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Abstract— Human Activity Recognition (HAR) models often
rely on small, specialized datasets, limiting their generalizabil-
ity. In addition, many systems rely on privacy-invasive RGB
video as their primary sensing modality. This choice raises
ethical concerns, especially in health- and home-care robotics,
where patient privacy is paramount. In this study, we evaluate
transfer learning as a method to improve HAR generalizability
across RGB, IMU, and depth imaging modalities while assessing
how privacy-preserving modalities can compensate for a lack
of RGB video in multimodal learning contexts.

We train a feature-fusion model on aggregated HAR datasets,
leveraging pretrained backbones for each modality, and com-
pare it to a general multimodal model pretrained on non-
HAR datasets. Evaluating on the PriMA-Care privacy-focused
dataset across combinations of modalities, we find that the gen-
eral model outperforms the HAR model, with best accuracies
of 98.29% for the general model with RGB + IMU and 94.97 %
for the HAR-specific model with RGB + depth. Analysis shows
that the general model more readily identifies individuals from
RGB input, while IMU and depth better preserve privacy with
a small accuracy loss (5%).

I. INTRODUCTION

Human Activity Recognition (HAR) aims to classify ac-
tivities using a diverse range of sensor data [1]. Employing
both machine learning and signal processing methods, HAR
is widely used in a wide range of applications such as
healthcare monitoring, fitness tracking, smart environments,
security and human-computer interaction [2]. However, HAR
faces challenges with generalizability [3], as well as potential
privacy concerns in health- and homecare settings due to
an over-reliance on RGB (visual spectrum imaging) imag-
ing [4], [5], as RGB video is generally rated as more privacy
invasive compared to e.g. depth sensors [6]. The sensor type,
however, may need to be conveyed e.g., through labelling.

In this study, we explore transfer learning — the employ-
ment of a model trained on data from one domain for use
in another [7] — as a method to improve HAR generaliz-
ability across RGB, IMU (inertial measurement unit) and
depth imaging modalities, while evaluating how the privacy-
preserving sensors compare to RGB imaging. We evalu-
ate the performance of a feature-level fusion HAR-specific
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model, leveraging pretrained backbones for each modality
fine-tuned on aggregated HAR datasets, against a general
multimodal model on the PriMA-Care dataset, a privacy-
oriented dataset for HAR in human-robot interaction [4].
With this, we contribute:

1) The proposal of a systematic methodology for evaluat-
ing the generalizability of HAR datasets and apply this
framework to assess the cross-dataset performance of
several aggregated HAR collections, providing insights
into their real-world applicability.

2) A comprehensive evaluation of large pretrained mul-
timodal models adapted for HAR tasks, demonstrating
their potential to leverage transfer learning from broader
domains to improve activity recognition performance.

3) An analysis of the fusion of privacy-preserving modal-
ities as alternatives to RGB video data in HAR ap-
plications, offering practical alternatives that balance
recognition accuracy with privacy protection.

II. BACKGROUND AND RELATED WORK
A. HAR and Multimodal Learning

Multimodal learning can enhance HAR systems by inte-
grating different sensor modalities, leveraging their strengths
to compensate for individual limitations [8]. It has been
widely adopted for HAR due to the prevalence of multimodal
HAR datasets and its real-world applicability [9].

RNNs and CNNs have traditionally been commonly em-
ployed for HAR [9], but recently architectures such as
Temporal Convolutional Networks (TCNs) [10] have gained
traction. A recent study on eight multimodal architectures
for HAR (MSENet, TST, TCN, CNN-LSTM, ConvLSTM,
XGBoost, decision tree, and k-nearest neighbor) found that
MSENet offered the highest accuracy for both datasets [11].

At larger scale, transformer architectures are becoming
increasingly prevalent. State-of-the-art general models such
as LanguageBind [12] and ImageBind [13] create a shared
embedding space for multiple input modalities, enabling
zero-shot and few-shot transfer across modalities. These
models can extract useful representations even when fewer
modalities are available at inference. Given their ability to
generalize across diverse data sources, studying their ability
to generalize to HAR tasks is a promising prospect.

B. HAR and Transfer Learning

Transfer learning is a method in which a model trained on
data from one domain is employed in another [14]. This can
be achieved through methods such as transferring classifier
weights, learned features, or instances of data [15], [16], [17].
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Transfer learning has been widely employed for HAR [18],
[19]. However, a significant challenge facing HAR is the
lack of large, labeled datasets and corresponding models
for many of the sensor modalities employed [18]. This
is especially the case for modalities which better preserve
privacy such as IMU and depth imaging. This challenge
is further compounded in multimodal HAR, where aligned
HAR datasets across modalities are scarce.

To address this, we evaluate the ability of recent devel-
opments in large, general, multimodal models to transfer to
HAR tasks. Specifically, we compare the performance of a
general model consisting of ImageBind and LanguageBind
against a HAR model, consisting of a feature-level fusion
of three single modality pretrained models fine-tuned on an
aggregation of HAR datasets.

III. METHODS AND MATERIALS
A. Overview

To evaluate the need for HAR-specific pretraining, we
employ backbones of different levels of specificity (HAR
and general). We train a two-layer classification head on
top of the frozen backbones with the PriMA-Care dataset.
The results are evaluated using cross-validation, where one
subject is left out of training for each iteration.

The classification head comprises a hidden layer of 512,
and an output value for each action (6). We used a standard
cross-entropy loss and an Adam optimizer with a learning
rate of le-3 and weight decay of le-4. The classification
head was trained from scratch 14 times for 10 epochs, with
different subject hold-outs.

Modalities were fused through concatenating the output
vector for each backbone. The classification head was trained
on that representation using the same procedure.

B. Datasets

Several datasets have been developed for benchmarking
and evaluating multimodal HAR models. For training, we
selected three datasets: UTD-MHAD, NTU RGB+D 120, and
GOTOV, as they overlap with the modalities we have chosen
from the PriMA-Care dataset. Each backbone is trained on
a combination of two datasets to diversify the range of
participants and activities and to test dataset generalizability
in otherwise controlled environments. PriMA-Care is used
exclusively for evaluation as our primary benchmark.

UTD-MHAD [20] contains RGB, depth video, and six-
channel IMU data from 8 participants performing 27 gestures
in a controlled setting. While classification models perform
well in this constrained environment, we anticipate limited
transferability to more dynamic real-world scenarios.

NTU RGB+D 120 [21] is a large multimodal dataset with
RGB, depth, IR videos, and skeleton pose data. Though more
diverse than UTD-MHAD, it uses staged scenarios, making
its real-world transferability unclear.

GOTOV [22], [23] is a multimodal dataset of 35 adults
over the age of 60 performing 16 daily activities, using
wearable sensors (accelerometers, physiological monitors,
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and spirometry). Due to its elderly-specific focus, the dataset
may have limited generalizability.

PriMA-Care [4] is our primary evaluation dataset: a
privacy-preserving multimodal dataset for healthcare hu-
man-robot interaction. It employs RGB, depth, thermal,
3D/2D lidar, ultra-wideband, wearable IMU, force/torque
sensors, and TIAGo arm-joint encoders to record 17 par-
ticipants performing 27 activities. The original PriMA-Care
collection was approved by the Norwegian Center for Re-
search Data (NSD, Ref. No. 863469), and all participants
gave informed consent for data collection and public release.
No new human-subject data were collected in this study, and
we used the dataset strictly under the scope of that consent.

C. Models

1) HAR-Specific Backbones

For RGB and depth, we use the near state-of-the-art
backbones from UMDR [24], which are trained on the NTU
RGB+D 120 dataset. For RGB we also tested a 3D ResNet-
18 (R3D), pretrained on Kinetics-400 [25]. With R3D we
can evaluate whether training on a larger and more diverse,
but still HAR specific dataset, can be beneficial. For this, we
employ the same preprocessing used for the models during
training, but tune the depth clipping range to fit the PriMA-
Care dataset, setting a 0.5m to 5m cutoff to mimic the
masking on the NTU RGB+D 120 dataset.

For the IMU, we did not find any HAR pretrained network,
so we trained a backbone on other open datasets before
training the classification head on PriMA-Care.

a) HAR-Specific IMU Backbone

A challenge facing IMU data is a large degree of hetero-
geneity between datasets [26], for example employing dif-
ferent sensor arrays with varying sensors, differing sampling
rates and placement on the body. Therefore, we fine-tuned
our own IMU network, with a focus on an architecture that
could be used across datasets.

We fine-tuned the network on a merged GOTOV + UTD-
MHAD set, collapsing shared labels into three intensity levels
(low, medium, high). Because GOTOV lacks orientation, we
kept only acceleration signals and applied a Butterworth low-
pass filter to remove dataset-specific high-frequency noise.

The sequences were split into segments (length: 2's, hop:
100 ms), and time-frequency spectrogram representations of
each segment for each Cartesian axis were derived with a
Short-Time Fourier Transform (STFT). This resulted in an
image sequence, for which the X, Y, and Z axis spectrograms
were placed in the R, G, and B channels, respectively. Each
image was resampled to 224 x 224.

The IMU network employs a ResNet-18 backbone, ap-
pended with a bi-directional LSTM, an attention layer and a
fully connected classification layer.

2) General Backbones

Our general backbones are ImageBind and Language-
Bind. These models are not trained specifically on HAR
datasets nor for classification tasks, but rather to produce
representations that are similar across modalities through
self-supervised learning. All the models for all modalities
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TABLE I: Activity recognition accuracy for all models and
modalities.

Modality HAR-Specific Model | General Model

RGB (R3D) 82.12% -

RGB 88.27% 96.89%

Depth 86.59% 92.18%

IMU 50.00% 65.71%

RGB+Depth 94.97% 97.76%

RGB+IMU 86.51% 98.29 %

Depth+IMU 79.99% 93.14%

RGB+Depth+IMU 75.57% 96.57%

are similar Transformer architectures, with only minimal
preprocessing. For depth and video, we use LanguageBind,
while for IMU we use ImageBind.

The depth backbone takes a depth image with values
clipped and scaled between 0 and 1. The RGB backbone
takes a series of 8 consecutive frames. The IMU backbone
takes a series of up to 2000 samples with 6 values: tri-axial
acceleration and orientation.

D. Evaluations

1) Classification Accuracy

We evaluate the overall classification accuracy of our
models by calculating the accuracy for both model conditions
across all modality combinations.

2) Generalizability

To test generalizability, we employ zero-shot tests. This
is a technique in which a model attempts to classify in-
puts into classes unseen during training. For ImageBind
and LanguageBind, which include text as an input/output
modality, these tests are fairly straightforward. We use a text
string starting with “A person is” and then append the class
name, e.g. “A person is sitting”. We choose the label from
the text-string that best corresponds with the sensor model
representation. For the HAR-specific models, we employ
overlapping or partially overlapping class labels.

Additionally, we added a setting where we attempted to
obtain a more targeted and naturally formulated description
of the classes that better coincided with the videos. Since
all the subjects are sitting while talking on the phone, for
example, we made the class string “A person is sitting
and talking on the phone”. As a similar alternative for the
HAR models, we selected the model output that empirically
correlated the most with each of the classes instead of
choosing the labels that are most semantically similar.

3) Privacy Preservation

To evaluate the extent to which the models preserve
user privacy we tested fine-tuning the classification head to
classify by subject instead of activity. We used a similar
leave-one-out cross-validation for evaluation.

IV. RESULTS

A. Classification Accuracy

Table I shows that the general models outperform HAR-
specific models. Fusing two modalities increases perfor-
mance, whereas fusing all three modalities decreases per-
formance. IMU alone resulted in quite poor performance but
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TABLE II: Zero-shot accuracy on the PriMA-Care dataset.

Model Zero-shot | Prompt/Label-engineered
LanguageBind (RGB) 82.85% 90.86%
LanguageBind (Depth) 64.57% 85.71%

NTU-UMDR (RGB) 43.42% 72.00%
NTU-UMDR (Depth) 20.04% 29.61%

TABLE III: Individual participant identification accuracy.

Model Identification Accuracy
LanguageBind (RGB) 74.19%
LanguageBind (Depth) 45.16%
ImageBind (IMU) 33.89%
R3D (RGB) 50.00%
NTU-UMDR (RGB) 33.87%
NTU-UMDR (Depth) 37.09%
IMU-Net (IMU) 15.63%
ImageBind (IMU) + LanguageBind (Depth) 49.15%

yielded a larger accuracy gain when paired with RGB rather
than depth. Since the general model’s results are better, we
focus on those.

Fig. la shows that IMU underperformed RGB (Fig. 1b)
in all categories. However, the fused results (Fig. 1c) show
an overall improvement. As expected, IMU input helps most
on classes distinguished mainly by hand motion.

The depth model (Fig. 1d) underperforms on more fine-
grained actions such as brushing hair and brushing teeth.
Depth and RGB (Fig. 1f) improves performance over RGB
alone. IMU also shows a slight increase in performance
(Fig. le), however not to the extent of RGB.

B. Generalizability

Table II shows a clearly better performance for the lan-
guage models, especially when combined with RGB. All
labels in PriMA-Care have similar correspondences in NTU
RGB+D 120 except “laying down”, for which we chose
“falling” as the closest alternative. In general, the labels for
the NTU-UMDR model did not correspond well with PriMA-
Care. The labels “brushing hair” and “brushing teeth”, how-
ever, did work to a certain degree for RGB.

For LanguageBind, we saw that sitting was often confused
with the other activities performed while participants were
also sitting. Therefore adding this to the text prompt —
e.g. “Person sitting and talking on the phone” — improved
the results significantly. We refer to this as the “prompt-
engineered” approach in Table II.

C. Privacy Preservation

Having the model classify participants is far from a perfect
test of privacy preservation. Nonetheless, it provides an
indication of how much information related to individuals
is learned by the model. Table III unsurprisingly shows that
RGB modalities across all models and general models are far
better at identifying individuals. However, for all modalities
and models, there seems to be some learning of identifying
characteristics, as all outperform the random baseline of 7%.
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Fig. 1: Confusion matrices for general model modality combinations

V. DISCUSSION

In alignment with the contributions, we focus our discus-
sion on four key issues emerging from our results:

1) The lack of generalization between HAR datasets
(Contribution 1)

2) The utilization of aggregated datasets to train new HAR
models (Contribution 1).

3) The potential to enhance privacy in HAR through the
application of multimodal learning (Contribution 3).

4) The transferability of large pretrained models to HAR
tasks (Contribution 2).

A. Generalizability of HAR datasets

Supporting contribution 1, we compared the performance
of HAR-specific models versus general models. Our results
show that the general model outperforms the HAR model
and that these effects are substantial, though the small size
of the PriMA-Care evaluation set (17 participants) makes it
difficult to draw definitive conclusions. The zero-shot tests
provide a greater measure of generalizability, as the PriMA-
Care dataset is another dataset to which the model can overfit
in training.

LanguageBind shows the greatest ability to generalize,
which points towards a similar performance in real-world
applications. Its errors seem to follow logically, such as the
ambiguous activity labels shown in Fig. 2.

Despite the large size of the NTU RGB+D 120 dataset, it
is not intended for the training of generalizable models but
rather as a baseline for evaluating HAR models and method-
ological approaches. The action sequences of the dataset are
highly artificial, with all participants performing activities
in a similar manner in the same environment. Models can
therefore learn extraneous information not related to the
activity, such as “all people talking on the phone are also
sitting in that chair”.

B. Aggregation of Datasets

One reason for the underperformance of the HAR model
seems to lie in the heterogeneity and specificity of HAR
datasets, which complicates aggregation and training on mul-
tiple sets. Our study met significant challenges in combining
multiple HAR datasets, particularly for IMU and depth data.
These difficulties arose from variations in sensor config-
urations, including different sampling rates, depth ranges,
and data formats. Additionally, accelerometers and IMUs
produce diverse outputs based on their placement, and the
aggregated dataset included acceleration data from various
body positions. Despite implementing mitigation strategies,
fully reconciling these differences proved challenging.

Exemplifying challenges in aggregating datasets is the
variation in activity recording lengths and the resulting
differences in spectrogram image sequences extracted from
acceleration data. For instance, the UTD-MHAD dataset
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Fig. 2: Errors for the prompt-engineered LanguageBind

produced significantly shorter image sequences than the
GOTOV dataset. Consequently, even common activities such
as walking had vastly different representations. This dis-
parity hindered the learning of generalized representations,
as evidenced by the superior performance of acceleration
encoders trained on individual datasets rather than aggregate.
It also explained the subpar performance on the PriMA-Care
dataset, where image sequence lengths differed considerably
from both GOTOV and UTD-MHAD.

Although creating an aggregated dataset comprising a
large number of individual data sets could help address these
differences, the current landscape lacks sufficient datasets
containing acceleration data. This shortage prevents the cre-
ation of a comprehensive dataset on the scale of, for example,
Kinetics-400 for HAR RGB videos or ImageNet [27] for
more general RGB images. As a result, general models,
which benefit from larger and more diverse training data,
tend to outperform HAR-specific models in our comparative
analysis.

C. Privacy Preservation

Addressing contribution 3, we focused on privacy-
preserving sensors such as IMU and depth cameras. While
video and image sequences are crucial data modalities in
HAR, with most datasets offering a video component, their
use, especially in combination with large, pretrained image
classification models, raises privacy concerns for both dataset
participants and end-users. These models primarily identify
general image features rather than specific human activities.

This privacy issue is evident in Experiment IV-C, where
we find that even stored feature vectors potentially leak pri-
vate data. This highlights a specific risk when using transfer
learning for HAR instead of training task-specific models,
especially in sensitive environments such as healthcare and
elderly care. Specific models can reduce this risk to a certain
extent, but the mere presence of a camera is still a concern.

While RGB cameras outperform depth sensors for ac-
tion classification on PriMA-Care, this advantage varies by
task [28]. By fusing less identity-revealing modalities—like
depth and IMU—we can close some of that performance
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gap.
D. Transferability of Large, Pretrained Models

Supporting contribution 2, we outline how the large, pre-
trained models can be leveraged for multimodal HAR tasks.
We found that large transformer models trained on large
datasets performed the best. Pretrained models, while fo-
cusing more on individual characteristics, still distinguished
between activities effectively. The ImageBind model was
previously trained on IMU data from head-mounted cameras,
yet the features proved useful for wrist-worn sensors, pro-
viding a mitigation strategy for the challenges discussed in
section V-B. Even for IMU models we see that it seems that
large and varied datasets are more important than similarities
across activities. However, the lack of orientation data in the
HAR-specific model can also be a source of reduced perfor-
mance. General models trained through contrastive learning
outperformed the UMDR model despite the similar datasets.
This suggests that HAR datasets’ limited nature outweighs
specialized training benefits. The distance from camera at
which actions were performed, as well as differences in
posture (sitting vs standing), can be a large contributor to
incorrect prediction.

The R3D network’s underperformance, despite its large
HAR dataset training, can indicate that the contrastive
method improves the ability of models to transfer. However,
the low resolution of 112 x 112 can also be the source of
confusion for more fine-grained actions.

The zero-shot and prompt/label-engineered approaches,
while not achieving accuracy scores approaching the fine-
tuned results, show a promising avenue for future work to
meet the challenges of heterogeneous datasets. This enables
the classification of activities beyond those seen during
training.

VI. CONCLUSION

In this study, we evaluated transfer learning across modali-
ties for Human Activity Recognition (HAR), with a particular
focus on privacy preservation. Our findings support the
conclusion that large general models pretrained on diverse
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datasets consistently outperform specialized HAR models
trained on aggregated HAR datasets, challenging the con-
ventional assumption that domain-specific models work best
for specialized tasks.

Multimodal Fusion Benefits: Combining two modali-
ties enhanced performance (RGB+IMU: 98.29%), though
adding a third modality did not provide additional benefit.
Privacy-Preserving Alternatives: Privacy-focused modali-
ties (Depth+IMU) achieved 93.14% accuracy, demonstrating
their viability for healthcare applications. Transfer Learning
Efficacy: General models surpassed HAR-specific ones,
reaching 82.85% accuracy in zero-shot classification using
LanguageBind Video. Dataset Aggregation Challenges:
Variations in sensor configurations and protocols highlighted
the need for standardized HAR data collection methods,
especially in relation to IMU data.

This study has several limitations, primarily the limited
size of the PriMA-Care dataset and task-specific focus, which
constrain our ability to make broad generalizations. Future
research should explore zero-shot classification for HAR by
evaluating privacy-preserving modalities with various general
multimodal models across different datasets. This direction
shows promise for the development of HAR systems that bal-
ance accuracy with privacy concerns, a crucial requirement
for healthcare and homecare robotics applications.

This research advances our understanding of how transfer
learning from large, general models can enhance specialized
tasks while prioritizing critical ethical concerns such as user
privacy.
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