been applied to self-healing
in different types of Self-Adaptive Systems (SASs), each
has limitations and often depends on specific datasets.
Reinforcement Learning (RL) emerges as a promising
solution, offering run-time learning and adaptation to
dynamic environments without reliance on predetermined
datasets [17].

B. TRAFFIC SYSTEMS

Traffic systems play a vital role in modern society. In recent
years, researchers have focused on improving traditional
traffic systems by making them adaptive to environmen-
tal conditions. The dynamic nature of these systems has
presented various challenges, prompting extensive research
to address them. Our review of the literature is divided
into two main categories: traffic signals, which focuses
exclusively on the management of traffic signals within
transport systems, and traffic systems, which encompasses
broader aspects including vehicular networks, self-organizing
traffic systems, traffic flow detection, and alike.

Traffic Signal Control: Deep reinforcement learning
has been applied to traffic signal control, introducing an
innovative action representation using an inexperienced
action set [47]. However, the techniques used are based on
ideal conditions, not real-world situations. Thus, despite its
promise, this research is still in its early stages, requiring
a more realistic training environment for further validation
and improvement of applicability. Authors in [21] introduced
RACS, a reinforcement learning approach for traffic signal
control that combines A2C algorithm with Graph Attention
Networks. They experimentaly evaluated using both syn-
thetic and real-world traffic networks from Monaco, RACS
outperformed existing methods in reducing queue lengths
and waiting times. The authors addressed the challenge of
partial observability by dynamically weighting neighboring
intersections’ information. Another way of controlling traf-
fic signals has been presented using a Deep Q learning
framework supplemented with SHAP (SHapley Additive
Explanations) [20]. This novelty lies in the improved travel
time, waiting time, and speed, demonstrating the potential of
deep Q-learning to optimize traffic at intersections. However,
the limitation is implementation in real-world scenarios due
to the lack of explainability. In addition, the use of a
fixed-phasing controller model restricted the agent’s ability
to define phase durations, indicating potential areas for
work. The authors [48] have proposed a way to optimize
traffic signal control using meta-reinforcement learning. The
structure of the FRAP model in traffic signal control is
optimized for improved performance. However, current RL
models require extensive training data and resources. There
is a lack of focus on learning through the transfer and
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reuse of experience in existing models. Authors developed
MuJAM [49], a model-based graph reinforcement learning
approach for traffic signal control that uses graph neural
networks and model-based RL to simulate traffic dynamics
[49]. The system generalizes across different networks and
traffic patterns, achieving 95% accuracy in both small syn-
thetic networks and large Manhattan simulations with 3,971
controllers. However, it requires significant computational
resources and depends heavily on vehicle-to-infrastructure
communication data.

Use of Attention Mechanisms: An attention-based
reinforcement learning approach that combines attention
mechanisms with multiagent proximal policy optimization
(MAPPO) for large-scale adaptive traffic signal con-
trol has been explored [50]. Their attention mechanism
allowed agents to focus on relevant intersections, thereby
reducing computational overhead while preserving system
performance. They experimental validate the work on both
synthetic and real-world traffic networks, their MAAPPO
approach demonstrated better performance over existing
methods, particularly in reducing congestion levels and
accelerating system recovery across various traffic condi-
tions. Another work using attention-based reinforcement
learning model for traffic signal control capable of adapt-
ing to intersections with varying configurations named
AttendLight has been introduced [51]. The model’s key
innovation lies in its dual attention architecture, which elim-
inates the need for retraining at each new intersection. The
authors demonstrated AttendLight’s superiority over both
traditional and RL-based methods through comprehensive
experiments using synthetic and real-world datasets in both
single and multi-environment contexts. However, the model’s
performance may degrade when faced with intersection
topologies significantly different from those in the training
dataset. A novel approach for traffic signals and connected
vehicle control has been introduced using DRL [21]. By
proposing a control detouring behavior to enhance overall
traffic efficiency, they formulate joint control of traffic
signals and connected vehicles as an RL problem. A new
concept, the ‘detouring ratio’, is also introduced to effectively
characterize the behavior of connected vehicles. They have
purposefully designed a reward mechanism that takes into
account the impact of a detour on traffic efficiency.

Mixed-Autonomy Traffic Systems: To improve inci-
dent management in mixed-autonomy traffic, a universal
assignment method [52] for incident management considers
bottleneck delays and incident impacts, analyzing system
stability across different CAV penetration levels. While it
introduces dynamic signal control policies based on incident
severity, the model relies on unrealistic assumptions about
CAV distribution and information access, limiting its real-
world applicability. Another framework using a dynamic
traffic model has been proposed [53]. They have introduced
a strategic framework to restore crucial load in distribution
systems. The model applies a cell transmission method
and is dynamically weighted. The multiperiod critical load
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restoration problem is presented as a mixed-integer linear
program. They also consider unbalanced three-phase power
flow and time-varying topological constraints, enhancing the
model’s complexity and realism. To detect traffic flow, a
data fusion framework has been proposed that combines
connected vehicle data with road sensors [54]. The approach
calibrates a dynamic BP neural network model using CV
data to fuse radar and camera sensor data. The system
achieved a better accuracy of 95% for vehicle speed, traffic
flow, and occupancy detection, outperforming single-sensor
and traditional fusion methods. However, it faces higher
computational complexity than traditional BP networks
and requires reliable V2I communication. The researchers
evaluated three methods of monitoring traffic on a German
highway [55]: traditional loop detectors, Bluetooth sensors,
and floating vehicle data. The results show the distinct
advantages and limitations for each approach. Bluetooth
sensors struggled to detect short-term traffic jams, while
floating vehicle data excelled in identifying stop-and-go
patterns but became less reliable during heavy congestion due
to limited data points. However, the scope of the study was
restricted to a single highway, and its reliance on interpolated
data may limit the broader applicability of its findings.

Fault Recovery in Vehicular Networks: Zidi et al.
propose a novel approach for fault detection and recovery
in vehicular networks by integrating machine learning
techniques with a Hierarchical Temporal Memory (HTM)
algorithm at the fog computing layer [56]. The system
combines four ML classifiers SVM, DT, RF, and NN - with
HTM to identify six types of fault, with neural networks
achieving the highest precision at 95. 15%. For fault
recovery, the system uses an aggregation approach that takes
advantage of data from nearby vehicles. The study relies on
a single dataset from Rome taxis for evaluation and doesnot
account for malicious intrusions in its detection framework.
A study has been carried out to present a benchmark
for RL in mixed-autonomy traffic control, defining reward
functions aimed at optimizing mobility and preventing
collisions [39]. This approach addresses real-world traffic
control tasks, offering a practical framework that surpasses
traditional methods. The benchmarks introduced a solid
foundation for future research in RL within mixed-autonomy
traffic scenarios. Rausch et al. [22] highlight a novel self-
organized traffic management strategy aimed at efficiently
handling incidents in urban road networks controlled by
traffic lights. The approach relies on local queue lengths
rather than global incident detection methods. The strategy
employs discrete choice theory to model driver route choices,
making decisions based on specific events or incidents.
This event-oriented model emphasizes the importance of
local data and driver behavior in the management of traffic
incidents, offering a unique and localized perspective on
traffic management.

Research Gap: Although significant research has been
conducted in various areas of traffic systems, there is a
gap in studying recovery strategies for adaptive systems in
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mixed-autonomy scenarios. This is concerning, given the
increasing complexity of modern traffic environments. As
autonomous vehicles are integrated, robust recovery mech-
anisms become crucial. Real-world traffic often presents
unexpected challenges, making efficient recovery from inci-
dents and maintaining system stability vital. Research is
needed to develop adaptive recovery strategies that can han-
dle real-world complexities, ensuring resilience in dynamic
situations.

VIll. CONCLUSION

In this paper, we study traffic systems in the context of self-
healing systems and introduce TS2RLA, a novel approach
for the recovery of mixed-autonomy traffic systems using
reinforcement learning and attention networks. Our compre-
hensive evaluation demonstrates that TS2RLA significantly
outperforms the baseline model (the RL-based policy without
the attention mechanism as described in Section IV-C.2) in
various complex traffic scenarios. TS2RLA reduced crashes
by an average of 86.74% across all scenarios, demonstrating
a substantial improvement in traffic safety.

The model consistently achieved higher average returns
and speeds, indicating improved overall traffic flow and
management. TS2RLA handled significantly higher traffic
volumes, often managing approximately double the inflow
of the baseline model while maintaining or improving the
outflow. The framework also showed consistent performance
improvements in various complex scenarios (Bottleneck,
FigureEight, Grid, and Merge), demonstrating its versatility
in different traffic conditions. The attention-based approach
provided substantial benefits, particularly in the Bottleneck
and FigureEight scenarios, enhancing the model’s ability to
handle complex, multi-factor traffic situations.

Our tests also demonstrate superior results in unseen
environments, indicating TS2RLA‘s ability to adapt effec-
tively to new traffic conditions while maintaining robust
performance. These results suggest that TS2RLA could
have significant implications in the real world for traffic
management, potentially leading to safer, more efficient,
and higher-capacity road networks. The model’s ability
to adapt to various scenarios and handle increased traffic
volumes while improving safety and efficiency is particularly
promising for application in dynamic urban environments.

It is important to note the limitations of this study,
including the use of simulated environments, which may
not capture all real-world complexities, such as weather
constraints, pedestrians, and the focus on specific traffic
scenarios. Future work should address these limitations
by testing TS2RLA in more diverse and complex traffic
scenarios.

In conclusion, TS2RLA represents a significant advance-
ment in self-healing traffic systems, offering a promising
approach to address the challenges of modern urban traffic
management. As cities continue to grow and traffic patterns
become more complex, models like TS2RLA could play a
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crucial role in creating smarter, safer, and more efficient
transportation networks.

DATA AVAILABILITY

To support open science and enable replication and verifi-
cation of our work, we provide a replication package with
code and results on Zenodo [23].
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