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Large Language Models: A Survey of Surveys

MAX HORT, Simula Research Laboratory, Norway
FERNANDO VALLECILLOS-RUIZ, Simula Research Laboratory, Norway
LEON MOONEN∗, Simula Research Laboratory, Norway

Not only did the growing interest in Large Language Models (LLMs) lead to a multitude of applications,
news articles, social media posts, and new products, but it also resulted in a significant increase in research
publications. To gain a better understanding of this vast number of publications, surveys help provide
practitioners and researchers with much-needed overviews.

However, we have reached a point with tens of thousands of LLM publications, and the number of surveys
on LLM publications has grown into hundreds. Ironically, the same surveys that set out to bring order and
structure now contribute to the convolution of the space. For example, someone interested in the use of LLMs
for the health sector has more than 80 potential surveys to choose from. To address this challenge, we carry
out a tertiary literature review to gather and analyze LLM-related surveys, reviews, and mapping studies. By
doing so, we aim to help practitioners and researchers navigate the vast array of existing surveys.

In total, we found 424 LLM surveys that have been published up to September 2024 that are included in this
study. We devise a taxonomy and categorise surveys according to their main focus (e.g., fine-tuning of LLMs,
application for software engineering tasks). To further support the navigation of LLM surveys and keep up to
date, we created a GitHub repository that extends our scope to a total of 984 publications published up to
August 2025, which is available from https://github.com/dataSED-condenSE/LLM-Survey-Survey.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Natural language processing.

Additional Key Words and Phrases: large language model, literature survey, tertiary study

1 Introduction
Summaries are useful tools for providing overviews that help facilitate the understanding of diverse
topics. In research, summaries are typically conducted through secondary studies (e.g., survey,
mapping study, literature review) [83, 126]. Going one step further, tertiary reviews systematically
analyze and summarize secondary studies [148]. Such tertiary reviews have proven useful across
various domains, such as software engineering [43, 83], medical deep learning [62], economics [46],
machine learning [150], requirements engineering [12], and sentiment analysis [181].
The surging popularity of Large Language Models (LLMs) over the recent years has led to

thousands of research articles and, in turn, hundreds of secondary studies. This volume of secondary
studies creates a need for a structured overview, and we argue that it is time to conduct a tertiary
study of the field of LLMs. By creating an overview, we support researchers and practitioners in
navigating the field of surveys, finding relevant ones when learning about LLMs, and understanding
which aspects have been studied when designing new surveys.
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Fig. 1. Venn diagram illustrating the overlap between surveys from our systematic search and two repositories.

To the best of our knowledge, no tertiary study on LLMs has been published. However, we are
aware of two GitHub repositories that provide a list of LLMs surveys. These are: ABigSurvey-
OfLLMs1 and Awesome-LLM-Survey,2 with 159 and 139 listed surveys on LLMs respectively. While
valuable resources, these surveys did not follow a systematic search methodology. We extend far
beyond their scope by carrying out a systematic literature search and collecting a total of 424
surveys that are included in this article, as well as an additional 560 that are included in our GitHub
repository (see Section 2 for more details). The overlap of these two repositories and our collected
surveys is shown in Figure 1, highlighting the additional studies collected.

Figure 2 shows the structure of our survey and how we categorize the existing surveys.

2 Survey Methodology and Search Results
2.1 Search Procedure
To search the literature for secondary studies about LLMs, we make use of the publication database
dblp.3 dblp contains publications from more than 1,800 journals and 6,000 conferences from the
computer science domain, as well as non-peer-reviewed papers from arXiv. In particular, we use
dblp to carry out a search of relevant publications based on filtering their titles.
To ensure that we obtain relevant search results, we define two sets of keywords. The first set

contains terms related to language models, while the second contains terms related to literature
collection (inspired by Kotti et al. [150]):

• LLM keywords: LLM, Language Model.
• Survey keywords: Survey, Overview, Literature, Review, Background, Research, Taxonomy,
Systematic.

In addition to requiring that publication titles contain both keyword types, we treat them as
inclusion criteria for our paper collection:

(1) LLMs: The paper focuses on language models.
(2) Literature overview: The paper represents a secondary study by collecting and presenting

other works.
We exclude all studies that do not match these criteria, and omit studies that are not written in
English. We check inclusion in two stages. First, we determine relevance of the search results based
on their title. For instance, this removes literature on the study of “language modeling”. Second, we
read each paper with a suitable title and make a final inclusion decision based on its content.

1 https://github.com/NiuTrans/ABigSurveyOfLLMs, last updated on 19th February 2025
2 https://github.com/HqWu-HITCS/Awesome-LLM-Survey, last updated on 25th of May 2025
3 https://dblp.org

https://github.com/NiuTrans/ABigSurveyOfLLMs
https://github.com/HqWu-HITCS/Awesome-LLM-Survey
https://dblp.org
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Fig. 2. Structure of this study.

2.2 Selection and Search Results
Table 1 summarizes the results of our search, which we carried out on 10th of September 2024.
We start with a total of 1,173 unique publications from dblp, which fit at least one of the keyword
combinations. 461 of these agree with our inclusion criteria according to their titles. After examining
the 461 papers, we exclude 37 and end up with a total of 424 studies that are included in our survey
and presented in the following sections. To ensure the timeliness of our work, we carried out an
identical search on the 15th of August 2025, to find surveys that have been published in the last
year. This resulted in an additional 560 surveys. Due to the large number of recent publications, we



4 Max Hort, Fernando Vallecillos-Ruiz, and Leon Moonen

Table 1. Summary of search results. The search was carried out on the 10th of September 2024 on dblp.
Results for the updated search carried out on the 15th of August 2025 are shown in (blue). The additional 560
studies can be found in our GitHub repository.

LLM Keyword # Papers
Survey Keyword “LLM” “Language Model” Unique Title Content

“Survey” 63 (+181) 427 (+476)
“Overview” 6 (+12) 43 (+35)
“Literature” 18 (+54) 65 (+91)
“Review” 43 (+146) 231 (+291) 1,173 461 424
“Background” 0 (+2) 8 (+9) (+1,672) (+560)
“Research” 33 (+146) 201 (+241)
“Taxonomy” 14 (+40) 48 (+51)
“Systematic” 25 (+87) 134 (+169)
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Fig. 3. Number of publications per year. The count for 2025 is based on a cut-off date of 15th of August 2025.

decided to only include them in our supplementary online repository.4 The temporal distribution
of these publications is shown in Figure 3.

3 Overviews and Comprehensive Surveys
We start the presentation of existing surveys by presenting general overviews that are helpful as
an introduction to learn about LLMs. These surveys stand out by their comprehensiveness and
the consideration of several aspects of LLMs. In addition to comprehensive surveys, we include
surveys about bibliometrics and the history of LLMs to provide extensive background details.

Table 1 shows the included surveys for this section. For each, we list basic information (Authors,
venue, year of publication), as well as the number of references they have and how often they have
been cited. These can be useful indicators for their comprehensiveness and popularity. Lastly, we
give a Unique Selling Point (USP), a point of focus which differentiates them from other surveys.

3.1 Comprehensive
Zhao et al. [417] created the most comprehensive survey on LLMs to date. This can not only be seen
by the high number of references included (946), but also its popularity (over 5000 citations). This
scale allows the survey to cover all important aspects of LLMs and is the only survey to consider
aspects such as “scaling laws”, which have not been covered by the other surveys.

4 https://github.com/dataSED-condenSE/LLM-Survey-Survey

https://github.com/dataSED-condenSE/LLM-Survey-Survey
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Table 2. Overview of comprehensive surveys and their unique selling point. The number of citations was
collected from Google Scholar on the 21st of August 2025. The # studies shows how many publications are
covered by the respective surveys.

Authors Venue Year # Studies Citations Focus USP
Movva et al. [222] NAACL 2024 59 24 Bibliometrics Industry and Academia (roles)
Fan et al. [65] arXiv 2023 86 199 Bibliometrics Research topics
Naveed et al. [223] arXiv 2023 487 1496 Comprehensive Architecture details
Raiaan et al. [254] IEEE Access 2024 187 667 Comprehensive Datasets per model
Zhao et al. [417] arXiv 2023 946 5658 Comprehensive Detailed settings
Yang et al. [368] ACM TKDD 2024 143 1212 Comprehensive NLP tasks
Minaee et al. [218] arXiv 2024 243 1263 Comprehensive Capabilities
Liu et al. [196] arXiv 2024 175 144 Comprehensive Training & Inference
Ling et al. [185] arXiv 2024 297 57 Comprehensive Specialization
Guo and Yu [93] arXiv 2022 175 34 Comprehensive Domain Adaptation
Wang et al. [317] arXiv 2024 305 35 Comprehensive Challenges and Opportunities
Miao et al. [216] arXiv 2023 375 103 Comprehensive Systems and Serving
Wei et al. [330] arXiv 2023 223 74 History Conventional models and linguistic units
Chu et al. [38] arXiv 2024 88 93 History Advancement of LLMs
Kumar [153] Artif. Intell. Rev. 2024 249 138 History Word embeddings, Deep Learning

There are several other surveys that provide a comprehensive overview of LLMs. While some of
their contents naturally overlap, we outline their unique viewpoints. Raiaan et al. [254] provided
an overview of the different sources for datasets (e.g., webpages, books, code). Naveed et al. [223]
listed details on the architecture of LLMs. This includes information such as training objective,
vocabulary size, type of attention, number of layers, attention heads, and hidden states. Minaee
et al. [218] provided an overview of the capabilities of language models. Moreover, they survey
the components necessary for building LLMs. Miao et al. [216] covered the serving of LLMs and
optimization for faster inference time via modifying the models themselves or the hosting system.

Yang et al. [368] include the most comprehensive description of NLP tasks for LLMs. The survey
by Liu et al. [196] focused on training and inference, ranging from the data processing stage
to different fine-tuning paradigms and methods for speeding up the inference. Ling et al. [185]
addressed the adaptation of LLMs to different domains in their survey. These techniques range from
augmentation with external knowledge to fine-tuning. Similarly, Guo and Yu [93] described domain
adaptation via data augmentation, model optimization (training) and model personalization.

3.2 Bibliometric
Fan et al. [65] carried out a bibliometric study covering 5752 publications from the Web of Science
(WoS) Core Collection, collected from 2017 to early 2023. They investigated topics addressed by
these publications and divided them into five categories: algorithm and NLP tasks, medical and
engineering applications, social and humanitarian applications, critical studies, and infrastructure.
Among these, “Algorithm and NLP tasks” span the majority of publications (54%), while “Infras-
tructure” and “Critical studies” cover less than 2% each. The countries which produced the highest
number of research in this period are China and the USA. In terms of the collaboration among
institutes, USA and UK have the highest centrality score.

Movva et al. [222] performed a study to reveal the influence of LLMs on AI research, and analyzed
16,979 LLM-related papers from arXiv during the period of January 2018 to September of 2023. They
observed that many authors have not previously published NLP-related research, and a growing
interest on the societal impact of LLMs. Similar to the findings by Fan et al. [65], US and China-based
institutes contributed the highest number of publications. Overall, Movva et al. [222] observed few
collaborations across countries.
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3.3 History
Another three surveys outline current advances in language models while providing information
on the history and early approaches [38, 153, 330]. For instance, Wei et al. [330] started their survey
with an overview on conventional language models (e.g., structural and bidirectional language
models), while also describing various linguistic units (i.e., characters, words, subwords, phrases,
sentences). The role of word embeddings and deep learning for language models is addressed by
Kumar [153]. Chu et al. [38] considered approaches ranging from 1990 (statistical language models)
to 2023 (large language models).

4 Components of LLMs
This section outlines surveys that addressed the different components required for the training
and use of LLMs. We structure our review around nine key components as shown in Figure 4. This
taxonomy is inspired by the work of Naveed et al. [223] and Minaee et al. [218].

4.1 Hardware and Serving
LLMs are compute-intensive machine learning models and therefore require a certain degree of
compute power and hardware infrastructure to be used. For instance, the running of LLMs can
benefit from the use of GPUs [305] and high-performance computing [31]. The efficiency of training
and applying LLMs has been improved from a diverse range of components [138, 308], such as
processing units, storage systems, scheduling, and memory management [55, 61, 163, 305, 356, 386,
386, 428]. In addition, there are two dedicated surveys on improving efficiency via the key-value
(KV) cache [274] (during training and inference) and compute-in-memory (i.e., reduces overhead of
memory access by performing computations in memory) [334].

A frequently mentioned approach for accelerating the training process is parallelization [9, 18, 55,
61, 305]. Here, Duan et al. [61] mentioned three different types (Hybrid, Auto, Heterogeneous) and
descriptions on optimizing communication. Another hardware consideration is the device on which
LLMs are run. These can be edge devices [14, 250, 356] or in the cloud [9, 163, 260, 356, 386, 428].

4.2 Architecture
In this section, we present surveys that describe existing model types and information on their
architectures. For instance, Gao et al. [79] listed models and provided details, such as their number
of parameters and underlying base models. In addition, they evaluated 32 of them in various settings
(e.g., zero-shot, few-shot, multi-modal) and presented tools that support the development with and
for LLMs. Pahune and Chandrasekharan [229] showed the different available versions for each of
the models and hardware details for their implementation.

Other surveys focus on specific model families. Kukreja et al. [152] considered open-source mod-
els, with particular focus on FALCON, BLOOM, and Llama2, for which data collection, architecture,
and training stages are described. Kalyan [139] focused on GPT language models, in particular
models ranging from GPT-3 to GPT-4, and collected their application to downstream tasks (e.g., text
classification, information extraction, coding). Alipour et al. [5] focused on ChatGPT and OpenAI
(e.g., the OpenAI playground). Other models were introduced as alternatives to ChatGPT. Lu et al.
[201] considered different methods for LLM collaboration. For instance, LLM responses can be
merged, or one can create an ensemble of multiple LLMs.
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Components

Evaluation
(Section 4.9)

[27, 94, 159, 235, 432]

Inference
(Section 4.8)

Dynamic Ac-
celeration

[9, 145, 305, 320, 344,
351, 356, 386, 391, 428]

Model Compression
[9, 28, 55, 134, 232,

260, 305, 320, 351, 356,
359, 365, 386, 428, 430]

Agents (Section 4.7)
[13, 23, 77, 92, 98, 101,
111, 118, 171, 177, 207,
255, 313, 343, 409, 414]

Prompting
(Section 4.6)

[17, 25, 29, 66, 80,
90, 112, 120, 136,
166, 193, 205, 243,
264, 302, 346, 427]

Alignment
(Section 4.5)

[22, 32, 84, 98, 128,
147, 197, 271, 278,
296, 325, 326, 340]

Training and Learn-
ing (Section 4.4)

Unlearning [16, 251, 360]

Incremental
Learning [137, 272, 341, 374, 419]

Fine-Tuning [9, 55, 213, 251, 265,
305, 333, 355, 356, 401]

Pre-Training [9, 55, 61, 68,
149, 305, 356]

Data (Section 4.3)

Contamination [51, 230, 256, 350]

Annotation and
Generation

[199, 291]

Selection
[4, 9, 55, 305, 312,
328, 356, 370]

Datasets
[58, 195, 236,
261, 282, 371]

Architecture
(Section 4.2)

[5, 79, 139,
152, 201, 229]

Hardware and
Serving (Section 4.1)

[9, 14, 18, 31, 55,
61, 138, 163, 250,
260, 274, 305, 308,
334, 356, 386, 428]

Fig. 4. Taxonomy of surveys on LLM components.

4.3 Data
The characteristics of an LLM are fundamentally determined by the data used in its creation and
evaluation. Consequently, surveys in this field explore the entire data lifecycle, from the composition
of datasets to the evaluation of their quality.
Datasets: Liu et al. [195] presented an exhaustive overview of datasets for large language models.
They considered a total of 444 datasets from five categories: pre-training, instruction fine-tuning,
preference, evaluation, and NLP. Srivastava and Memon [282] presented 52 datasets for the open-
domain question-answering tasks, and the study by Yang et al. [371] reviewed datasets for causal
reasoning benchmarks. Röttger et al. [261] presented 102 datasets for safety evaluation.
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While large datasets can be beneficial for LLM performance, one needs to be careful when ob-
taining data from public sources. Challenges faced when using web-mined corpora for pre-training
LLMs have been reviewed by Perelkiewicz and Poswiata [236]. Among others, they presented
challenges based on sensitive information, bias or the low quality of data. Du et al. [58] gathered 32
datasets (16 for pre-training and 16 for fine-tuning) while focusing on their quality and quantity.
Data selection: Datasets for training LLMs contain an enormous amount of samples with varying
characteristics. While all data samples can be used for training, one can also select the ones most
suitable for one’s goal. For this purpose, the amount of training data can be reduced via deduplication,
sampling or selection [9, 55, 305, 356]. Albalak et al. [4] surveyed data selection for LLMs. Methods
are organized based on the type of data (e.g., data selection for pre-training, in-context learning).
Additionally, they provided an overview of the main objectives of data selection at each stage of
the training process (e.g., the main objective of data selection for fine-tuning is bias reduction and
model performance). Wang et al. [312] specialized in selecting data for instruction tuning.

Wang et al. [328] considered data collection from a data management perspective. This includes
concerns regarding data quality and quantity (e.g., filtering strategies) for pre-training and fine-
tuning datasets. Lastly, [370] surveyed the impact of adding source code to the training data of
LLMs, and found that it can improve downstream performance.
Data annotation and generation: While datasets for training LLMs are froften obtained from
human-created sources, LLMs themselves can be used to augment or enhance existing data, be
it by generating new data from scratch (data generation) or providing additional information to
existing data (data annotation). For instance, Long et al. [199] surveyed synthetic data generation
with LLMs to outline the workflow for data generation, consisting of generation, curation, and
evaluation of synthetic data. Tan et al. [291] considered different facets of the data annotation
process with LLMs (generation, assessment and utilization).
Data contamination: Data contamination is a problem that arises when the training data of
LLMs overlap with the evaluation benchmarks. We found four surveys summarizing approaches
for detection and mitigation of data contamination. Palavalli et al. [230] considered two severities
of data contamination (instance level, dataset level) and examined them in two case studies (i.e.,
summarization, question answering). Xu et al. [350] considered the severity of data contamination
(i.e., semantic, information, data, label level) and presented several tasks where contamination has
been observed (e.g., code generation, sentiment analysis). Deng et al. [51] considered language
model types (white-box, gray-box, black-box LLMs) when it comes to data contamination as
well as several methods for detecting data contamination. Lastly, Ravaut et al. [256] organized
contamination detection approaches based on open-data (dataset is known) and closed-data (dataset
is not known).

4.4 Training and Learning
By leveraging large amounts of data, LLMs learn patterns that shape their performance across
different stages. From initial pre-training to continuous adaptation, these stages allow them to
acquire and refine their capabilities.
Pre-train: Pre-training describes the initial training stage of LLMs, in which models learn a
general understanding of texts and language. Kotei and Thirunavukarasu [149] surveyed different
pre-training techniques (from scratch, incessant pretraining, based on knowledge inheritance,
multi-task pre-training). Afterwards, they discussed how this knowledge can be transferred to
downstream tasks via fine-tuning. Fang et al. [68] reviewed metrics to consider for the training
process and monitoring of the training success. While we found no other dedicated studies, several
pre-training techniques have been covered by comprehensive surveys. For instance, the most
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frequently considered method for improving the efficiency of the pre-training process is mixed-
precision training [9, 55, 61, 305, 356].
Fine-Tune: After pre-training, LLMs can be fine-tuned for specific tasks, which usually involves
smaller datasets of higher quality. Weng [333] considered several fine-tuning paradigms, such as
multi-task learning, knowledge distillation, transfer learning, and few-shot learning. Other surveys
considered specific learning paradigms, such as federated learning [251], multi-task learning [265],
or instruction-tuning [401]. A larger subset of surveys addressed the efficiency of the fine-tuning
process via Parameter Efficient Fine-Tuning (PEFT) [9, 55, 305, 355, 356].

Xu et al. [355] covered the efficiency of the training of LLMs by PEFTmethods. Rather than tuning
the entire model (all parameters), a limited subset is fine-tuned to save time and memory. They
categorized PEFT methods into 5 types: additive fine-tuning, partial fine-tuning, reparameterized
fine-tuning, hybrid fine-tuning, and unified fine-tuning. In addition to the collection and description
of a multitude of PEFT methods, Xu et al. carried out an empirical comparison of fine-tuning a
RoBERTa model and 11 PEFT methods. Another PEFT method that received a survey of its own is
LoRA (Low-Rank Adaptation) [213].
Incremental learning: To make sure that LLMs keep up with an evolving knowledge base, it is
often not enough to train them once, but update them over time. Jovanovic et al. [137] considered
different strategies for an incremental learning of LLMs. These include continual learning (CL),
meta-learning, parameter-efficient learning, and mixture-of-experts learning.
Shi et al. [272] conducted a comprehensive survey on CL. Here, approaches are divided in

two categories: vertical and horizontal continuity. Vertical continuity addresses approaches that
specialize capabilities from a general set of knowledge. Horizontal continuity describes approaches
that adapt capabilities across time and domains. In addition to outlining CL approaches, they
included background information on CL, training objectives, as well as an overview of benchmarks.

Wu et al. [341] showed that CL can be used to update several dimensions: facts, domains, language,
tasks, skills, values, preferences. Yang et al. [374] took pre-trained, fine-tuned, and vision-language
models in account and CL methods are split into offline and online methods. In addition to internal
methods for CL, such as the updating of parameters, Zheng et al. [419] included external approaches
in their survey. External knowledge can either be incorporated by retrieving information from
websites (e.g., Wikipedia), or the use of tools to allow LLMs to carry out additional tasks.
Unlearning: Learning can help LLMs attain valuable capabilities but not all the information
might be useful to learn. Among others, LLMs might learn biases or access private information
of individuals in the training data, which should not be replicated. Unlearning approaches are
proposed to help LLMs forget about undesired information. The survey by Blanco-Justicia et al. [16]
presented different types of unlearning approaches with regard to global weight modification, local
weight, architecture modification, and input or output modification. They also showed datasets,
models, and metrics used for evaluation. Xu [360] considered unlearning traditional ML models
and LLMs, while Qu [251] surveyed unlearning approaches for federated learning.

4.5 Alignment
Via pre-training and fine-tuning, LLMs are capable of learning from data and generating sensible
responses for a variety of tasks. However, such responses can be factually incorrect or harmful
due to undesired biases in the training data [84, 326]. To combat this, alignment approaches are
proposed not only to to align LLM responses with human values but also restrict their misuse in
sensitive or potentially harmful contexts.

Wang et al. [326] focused on alignment techniques, such as reinforcement learning from human
feedback. They surveyed different stages of the reinforcement learning process and included
equations to explain the respective techniques. Shen et al. [271] divided alignment approaches into
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“outer” and “inner” approaches. Outer alignment describes the alignment of LLMs to human values.
Inner alignment concerns the optimization of the objectives humans desire. Cao et al. [22] reviewed
automated alignment methods, which do not require human annotations. Four method types are
presented: aligning by defining constraints, imitating behavior of an aligned model, receiving
feedback by existing models, and through feedback from interacting with environments.

Other than the alignment approaches, surveys considered their evaluation [197] and the collection
of high-quality datasets [325]. Moreover, alignment was studied for agents [98] and the 17 United
Nations’ Sustainable Development Goals [340]. Other than the alignment for a general audience, the
alignment of LLMs to individuals has been surveyed from the perspective of personalization [147]
and preference learning [128].

In addition to aligning LLMs to human values, their adaptation of roles and pre-defined personas
has been studied. Particularly, Tseng et al. [296] surveyed LLMs for role-playing and personalization.
Here, LLM role-playing was performed for tasks such as software development, games, and the
medical domain. The survey by Chen et al. [32] outlined how to design components for role-
playing, which includes datasets and different alignment methods. Simmons and Hare [278] gave
an overview of LLMs to replicate human behavior, such that public opinions can be measured.

4.6 Prompting
LLMs are able to respond to user queries, therefore, the design of such queries or prompts can
be integral for achieving good results. Chen et al. [29] created a review on prompt engineering,
which could be seen as a good starting point for someone trying to create prompts themselves, as
they provided basics on prompting models such as GPT-4. Luo et al. [205] considered prompting
from the perspective of in-context learning, which can achieve performance improvement by
providing LLMs with examples. Important aspects include the number of demonstrations as well
as their diversity and order [427]. The surveys by Vatsal and Dubey [302] and Sahoo et al. [264] set
out to provide an overview of diverse sets of prompts used in the literature. In total, Vatsal and
Dubey [302] presented 39 different prompting methods, Sahoo et al. [264] showed 29.
Focusing only on a subset of approaches, Xia et al. [346] created a survey on chain-of-thought

prompts and its variations (chain-of-X). Approaches applied in literature can be divided into four
groups: chain-of-intermediate, chain-of-augmentation, chain-of-feedback, chain-of-models. Other
than chain-of-thought approaches, five surveys focused on Retrieval-augmented generation (RAG)
prompt approaches [66, 80, 112, 120, 136]. Huang and Huang [120] created a taxonomy of RAG
approaches based on four stages. First, pre-retrieval approaches deal with the data, followed by
the retrieval stage which ranks the relevant pieces of information. Subsequently, a post-retrieval
stage can re-rank and filter the retrieved information. In the end, the generation stage creates the
prompt. Jing et al. [136] carried out a survey with a focus on the pre-retrieval stage, in particular
the organization of data in vector databases to support the subsequent retrieval stages. The survey
by Gao et al. [80] considered the later three stages of the RAG process (retrieval, generation and
augmentation). Their survey included RAG approaches at different stages of LLMs (pre-training,
fine-tuning, inference) and progression of RAG from naive to complex approaches. Moreover, they
extracted useful information from the approaches, such as the data sources considered, data type
and retrieval granularity (e.g., sentences). Hu and Lu [112] pointed out approaches which combined
multiple RAG techniques (i.e., hybrid approaches). Additionally, surveys also cover prompting
for specific domains, such as reasoning [243], software engineering tasks [17], visual-language
models [90], and goal-oriented tasks [166].
While prompt engineering can lead to performance improvements, it also requires additional

efforts, either from the developers to design the prompts or from additional computations carried out
by the LLMs. For this purpose, Chang et al. [25] surveyed the efficiency of prompt engineering from
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two perspectives: prompting with efficient computation and prompting with efficient design. Lastly,
Liu et al. [193] surveyed prompting frameworks, or prompt-based tools, which can simplify the
prompt engineering process for users. Their overview includes and compares 28 such frameworks.

4.7 Agents
An LLM-based agent employs an LLM as the primary component of the controller module in an
attempt to achieve goals autonomously [343]. Several general surveys aim to establish a common
taxonomy for this field. Some researchers converge on a core set of components such as reasoning,
memory, and action modules for tool use and interaction with the environment [13, 414]. Others,
such as Wang et al. [313] proposed four modules: profiling, memory, planning, and action, while Xi
et al. [343] conceptualized agents through a simplified brain-perception-action framework. From a
different perspective, Li [171] proposed to integrate the previously separated paradigms of tool-
using, planning, and feedback learning, into a task-agnostic taxonomy through three universal
roles and four workflows.

Building upon these general frameworks, some researchers survey specificmodules or capabilities.
Huang et al. [118] surveyed and proposed a taxonomy on the planning module classifying them into
five directions. Similarly, Zhang et al. [409] reviewed memory mechanisms and how they enable
self-improvement and long-term interactions. The capabilities further extend when these systems
encompass multiple agents. Guo et al. [92] reviewed LLM-based multi-agent systems, highlighting
communication and planning strategies in different environments, while Händler [98] proposed a
taxonomy for classifying these systems based on alignment, autonomy, and architectural design.
The applications of LLM-based agents are rapidly expanding through different tasks and fields.

Hu et al. [111] proposed a general taxonomy for agents into six modules and further reviewed their
applications in the gaming field. Cao et al. [23] explored how LLM-based agents can be used to
enhance reinforcement and classified them according to their function in the framework. Gao et al.
[77] focused on their application on simulation and modeling of scenarios in four domains: cyber,
physical, social, and hybrid. Social simulations are also reviewed by Ma et al. [207], who focused on
computational experiments to generate more realistic social behaviours. Ramos et al. [255] explored
applications in chemistry, discussing automation of tasks such as literature review to controlling
robotic labs. Li et al. [177] reviewed the surge of personal LLM-based agents and discussed the
security threats when handling personal data. Similarly, the risks and threats introduced by the
integration of agents in multiple fields are further explored by He et al. [101].

4.8 Inference
The inference process has in general been covered by surveys under the lens of efficiency. Addressed
techniques can be divided into two categories: model compression and dynamic acceleration. They
are summarized in Table 3.

Model compression aims for efficiency improvements by lowering the number of parameters
and thereby achieving quicker responses. Park et al. [232] surveyed compression methods, which
include four common methods (pruning, quantization, knowledge distillation, low-rank approxi-
mation), and they are one of two studies which considered parameter sharing. They distinguished
compression methods based on their cost (i.e., low-cost and high-cost) depending on how much
time and memory their use requires. For example, high-cost quantization methods might require a
full retraining of an LLM while low-cost quantization can be performed without any retraining or
fine-tuning. Lastly, they provided additional evidence on the usability of pruning and quantization
methods by evaluating them and summarizing their cost, compression rate and performance. Cha-
van et al. [28] included empirical results on several quantization types and their impact on memory
consumption and number of tokens that get generated per second.
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Table 3. Overview of inference techniques and surveys which describe them.

Pruning [9, 28, 55, 134, 232, 260, 305, 320, 351, 356, 386, 428, 430]
Quantization [9, 28, 134, 232, 260, 305, 320, 351, 356, 386, 428, 430]
Knowledge distillation [9, 28, 55, 134, 232, 305, 320, 351, 356, 365, 386, 428, 430]
Low rank approximation [9, 28, 232, 305, 351, 356, 386, 428, 430]

Model Compression

Parameter sharing [232, 351]
Early exit [9, 145, 351, 386, 428]
Input pruning, filtering and compression [9, 356, 428]
Token parallelism [9, 145]
Token skipping [351]
Speculative decoding [145, 305, 344, 386, 391, 428]
Output organization [428]

Dynamic acceleration

MoE [320, 386]

Commonly, surveys considered at least three of the five compression methods, while we encoun-
tered two surveys that covered a single method. In both cases, this was Knowledge Distillation
(KD) [359, 365]. Xu et al. [359] provided extensive information on the KD process to help under-
standing. Moreover, they described how KD can be used to distill skills (e.g., instruction following,
alignment) and domain knowledge (e.g, law, science). Yang et al. [365] categorised approaches as
white-box and black-box, and also presented KD approaches for multi-modal LLMs. Additionally,
they included experiments with KD methods on different LLMs and compared their performance.

Dynamic acceleration refers to techniques that adapt computations based on the input the LLMs
receive [9]. While it is common for surveys to not be focused on any of the dynamic acceleration
techniques in detail, we found two surveys on speculative decoding, a method that predicts several
future tokens alongside the current token at each decoding step [344, 391].

4.9 Evaluation
Evaluating the performance of LLMs is a critical step in assessing their quality. Chang et al. [27]
investigated existing evaluation approaches based on three perspectives: what to evaluate (e.g.,
tasks), where to evaluate (e.g., datasets, benchmarks), how to evaluate (e.g., evaluation process). Here,
tasks include NLP, social science, natural science, engineering, medical applications, robustness,
and others. Benchmarks are divided into three categories: general, specific, and multi-modal. Lastly,
the evaluation process can follow automatic or human evaluation criteria.
Guo et al. [94] defined three categories of LLM evaluation: knowledge and capability (e.g.,

reasoning), alignment evaluation (e.g., bias), and safety (e.g., robustness). They reviewed each
category and provided benchmarks and evaluation methodologies. Moreover, they present LLMs
specialized for various domains (e.g., biology, medicine, finance, education, computer science).
Zhuang et al. [432] structured the evaluation of LLMs based on four core competencies (i.e.,

knowledge, reasoning, reliability, and safety) and provided their definitions, benchmarks, and
metrics. In addition to core competencies, it is important to consider sentiment, planning, and
code. Beyond the evaluation of competencies, Peng et al. [235] considered the evaluation of agentic
approaches (e.g., reasoning, domain knowledge).

A different focus was set by Laskar et al. [159], who put emphasis on challenges and limitations of
the evaluation caused by the diversity of setups followed by existing works. In particular, they con-
sidered three types of challenges: reproducibility (e.g., missing details on data and model), reliability
(e.g., prompt hacking), and robustness (e.g., lacking evaluation of generalizability). Additionally,
Laskar et al. [159] gave guidelines on how these limitations can be addressed.
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Capabilities

Augmented

Tool Utilization
(Section 5.8)

[215, 249, 273, 327]

Self-Improvement
(Section 5.7)

[140, 179, 231, 294, 342]

Interacting with
Users (Section 5.6)

[30, 45, 57, 78, 135,
169, 175, 182, 191, 292,
300, 309, 339, 380, 387]

Emerging

In-Context Learning
(Section 5.5)

[122, 205, 234, 234,
323, 323, 390]

Reasoning
(Section 5.4)

[15, 87, 114, 168,
194, 204, 215, 221,
241, 243, 304, 324,
332, 371, 407, 433]

Basic

Multilingual
(Section 5.3)

[115, 151, 239, 245,
285, 286, 361, 369]

World Knowledge
(Section 5.2)

[2, 6, 21, 54, 70, 110,
164, 237, 248, 262, 303,
307, 319, 321, 331, 357,
381, 383, 411, 418]

Comprehension
(Section 5.1)

[26, 48, 59, 133, 167,
178, 211, 217, 244, 280,
287, 290, 298, 315, 348,
352, 358, 393, 416, 431]

[26, 218]

Fig. 5. Taxonomy of surveys on capabilities.

5 Capabilities
The proficiency of LLMs in diverse tasks and fields can be understood as a result of multiple
abilities, or capabilities. These capabilities range from foundational language skills to more complex
behaviors. While Chang and Bergen [26] surveyed capabilities of language models, this section
adopts a taxonomy inspired by the work of Minaee et al. [218], as it further covers how models are
integrated into larger ecosystems. This framework categorizes these abilities into three groups:
Basic, Emerging, and Augmented.

Basic capabilities represent foundational skills acquired directly from their pre-training. Emerging
capabilities are not specifically trained for, but appear as the scale of themodel increases. Augmented
capabilities regard how the model integrates with external systems, usually to overcome its own
limitations and improve the outcomes.

5.1 Comprehension
The comprehension capability of LLMs refers to their ability to understand and interpret the
meaning, context, and possibly the nuances of input. It is crucial for their application to various
NLP tasks [26, 217, 244], such as information retrieval [416, 431], relation [358], keyphrase extrac-
tion [280], semantic parsing [211], question-answering [48], and text generation [167, 178, 393].
Several surveys focus on more specific types of LLM comprehension. For instance, the models’

ability to understand the content is essential to produce accurate summaries. General text summa-
rization surveys [133, 290] indicate that abstractive summarization requires the model to interpret
and rephrase information, which allows for testing the depth of the comprehension. Xie et al. [348]
further corroborated this in the domain of biomedical texts. Other authors use different tasks to
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test this comprehension. Umair et al. [298] surveyed this capacity with keyphrase prediction, Xu
et al. [352] focused on information extraction, and Sun et al. [287] used sentiment analysis.

The underlying mechanisms enabling LLMs to comprehend texts based on previous knowledge
are also an ongoing research field. Wang et al. [315] discussed how true comprehension allows for
high-level reasoning and problem-solving skills to develop. They further pointed out the fragility
of comprehension in LLMs, agreeing with the main challenge presented by Du et al. [59].
However, the depth of this comprehension remains ongoing research. Du et al. [59] indicated

that LLMs can perform “shortcut learning”, where they overfit to dataset biases rather than achieve
proper understanding of the text, leading to poor performance in out-of-distribution scenarios.

5.2 World Knowledge
We refer to world knowledge capability in LLMs as their ability to store and accurately recall factual
information acquired during their pre-training phase. This capability is fundamental to the use of
LLMs, but also involves challenges regarding its representation, robustness, and maintenance.

The current understanding indicates that models learn universal language representations that
capture knowledge about the world during their pre-training phase and are stored implicitly in
the model’s parameters [248, 381, 411] and can be used as knowledge bases [6]. Cao et al. [21]
conceptualized the knowledge in an LLM through a life cycle consisting of five phases: acquisition,
representation, probing, editing, and application. On the other hand, Safavi and Koutra [262]
conceptualized this knowledge through different levels of Knowledge Base (KB) supervision.

The accuracy of the knowledge assimilated by the LLM is still an ongoing concern. Adilazuarda
et al. [2] noted that knowledge assimilated by LLMs often exhibits biases. Wang et al. [307] focused
on a different issue, factuality, i.e., generating content contradicting facts. Zhang et al. [411] argued
that since facts learned during pre-training can become outdated, updating this knowledge also
poses a problem. Similarly, the meaning of words can change over time, as shown in the survey by
Periti and Montanelli [237]. Updating the models with contextual information is a possible solution;
however, Xu et al. [357] pointed out that models also struggle with discrepancies between learned
facts and contextual information.
Researchers are exploring different techniques to address these limitations by integrating the

models with desired knowledge [70, 110], which can come from different sources and formats [418].
Wang et al. [319] reviewed knowledge editing techniques, aiming to update knowledge without
complete retraining. On the other hand, Yin et al. [381] andWei et al. [331] advocated for augmenting
LLMs with external sources of knowledge. Wang et al. [321] further explored this synergy with a
survey of LLMs enhanced with knowledge representation learning.

In addition to teaching facts to LLMs, probing can be used to extract facts [383], and LLMs have
been studied for fact-checking [54, 303]. To support the ability of fact-checking, the generated texts
can be attributed with respective sources [164].

5.3 Multilingual
The multilingual capabilities of LLMs enable them to understand and generate text in multiple
languages. This ability facilitates knowledge transfer from high-resource to low-resource lan-
guages [115, 151, 361]. Generally, multilingualism in a model is achieved through multilingual
corpora during pre-training [239, 361]. Xu et al. [361] surveyed multilingual LLMs and gathered
valuable resources for corpora (training and downstream tasks) as well as LLMs. For the datasets,
they showed the languages in the corpora, the sizes, and sources. For LLMs, they extracted informa-
tion such as the base model, number of parameters and pre-training information (dataset and loss
function). Moreover, they carried out a performance comparison of several models over three tasks
(bilingual lexicon induction, cross-lingual classification, machine translation) and ten languages.
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Qin et al. [245] focused on data resources and alignment techniques needed to achieve this
capability, distinguishing between parameter-tuning and parameter-frozen approaches. The survey
by Huang et al. [115] extended beyond the contents of Qin et al. [245] and Xu et al. [361]. While
Qin et al. [245] provided a comprehensive taxonomy for alignment techniques, Huang et al. [115]
devised a taxonomy spanning training, inference, security, domains (medical, legal), and datasets.
Similar to Xu et al. [361], Huang et al. [115] provided comprehensive overviews for datasets (training
and benchmarking) and available models. In contrast to Xu et al. [361], only models with 7B and
more parameters have been listed. Lastly, Huang et al. [115] provided insights on security via attack
(e.g, jailbreaking) and defense methods.

In contrast to the broad scope of multiple languages, other surveys have focused on a single
language. For high-resource languages such as Chinese, Sun et al. [286] provided an extensive
review of LLMs in different downstream applications such as sentiment analysis. Similarly, Subies
et al. [285] focused on surveying clinical LLMs for Spanish. On the other hand, surveys on lower
resource languages tend to focus on establishing a benchmark for foundational capabilities. Yang
[369] surveyed and benchmarked the performance of available LLMs in Korean. Addressing the
challenges of languages with even fewer resources, Kryeziu and Shehu [151] reviewed techniques
to build LLMs for low-resource languages, using Albanian as a key example.
While the previous surveys have focused on how this capability is acquired, Philippy et al.

[239] underscored the lack of explanation for this capability and performed a review on possible
factors. In total, they considered five factors: linguistic similarity, lexical overlap, model architecture,
pre-training settings, and pre-training data.

5.4 Reasoning
We refer to reasoning as the capability to perform deductions, make decisions, and conduct multi-
step problem solving. This capability is crucial for LLMs to move from simple pattern matching
and produce more refined inferences able to tackle complex tasks.
This reasoning has significantly increased through prompting techniques such as Chain-of-

Thought (CoT) [215, 241, 243]. Li et al. [168] discussed general fundamental capabilities of LLMs,
further decomposing the reasoning step. Huang and Chang [114] surveyed a general method
to elicit and evaluate reasoning abilities, while Qiao et al. [243] and Plaat et al. [241] proposed
taxonomies for prompt-based reasoning.

Similarly to previously discussed capabilities, evaluating reasoning still poses a challenge [221].
Some surveys have researched specific branches of this capability; Luo et al. [204] focused on
logical reasoning, Wang et al. [324] researched multimodal reasoning, and Zhang et al. [407] studied
strategic reasoning. Some authors have evaluated reasoning through tasks: Giadikiaroglou et al.
[87] explored evaluations through puzzles, Zong and Lin [433] used categorical syllogisms, Wen
et al. [332] studied answer refusals, and Bhargava and Ng [15] involved commonsense knowledge.
However, Yang et al. [371] argued that these benchmarks may be solved through knowledge
retrieval. Lastly, Liu et al. [194] surveyed the applicability of LLMs and their reasoning capability
to aid with causal inference, or causal discovery [304].

5.5 In-context Learning
In-Context Learning (ICL) refers to the ability to adapt to new tasks by processing examples in the
LLM input. This allows for quick, few-shot adaptation to new tasks without modifying the model’s
parameters. Luo et al. [205] provided a general survey focusing on retrieval-based ICL.
The limited context window of LLMs poses a challenge for ICL, by limiting the number of

examples that can be used in the prompt [234, 323]. Huang et al. [122] surveyed progress in LLMs
aimed at increasing their context. Similarly, Pawar et al. [234] and Wang et al. [323] surveyed
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techniques for extending context length. However, Zeng et al. [390] underscored that context length
is only one of the three conflicting goals, the other two being accuracy and performance.

5.6 Interacting with Users
LLMs are increasingly deployed in applications that require direct user interaction. This interaction
requires abilities to engage in dynamic conversation, understand the intentions from the user, and
generate helpful responses [309, 380]. Zaib et al. [387] performed a general survey on dialogue
systems with LLMs, exploring how they can be leveraged for conversational agents. Similarly, Dam
et al. [45] analyzed LLM-based chatbots and their impact on diverse fields. Gao et al. [78] devised
four stages for the interaction between humans and LLMs. They consist of: planning, facilitating,
iterating, and testing. Focusing on the progression of these systems, Wang et al. [309] provided a
deeper assessment on the evolution and trends of LLM-based dialogue systems. One key aspect
in this evolution, multi-turn dialogues, was surveyed by Yi et al. [380]. However, Dong et al. [57]
stated that as these models become more integrated into user-facing applications, ensuring their
safety and robustness becomes essential.

Beyond the focus on dialogue, LLMs are used to understand user needs and characteristics. This
area of research is known as user modeling. Tan and Jiang [292] described how LLMs are used to
model and understand user-generated content. Jin et al. [135] surveyed how LLMs can infer the user
background based on cues in the prompts and tailor their responses accordingly. Another avenue
of interaction between LLMs and users is recommendation systems. In this context, the survey by
Li et al. [175] provided background details on ML and DL-based recommendation, comparing them
to LLM-based approaches. Lin et al. [182] and Vats et al. [300] presented how and what parts of a
recommendation system can be supported by LLMs. Wu et al. [339] categorized LLM approaches for
recommendation in two paradigms: discriminative (generating embeddings for users and items) and
generative. Other than computing scores for items, generative recommendation directly generates
recommendations. This can be achieved by representing user and item IDs via tokens. Generative
recommendation was examined in more detail by two more surveys [169, 175].
Other surveys have focused on practical aspects of building these LLM-based recommender

systems. For instance, Liu et al. [191] examined the training strategies for LLMs in recommendation
tasks, describing learning objectives, data types, and datasets used in each publication. Lastly, Chen
[30] surveyed how to generate explanations for recommendations and accompanying challenges.

5.7 Self-Improvement
Self-Improvement encompasses the capability of LLMs to learn from feedback to autonomously
enhance their results. Two surveys offer a broad view: Pan et al. [231] classified self-correction
strategies according to when the correction occurs (training, generation, post-hoc). Tao et al. [294]
used the concept of “self-evolution” and broke it down into a four-phase iterative cycle: experience
acquisition, experience refinement, updating, and evaluation.
Other surveys go into a deeper analysis of the self-improvement process. Kamoi et al. [140]

claimed self-correction results are being overstated due to unfair evaluation. They concluded that
reliable feedback is often the bottleneck, indicating that self-correction without external tools
generally fails except for suitable tasks. The unreliability of self-feedback is further discussed by
Liang et al. [179], who connected the success of self-improvement to internal consistency. They
concluded that since LLMs are trained on mostly correct data, improving the consistency of their
outputs tends to increase the probability of a correct output more than an incorrect one. Lastly, Wu
et al. [342] considered how evolutionary algorithms can be used to enhance LLMs by supporting
them with search capabilities, while LLMs can be used to enhance evolutionary algorithms by
guiding the search process with domain knowledge.
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5.8 Tool Utilization
LLMs are capable of using tools with the goal of interacting and leveraging external programs, such
as external software and APIs, to overcome limitations and perform additional functionalities. This
capability allows the LLMs to solve more complex problems and interact with the environment.

Wang et al. [327] performed a general survey and proposed a taxonomy for tools based on their
functionality. Qu et al. [249] surveyed tool utilization and proposed a four-stage workflow for
tool learning. Other authors survey specific applications in this field. For example, Shi et al. [273]
examined the use of tools after the content is generated by focusing on Text-to-SQL tasks, and
Mialon et al. [215] studied the use of other models, search engines, and the web as tools.

6 Applications
LLMs have shown promise in various applications and industries [299], ranging from critical fields
(e.g., finance, health, law) [35], to niche topics such as fitness or climate modeling [142]. This section
outlines the main application domains in which LLMs have been used, and their respective surveys.

6.1 Medical and Health
Medical and health applications are the most popular domain for LLM surveys we encountered,
with a total of 32 surveys carried out up to September’24.

Xiao et al. [347] and Zhou et al. [422] created surveys containing information about the training,
data and applications for LLMs in the medical domain, as well as challenges and areas for future
research. Both surveys provided helpful overviews of datasets and models, with information such
as the base model and data source, where Xiao et al. [347] also took multimodal LLMs into account.
In total, Xiao et al. [347] considered six applications: medical diagnosis, clinical report generation,
medical education, mental health services, medical language translation, and surgical assistance.
The set of applications studied by Zhou et al. [422] shows some overlap; however, the fields of
medical robotics, clinical coding, medical inquiry, and response are novel.
Similarly, Wang et al. [306] considered vision and standard LLMs for pre-trained models and

fine-tuning for downstream tasks. Luo et al. [206] focused their survey on pre-trained LLMs for
NLP tasks. Their overview included English and Chinese LLMs used for various tasks, such as
question-answering, machine translation, sentiment analysis, and named entity recognition. For
each task, they provided details on datasets and metrics used.
He et al. [102] transitioned from PLMs to LLMs. This included details on training and datasets.

Similarly, Wang et al. [311] covered the data acquisition process and different training paradigms
to adapt general LLMs for the medical domain. Their survey also included concerns about fairness,
accountability, transparency and ethics. Park et al. [233] considered ethical implications in their
review, as well as legal and socioeconomic concerns. In addition to a comprehensive overview, Liu
et al. [190] put emphasis on trustworthiness and safety of LLMs, which includes a discussion of
their fairness, accountability, privacy, and robustness. Several other surveys considered privacy
and ethical concerns in the medical domain [96, 224, 252, 420].
Huang et al. [121] focused on the evaluation of medical LLMs. This included evaluation ap-

proaches and metrics for different applications: departments and specific diseases, medical research,
medical education and public awareness, and medical text processing. LLMs in the medical domain
have been evaluated by three different evaluators: human experts, automated metrics, and AI-driven
assessments. Automated metrics can be categorized in four groups: correctness, completeness,
usability, and consistency. AI-driven assessments are in the minority. Chen et al.[33] also considered
the evaluation of LLMs for medical tasks such as image processing and information extraction.
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192, 255, 398, 404, 408]

Education
(Section 6.6)

[36, 73, 82, 160, 183,
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[161, 176, 228, 257]

Law (Section 6.4) [8, 156, 246, 288, 373]

Cybersecurity
(Section 6.3)

[34, 49, 100,
198, 354, 394]

Software and
Code (Section 6.2)
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Code generation [31, 74, 107, 123,
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99, 102, 103, 113, 121,
143, 170, 190, 206, 214,
220, 224, 226, 233,
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306, 311, 335, 347, 348,
384, 385, 420, 422]

[35, 142, 299]

Fig. 6. Taxonomy of surveys on applications.

While a lot of the surveys described tasks based on texts, the field of medicine is multimodal and
several types of data have been surveyed [99, 306, 347, 385]. Ferrara [72] studied data collected by
wearable sensors and the survey by Nerella et al. [226] covered data types such as NLP, medical
imaging, structured Electronic Health Records (EHR), social media, biophysiological signals, and
biomolecular sequences. Particularly, electronic health records have been of interest for surveys [170,
335, 348]. Li et al. [170] surveyed LLMs working with Electronic Health Records, in particular with
regards to seven tasks: named entity recognition, information extraction, text summarization,
text similarity, text classification, dialogue system, diagnosis, and prediction. Xie et al. [348] only
considered the task of text summarization, which has been applied for EHR and biomedical literature,
medical conversation, and questions.

Another set of surveys included bibliometric analysis. For instance, Restrepo et al. [259] analyzed
metadata such as author affiliations, countries, and funding source to assess diversity. Yu et al. [384]
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considered information such as collaboration networks. The remaining surveys covered areas rang-
ing from only considering Spanish language models [285] to LLMs in medical examinations[220],
psychology [103, 143], mental health [89, 95, 113, 214], and critical care medicine [275].

6.2 Software and Code
In the software engineering domain, we found several surveys which provided comprehensive
overviews. The earliest survey is by Xu and Zhu [362], from 2022. They surveyed datasets, tasks,
and architectures for pre-trained LLMs as well as their training procedures.

Subsequent surveys increased in comprehensiveness, with the survey by Ziyin Zhang et al. [410]
covering more than 900 works. They created both a taxonomy for code LLMs as well as a taxonomy
for more than 40 tasks according to the software development stages. The survey by Quanjun
Zhang et al. [400], which also entails more than 900 references, provided another comprehensive
overview. Interesting aspects they considered included an overview of pre-training tasks as well as
the integration of LLMs for SE activities (e.g., their security or size).
Zheng et al. [421] gave information about organizations which developed the LLMs (e.g.,

Company-led, University-led, Research teams & Open-source community-led). Also, their sur-
vey put emphasis on the performance of LLMs. One research question was aimed at finding
whether code LLMs perform better than general LLMs for SE tasks. Moreover, they presented the
performance reported in collected works for several tasks, to find which LLM is most suitable. Hou
et al. [109] provided valuable insights on the datasets used for SE tasks, including data collection,
selection, and processing steps. She et al. [270] surveyed pitfalls which could hinder the perfor-
mance of LLMs in practice. These are divided into four categories: data collection and labeling,
system design and learning, performance evaluation, deployment, and maintenance. For each of
these pitfalls, implications and solutions are outlined. Similarly, Fan et al. [64] listed open problems
for each stage of the software development lifecycle.
Other surveys investigated how LLMs have been prompted for various SE tasks [17], how

LLMs can be used in an educational setting to help with code related tasks (e.g., explaining error
messages) [240], or support failure management for Artificial Intelligence for IT Operations [397].
Code generation: Jiang et al. [127] created a comprehensive survey on the generation of code
from natural language descriptions. Collected works are structured given a taxonomy in: data
curation, recent advances (e.g., training and prompting), evaluation, and application (e.g., GitHub
Copilot). They also provided an overview of existing LLMs and a performance comparison of several
LLMs on two popular benchmarking datasets: HumanEval and MBPP. Zan et al. [388] also provided
a comparison of LLMs on the HumanEval benchmark, where they included a larger quantity of
small LLMs (smaller than 1 billion parameters). Additionally, they presented 17 benchmarks with
statistics, such as the number of tests available. In contrast, Hong et al. [107] surveyed approaches
for generating SQL queries from natural language.
Husein et al. [123] surveyed the completion of code rather than generating code from natural

language descriptions. They considered different granularities (token, line, API calls, Block level)
and performance metrics for evaluation. Other than generating code itself, LLMs have been used to
generate programming exercises [74], infrastructure configurations [283], and support HPC [31].
Testing and Repair: The survey by Wang et al. [310] discussed the field of software testing and
different associated tasks. The most commonly addressed tasks include program repair as well
as the generation of tests (e.g., unit tests, system tests). For these, Wang et al. extracted the most
common prompts (e.g., zero-shot) and the LLMs used for these tasks.
The survey by Zhang et al. [399] focused on APR and found 127 APR papers covering 18 bug

types that used LLMs. Zhou et al. [425] considered both vulnerability detection and repair. They
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investigated how LLMs have been adapted to these tasks and found that the majority of approaches
perform fine-tuning. Huang et al. [117] covered the use of LLMs for fuzzing as a testing activity.
Integration: While previously outlined surveys covered the use of LLMs for software engineering
activities, they can also be treated as components of software itself. In this regard, Weber [329]
created a taxonomy for LLM-integrated software systems, and Sergeyuk et al. [267] studied the use
of LLMs in Integrated Development Environments (IDEs). Gorissen et al. [88] considered the use of
LLMs in Low-Code Development Platforms.

6.3 Cybersecurity
Four studies created comprehensive overviews of the field of cybersecurity [34, 100, 354, 394]. Has-
sanin and Moustafa [100] covered diverse cyber defense strategies such as vulnerability assessment,
intrusion detection, or anonymization, while others put emphasis on vulnerability assessments [49]
and threat detection [34]. Zhang et al. [394] not only outlined defense activities but also indicated
ways to use LLMs for attacks. Xu et al. [354] provided insights on how to construct LLMs for the
security domain via means of fine-tuning, prompting, or augmentation with external tools. Lastly,
Liu [198] gave an overview of available pre-trained models for cybersecurity, and Xu et al. [354]
addressed the data collection process and available datasets.

6.4 Law
LLMs have been used to automate various legal tasks, but their adoption also raised challenges [288].
Anh et al. [8] researched the impact of LLMs on NLP, focusing on legal text processing. They
explained how NLP addresses different challenges in the field, such as ambiguity and sentence
complexity. They performed an empirical analysis that suggests that encoder-decoder models
outperform encoder-only architectures, advocating for their use in legal NLP tasks.

Lai et al. [156] provided a general survey on the applications of LLMs within the judicial systems.
They included the impact on common users as well as experts (e.g., judges and lawyers). The
authors indicated limitations and issues of LLMs that can affect judicial practices. They gave
practical recommendations for improving the use of LLMs in the legal system and highlighted
the importance of understanding the societal impacts of these technologies. Similarly, Qin and
Sun [246] covered the practical application of LLMs in the legal system, such as case retrieval
and legal analysis. They indicated potential challenges such as biases, interpretability issues, and
data privacy concerns. This study emphasized the need for fine-tuned models and presented an
overview of datasets for their training in different languages. Lastly, Yang et al. [373] presented
a systematic review of legal LLMs focusing on fine-tuning for question-answering tasks. They
provided a practical view focusing on the implementation of these systems and the techniques
that they could use (e.g., Low-Rank Adaptation). They used a bottom-up approach to examine how
existing models can be adapted to the legal domain.

6.5 Finance
Nie et al. [228] provided a comprehensive survey on LLMs for finance. They first categorized
existing works according to application areas in the financial domain, including, among others, time
series forecasting, reasoning, and sentiment analysis. Further information on datasets, benchmarks,
and challenges is presented. In addition to providing an overview of finance applications, Li et al.
[176] developed a decision framework to help practitioners select an LLM based on their task. For
this, they also provided a comparison with estimated costs of different LLM options (e.g., zero-shot,
fine-tuning, training from scratch). Lee et al. [161] put emphasis on presenting benchmark tasks and
datasets. Moreover, they showed a timeline of LLMs and financial LLMs. Ren et al. [257] addressed
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the use of LLMs in an e-commerce setting. In this context, LLMs have been used for tasks such as
product recommendations, question answering and analysis of customer feedback.

6.6 Education
Wang et al. [316] created a comprehensive survey on how LLMs can assist teachers, students,
and different tools that are available. Additionally, they provided an overview of datasets and
benchmarks, as well as discussed risks and challenges of LLMs in education. Pester et al. [238]
addressed the use of LLMs for immersive learning activities. The survey by Xu et al. [353] provided
more background information on education, as well as how to integrate LLMs in the process,
while García-Méndez et al. [82] considered LLMs used for different education activities. This focus
on integration also extends to specific disciplines, with dedicated surveys exploring the use the
integration of LLMs in subjects such as computer science [240] or engineering [73].

Yan et al. [364] covered a total of 53 educational tasks from nine categories (e.g., grading, content
generation) and put emphasis on practical and ethical challenges. In a similar fashion, Chhina
et al. [36] looked at both the challenges and benefits of LLMs in education. Lee et al. [160] focused
their survey on different types of biases when using LLMs in an educational setting. Biases were
investigated at different stages of the LLM lifecycle (e.g., data collection, training, and deployment).
Lin et al. [183] listed available open-source LLMs for use in education activities.

6.7 Science
Ho et al. [106] provided an overview of scientific LLMs applied to text, and presented different
tasks, datasets, and existing models. In addition to scientific LLMs for text, Zhang et al. [404]
surveyed more than 260 LLMs, not only taking different scientific fields but also different modalities
into account. Complementing this broad overviews, other surveys focus on LLM applications in
specific fields such as chemistry [180, 255, 398], biology [398], and mathematics [192], as well as
for specialized sub-domains like single-cell biology [158] and computational neuroscience [141].
A trait of scientific texts is the presence or use of citations, to give credit to relevant sources.

Here, Zhang et al. [408] created a survey to show the relation between LLMs and citations. Their
survey provided an overview of four different citation tasks LLMs can be applied to: citation classi-
fication, citation-based summarization, citation sentence generation, and citation recommendation.
Additionally, they discussed how citations can be incorporated in the training of LLMs.

6.8 Transportation and Driving
In the realm of Intelligent Transportation Systems (ITS), LLMs have been used to advance trans-
portation intelligence and traffic management. The surveys by Shoaib et al. [277] covered tasks
such as traffic prediction and transportation management, while Zhang et al. [392] considered
traffic management, transportation safety, and autonomous driving. Moreover, they provided a list
of datasets for the ITS domain. Zhang et al. [412] focused on travel behavior prediction as a time
series forecasting problem and provided an overview of LLM-based approaches.
Autonomous driving was covered by three dedicated surveys [41, 173, 375]. Cui et al. [41]

addressed the use of LLMs for autonomous driving from a multimodal perspective (vision and lan-
guage). They provided a holistic overview, considering the use of multimodal LLMs for autonomous
driving, transportation, and maps. Furthermore, they presented datasets for autonomous driving
and traffic scene understanding, and extracted information from existing approaches, such as the
LLMs used. In contrast, Yang et al. [375] provided a more fine-grained view on tasks and metrics
used for evaluation. They distinguish four categories, based on the respective tasks: planning, per-
ception, question answering, and generation. Li et al. [173] covered the use of LLMs in autonomous
driving either as part of the pipeline, to support existing systems, or as end-to-end systems.
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6.9 Others
Sports: Xia et al. [345] investigated datasets and applications for LLMs in a sports setting. Here,
LLMs can be applied to different input types (text, video, audio) and have addressed a diverse range
of tasks (e.g., hate speech detection, fan engagement, game summarization).
Games: Sweetser [289] carried out a scoping review on 76 papers on LLMs for video games, to
provide an overview and support future research. In the gameplaying context, LLMs have been
used as parts of the game (e.g., agents, dialogue generation) or part of the development and analysis
process (e.g., content generation, analysis of reviews).
Gallotta et al. [76] addressed the different roles of LLMs in games in their survey. In total, they

identified nine roles that LLMs have taken: Player, NPC (non-player character), player assistant,
commentator, analyst, game master, game mechanic, automated designer, and design assistant.
Additionally, they presented a roadmap for future applications of LLMs for games, as well as
limitations and ethical implications of their use.
Hu et al. [111] focused their survey on LLM-based game agents, for which they found 62 ap-

proaches. These were categorized based on game type (text, video) and genre (e.g., adventure,
cooperation, simulation). Moreover, agents were discussed from six perspectives: perception, mem-
ory, thinking, role-playing, action, and learning.
Telecommunication: Zhou et al. [423] presented a comprehensive overview of LLMs in the
field of telecommunications. In particular, LLM activities (generation, classification, optimization,
prediction) were mapped to telecommunication applications. Such applications include network
issue troubleshooting, network defect detection, and traffic load level prediction.
Blockchain: Geren et al. [85] surveyed how blockchain techniques can support the security and
safety of LLMs, for example by verifying training data authenticity and privacy preservation. On
the other hand, He et al. [105] surveyed LLMs for supporting blockchain security. They showed
that LLMs can support the blockchain community by detecting vulnerabilities in the source code
of smart contracts, detecting irregular transaction patterns or the generating of smart contracts.
Robotics: Kim et al. [146] explored the use of LLMs in robotics. Their focus is on recent LLMs (after
GPT-3.5) and text-based LLMs, while still allowing the inclusion of relevant multimodal approaches.
They distinguish four main categories of LLM use: communication, perception, planning, and
control. Additionally, they provided guidelines for prompting LLMs for four robotic tasks: interactive
grounding, scene-graph generation, few-shot planning, reward function generation.
Similarly, the survey by Zeng et al. [389] presented LLM applications in robotics with regards

to control, perception, decision-making and path planning. Different from Kim et al. [146], they
put more emphasis on LLMs and transformer architectures, as well as challenges. Lastly, Shi et
al. [276] addressed the use of LLMs in socially assistive robots (SARs) with a short survey. Herein,
challenges and opportunities of using LLMs in SAR were discussed.
Hardware: Similar to their use in detecting software vulnerabilities (Section 6.2), LLMs can support
the security of hardware components. Makhzan and Kamali [210] compared 10 such studies.
Agriculture: Zhu et al. [429] reviewed how LLMs and vision models can be applied in agriculture.

7 Multimodality
Generally, LLMs are applied to textual data and excel at language-based tasks. However, their
application has been extended beyond texts to further modalities, for which we discuss relevant
surveys. Wu et al. [337] outlined the history of multimodal approaches, from single modality to
recent large-scale multimodal systems. Yin et al. [382] presented information on the architecture
of Multimodal Large Language Models (MLLMs) as well as their training and evaluation. Song et
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Multimodality

Others (Section 7.3)

3D [208]

Geospatial [297, 426]

Structured [69, 202, 403]

Audio [336]

Time-series [130, 284, 378, 402]

Graph (Section 7.2)
[3, 131, 165, 174,
212, 258, 268]

Visual (Section 7.1)

[1, 19, 24, 60, 67, 86,
90, 97, 99, 162, 187,
189, 200, 209, 219,
227, 293, 301, 349,
395, 406, 424, 429]

[10, 104, 247, 281,
337, 367, 382]

Fig. 7. Taxonomy of surveys on multimodality.

al. [281] described how different modalities can be aligned. Other surveys studied the generation
and editing across modalities [104], training data [10, 247], or analysis of sentiments [367].

7.1 Visual
The most frequent application of multimodal language models we found is for visual tasks, with
multiple surveys presenting comprehensive overviews [19, 395]. For example, Zhang et al. [395]
gave background information on the visual paradigm as well as a summary of characteristics such
as downstream tasks of Vision Language Models (VLMs) and their architecture. Among others,
they outlined datasets and pre-training methods. There are several other comprehensive surveys,
which put different foci, such as datasets [97], models [86], or details on regular LLMs [24].

The surveys by Du et al. [60] and Long et al. [200] focused on pre-trained vision-language
models. First, data is transformed into desired representations. Afterwards, an architecture is
designed to model the interaction between text and image. Further surveys took prompting [90],
fine-tuning [349], and the detection of out-of-distribution samples and anomalies [219] into account.
These advancements enabled the application of VLMs in diverse domains with surveys describing
their applications in agriculture [429], medicine [99], autonomous navigation [209, 406], document
understanding [1], and video analysis [227, 293, 424]
While VLMs offer advantages in several tasks, they can be vulnerable to attacks, which affects

their usability in real-world applications [67]. Here, Liu et al. [187] surveyed four types of attack
methods (adversarial attacks, jailbreak, prompt injection, and data poisoning) as well as potential
defense methods. Fan et al. [67] considered different attack scenarios based on the type of model
access (i.e., white-box, gray-box, black-box). Ethical AI has been further taken into account by
Vatsa et al. [301] who surveyed bias, robustness, and interpretability of VLMs. Lee et al.[162] solely
focused on biases and their mitigation. Another shortcoming of VLMs are hallucinations, which was
surveyed by Liu et al. [189]. They collected methods and benchmarks for evaluating hallucinations
and mitigate them. In total, there are five areas that have been addressed for mitigation: data, vision
encoder, connection module, LLM, post-processing.

7.2 Graph
Jin et al.[131] created a comprehensive survey on different ways LLMs can interact with the
structured information provided in graphs. Hereby, there are three types of graphs to consider: pure
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graphs, text-attributed graphs (e.g., nodes have texts), text-paired graphs (a complete graph is paired
with text). Additionally, LLMs can be used in three different manners for graph tasks: as predictors,
encoders (e.g., encoding node texts as vectors), or for aligning text encoding with Graph Neural
Networks (GNNs). Their taxonomy considered the intersection of two dimensions: the application
scenario (graph type) and the LLM technique. Moreover, they created an overview of datasets from
different domains (e.g., academia, e-commerce, books, Wikipedia) and graph problems studied (e.g.,
shortest path, neighbor detection).

Other taxonomies are included in the works by Ren et al. [258] and Li et al. [174]. The taxonomy
by Ren et al. [258] considered four aspects: GNNs as Prefix, LLMs as Prefix, LLMs-Graphs Integration,
LLMs-Only. For GNN as prefix, data is first processed by GNNs and then fed into LLMs. LLMs as
Prefix does the opposite, processing data with LLMs to improve GNNs. LLMs-Graphs Integration
entails methods that improve the ability of LLMs to handle graph data, while LLMs-only describes
work that applies LLMs to graph tasks via prompting. Li et al. [174] devised a taxonomy with three
categories: enhancer (enhancing quality of node embeddings), predictor (using LLMs for prediction
in graph-tasks), and alignment (aligning embedding spaces of LLMs and Graph Neural Networks).

Mao et al. [212] studied the integration of LLMs for Graph Representation Learning (GRL). They
outlined existing approaches for using LLMs to improve GRL tasks. Approaches are investigated
with regards to four components: knowledge extraction, knowledge organization, integration
strategies, and training strategies. Shang and Huang [268] surveyed the use of LLMs for graph
analytics tasks. Their survey considered three aspects, the processing of graph queries with LLMs,
inference and learning over graphs, and applications. Ample visual examples are provided for the
tasks (graph understanding, graph learning, graph-formed reasoning) and prompts.
While the outlined surveys addressed graphs in general, we found two surveys focused on

knowledge graphs. Such graphs are used to model and structure knowledge bases. On one hand,
Agrawal et al. [3] surveyed how knowledge graphs have been used to combat hallucinations in
LLMs. For this, they defined three groups: inference (e.g., RAG), training (e.g., pre-training, fine-
tuning), and validation (e.g., fact-checking LLMs). On the other hand, Li and Xu [165] addressed
both, how LLMs can enhance knowledge graphs and how knowledge graphs can enhance LLMs.

7.3 Others
Beyond the extensively researched domains of vision and graphs, MLLMs are expanding to a
broader range of formats. The following surveys cover these emerging modalities, each presenting
unique challenges and opportunities when integrated with LLMs.
Time-series: Jiang et al. [130] created a survey on time-series analysis with LLMs. LLMs can model
time-series via querying, tokenization, prompting, fine-tuning, or the integration of LLM output
in existing models. Overall, this survey includes 21 studies, over various applications (e.g., CV,
mobility, healthcare, finance), for which the modeling approaches, tasks, and underlying LLMs are
extracted. The survey by Ye et al. [378] contains time-series studies for similar application domains,
however, their analysis focused on three dimensions: effectiveness, efficiency, and explainability.
Su et al. [284] included a discussion of anomaly detection for time series.

Beyond this scope, Zhang et al. [402] considered visual representations of time series as well as
LLM-based tools to support the processing of time-series, for example by creating code.
Audio: By converting audio into discrete codes, they can be processed by language models. Wu et
al. [336] provided an overview of six neural models and 11 language models for processing audio.
For each language model, they presented the addressed tasks as well as input and output format.
Structured: Tables represent data in a structured, two-dimensional manner and can be processed
with LLMs. Fang et al. [69] reviewed techniques, metrics, datasets, and models for four techniques
for applying LLMs to tables: serialization, table manipulation, prompt engineering, and end-to-end
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systems. Emphasis is also put on the use of LLMs to generate tabular data. In addition to discussing
training approaches for LLMs and Visual language models, Lu et al. [202] described prompting
techniques and the use of agents.
Zhang et al. [403] focused their survey on techniques to improve the performance of LLMs for

different table processing tasks (QA, fact verification, table to text, text to SQL). For five popular
improvement techniques, they showed a performance comparison over four datasets.
Geospatial: Zhou et al. [426] surveyed LLMs with geo-perceptive capabilities to handle multiple
modalities of geospatial data. They focused on a specific family of language models, Vision-language
geo-foundation models (VLGFM). These VLGFM incorporate diverse data modalities to (satellite
images, geo-tagged text, remote sensing images) to address a wide range of geospatial tasks (e.g,
image captioning, visual grounding) The survey includes an overview of tasks, datasets and metrics
for evaluation as well as a description of model architectures. Tucker [297] reviewed LLMs for
Geospatial Location Embeddings (GLE) to represent and express space.
3D: LLMs have seen use in spatial tasks, which require the consideration of three dimensions. In
particular, Ma et al. [208] investigated how LLMs can understand and interact with 3D data. Their
survey provided information on different 3D data representations (e.g., point cloud, grid, mesh),
tasks (captioning, grounding, conversation (question answering), agent, generation), and datasets.
Additionally, the LLMs and 3D components for 37 publications are extracted and described.

8 Risks and Mitigation
While prior sections outlined the benefits in various domains, LLMs can be susceptible to bias and
safety issues or share private information [42, 197]. These concerns propagate to various fields [47],
such as healthcare [96] or education [364], and are major challenges that need to be overcome to
achieve trust [71, 119, 184, 197, 301] and transparency (e.g., by explaining responses) [20, 203, 253,
413]. Researchers showed interest in the different types of risks and their mitigation [266].

In the following, we discuss the main concerns pointed out and covered by existing surveys:
fairness, hallucinations, security, and privacy [40, 56, 81, 119, 144, 154].

8.1 Fairness and Bias
LLMs can propagate social biases from the training data, causing fairness and bias issues, which
has been covered by several studies [39, 75, 172]. The survey by Gallegos et al. [75] is the most
comprehensive with three taxonomies, one for metrics, datasets, and bias mitigation methods
each. Chu et al. [39] presented toolkits in addition to datasets, while Li et al. [172] took model size
into account. They distinguished fairness studies based on LLM size, as smaller models allow for
fine-tuning, while large models are prompted instead.

Surveys have also focused on a specific aspect, such as metrics [50] or the debiasing of LLMs [184].
Another set of works surveyed specific fields for biases, such as education [160], e-commerce [257],
information retrieval [44], vision-language models [162], or recommender systems [263].
Lastly, Wang et al. [314] collected human perspectives on LLM bias from several studies and

summarized their perspectives. Among other things, people perceived bias more when they failed
to receive desired responses.

8.2 Hallucination
At times, the outputs generated by LLMs are inconsistent with the actual answer or the user
input itself, which is called “hallucination”. There are three comprehensive surveys addressing this
issue [116, 377, 405]. They contain details on causes, benchmarks, and mitigation approaches. We
have also found two surveys addressing hallucinations for vision-language models [11, 189].
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Fig. 8. Taxonomy of surveys on risks and threats.

As hallucinations can be detrimental to LLM usage, their mitigation (“dehallucination”) is studied.
We encountered surveys that either gave an overview of mitigation techniques [184, 295], or elabo-
rated on a single approach in detail, such as knowledge graphs [3] or knowledge augmentation [7].

A different point of view is provided by the survey of Jiang et al. [129], who considered halluci-
nations as a chance to foster creativity in LLMs.

8.3 Security and Privacy
Yao et al. [376] conducted a holistic survey on the security and privacy of LLMs, including the
use of LLMs to support privacy by, for example, generating secure code or testing applications.
Security has further been considered for multimodal LLMs [67, 132, 187, 269], agents [101, 318],
and blockchain [85, 105]. In addition, Derner et al. [52] considered the use of LLMs for malicious
intents, such as writing spam messages or sharing fake news.
Remaining surveys consider the security and safety risks of LLMs themselves. Particularly,

security and privacy issues can be exploited passively by leaking personally identifiable information
via regular interactions with a model, or dedicated attacks [47, 279, 363]. In terms of attacks, existing
surveys have summarized them into the categories listed in Table 4.
The majority of these surveys not only describe the attacks, but also provide details on their

mitigation. While attacks are usually automatic, some surveys list methods with human interfer-
ence [37, 57, 269]. Attacks can be carried out on the provided service, by assessing or changing
the prompt or responses, or slowing the model down with intensive prompts [52, 318]. Likewise,
attacks can be performed by the service provider, for instance to recompute user queries [91].

8.4 Others
In addition to core risks detailed previously, a holistic assessment requires considering broader
challenges related to their development and use in society. The following surveys address several
of these considerations.
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Table 4. Overview of attack techniques and surveys which describe them.

Backdoor/data poisoning attacks [37, 47, 52, 57, 63, 124, 187, 188, 318, 363, 366, 415]
Jailbreak [37, 47, 132, 187, 188, 269, 318, 379]
Adversarial [37, 57, 91, 187, 269, 318]Security Attacks

Prompt injection [37, 47, 52, 57, 63, 155, 187, 188, 269, 318]
Membership inference [47, 52, 63, 125, 225, 279, 318, 363]
Attribute inference [91, 225, 279, 318, 363]
Corpus inference [63, 91, 318, 363]
Data extraction attack [47, 225, 279, 318]

Privacy Attacks - Data

Knowledge stealing attacks (With RAG )[318]
Model extraction/stealing [52, 63, 318, 363]
Accuracy extraction [91]Privacy Attacks - Model
Fidelity extraction [91]

Efficiency and Sustainability: The training and fine-tuning are compute-intensive activities that
require time, compute resources, and energy, which introduces a critical challenge.
Efficiency concerns have been addressed for both text-based language models and multimodal

language models [134, 349, 356]. For instance, Xu et al.’s [356] focus was on resource-efficiency,
which entails the improvement of the efficiency of LLMs but also making better use of the available
resources (e.g., data). Thereby, some of the methods would increase performance and not necessarily
efficiency (e.g., better performance via data augmentation). Bai et al. [9] categorized resource
efficiencymethods based on the resources they optimized: computational, memory, energy, financial,
and network. Wan et al. [305] listed frameworks which provide efficiency methods. Duan et al.
[61] did not only consider efficiency but also fault tolerance. This is important to ensure that the
computations are reliable and do not get lost. Further efficiency considerations for the different
components of LLMs can be found in Section 4.
In terms of sustainability, Hort et al. [108] considered the sustainability of training and fine-

tuning LLMs, as well as sharing them. By making trained LLMs publicly available, users do not
need to train them themselves and save energy. Zhang and Chen [396] presented how LLMs can
support in improving the energy efficiency of buildings and aid in decarbonization activities.
Explainability: In the context of LLMs, explainability refers to methods used to understand the
reasoning behind their generation. These models are often categorized as “black-box” systems since
their inner reasoning is challenging to interpret. Explainability allows to understand the model’s
behavior, which increases user trust, allows debugging, and helps guide their development.

Some authors provide a more general overview of the field. Zhao et al. [413] proposed a taxonomy
classifying these methods based on two training paradigms: traditional fine-tuning-based and
prompting-based. For each paradigm, they further discussed the goals to achieve local and global
explanations. Luo and Specia [203] classified methods into local analysis and global analysis. Local
analysis includes feature attribution and transformer block analysis, while global analysis focuses on
mechanistic interpretability and probing-based methods. Meanwhile, Cambria et al. [20] explored
the balance between interpretability and functional advancements. They labeled each work based on
one or more primary objectives: comparison of models, explanation, improvement, interpretability,
and reasoning. However, a common thread in these overviews is the challenges of evaluating
explainability [203, 413]. In this landscape, Rai et al. [253] provided insights and challenges in
the subfield of mechanistic interpretability which focuses on reverse engineering operations to
understand LLMs. This approach analyzes features and circuits of a model to provide insights and
enable practical applications in fields such as knowledge editing and AI safety.
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Uncertainty: To determine the confidence of LLMs with their generated responses, their uncer-
tainty can be determined [53, 84]. This metric can indicate the likelihood that a response is correct,
which is critical for establishing model reliability.
Plagiarism: The content generated by LLMs can also be seen as a potential threat, as one
could misuse them for plagiarism [242]. Therefore, other studies set out to detect LLM-generated
content [338, 372]. Another approach to identify as well as protect the ownership of LLM generated
texts is watermarking [157, 186, 322].

9 Conclusion
A lot of secondary reviews have been written for LLMs. We have found 984 secondary studies
with our systematic search procedure, 424 of which are included in this article (all studies can be
found in our GitHub repository). We hope that this provides researchers with a useful resource for
navigating the growing field of surveys, to which we are adding another one.
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