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Chapter 1

Introduction

1.1 The New Cosmological Paradigm

The accidental1 discovery of the Cosmic Microwave Background radiation
by Penzias and Wilson[33] in 1965 started a new era in modern cosmology.
Although it was already predicted by Gamow [15] as early as 1946, and one
research group led by Dicke already [41] went looking for it, the discovery
took the scientific community by surprise. In the Big Bang scenario, this
radiation is thought to emanate from the young universe, at about 300.000
years after the Big Bang. But it was not until the launching of the COBE
satellite in 1989 that precision measurements of this residual radiation could
be made, showing a perfect thermal spectrum and a very small anisotropy in
temperature of the sky of the order of one part in 100.000, which many would
call noise. Since then ground based balloon experiments and the WMAP
satellite have increased the precision of the measurements, and the upcoming
PLANCK satellite will delve even further into the radiation, exploring the
polarization spectrum amongst other aspects.
We start our exploration of the Cosmic Microwave Background (CMB) by
studying the background cosmology given by a smoothly expanding universe.
Throughout this thesis we will be using units of c = ~ = kB = 1.

1.2 The Smooth Background

We will here present the equations for the smooth background universe, which
are often referred to as the Friedmann-Robertson-Walker (FRW) equations.
We are throughout this work assuming a flat universe with coordinates xµ =

1Serendipitous as many authors have said lately.
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(t, x, y, z) and with the metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (1.1)

where a(t) is the expansion factor. We are assuming that the cosmological
plasma is a perfect fluid, hence we will use T ν

µ = diag(−ρ, P, P, P ), where ρ
and P is the energy density and pressure respectively. The Einstein equations
are given by Gν

µ = 8πGT ν
µ , where Gν

µ is the Einstein tensor. Starting with
equation 1.1 we obtain the FRW equations

H2(t) =
8πG

3
ρ (1.2)

1

a

d2a

dt2
+

1

2
H2(t) = −4πGP. (1.3)

We have here defined the Hubble factor H = 1
a

da
dt

. It is at this time we
introduce the Hubble constant H0 ≡ H(t0) corresponding to the value of
the Hubble factor today. The Hubble constant is parameterized as H0 =
100h km s−1Mpc−1, where current estimates for h is about 0.7. It is also

convenient to set the the critical density ρcr ≡ 3H2
0

8πG
, corresponding to the

energy density of a flat universe. With these definitions we can write equation
(1.2) as

H2 = H2
0

ρ

ρcr

. (1.4)

Conservation of energy is upheld by the equation T µ
ν;µ = 0 which gives

dρ

dt
+ 3H(ρ + P ) = 0. (1.5)

The expansion factor a is related to the cosmological redshift z by

1 + z(t) =
a(t0)

a(t)
, (1.6)

where t0 is the present time.

1.3 Cosmological Species

In the standard model of cosmology we have basically 5 different constituents.
These are the photons, baryons (including the electrons), neutrinos, (cold)
dark matter and dark energy. We usually characterize these fluids by their
equation of state P = ωρ, with ω = 1

3
for radiation and ω = 0 for matter
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(dust). The simplest form of dark energy has ω = −1, corresponding to a
cosmological constant. Integration of equation (1.5) gives

ρ ∝ a−3(1+ω), (1.7)

which leads to

ρrad ∝ a−4 , Radiation (1.8)

ρm ∝ a−3 , Matter (1.9)

ρde = constant , Cosmological Constant (1.10)

We employ present time normalization for the scale factor, i.e. we set a(t0) =
1. With this convention we can write for species X

ρX = ρ0Xa−3(1+ω), (1.11)

where ρ0X is the present time density. It has become customary to express
the present day densities in terms of the critical density ρcr, i.e. we define
ΩX = ρX0/ρcr. For the matter density we obtain

ρm = ρcrΩm0a
−3, (1.12)

which we could split up into a baryon part and a dark matter part

ρb = ρcrΩba
−3 (1.13)

ρcdm = ρcrΩcdma−3 (1.14)

with Ωm0 = Ωb + Ωcdm. For the photons we will use [10]

ργ = 2

∫
d3p

(2π)3

p

ep/T − 1
, (1.15)

where p is the photon momentum and T is the (zero order) Temperature.
Calculating this integral [10] gives

ργ =
π2

15
T 4. (1.16)

Observe that this shows that the temperature of the universe scales as a−1,
we can hence write

T = T0a
−1. (1.17)

The present temperature of the CMB photons T0 has been measured to great
accuracy to be

T0 = (2.725± 0.002)K. (1.18)
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The CMB temperature of the sky is very uniform (∼ 10−5) and the radiation
has an almost perfect Planckan spectrum (see figure 1.1). We can use this
value of T0 to rewrite the the radiation energy density

ρr = ρcr 2.47 · 10−5h−2a−4

= ρcr Ωra
−4 (1.19)

In our flat universe we have that

ΩTot = Ωm0 + Ωde + Ωr

' Ωm0 + Ωde = 1, (1.20)

where we have approximated the total relative density ΩTot with only the dark
energy and the matter components since radiation is completely negligible
at t0. Before we leave this section it is informative to state the scale factor
in terms of cosmic time. This is

a ∝ t
2

3(1+ω) , (1.21)

which one obtains from equation (1.2) using (1.3).

1.4 Cosmological Epochs

As we saw in the previous section, the different cosmological constituents
decay at different rates, and radiation decays most rapidly. Hence one can
expect that the universe undergoes epochs where the different species domi-
nate. In the standard model the early universe was dominated by radiation
which then goes over to a matter dominated universe. At later times the uni-
verse becomes less matter dominated, dark energy will overcome the matter
dominance and the cosmos becomes dark energy dominated. An era which
we will discover has importance in the generation of perturbations of the
CMB is the time when the radiation density becomes equal to the matter
density which is called the epoch of matter-radiation equality. The expansion
factor aeq ≡ a(teq) when this occurs is obtained by equating the matter and
radiation densities. We obtain

aeq = 4.15 · 10−5
(
Ωm0h

2
)−1

. (1.22)

It is interesting to calculate when this actually occurs in the ΛCDM model.
One way to do this is to assume that the universe is completely radiation
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Figure 1.1: The CMB radiation spectrum given from the WMAP experiment.
Where we to include the error bars, the thickness would be less than that of
the curve. This figure is obtained from [36].

dominated up to the point of equality. We hence have H = H0

√
Ωra

−2. Since
dt = 1/(aH)da, we get

teq =

∫ teq

0

dt =

∫ aeq

0

1

aH0

√
Ωra−2

da

=
1

H0

√
Ωr

∫ aeq

0

ada

=
a2

eq

2H0

√
Ωr

= 4.28 · 10−6H−1
0 ' 59.000yr. (1.23)
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Some authors do actually employ this value for the time of equality, but
realistically this value must be incorrect as close to teq there is a significant
amount of matter in the universe. To rectify this we would have to use
H = H0

√
Ωra−4 + Ωm0a−3 in the above integral, as in [34]. Firstly we have

that ργ = ρcrΩra
−4 and ρm = ρcrΩmoa

−3. Then the scale factor at equality
can be written as aeq = Ωr/Ωmo. We thus obtain

teq =

∫ aeq

0

1

aH0

√
Ωra−4 + Ωm0a−3

da

=
1

H0

√
Ωm0

∫ aeq

0

a√
aeq + a

da

=
1

H0

√
Ωm0

2

3
a

3
2
eq

[
2−

√
2
]

= 3.35 · 10−6H−1
0

' 47.000yr. (1.24)

Hence the former value is about 20 % off. Of course, compared to the age of
the universe this offset is insignificant, but it does carry a message that we
must be careful when dealing with these matters. Specifically it is important
after equality to include a radiation component even though matter is the
dominant species.

1.4.1 The Cosmic Plasma

As the universe continues it’s expansion, the baryonic part of matter is
tightly coupled with the photons through Compton scattering creating what
is known as the photon-baryon plasma. The perturbations occurring in the
this fluid can be viewed [25] as an oscillator where the pressure from the
photons tries to overcome the gravitational attraction. The presence of the
baryons raises the inertia of the fluid increasing the effective mass of the os-
cillator. The (cold) dark matter components effect the photon perturbations
only indirectly through their effect on the gravitational potential.
The oscillatory behavior of the cosmic fluid can only continue as long as the
temperature is high enough. When the thermodynamical temperature de-
creases below the ionization energy for Hydrogen the electrons combine2 with
the protons and the photons are decoupled from the baryons, thus making
the universe transparent. This era is known as the time of recombination,
decoupling or last scattering. For the standard model this occurs for

a(trec) ≡ a∗ ' 9.08 · 10−4 (1.25)

2Actually, detailed calculations show that this occurs roughly for T ∼ 0.25eV , much
less than the expected 13.6eV .
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which corresponds to a redshift of z ' 1100. During recombination the pho-
tons are freed from the baryons and are able to free stream in every direction.
The photons encode the state of the cosmic fluid in the moments before last
scattering, hence measuring this residual radiation probe the universe at the
time of decoupling. This radiation is the CMB that we have mentioned of-
ten already. Figure 1.2 shows this radiation as observed from the WMAP
experiment [36].

Figure 1.2: The Cosmic Microwave Background Radiation observed from the
WMAP satellite [36]. The blue spots indicate hot regions while the red areas
are cold.

1.5 Conformal Time

In an isotropically expanding universe it is both convenient and useful to
introduce an alternative time scaling. This is known as conformal time η
and is defined by

dη ≡ 1

a
dt =

1

a2H
da. (1.26)
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We will throughout this thesis mainly be working in the conformal time
setting. The smooth metric of equation (1.1) becomes

ds2 = a2(η)
(−dη2 + dx2 + dy2 + dz2

)
. (1.27)

We will study the physical interpretation of conformal time in chapter 3, for
now it is sufficient to give an example of the conformal time in a universe
with radiation and matter.

1.5.1 Conformal Time in a Radiation-Matter Universe

The conformal time in a matter-radiation universe can evaluated by integrat-
ing equation (1.26). With the Hubble factor given by

H = H0

√
Ωmoa−3 + Ωra−4, (1.28)

we obtain

η =
1

H0

∫ a

0

dr
1

r2
√

Ωmor−3 + Ωrr−4

=
1

H0

∫ a

0

dr
1√

Ωmor + Ωr

=
2
√

Ωm0

H0Ωm0

[√
a + Ωr/Ωm0 −

√
Ωr/Ωm0

]

=
2

H0

√
Ωm0

[√
a + aeq −√aeq

]
. (1.29)

This is the conformal time in a cosmology with both matter and radiation.
We will return to this expression in chapter 4.

1.6 The Goal

The aim of this thesis is to give a ”not-so-short” introduction into the gener-
ation of the observed anisotropy of the Cosmic Microwave Background. We
will throughout the chapters develop the tools and formalism necessary for
this task. Whenever possible, full analytic derivations of results will be given.
We are presenting the path of ”least resistance” in understanding the CMB
without sacrificing detail and restricting our treatment to a ΛCDM model.
There will although some aspects we will not cover and we will make some
simplifications in our treatment.
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1.7 Overview

We start in chapter 2 by examining the Boltzmann equation of the cosmic
plasma in the linear regime. We will here calculate the first few moments of
the Boltzmann equation and state the Einstein equations for the perturbed
metric. Here we find the fundamental equations for our problem.
In chapter 3 we look at Inflation. We will investigate a simple single-field
inflationary model and see the implications this has on the generation of the
primordial perturbations of the gravitational potential.
In chapter 4 we will make an in-depth study of the perturbations to the
temperature and discover a useful approximation of the Boltzmann equations
in the tight-coupling limit.
In chapter 5 we investigate the effects of inflation on structure formation and
see how linear growth is treated in the literature.
Chapter 6 introduces the power spectrum of the CMB which quantifies the
anisotropies in the background radiation. We will obtain an expression for
the power spectrum in the large scale limit and an approximation in smaller
scales.
Finally in chapter 7 we study our model for the CMB power spectrum and
compare it to results obtained from CMB software. We also discuss some
aspects for future work.
In the appendices we present some of the foundations of the formalism used
throughout the thesis. In addition we include the numerical codes used in
the simulation of some of the results.
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Chapter 2

Cosmological Perturbation
Theory

2.1 The Boltzmann Equation for the Photon

In the following we will be studying scalar mode perturbations to the met-
ric. The Conformal Newton Gauge, also known as longitudinal gauge, first
considered by Mukhanov [31] in 1992, is a gauge particularly suited for cal-
culating the scalar perturbations. The line element in this gauge is given
by

ds2 = a2(η)
(−(1 + 2Ψ)dη2 + (1 + 2Φ) δijdxidxj

)
, (2.1)

where we have introduced conformal time η with dt = a dη.
The potential Ψ can be interpreted as the gravitational potential in the New-
tonian limit, and Φ is the fractional perturbation to the spatial curvature.
We will see later that in the absence of anisotropic stress or pressure (see
section 2.3), the potential Φ = −Ψ. The aim of this chapter is to derive
the Boltzmann equations for a relativistic cosmological fluid, specifically the
photon. The strategy will be to find an expression for the geodesic equation
in the given setting and combine these with the Boltzmann equation. The
resulting equations will then be rewritten with spherical harmonic functions
in Fourier space to obtain an infinite set of coupled differential equations.

2.1.1 The Distribution function in Phase space

At this point we introduce a six dimensional phase space consisting of the
coordinates (x1, x2, x3, P1, P2, P3), where xi are the spatial coordinates and Pi

are the conjugate momenta to xi. From Hamiltons equations, the conjugate
momenta are constant throughout the expansion[30]. We shall soon see how
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these relate to the proper momenta pi.
We now define the distribution function f(xi, P i, t). This function gives the
number of particles in the phase space volume element dx1dx2dx3dP 1dP 2dP 3

as
dN = f(xi, P i, t)dx1dx2dx3dP 1dP 2dP 3 (2.2)

Note that f is a scalar[10] and invariant under canonical transformations.
For a relativistic bosonic gas, being in thermal equilibrium to 0’th order, the
distribution function is of the form

f =
gs

h3

1

exp
(

E−µ
kbT

)
− 1

, (2.3)

where

• E is the particle energy.

• T is the temperature.

• µ is the chemical potential.

• h is the Planck’s constant.

• kb is the Boltzmann constant.

• gs is the spin degrees of freedom.

We will set h = kb = 1 from now on. For photons, gs = 2 , corresponding
to the number of plane polarizations in orthogonal directions. The chemi-
cal potential µ can in fact be omitted in the expression for f . Just before
nucleosynthesis the relativistic species consist of three neutrinos, photons,
electrons and positrons. One can use the Standard Model to calculate the
chemical potential for all species. The calculations imply that for successful
nucleosynthesis one needs µ ¿ T . We will in the following only study the
photon distribution function, thus we will set E = p, the photon momentum.
Thus the modified form of the distribution function becomes

f =
2

exp
(

p
T

)− 1
(2.4)

Many interesting quantities can be expressed in terms of the distribution
function. The most obvious one is the total particle number given by

N =

∫
f(xi, P i, η) dx1dx2dx3dP 1dP 2dP 3. (2.5)
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More importantly from [29], we can express the energy-momentum tensor as

Tµν =

∫
dP1dP2dP3 (−g)−1/2PµPν

P0

f(xi, P i, η), (2.6)

where g is the determinant of the matrix (gµν). Observe now that in the
following calculations I will omit the factor gs , recalling to add it in again
whenever necessary, f.eg when calculating Tµν .

2.1.2 The Geodesic Equations

Considering a space-time point xµ = (η,x), the geodesic equation for a free
particle is

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0, (2.7)

where λ is an affine parameter. I will now rewrite the equation in terms of
the 4-momentum P µ.
By definition we have that

P µ ≡ dxµ

dλ
, (2.8)

so the natural choice for λ would be

P 0 =
dx0

dλ
=

dη

dλ
. (2.9)

We insert these definitions into the geodesic equation to get an expression
involving only P µ

P 0dP µ

dη
+ Γµ

αβPαP β = 0. (2.10)

Using the expression for the Christoffel symbols, this equation can be treated
further [10] to obtain

dP µ

dη
= gµν

(
1

2

∂gαβ

∂xν
− ∂gνα

∂xβ

)
PαP β

P 0
, (2.11)

where gµν is the metric tensor.
We shall here derive the geodesic equation for the photon which we will use
in conjunction with the Boltzmann equation in the next section. But we gain
some insight into dynamics of our system by studying the geodesic equation
alone. This will take us into the Sachs-Wolfe effect [35] in a simplified form.
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The 4-momentum P µ

We need to find an expression for the 4-momentum P µ of the photon. Note
first that since the photon is massless, we have

P 2 ≡ gµνP
µP ν = 0, (2.12)

that is
g00(P

0)2 + gijP
iP j = 0. (2.13)

Defining p2 = gijP
iP j and inserting the value for g00 yields

−a2(1 + 2Ψ)(P 0)2 + p2 = 0, (2.14)

which when solving for P 0 leads to

P 0 =
p

a
√

1 + 2Ψ
≈ (1−Ψ)

p

a
. (2.15)

To find the comoving momentum P i we note that it is proportional to the
proper momentum given by pi = p ni where ni = ni is a unit directional
vector

P i = D · pi. (2.16)

Hence we have that

p2 = gijP
iP j

= gij p2ninjD2

= a2(1 + 2Φ) p2δijn
injD2

= a2(1 + 2Φ) p2D2, (2.17)

where I have utilized the relation δijn
inj = 1, which holds since ni is a unit

vector. Solving for D in equation (2.17) we obtain

D =
1

a
√

1 + 2Φ
≈ 1− Φ

a
(2.18)

Hence the comoving momentum P i is given by

P i = p ni 1− Φ

a
(2.19)

We will use these relations in the following section to find the geodesic equa-
tion for the photon. Before we proceed to do this, let us find an expression
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for the velocity of the photon dxi

dη
. By the chain rule, we have that

dxi

dη
=

dxi

dλ

dλ

dη

=
P i

P 0
. (2.20)

Inserting equations (2.15) and (2.19) into this expression we obtain to first
order in Ψ and Φ

dxi

dη
= ni(1− Φ + Ψ). (2.21)

The Geodesic Equation for the Photon

We will now find an expression for the Geodesic equation in terms of the
variables introduced here. It will suffice to calculate the time component
since this will give us directly the change in p , i.e. dp

dη
. In the following,

over-dots will represent differentiation with respect to conformal time.For
easy reference we present some useful expressions we will use in the following
calculations

g00 = −a2(1 + 2Ψ) (2.22)

g00 =
−1 + 2Ψ

a2
(2.23)

gij = a2δij(1 + 2Φ) (2.24)

∂g00

∂η
= −2aȧ(1 + 2Ψ)− 2a2∂Ψ

∂η
(2.25)

∂g00

∂xi
= −2a2 ∂Ψ

∂xi
(2.26)

∂gij

∂η
= δij

(
2aȧ(1 + 2Φ) + 2a2∂Φ

∂η

)
(2.27)

δij
P iP j

P 0
=

p

a
(1− 2Φ + Ψ) (2.28)

H ≡ ȧ

a
. (2.29)

A few comments are in order at this point. Equation (2.29) defines a ’con-
formal Hubble parameter’ related to the Hubble parameter H by H = aH.
Equation (2.23) follows from g00 = 1

g00
since gµν is diagonal.
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Concerning equation (2.28), we use equations (2.15) and (2.19) to obtain

δij
P iP j

P 0
=

p2(1− 2Φ)/a2

p(1−Ψ)/a

≈ p

a
(1− 2Φ)(1 + Ψ)

≈ p

a
(1− 2Φ + Ψ). (2.30)

We can now undertake the task set before us. The time component of the
geodesic equation is

dP 0

dη
= g0ν

(
1

2

∂gαβ

∂xν
− ∂gνα

∂xβ

)
PαP β

P 0

= g0ν 1

2

∂gαβ

∂xν

PαP β

P 0
− g0ν ∂gνα

∂xβ

PαP β

P 0
. (2.31)

Starting with the right hand side, the first term is

1

2
g0ν ∂gαβ

∂xν

PαP β

P 0
=

1

2
g00∂gαβ

∂x0

PαP β

P 0

=
1

2
g00

(
∂g00

∂η

P 0P 0

P 0
+

∂gij

∂η

P iP j

P 0

)

=
1

2
g00g00,0P

0 +
1

2
g00gij,0

P iP j

P 0

=
−1 + 2Ψ

2a2

(
−2aȧ(1 + 2Ψ)− 2a2∂Ψ

∂η

)
P 0

+
−1 + 2Ψ

2a2

(
2aȧ(1 + 2Φ) + 2a2∂Φ

∂η

)
δij

P iP j

P 0

=
ȧ

a
(1− 2Ψ)(1 + 2Ψ)P 0 +

∂Ψ

∂η
P 0

−
(

ȧ

a
(1− 2Ψ)(1 + 2Φ) +

∂Φ

∂η

)
δij

P iP j

P 0
. (2.32)

Recall that we omit all quadratic terms in Φ and Ψ. Hence

∂Ψ

∂η
(1− 2Ψ)P 0 → ∂Ψ

∂η
P 0, (2.33)

and (1− 2Ψ)(1 + 2Ψ) = 1− 4Ψ2 ≈ 1 and (1− 2Ψ)(1 + 2Φ) ≈ 1− 2Ψ + 2Ψ.
Inserting this and equations (2.28), (2.29) and (2.15) into equation (2.32) we
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get

1

2
g0ν ∂gαβ

∂xν

PαP β

P 0
=

ȧ

a
P 0 +

∂Ψ

∂η
P 0

−
(

ȧ

a
(1− 2Ψ + 2Φ) +

∂Φ

∂η

)
δij

P iP j

P 0

= Hp

a
(1−Ψ) +

p

a

∂Ψ

∂η

−
(
H(1− 2Ψ + 2Φ) +

∂Φ

∂η

)
p

a
(1− 2Φ + Ψ)

= Hp

a
(1−Ψ) +

p

a

∂Ψ

∂η
−Hp

a
(1−Ψ)− p

a

∂Φ

∂η

=
p

a

∂Ψ

∂η
− p

a

∂Φ

∂η
. (2.34)

In the third line I have used that

(1 + Ψ− 2Φ) · (1− 2Ψ + 2Φ) = 1− 2Ψ + 2Φ + Ψ− 2Φ = 1−Ψ. (2.35)

Working now with the second term gives

g0ν ∂gνα

∂xβ

PαP β

P 0
= g00∂g00

∂xβ
P β

= g00g00,0P
0 + g00g00,iP

i

= −1− 2Ψ

a2

(
−2aȧ(1 + 2Ψ)− 2a2∂Ψ

∂η

)
P 0

− 1− 2Ψ

a2

(
−2a2 ∂Ψ

∂xi

)
P i

= 2HP 0 + 2
∂Ψ

∂η
P 0 + 2

∂Ψ

∂xi
P i

= 2Hp

a
(1−Ψ) + 2

p

a

∂Ψ

∂η
+ 2

∂Ψ

∂xi

p

a
ni . (2.36)

Subtracting equation (2.36) from (2.34), the right hand side of the Geodesic
equation (2.31) becomes

−2Hp

a
(1−Ψ)− p

a

∂Ψ

∂η
− p

a

∂Φ

∂η
− 2

∂Ψ

∂xi

p

a
ni . (2.37)
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For the left hand side of equation (2.31) we have that

dP 0

dη
=

d

dη

(
p(1−Ψ)

1

a

)

=
1

a

dp

dη
(1−Ψ)− p

a

dΨ

dη
+ p(1−Ψ)

d

dη

(
1

a

)

=
1

a

dp

dη
(1−Ψ)− p

a

(
∂Ψ

∂η
+

∂Ψ

∂xi

dxi

dη

)
− p

a
(1−Ψ)H

=
1

a

dp

dη
(1−Ψ)− p

a

∂Ψ

∂η
− p

a

∂Ψ

∂xi
ni − p

a
(1−Ψ)H , (2.38)

where in the last line I have used dxi

dη
= ni(1−Φ + Ψ). Combining equations

(2.38) and (2.37) we obtain

1

a

dp

dη
(1−Ψ)− p

a

∂Ψ

∂η
− p

a

∂Ψ

∂xi
ni − p

a
(1−Ψ)H = −2Hp

a
(1−Ψ)− p

a

∂Ψ

∂η

− p

a

∂Φ

∂η
− 2

∂Ψ

∂xi

p

a
ni, (2.39)

which after rearrangement and multiplying by (1 + Ψ) yields

1

p

dp

dη
= −H− ∂Φ

∂η
− ni ∂Ψ

∂xi
(2.40)

This is the geodesic equation for the photon, which is quite interesting to
study by itself. It describes the change in the photon energy in an expanding
universe boils down to three physical mechanisms. The first term quantifies
the loss of energy due to the expansion. The second term can be interpreted
as a shift in the energy because of a time varying gravitational potential,
while the last term is ascribed to a spatial variation of gravity due to matter
density variations, as photons lose energy climbing out of potential wells.
This is basically the first encounter with the Sachs-Wolfe effect [35], which
we will see many manifestations of throughout this work.
We will now continue with our work by combining our newly acquired equa-
tion with the Boltzmann equation.

2.1.3 The Boltzmann Equation

The evolution of the distribution function is given by the Boltzmann equation
(see appendix A)

df

dt
= C[f ], (2.41)
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where C[f ] is the collision term with other species, mainly with the electrons
through Thompson scattering. In the absence of collisional effects, the above
equation is often referred to as the Liouville equation. Introducing conformal
time η we get

df

dt
=

dη

dt

df

dη
=

1

a

df

dη
. (2.42)

Thus equation (2.41) can be written as

df

dη
= a · C[f ]. (2.43)

We will now study only the left hand side of (2.43), including the collision
term in the next section. Recall that the distribution function is now a
function of xi, p and ni. Hence the total derivative df

dη
is expanded as

df

dη
=

∂f

∂η
+

dxi

dη

∂f

∂xi
+

dp

dη

∂f

∂p
+

dni

dη

∂f

∂ni
. (2.44)

Inserting equation (2.21) on page 23 and the geodesic equation (2.40) we get

df

dη
=

∂f

∂η
+ ni ∂f

∂xi
− p

∂f

∂p

[
H +

∂Φ

∂η
+ ni ∂Ψ

∂xi

]
+

dni

dη

∂f

∂ni
(2.45)

We can at this point simplify equation (2.45) by omitting the last term. In
the unperturbed universe, the distribution function f is a function of only
p and not the photon direction ni. Thus ∂f

∂ni is non-zero only for higher
order perturbations, i.e. 1.order or higher. In addition, the change in photon
direction, dni

dη
, is non-zero only in the presence of the potentials Ψ and Φ.

Otherwise the photon moves in a straight line. Hence the product dni

dη
∂f
∂ni is

at least of a 2.order term in the potentials thus rendering it negligible in our
linear setting[25]. This leaves us the expression

df

dη
=

∂f

∂η
+ ni ∂f

∂xi
− p

∂f

∂p

[
H +

∂Φ

∂η
+ ni ∂Ψ

∂xi

]
. (2.46)

2.1.4 The Brightness Function

The Brightness function of the photon [28] is defined as

Θ = Θ(x,n, η) ≡ δT

T
, (2.47)

i.e, the fractional temperature fluctuation. Observe that we have defined Θ
explicitly as a function of x, n, η and not of the magnitude of the momentum
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p. This will turn out to be a valid assumption, following directly from that
p is virtually unchanged through interaction with other species’, specifically
the photons through Compton scattering. The distribution function can now
be written as

f(x, p,n, η) =
1

exp
[

p
T (η)(1+Θ)

]
− 1

. (2.48)

Observe that we have set the (zero order) temperature T as a function of time
and not space. In the zero order universe, the photons are homogeneously
distributed, rendering T to be independent of position x and direction n.
Since the perturbation Θ is small (of the order 10−5), we can Taylor expand
the distribution function f to first order in Θ. Defining

f0 =
1

exp
(

p
T

)− 1
, (2.49)

as the zero order distribution function. Expanding equation (2.48) we obtain

f ≈ f0 +
∂f0

∂T
· TΘ

=
1

exp
(

p
T

)− 1
+

∂

∂T
(f0) · TΘ. (2.50)

We will be using equation (2.50) with Boltzmann Equation (2.46). It will
thus be handy to express the derivative ∂

∂T
by a derivative with respect to the

momentum p since the derivative ∂
∂p

is present in the Boltzmann Equation.
We can accomplish this by noting that

T
∂f0

∂T
= T · 1(

exp
(

p
T

)− 1
)2 · exp

( p

T

)
· p

T 2

=
exp

(
p
T

)
(
exp

(
p
T

)− 1
)2 ·

p

T

= −p
∂f0

∂p
. (2.51)

We can use equation (2.51) to interchange derivatives whenever appropriate.
Hence we obtain

f = f0 − p
∂f0

∂p
Θ. (2.52)

We will soon insert this equation into the Boltzmann equation in section
2.1.6, but let us first investigate the zeroth order Boltzmann equation.
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2.1.5 Zero Order Temperature Scaling

We will now see that we can extract interesting information about our uni-
verse by just studying the Boltzmann equation up to zeroth order, which
will also serve as a consistency check for our work. To zero order, all in-
stances of Φ, Ψ and Θ will vanish. Thus the equation (2.46), the zeroth
order Boltzmann equation becomes

df

dη
=

∂f

∂η
+ ni ∂f

∂xi
− p

∂f

∂p
H = aC[f ]0 , (2.53)

where I have now included the (zeroth order) collision term C[f ]0. Insert-
ing the expression for the distribution, f = f0 , and recalling that f0 is
independent of xi, we get

∂f0

∂η
− p

∂f

∂p
H = aC[f ]0 . (2.54)

The zeroth order collision term is 0, since we have set the distribution function
to a Bose-Einstein distribution where the photons are in equilibrium. Thus
the collision effects will by definition cancel [10]. Hence we are left with

∂f0

∂η
− p

∂f

∂p
H = 0 . (2.55)

Using equation (2.51), we have that

∂f0

∂η
=

∂f0

∂T

dT

dη

= − p

T

∂f0

∂p

dT

dη
(2.56)

which gives [
− 1

T

dT

dη
−H

]
∂f0

∂p
= 0 . (2.57)

This is equivalent to

− 1

T

dT

dη
=

1

a

da

dη
. (2.58)

or simply

−dT

T
=

da

a
. (2.59)

This implies that

T ∼ 1

a
, (2.60)

which is exactly what we expect, a result previously obtained from heuristic
arguments in chapter 1. Hence the temperature of the universe T scales as
a−1.



30 Cosmological Perturbation Theory

2.1.6 First Order Boltzmann Equation

We will now continue our derivation of the Boltzmann equation of the pho-
ton, going now to first order in Φ, Ψ and Θ. Inserting equation (2.52) for
the distribution function into equation (2.46) we obtain (recall that Θ is
independent of p)

df

dη
=

∂

∂η

(
f0 − p

∂f0

∂p
Θ

)
+ ni ∂

∂xi

(
f0 − p

∂f0

∂p
Θ

)

− p
∂

∂p

(
f0 − p

∂f0

∂p
Θ

)
×

[
H +

∂Φ

∂η
+ ni ∂Ψ

∂xi

]

=
∂f0

∂η
− p

∂

∂η

[
∂f0

∂p
Θ

]
+ ni ∂f0

∂xi
− p ni ∂f0

∂p

∂Θ

∂xi

− p
∂f0

∂p
H + p Θ

∂

∂p

[
p
∂f0

∂p

]
H− p

∂f0

∂p

[
∂Φ

∂η
+ ni ∂Ψ

∂xi

]
. (2.61)

The first and the fifth term cancel as shown in section 2.1.5 . The third term
is 0 since f0 has no explicit position dependence. Thus

df

dη
= −p

∂

∂η

[
∂f0

∂p
Θ

]
− p ni ∂f0

∂p

∂Θ

∂xi

+ p ΘH ∂

∂p

[
p
∂f0

∂p

]
− p

∂f0

∂p

[
∂Φ

∂η
+ ni ∂Ψ

∂xi

]
. (2.62)

Now we have that

−p
∂

∂η

[
∂f0

∂p
Θ

]
= −p Θ

∂

∂η

∂f0

∂p
− p

∂f0

∂p

∂Θ

∂η
. (2.63)

Inserting a temperature derivative and using ∂f0

∂T
= − p

T
∂f0

∂p
, we get

−p
∂

∂η

[
∂f0

∂p
Θ

]
= −p Θ

dT

dη

∂

∂T

∂f0

∂p
− p

∂f0

∂p

∂Θ

∂η

= p Θ
dT/dη

T

∂

∂p

(
p
∂f0

∂p

)
− p

∂f0

∂p

∂Θ

∂η

= −p Θ
da/dη

a

∂

∂p

(
p
∂f0

∂p

)
− p

∂f0

∂p

∂Θ

∂η

= −p ΘH ∂

∂p

(
p
∂f0

∂p

)
− p

∂f0

∂p

∂Θ

∂η
, (2.64)
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where I have used that dT/dη
T

= −da/dη
a

. Inserting this result into equation
(2.62) we get

df

dη
= −p ΘH ∂

∂p

(
p
∂f0

∂p

)
− p

∂f0

∂p

∂Θ

∂η
− p ni ∂f0

∂p

∂Θ

∂xi

+ p ΘH ∂

∂p

(
p
∂f0

∂p

)
− p

∂f0

∂p

[
∂Φ

∂η
+ ni ∂Ψ

∂xi

]
. (2.65)

which leads to

df

dη
= −p

∂f0

∂p

[
∂Θ

∂η
+ ni ∂Θ

∂xi
+

∂Φ

∂η
+ ni ∂Ψ

∂xi

]
. (2.66)

Thus we finally obtain

−p
∂f0

∂p

[
∂Θ

∂η
+ ni ∂Θ

∂xi
+

∂Φ

∂η
+ ni ∂Ψ

∂xi

]
= aC[f ] . (2.67)

This is the first order Boltzmann Equation, which we will spend a great deal
of time studying in the coming sections.

2.1.7 Fourier Convention

Much of the analysis in this work will be done in Fourier space. Hence
we need to state the Fourier convention to be used here. Firstly, the three
dimensional Fourier integral of a function H(~x) is defined to be

H̃(~k) =

∫
d3x e−i~k·~xH(~x) (2.68)

with inverse

H(~x) =

∫
d3k

(2π)3
ei~k·~xH̃(~k) (2.69)

The Fourier modes will be characterized by the wave vector magnitude

k =
√

~k · ~k. Hence ∂
∂xj → i kj. Note that ki is an Euclidian 3D vector,

so ki = ki.

2.1.8 Free Streaming with no collisions

As a short illustration of the meaning of equation (2.67), I will now study
the Boltzmann equation (2.66) when the collision term C[f ] is set to zero.
This corresponds to a time right after recombination where the photons free
stream towards us. We get

∂Θ

∂η
+ ni ∂Θ

∂xi
= −∂Φ

∂η
− ni ∂Ψ

∂xi
. (2.70)
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We now go to Fourier space (see section 2.1.7). We obtain

˙̃Θ + i kµ Θ̃ = − ˙̃Φ− i kµ Ψ̃, (2.71)

where we have introduced

µ ≡
~k · ~n

k
(2.72)

which is nothing else than the cosine of the angle between the wave vector
and the photon direction1 n. The Boltzmann equation can be written as

e−ikµη ∂

∂η

(
Θ̃eikµη

)
= − ˙̃Φ− i kµ Ψ̃, (2.73)

which implies

∂

∂η

(
Θ̃eikµη

)
= − ˙̃Φeikµη − i kµ Ψ̃eikµη

= − ˙̃Φeikµη − Ψ̃
∂

∂η

(
eikµη

)

= − ˙̃Φeikµη + ˙̃Ψeikµη − ∂

∂η

(
Ψ̃eikµη

)

=
∂

∂η

(
Ψ̃− Φ̃

)
eikµη − ∂

∂η

(
Ψ̃eikµη

)
. (2.74)

In the absence of anisotropic stress, we have that Ψ̃ = −Φ̃ (see section 2.3).
Hence after rearrangement we have

∂

∂η

(
Θ̃eikµη

)
+

∂

∂η

(
Ψ̃eikµη

)
= 2

∂Ψ̃

∂η
eikµη. (2.75)

We can easily integrate this equation

∫ η0

η∗

∂

∂η

((
Θ̃ + Ψ̃

)
eikµη

)
dη =

∫ η0

η∗
2
∂Ψ̃

∂η
eikµηdη, (2.76)

where η∗ is the time of recombination and η0 is the present time. Integration
yields [(

Θ̃ + Ψ̃
)

eikµη
]η0

η∗
=

∫ η0

η∗
2
∂Ψ̃

∂η
eikµηdη, (2.77)

1Note that for µ = 1, the photon is aligned with ~k thus traveling along a direction of
changing temperature. If µ = 0, the photon is moving along a direction of non-changing
temperature[10].
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which after rearrangement gives

Θ̃(η0) + Ψ̃(η0) =
(
Θ̃(η∗) + Ψ̃(η∗)

)
eikµ(η∗−η0) + e−ikµη0

∫ η0

η∗
2
∂Ψ̃

∂η
eikµηdη.

(2.78)
Equation (2.78) represents the anisotropies in the CMB temperature field
observed today in terms of the anisotropies at recombination. The exponen-
tial factors represents phase shifts in the wave fronts which I will neglect at
this stage.
Overdense regions are signified by Ψ̃ < 0, hence the observed temperature
fluctuations (the lhs of eq.(2.78)) at these regions will seem colder. This
corresponds to photons being redshifted as they climb out of potential wells.
Conversely, under dense regions will seem hotter. This is the Sachs-Wolfe
effect in a simplified form. In addition we see from the above equation that
there will be an additional change in the spectrum if the potential Ψ̃ is chang-
ing through the free streaming, quantified by the integral. This is due to a
change in the photon energy as it passes through time-varying potentials.
This is the Integrated Sachs-Wolfe effect, hence the name.

2.1.9 The Collision Term C[f ]

We will now undertake the task of calculating the collision term of the Boltz-
mann equation in a 1. order setting. The collision terms must include scat-
tering with other species’. The main collision process for photons is Compton
scattering which schematically looks like

e(~q) + γ(~p) ↔ e(~q′) + γ(~p′) (2.79)

where ~q and ~p are the electron and photon momenta respectively. The colli-
sion term[10, 25] is

C[f(p)] =
1

E(p)

∫
Dq Dq′ Dp′ (2π)4 δ3

(
~p + ~q − ~p′ − ~q′

)
· |M |2

× δ(E(~p) + Ee(~q)− E(~p′)− E(~q′))

×
[
fe(~q′)f(~p′)− fe(~q)f(~p)

]
. (2.80)

where fe(q) is the electron distribution function and

Dq =
d3q

(2π)32Ee(q)
. (2.81)

is the Lorentz invariant momentum space element. The delta functions in
the integral ensure energy-momentum conservation. |M |2 is the Compton
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scattering amplitude which I will state soon. The electron energy E(q) is
non-relativistic, hence E(q) = me + q2/2me. It is therefore correct to assume
that the electrons are (classically) thermally distributed about a bulk velocity
vb. The distribution function will thus take the form[25]

fe(~q) = (2π)3ne(2πmeT )−3/2exp

[−(~q −me~vb)
2

2meT

]
, (2.82)

with vb ∼ q/me.
At these epochs the kinetic energy of the electron is much smaller than the
rest energy, so in the division of E(q) we can set E(q) ' me. In non-
relativistic Compton scattering, very little energy is transferred between the
electron and thee photon, so E(q)− E(q′) must be quite small. To evaluate
the integral we will need to ’Taylor’ expand the delta functions. We can thus
expand δ(E(p) + Ee(q)− E(p′)− E(q′)) with respect to (q′)2/2me about the
zero order kinetic energy (q)2/2me, remembering that delta function ’deriv-
atives’ are defined via integration by parts.
Before we expand the delta function, we can already do the q′ integral, the
effect of which will set ~q′ = ~p + ~q − ~p′ in the integrands.

C[f(p)] =
1

p

∫
d3q

(2π)32me

∫
d3p′

(2π)32p′
(2π)4 1

(2π)32me

· |M |2

× δ(E(~p) + Ee(~q)− E(~p′)− E(~p + ~q − ~p′))

×
[
fe(~p + ~q − ~p′)f(~p′)− fe(~q)f(~p)

]
. (2.83)

Inserting the values of the energies leads to

C[f(p)] =
π

4m2
ep

∫
d3q

(2π)3

∫
d3p′

(2π)3p′
· |M |2

× δ

(
p +

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

)

×
[
fe(~p + ~q − ~p′)f(~p′)− fe(~q)f(~p)

]
. (2.84)

Since ~p− ~p′ is of the order p and ~q is much larger than ~p, we can set fe(~p +
~q − ~p′) ' fe(~q) which gives

C[f(p)] =
π

4m2
ep

∫
d3q

(2π)3
fe(~q)

∫
d3p′

(2π)3p′
· |M |2

× δ

(
p +

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

)

×
[
f(~p′)− f(~p)

]
. (2.85)
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We now need to address the task of expanding the remaining delta function.
We can expand it

δ

(
p +

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

)
' δ (p + Ee(q)− p′ − Ee(q

′))
∣∣∣
Ee(q)=Ee(q′)

+ (Ee(q
′)− Ee(q))×

∂

∂Ee(q′)

(
δ[p + Ee(q)− p′

− Ee(q
′)]

)∣∣∣
Ee(q)=Ee(q′)

,

(2.86)

which yields

δ

(
p +

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

)
' δ (p− p′) + (Ee(q

′)− Ee(q))×

∂δ[p + Ee(q)− p′ − Ee(q
′)]

∂Ee(q′)


Ee(q)=Ee(q′)

We can simplify the electron energy difference Ee(q
′)−Ee(q) by noting that

since ~q is much larger than ~p and ~p′, we have that

Ee(q
′)− Ee(q) =

(~q + ~p− ~p′)2

2me

− q2

2me

=
q2

2me

+
2 ~q · (~p− ~p′)

2me

+
(~p− ~p′)2

2me

− q2

2me

' ~q · (~p− ~p′)
me

. (2.87)

We now need to [10] relate the obtained delta function derivative to a deriv-
ative with respect to p′. This can be accomplished by recalling the fact that
for a general function g(x, y) = f(x − y) we have that ∂g/∂x = −∂g/∂y.
This can be easily seen by setting u = x − y and calculating ∂f/∂u in two
different ways. First with constant y

∂f

∂u
=

∂f

∂x
· dx

du
=

∂f

∂x
, (2.88)

and then with constant x

∂f

∂u
=

∂f

∂y
· dy

du
=

∂f

∂y
· (−1) = −∂f

∂y
. (2.89)
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These two expressions must be equal. Hence

∂f(x− y)

∂x
= −∂f(x− y)

∂y
. (2.90)

We can use this result on the derivative of the delta function with x = −Ee(q)
and y = p′ which gives

−∂δ[p + Ee(q)− p′ − Ee(q
′)]

∂(−Ee(q′))


Ee(q)=Ee(q′)

=
∂δ[p + Ee(q)− p′ − Ee(q

′)]
∂p′


Ee(q)=Ee(q′)

=
∂δ(p− p′)

∂p′
. (2.91)

Using this result, the full (1.order) Taylor expansion of the delta function
becomes

δ

(
p +

q2

2me

− p′ − (~q + ~p− ~p′)2

2me

)
' δ (p− p′) +

~q · (~p− ~p′)
me

∂ δ(p− p′)
∂p′

.

(2.92)

Inserting this result into equation (2.85) we obtain

C[f(p)] =
π

4m2
ep

∫
d3q

(2π)3
fe(~q)

∫
d3p′

(2π)3p′
· |M |2

×
[
δ (p− p′) +

~q · (~p− ~p′)
me

∂ δ(p− p′)
∂p′

]

×
[
f(~p′)− f(~p)

]
. (2.93)

Compton Scattering Amplitude

We now need to consider the Compton scattering Amplitude |M |2 in the
Collision integral. The Amplitude squared will in general have an angular
dependence, of the order 1 + cos2(~n · ~n′), in addition to a polarization de-
pendence, where a small fraction of CMB photons become polarized by the
scattering[25]. I will in this simplified setting omit these effects. Omitting
the angular part will infer a 1% error in the final results2. Thus in our setting,
the Amplitude squared is

|M |2 = 8πσT m2
e, (2.94)

2Adding the cosine dependence would infer an extra factor of Θ̃2 in the final results,
where Θ̃2 is the quadropole moment of the temperature contrast.
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where σT is the Thompson cross section. Inserted into equation (2.93) we
obtain

C[f(p)] =
2π2σT

p

∫
d3q

(2π)3
fe(~q)

∫
d3p′

(2π)3p′

[
f(~p′)− f(~p)

]

×
[
δ (p− p′) +

~q · (~p− ~p′)
me

∂ δ(p− p′)
∂p′

]
.

(2.95)

Calculating the Momentum Integrals

We are now ready to complete the task of calculating the momentum integrals
in equation (2.95). For this we need to recall how to evaluate Gaussian
statistical integrals, since the electron distribution function fe(q) is a normal
distribution. The following integrals will thus be useful

∫
d3q

(2π)3
fe(~q) = ne (2.96)

∫
d3q

(2π)3

~q

me

fe(~q) = ne~vb. (2.97)

Using these results, we can go further in evaluating the collision integral
(2.95).

C[f(p)] =
2π2σT

p

∫
d3p′

(2π)3p′

[
f(~p′)− f(~p)

]

×
[
δ (p− p′)

∫
d3q

(2π)3
fe(~q)

+

∫
d3q

(2π)3
fe(~q) ~q · (~p− ~p′)

me

∂ δ(p− p′)
∂p′

]
. (2.98)

Using equations (2.96) and (2.97) to evaluate the q integrals we get

C[f(p)] =
2π2σT

p

∫
d3p′

(2π)3p′

[
f(~p′)− f(~p)

]

×
[
neδ (p− p′) + ne~vb · (~p− ~p′)

∂ δ(p− p′)
∂p′

]
. (2.99)
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Inserting now the 1.order perturbation of the photon distribution function,
equation (2.52) on page 28, we get

C[f(p)] =
2π2neσT

p

∫
d3p′

(2π)3p′

[
f0(p

′)− f0(p)− p′
∂f0

∂p′
Θ(n′) + p

∂f0

∂p
Θ(n)

]

×
[
δ (p− p′) + ~vb · (~p− ~p′)

∂ δ(p− p′)
∂p′

]
. (2.100)

When multiplying the brackets in the integral we will obtain

C[f(p)] =
neσT

p 4π

∫
d3p′

p′

[
δ (p− p′) (f0(p

′)− f0(p))

+ δ (p− p′)
[
−p′

∂f0

∂p′
Θ(n′) + p

∂f0

∂p
Θ(n)

]

+ ~vb · (~p− ~p′)
∂ δ(p− p′)

∂p′
× (f0(p

′)− f0(p))

+ ~vb · (~p− ~p′)
∂ δ(p− p′)

∂p′

×
(
−p′

∂f0

∂p′
Θ(n′) + p

∂f0

∂p
Θ(n)

) ]
. (2.101)

In the above integral, we can see that the first term is 0 when integrating
over p′. We can in addition neglect the last term since it contains a product
of two small quantities, vb and Θ, hence being of 2.order in nature. This
simplification yields

C[f(p)] =
neσT

p 4π

∫
d3p′

p′

[
δ (p− p′)

[
−p′

∂f0

∂p′
Θ(n′) + p

∂f0

∂p
Θ(n)

]

+ ~vb · (~p− ~p′)
∂ δ(p− p′)

∂p′
(f0(p

′)− f0(p))
]
. (2.102)

The integral has an angular dependence through the terms Θ(n) and ~p′. It
will at this stage be convenient to introduce an angular integration. Recall
that ~p′ = p′~n′, hence we can set d3p′ = (p′)2dp′dΩ′, where dΩ′ is the solid
angle element. In addition ∫

dΩ′ = 4π, (2.103)

or specifically ∫
dΩ′n′in

′
j =

4π

3
δij, (2.104)

and ∫
dΩ′n′i =

∫
dΩ′n′in

′
jn
′
k = 0. (2.105)
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Inserting d3p′ = (p′)2dp′dΩ′ into the collision term we obtain

C[f(p)] =
neσT

p 4π

∫ ∞

0

dp′ p′
∫

dΩ′
[
δ (p− p′)

[
−p′

∂f0

∂p′
Θ(n′) + p

∂f0

∂p
Θ(n)

]

+ ~vb · (~p− ~p′)
∂ δ(p− p′)

∂p′
(f0(p

′)− f0(p))
]
. (2.106)

For all integrands with no ~n′ dependence, integration over solid angle yields
simply a factor of 4π.

C[f(p)] =
neσT

p 4π

∫ ∞

0

dp′ p′
[
− δ (p− p′) p′

∂f0

∂p′

∫
dΩ′Θ(n′)

+ 4π δ (p− p′) p
∂f0

∂p
Θ(n)

+ 4π ~vb · ~p∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p))

− ∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p))

∫
dΩ′~vb · ~p′

]
.

(2.107)

The last term in the above equation is 0 since ~vb is a fixed vector, a result
from vector calculus. We now define what is considered as the monopole part
of the perturbation Θ(n′)

Θ0(x, η) = Θ0 ≡ 1

4π

∫
dΩ′Θ(n′). (2.108)

As explicitly stated above, Θ0 is a function of position and time. It rep-
resents the deviation of the monopole at a fixed position from the average
temperature in all space. With this definition the collision integral becomes

C[f(p)] =
neσT

p

∫ ∞

0

dp′ p′
[
− δ (p− p′) p′

∂f0

∂p′
Θ0 + δ (p− p′) p

∂f0

∂p
Θ(n)

+ ~vb · ~p ∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p))

]
. (2.109)

Multiplying through by the integral sign we get

C[f(p)] =
neσT

p

[
−

∫ ∞

0

dp′ (p′)2δ (p− p′)
∂f0

∂p′
Θ0

+

∫ ∞

0

dp′ p′p δ (p− p′)
∂f0

∂p
Θ(n)

+

∫ ∞

0

dp′ p′ p ~vb · ~n ∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p))

]
. (2.110)
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The first two integrals are trivially calculated to give

C[f(p)] =
neσT

p

[
− p2∂f0

∂p
Θ0 + p2∂f0

∂p
Θ(n)

+

∫ ∞

0

dp′ p′ p ~vb · ~n ∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p))

]
. (2.111)

As hinted on before, we solve the last integral by partial integration
∫ ∞

0

dp′ p′ p~vb · ~n ∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p)) =

[
p′ p~vb · ~n δ(p− p′)(f0(p

′)− f0(p))
]∞

0

−
∫ ∞

0

dp′p ~vb · ~n δ(p− p′)
∂

∂p′
[p′f0(p

′)− p′f0(p)] . (2.112)

The first term on the left hand side is 0. This implies
∫ ∞

0

dp′ p′ p~vb · ~n ∂ δ(p− p′)
∂p′

(f0(p
′)− f0(p)) =

−
∫ ∞

0

dp′p ~vb · ~n δ(p− p′)×
[
f0(p

′) + p′
∂f0(p

′)
∂p′

− p′f0(p)

]
(2.113)

The right hand side of the integral is

Integral = −
∫ ∞

0

dp′p p′ ~vb · ~n δ(p− p′)
∂f0(p

′)
∂p′

−
∫ ∞

0

dp′ p p′ ~vb · ~n δ(p− p′)(f0(p
′)− f0(p))

= −p2~vb · ~n∂f0(p)

∂p
− p2~vb · ~n (f0(p)− f0(p))

= −p2~vb · ~n∂f0(p)

∂p
. (2.114)

Inserting this into equation (2.111) results in

C[f(p)] =
neσT

p

[
− p2∂f0

∂p
Θ0 + p2∂f0

∂p
Θ(n)− p2~vb · ~n∂f0(p)

∂p

]
, (2.115)

which finally gives

C[f(p)] = −p
∂f0

∂p
neσT

[
Θ0 −Θ(n) + ~vb · ~n

]
. (2.116)

This is the collision term of the Boltzmann equation. It quantifies the change
in the distribution function as the photon interacts with the electrons through
Compton scattering.
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2.1.10 The Complete Photon Boltzmann Equation in
Fourier Space

We can now write down the full first order Boltzmann equation for the photon
with the collision term. Recall that

df

dη
= aC[f ] (2.117)

Combining equations (2.66) on page 31 and (2.116) we get

−p
∂f0

∂p

[
∂Θ

∂η
+ ni ∂Θ

∂xi
+

∂Φ

∂η
+ ni ∂Ψ

∂xi

]
= −p

∂f0

∂p
a neσT

[
Θ0 −Θ(n)

+ ~vb · ~n
]
, (2.118)

which leads to

∂Θ

∂η
+ ni ∂Θ

∂xi
+

∂Φ

∂η
+ ni ∂Ψ

∂xi
= a neσT

[
Θ0 −Θ(n) + ~vb · ~n

]
. (2.119)

Going now to Fourier space we get

˙̃Θ + i kµ Θ̃ + ˙̃Φ + i kµ Ψ̃ = a neσT

[
Θ̃0 − Θ̃ + µ ṽb

]
. (2.120)

where we have assumed that the baryonic bulk velocity ~vb is irrotational
(∇ × ~vb = 0), which implies that it has the same direction as ~k leading to
~̃vb ·~n = ṽbµ. It is now convenient to introduce the optical depth[25] τ defined
as

τ(η) ≡
∫ η0

η

dη′a neσT , (2.121)

which is related to the mean free path of the photon. Differentiating this
equation with respect to conformal time gives

τ̇ = −a neσT , (2.122)

which when inserted into equation (2.120) gives

˙̃Θ + i kµ Θ̃ + ˙̃Φ + i kµ Ψ̃ = −τ̇
[
Θ̃0 − Θ̃ + µ ṽb

]
. (2.123)

This is the sought after Boltzmann equation of the photon. It is the first of
the fundamental equations we will need to study the cosmic plasma.
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2.2 The Boltzmann Equation for Baryonic Mat-

ter

We will now in this section find the Boltzmann equation for the baryonic
species’ of the Universe, mainly the electrons and the protons. In cosmology
it has been common practice to refer to the electrons as baryons although
they are leptons. I will perpetuate this ’abuse’ of terminology in this work.
I will specifically need an equation for the baryon velocity vb introduced in
section 2.1.9 to be able to calculate the photon power spectrum, since the
Boltzmann equation of the photon explicitly depends on vb. We will thus
need to run through all the calculations as we did for the photon, but now in
a slightly different setting. For instance, the species’ we are studying now are
massive and a few more interactions must be included in the collision term.
But let us now proceed with the calculations, starting with the geodesic
equation of a massive particle.

2.2.1 The Geodesic Equation of a Massive Particle

Recall that the geodesic equation for a free particle is

dP µ

dη
= gµν

(
1

2

∂gαβ

∂xν
− ∂gνα

∂xβ

)
PαP β

P 0
. (2.124)

For a particle with mass m and energy E we have that

P 2 ≡ gµνP
µP ν = −m2

E =
√

p2 + m2. (2.125)

To find an expression for the 4-momentum P µ, we define again p2 = gijP
iP j

which gives

g00(P
0)2 + gijP

iP j = −m2

−a2(1 + 2Ψ)(P 0)2 + p2 = −m2

(P 0)2 =
p2 + m2

a2(1 + 2Ψ)

P 0 =
E

a
√

1 + 2Ψ
≈ E

1−Ψ

a
. (2.126)

In finding the spatial components P i we follow the same line of calculation
as in section 2.1.2 for the photon. Hence the 4-momentum is

P µ =

[
E

1−Ψ

a
, p ni 1− Φ

a

]
. (2.127)
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We will need the expression for dxi/dη in the Boltzmann Equation, this is
simply

dxi

dη
=

P i

P 0
=

p ni 1−Φ
a

E 1−Ψ
a

≈ p

E
ni(1− Φ + Ψ). (2.128)

Some other useful expressions are

δijP
iP j = δij p2 ninj (1− Φ)2

a2
≈ p2

a2
(1 + 2Φ), (2.129)

in addition

δij
P iP j

P 0
=

p2

a2 (1 + 2Φ)
E
a
(1−Ψ)

≈ p2

aE
(1− 2Φ + Ψ). (2.130)

We will again only need the zeroth component of the geodesic equation

dP 0

dη
= g0ν 1

2

∂gαβ

∂xν

PαP β

P 0
− g0ν ∂gνα

∂xβ

PαP β

P 0
. (2.131)

Starting with the left hand side of the above equation, we get

dP 0

dη
=

d

dη

(
E(1−Ψ)

1

a

)

=
1

a

dE

dη
(1−Ψ)− E

a

dΨ

dη
− E(1−Ψ)H

=
1

a

dE

dη
(1−Ψ)− E

a

(
∂Ψ

∂η
+

∂Ψ

∂xi

dxi

dη

)
− E(1−Ψ)H

=
1

a

dE

dη
(1−Ψ)− E

a

∂Ψ

∂η
− p

a
ni ∂Ψ

∂xi
− E(1−Ψ)H, (2.132)

where in the last line I have used equation (2.128) and omitted the second
order terms.
Working now with the right hand side of equation (2.131), the first term is

1

2
g0ν ∂gαβ

∂xν

PαP β

P 0
=

1

2
g00∂gαβ

∂x0

PαP β

P 0

=
1

2
g00g00,0P

0 +
1

2
g00gij,0

P iP j

P 0

=
ȧ

a
P 0 +

∂Ψ

∂η
P 0

−
(

ȧ

a
(1− 2Ψ + 2Φ) +

∂Φ

∂η

)
δij

P iP j

P 0
. (2.133)
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Using equations (2.129) and (2.130) we obtain

1

2
g0ν ∂gαβ

∂xν

PαP β

P 0
= HE

a
(1−Ψ) +

E

a

∂Ψ

∂η
−H p2

aE
(1−Ψ)− p2

aE

∂Φ

∂η
. (2.134)

where we have again omitted all 2.order terms in the calculations. For the
second term of equation (2.131), the calculations are identical to the ones in
section 2.1.2 on page 25. Hence we obtain

g0ν ∂gνα

∂xβ

PαP β

P 0
= 2HP 0 + 2

∂Ψ

∂η
P 0 + 2

∂Ψ

∂xi
P i

= 2HE

a
(1−Ψ) + 2

E

a

∂Ψ

∂η
+ 2

∂Ψ

∂xi

p

a
ni. (2.135)

Subtracting equations (2.134) from (2.135), we obtain the left hand side of
the geodesic equation

−HE

a
(1−Ψ)−H p2

aE
(1−Ψ)− E

a

∂Ψ

∂η
− p2

aE

∂Φ

∂η
− 2

∂Ψ

∂xi

p

a
ni. (2.136)

Combining equations (2.136) and (2.132), we get after some rearrangement

dE

dη
= −Hp2

E
− p2

E

∂Φ

∂η
− ∂Ψ

∂xi
p ni. (2.137)

This is the geodesic equation of a free particle with non-zero mass. Ob-
serve how similar it is to equation (2.40), the massless geodesic equation.
We obviously regain the massless equation by setting E = p in the above
equation.

2.2.2 Baryonic Boltzmann Equation

We are now ready to write down the Boltzmann equation for the electrons
and protons. Each species will have an equation describing the change in
their distribution function f through phase space. The left hand side of the
Boltzmann equation can be expanded as

df

dη
=

∂f

∂η
+

dxi

dη

∂f

∂xi
+

dE

dη

∂f

∂E
+

dni

dη

∂f

∂ni
. (2.138)

The last term can be ignored by the same argument as in section 2.1.3. Using
equation (2.137), the geodesic equation, and equation (2.128) for the velocity,
we obtain

df

dη
=

∂f

∂η
+ ni p

E

∂f

∂xi
− ∂f

∂E

[
Hp2

E
+

p2

E

∂Φ

∂η
+

∂Ψ

∂xi
p ni

]
. (2.139)
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Hence for the two species’ we are dealing with, we have two sets of equations
taking on the form

d fe(~x, ~q, η)

dη
= a Ce[fe] (2.140)

d fp(~x, ~Q, η)

dη
= a Cp[fp], (2.141)

where we have defined the electron and proton momentum as ~q and ~Q respec-
tively. The electron collision term Ce[fe] will include Compton scattering in
addition to a Coulomb scattering term with the protons. The proton collision
term Cp[fp] will only include Coulomb interaction with electrons, hence ne-
glecting scattering with photons. The reason for this is that the cross section
for this process is much smaller than the Coulomb cross section[25], so we can
ignore the former completely. The tight coupling between the electrons and
the protons implies an equality of the overdensities of the respective species

δb ≡ ρe − ρ0
e

ρ0
e

=
ρp − ρ0

p

ρ0
p

, (2.142)

where ρ0
e and ρ0

p are the zeroth order densities. We also have that the veloc-
ities of the two species’ are equal, i.e.

~ve = ~vp ≡ ~vb. (2.143)

The velocity ~vb is the baryon bulk velocity introduced earlier. We will now
undertake the task of finding the governing equations for δb and ~vb.

2.2.3 Moments of the Boltzmann Equation

Recall that for the photon we proceeded at this stage of the calculations
to obtain an expression for the perturbed distribution function f and used
this in conjunction with the Boltzmann equation. We will not do this for
the baryons. Instead we will take the moment of the Boltzmann equation,
specifically the zeroth moment. Let us first recall some important integrals
involving the distribution function. Firstly, the number density n is given by

n =

∫
d3q

(2π)3
f (2.144)

and for the velocity vi average

vi =
1

n

∫
d3q

(2π)3
f

q

E
ni. (2.145)
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Observe then that the momentum average mvi is simply equation (2.145) but
without the division of E. Working now with the left hand side of the electron
Boltzmann equation, taking the zeroth moment consists of multiplying the
Boltzmann equation with d3q

(2π)3
and integrate, recalling to do the same with

the collision term later. Using equation (2.139) with p = q we obtain

∫
d3q

(2π)3

dfe

dη
=

∂

dη

∫
d3q

(2π)3
fe +

∂

∂xi

∫
d3q

(2π)3
fe

q

Ee

ni

−
[
H +

∂Φ

∂η

] ∫
d3q

(2π)3

∂fe

∂Ee

q2

Ee

− ∂Ψ

∂xi

∫
d3q

(2π)3

∂fe

∂Ee

niq. (2.146)

Using equations (2.144) and (2.145), the first two terms are trivial. We get

∫
d3q

(2π)3

dfe

dη
=

∂ ne

dη
+

∂(nev
i
b)

d xi
−

[
H +

∂Φ

∂η

] ∫
d3q

(2π)3

∂fe

∂Ee

q2

Ee

− ∂Ψ

∂xi

∫
d3q

(2π)3

∂fe

∂Ee

niq. (2.147)

The last term is at least of a 2. order nature, since the integral is only non-
zero for the perturbed part of f , and is then multiplied by the ∂Ψ

∂xi which is
at least of 1. order. We can hence neglect this term. Before we move on to
the third term, recall that since E2 = q2 + m2

e, we have that

2E dE = 2q dq, (2.148)

or

dE =
q

E
dq. (2.149)

This gives that ∂
∂E

= E
q

∂
∂q

which we will use to interchange the E derivative
with a q derivative. Working now with the integral in the third term we get

∫
d3q

(2π)3

q2

Ee

∂

∂Ee

fe =

∫
d3q

(2π)3
q

∂fe

∂q

=
4π

(2π)3

∫ ∞

0

dq q3∂fe

∂q

=
4π

(2π)3

[
1

4
q4fe

]∞

0

− 4π

(2π)3
3

∫ ∞

0

dq q2fe. (2.150)
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The first term is 0 since f → 0 exponentially as q →∞. Hence

∫
d3q

(2π)3

q2

Ee

∂

∂Ee

fe = −3
4π

(2π)3

∫ ∞

0

dq q2fe

= −3

∫
d3q

(2π)3
fe

= −3 ne. (2.151)

Thus the zeroth moment of the Boltzmann equation becomes

∫
d3q

(2π)3

dfe

dη
=

∂ ne

dη
+

∂(nev
i
b)

∂xi
+ 3

[
H +

∂Φ

∂η

]
ne. (2.152)

This equation looks very much like the continuity equation without a source
term, except for the last term which accounts for an expanding universe.
Note that this equation is equally valid for the protons.

2.2.4 Zeroth Order Moment Equation

As we did for the photon, let us now see what information we can extract from
a zeroth order expansion of the moment equation we found in the previous
section. To zeroth order in equation (2.152), the velocity term vi

b and the
term including the Φ derivative will vanish. As for the photon, the 0’t order
Collision term is also 0. We are left with

∂ n0
e

dη
+ 3Hn0

e = 0 (2.153)

which gives

∂ n0
e

dη
= −3

ȧ

a
n0

e. (2.154)

Integrating gives

ln(n0
e) ∝ −3 ln a (2.155)

This implies that n0
e ∝ a−3. Hence the density of the electrons, or the baryons

in general, scales as a−3. Again a result previously anticipated in chapter 1.
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2.2.5 The Baryon Matter Density Equation

Going now to first order, we set ne = n0
e(1 + δb) which is the first order

perturbation to the number density. Using equation (2.152) we get

∫
d3q

(2π)3

d fe

dη
=

∂

dη

(
n0

e(1 + δb)
)

+
∂

∂xi

(
n0

ev
i
b(1 + δb)

)

+ 3

[
H +

∂Φ

∂η

] (
n0

e(1 + δb)
)

=
∂n0

e

dη
(1 + δb) + n0

e

∂δb

dη
+

∂(n0
ev

i
b)

∂xi
(1 + δb)

+
∂δb

∂xi
n0

ev
i
b + 3Hn0

e(1 + δb) + 3
∂Φ

∂η
n0

e(1 + δb). (2.156)

The first and the fifth term cancel, as seen from equation (2.154). In addition
we will neglect all terms involving products of vi

b and δb, or ∂Φ
∂η

and δb, since

these are of a higher order. And since n0
e is independent of xi we obtain

∫
d3q

(2π)3

d fe

dη
= n0

e

∂δb

dη
+ n0

e

∂vi
b

∂xi
+ 3

∂Φ

∂η
n0

e. (2.157)

For the full equation we will also need the collision term which we will handle
in section 2.2.7 .

2.2.6 1. Moment Of The Boltzmann Equation

In the previous section we found that integrating the Boltzmann equation
over q-space gave us eventually an equation for the matter density perturba-
tion δb. It will soon be clear that by taking the 1. moment of the Boltzmann
equation, we will obtain (eventually) an equation for the baryon velocity vb.

Taking the first moment consists of multiplying by d3q
(2π)3

~q and integrating.

The first moment of equation (2.139) is then

∫
d3q

(2π)3
~q

dfe

dη
=

∂

∂η

∫
d3q

(2π)3
feq nj +

∂

∂ xi

∫
d3q

(2π)3
q njfe

q

Ee

ni

−
[
H +

∂Φ

∂η

] ∫
d3q

(2π)3
q nj ∂fe

∂Ee

q2

Ee

− ∂Ψ

∂xi

∫
d3q

(2π)3
q nj ∂fe

∂Ee

niq, (2.158)
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which gives

∫
d3q

(2π)3
~q

dfe

dη
=

∂

∂η

∫
d3q

(2π)3
feq nj +

∂

∂ xi

∫
d3q

(2π)3
fe

q2

Ee

ninj

−
[
H +

∂Φ

∂η

] ∫
d3q

(2π)3

∂fe

∂Ee

q3

Ee

nj

− ∂Ψ

∂xi

∫
d3q

(2π)3

∂fe

∂Ee

q2ninj. (2.159)

We can neglect the second term since it is of the order q2

Ee
. The integral in

the first term is simply menev
j
b . In the remaining terms we introduce again

q
E

∂
∂E

= ∂
∂q

. This gives

∫
d3q

(2π)3
~q

dfe

dη
= me

∂nev
j
b

∂η
−

[
H +

∂Φ

∂η

] ∫
d3q

(2π)3

∂fe

∂q
q2nj

− ∂Ψ

∂xi

∫
d3q

(2π)3

∂fe

∂q
q Een

inj. (2.160)

Working now with the integral in the second term, we get

∫
d3q

(2π)3

∂fe

∂q
q2nj =

∫
dΩ nj

(2π)3

∫ ∞

0

dq q4∂fe

∂q

=

∫
dΩ nj

(2π)3

[
q4fe

]∞
0
− 4

∫
dΩ nj

(2π)3

∫ ∞

0

dq q3fe

= −4

∫
dΩ nj

(2π)3

∫ ∞

0

dq q3fe

= −4

∫
d3q

(2π)3
feq nj

= −4 menev
j
b . (2.161)

For the integral in the last term in equation (2.160), we get

∫
d3q

(2π)3

∂fe

∂q
q Een

inj =

∫
dΩ

(2π)3
ninj

∫ ∞

0

dq
∂fe

∂q
q3 Ee

=

∫
dΩ

(2π)3
ninj

([
q3Ee fe

]∞
0
−

∫ ∞

0

dq fe
∂(q3Ee)

∂q

)

= −
∫

dΩ

(2π)3
ninj

∫ ∞

0

dq fe

[
3q2Ee +

q4

Ee

]
. (2.162)
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The q4 term is completely negligible. Using the fact that in the solid angle
integral we can freely set ninj = δij/3, we get

∫
d3q

(2π)3

∂fe

∂q
q Een

inj = −
∫

dΩ

(2π)3
δij

∫ ∞

0

dq feq
2Ee

= −δij

∫
d3q

(2π)3
feEe

= −δijmene. (2.163)

Using these obtained results with equation (2.160), we obtain

∫
d3q

(2π)3
~q

dfe

dη
= me

∂(nev
j
b)

∂η
−

[
H +

∂Φ

∂η

]
(−4 menev

j
b)−

∂Ψ

∂xi
(−δijmene).

(2.164)

Omitting the ∂Φ
∂η

term since it multiplies the first order term vj
b and ne, we

finally obtain the 1. moment of the Boltzmann equation

∫
d3q

(2π)3
~q

dfe

dη
= me

∂(nev
j
b)

∂η
+ 4Hmenev

j
b +

∂Ψ

∂xj
mene. (2.165)

Note that this equation is completely of 2. order. Hence we need to linearize
it. We can do this by exchanging the perturbed number density ne with the
zero order density n0

e. This gives

∫
d3q

(2π)3
~q

dfe

dη
= me

∂(n0
ev

j
b)

∂η
+ 4Hmen

0
ev

j
b +

∂Ψ

∂xj
men

0
e

= me
∂n0

e

∂η
vj

b + men
0
e

∂vj
b

∂η
+ 4Hmen

0
ev

j
b +

∂Ψ

∂xj
men

0
e

= men
0
e

∂vj
b

∂η
+Hmen

0
ev

j
b +

∂Ψ

∂xj
men

0
e

= ρe
∂vj

b

∂η
+Hρev

j
b +

∂Ψ

∂xj
ρe. (2.166)

Where I have used that ∂n0
e/∂η = −3Hn0

e and set ρe = men
0
e. This equation

is equally valid for the protons, giving an equation of the form

∫
d3Q

(2π)3
~Q

dfp

dη
= ρp

∂vj
b

∂η
+Hρpv

j
b +

∂Ψ

∂xj
ρp. (2.167)

To go further now, we will need to address the collision terms of the Boltz-
mann equations and their moments.
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2.2.7 The Collision Terms Of The Baryons

We now need to work with the collision terms of the Boltzmann equation
of the baryons. It will now be convenient to introduce a functional notation
from [10], for the involved integrals by

< X >pp′q′≡
∫

d3p

(2π)3

∫
d3p′

(2π)3

∫
d3q′

(2π)3
X. (2.168)

Hence the collision term of the electron-photon interaction can be written in
this notation simply by < Ceγ >pp′q′ where

Ceγ = (2π)4 δ3
(
~p + ~q − ~p′ − ~q′

)
· |M |2
E(p)E(p′)E(q)E(q′)

× δ(E(~p) + Ee(~q)− E(~p′)− E(~q′))

×
[
fe(~q′)f(~p′)− fe(~q)f(~p)

]
. (2.169)

We can thus write the unintegrated Boltzmann equations for the electrons
and the protons as

1

a

dfe(q)

dη
=< Cep >QQ′q′ + < Ceγ >pp′q′ (2.170)

1

a

dfp(Q)

dη
=< Cep >qq′Q′ , (2.171)

where the integrand Cep is the Coulomb interaction term which otherwise
has the same form as Ceγ.

Complete Density Perturbation Equation

If we now study the zeroth moment equation again, recall that we obtained
in section 2.2.5 the right hand side of the zeroth moment of equation (2.170).
Using equation (2.157) we get

n0
e

∂δb

dη
+ n0

e

∂vi
b

∂xi
+ 3

∂Φ

∂η
n0

e = a < Cep >QQ′q′q +a < Ceγ >pp′q′q . (2.172)

Observe now that the integration measure of both collision terms are sym-
metric under the interchange Q → Q′ and q → q′, and p → p′ and q → q′,
respectively[10]. The integrands Cep and Ceγ are both antisymmetric under
this interchange. Hence the collision integrals must both be 0. Thus the
zeroth moment of the Boltzmann equation is

n0
e

∂δb

dη
+ n0

e

∂vi
b

∂xi
+ 3

∂Φ

∂η
n0

e = 0. (2.173)
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dividing by n0
e finally gives

∂δb

dη
+

∂vi
b

∂xi
+ 3

∂Φ

∂η
= 0. (2.174)

We have finally obtained the density perturbation equation of the baryons.

Complete 1. Moment Equation

Going now to the first moment of the Boltzmann equation, recall that we
multiplied by d3q

(2π)3
~q in the electron equation and integrated. Equivalently

we multiply with d3Q
(2π)3

~Q in the proton Boltzmann equation. Using equations

(2.166) and (2.167) we get

mpn
0
p

∂vj
b

∂η
+Hmpn

0
pv

j
b +

∂Ψ

∂xj
mpn

0
p = a < Cep Qj >qq′Q′Q

men
0
e

∂vj
b

∂η
+Hmen

0
ev

j
b +

∂Ψ

∂xj
men

0
e = a < Cep qj >QQ′q′q +a < Ceγ qj >pp′q′q .

Recall that mp À me, thus by adding these two equations renders the electron
terms on the left hand side negligible. We then get

mpn
0
p

∂vj
b

∂η
+Hmpn

0
pv

j
b +

∂Ψ

∂xj
mpn

0
p = a < Cep (Qj + qj) >QQ′q′q

+ a < Ceγ qj >pp′q′q . (2.175)

The first term on the right hand side is 0 because of the antisymmetry of the
integrand. Introducing the density ρb we finally obtain

ρb
∂vj

b

∂η
+Hρbv

j
b +

∂Ψ

∂xj
ρb = a < Ceγ qj >pp′q′q . (2.176)

2.2.8 Calculation of < Ceγ qj >pp′q′q

Since qj + pj is a conserved quantity, where pj is the photon momentum, we
must have that

< Ceγ (qj + pj) >pp′q′q= 0, (2.177)

since qj + pj = q′j + p′j. Hence

< Ceγ qj >pp′q′q= − < Ceγ pj >pp′q′q . (2.178)

Recall that we have calculated < Ceγ >p′q′q before, which is nothing else than
the photon collision term. We now only need to multiply this expression by



2.2 The Boltzmann Equation for Baryonic Matter 53

d3p
(2π)3

pj and integrate. It will now be convenient to go to Fourier space for

the remaining calculations. In Fourier space equation (2.176) becomes

ρb
˙̃vj
b +Hρbṽ

j
b + i kjΨ̃ρb = −a < Ceγ pj >pp′q′q . (2.179)

We have earlier assumed that the velocity field ṽj
b is irrotational , hence we

can write ṽj
b = ṽbk

j/k. If we now contract with kj in the above equation we
get

ρb
˙̃vbk +Hρbṽbk + i k2Ψ̃ρb = −a < Ceγ kµp >pp′q′q, (2.180)

or simply

˙̃vb +Hṽb + i kΨ̃ = − a

ρb

< Ceγ µp >pp′q′q, (2.181)

where we have used that ~k · ~p = kµp. Using the Fourier space version of
equation (2.116) on page 40, the right hand side becomes

− a

ρb

< Ceγ µp >pp′q′q = − a

ρb

∫
d3p

(2π)3
µ p < Ceγ >p′q′q

=
a

ρb

∫
d3p

(2π)3
µ p2 ∂f0

∂p
neσT

[
Θ̃0 − Θ̃ + µ ṽb

]

=
aneσT

ρb

∫
d3p

(2π)3
µ p2 ∂f0

∂p

[
Θ̃0 − Θ̃ + µ ṽb

]
. (2.182)

Using now that
∫

dΩ = 4π
∫ 1

−1
dµ/2 we get

− a

ρb

< Ceγ µp >pp′q′q =
aneσT

ρb

∫ ∞

0

dp

2π2
p4 ∂f0

∂p

∫ 1

−1

dµ

2

[
Θ̃0 − Θ̃ + µ ṽb

]
.

(2.183)

If we calculate the p integral first, we obtain

∫ ∞

0

dp

2π2
p4 ∂f0

∂p
=

[
p4

2π2
f0

]∞

0

− 4

∫ ∞

0

dp

2π2
p3f0

= −4

∫ ∞

0

dp

2π2
p3f0. (2.184)
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Inserting the expression for the distribution function we get
∫ ∞

0

dp

2π2
p4 ∂f0

∂p
= − 4

2π2

∫ ∞

0

dp
2 p3

ep/T − 1

= − 4

2π2
× B4

8

(
2π

1/T

)4

= − 4

2π2
× 1/30

8
(2π)4 T 4

= −4
π2

15
T 4

= −4 ργ, (2.185)

where B4 is the fourth Bernoulli number[1]. Returning now to the µ integral
we get

∫ 1

−1

dµ

2
µ
[
Θ̃0 − Θ̃ + µ ṽb

]
=

∫ 1

−1

dµ

2
µΘ̃0 −

∫ 1

−1

dµ

2
µΘ̃ +

∫ 1

−1

dµ

2
µ2 ṽb

= 0−
∫ 1

−1

dµ

2
µΘ̃ +

ṽb

3
. (2.186)

We now define the 1. moment of the temperature perturbation as

Θ̃1 ≡ i

∫ 1

−1

dµ

2
µΘ̃, (2.187)

which is a clear generalization of the zeroth moment Θ̃0 defined previously.
In chapter 4 we will generalize to higher moments, but for now we use this
definition to obtain

∫ 1

−1

dµ

2
µ
[
Θ̃0 − Θ̃ + µ ṽb

]
= iΘ̃1 +

ṽb

3
. (2.188)

Hence we finally arrive at

− a

ρb

< Ceγ µp >pp′q′q =
a neσT

ρb

× 4ργ ×
[
iΘ̃1 +

ṽb

3

]

=
a neσT 4ργ

3ρb

[
3iΘ̃1 + ṽb

]
. (2.189)

2.2.9 Baryon Velocity Equation

Combining equation (2.189) with equation (2.176) leads to

˙̃vb +Hṽb + i kΨ̃ =
a neσT 4ργ

3ρb

[
3iΘ̃1 + ṽb

]
. (2.190)
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If we now introduce the definition

1

R
≡ 4ργ

3ρb

. (2.191)

The above equation becomes

˙̃vb +H ṽb = −i kΨ̃ +
τ̇

R

[
3iΘ̃1 + ṽb

]
, (2.192)

were I have used that τ̇ = a neσT . This is the governing equation of the
evolution of the baryon density. We will need this equation in the calculation
of the acoustic oscillations in the cosmic plasma in chapter 4.
This concludes the calculations of the Boltzmann equations for baryons and
photons. We have acquired almost all we need for an accurate description of
the perturbations in the cosmic plasma. However we still have not considered
the evolution of the potentials Ψ̃ and Φ̃.

2.3 The Perturbed Einstein Equations

We end this chapter by addressing one aspect of cosmological perturba-
tion theory, namely the Einstein equations of the perturbed metric δGν

µ =

8πGδT ν
µ . These govern the evolution of the Bardeen potentials Ψ̃ and Φ̃. The

derivation is in principle straight forward but tedious, and unfortunately the
lack of time does not permit a full calculation here. See [25, 10, 2] for detailed
calculations. We will use the results from [10] in our work here. Essentially
the equations reduce to

k2Φ̃ + 3H
(

˙̃Φ− Ψ̃H
)

= 4πGa2
(
ρcdmδ + ρbδb + 4ργΘ̃0

)
(2.193)

˙̃Φ− a2H =
4πGa2

ik

(
ρcdmv + ρbvb − 4iργΘ̃1

)
(2.194)

k2(Φ̃ + Ψ̃) = −32πGa2ργΘ̃2. (2.195)

These correspond to the time-time, time-space and space-space components
of the Einstein equations respectively and Θ̃2 is the 2. moment of the bright-
ness function (see chapter 4 for details). Some comments are in order at
this time. First we have made the simplification of ignoring the neutrinos.
Their contribution is small in the time about recombination, so the error
we are making is small. Secondly the right hand side of equation (2.195)
constitutes what is called anisotropic stress, which in our case to the photon
quadropole3. Hence when setting anisotropic stress to 0 we are ignoring the
effects of Θ̃2, thus obtaining the identification Ψ̃ ' −Φ̃ we have used earlier.

3The neutrino quadropole will also contribute here in the massless neutrino setting.
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Chapter 3

Inflation

3.1 Introduction

In this chapter we will give a short introduction to the Inflationary paradigm
which was first introduced by Guth (1980) and has evolved considerably in
the last 20 years[39]. Inflation has become a well known part of the standard
cosmological model, where the quantum fluctuations at very early times set
the seeds for structure formation. I will here present the simplest model of
inflation, namely the single field description in which an analytic solution of
the primordial perturbations can be found. In addition we will not cover all
the the problems of the standard big bang theory that inflation solves, but
will mainly focus on the the Horizon problem.

3.2 A few words on Cosmological Scales

Let us start by examining some aspects of the relevant scales in Cosmology.
We will consider a flat universe. In a time increment dt, light travels a
comoving distance dx given by

dx =
dt

a
. (3.1)

We can integrate this equation to obtain the total comoving distance light
could have traveled

x =

∫ t

0

dt′

a′
, (3.2)

The quantity x defines the comoving horizon. Regions that are separated a
distance larger than x could therefore not have contact. Observe that this
expression is precisely how we defined conformal time η. Hence we have a
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physical interpretation of conformal time simply being the comoving horizon.
We can rewrite the above integral by recalling that

da

dt
= aH

dt =
1

aH
da. (3.3)

This gives

η =

∫ a

0

da′

a′
1

a′H ′ . (3.4)

The fraction (aH)−1 is the comoving Hubble radius. This distance is a mea-
sure of the connection between particles. The difference between the comov-
ing Hubble radius and the comoving horizon η is subtle. Particles separated
by distances larger than (aH)−1 can not communicate now, while particles
separated by η could never have communicated. If η À (aH)−1 now, it is
still possible that that the particles could communicate at one time in the
past, if the comoving Hubble radius was much larger than it’s present value.

3.3 The Horizon Problem

Let us look now make an order-of-magnitude calculation of the casually con-
nected regions of the sky. First the comoving horizon at recombination is
simply η∗. At the present time the comoving size of the regions we observe
the CMB is η0 − η∗. For simplicity let us assume that the universe is matter
dominated the whole time from decoupling to the present. Then we have
from [32]

η∗ ' 3t
2
3
0 t

1
3∗ (3.5)

η0 − η∗ ' 3t0

[
1−

(
t∗
t0

) 1
3

]
' 3t0. (3.6)

The ratio of these two quantities is

η∗
η0 − η∗

' 3t
2
3
0 t

1
3∗

3t0
=

(
t∗
t0

) 1
3

'
(

105

1010

) 1
3

' 0.01 (3.7)

This means that the casually connected regions of the sky subtend an angle
of approximately 1◦ [39]. This is of course inconsistent with the observed
CMB, being isotropic on the whole sky. It is this that we call the Horizon
problem.
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3.4 Solution of the Horizon Problem

How does one come to a solution of the Horizon problem. One possibility
is that the comoving Hubble radius (aH)−1 decreased in an early period of
time. Connected regions at one time would then cease to be in contact as
(aH)−1 decreases. We will refer to the period as the epoch of Inflation. Hence
when inflation ends, and as the universe becomes radiation dominated, the
comoving Hubble radius starts to increase again. The connected regions be-
fore inflation will then gradually reenter the horizon as the universe expands,
thus explaining, in at this stage, a qualitative way the large scale isotropy of
the CMB. Let us now see what implications this simple assumption will lead
to.

3.4.1 The Accelerating Universe

We have defined the inflationary epoch as the era when (aH)−1 is decreasing
(if possible). Let us see what this will imply. The assumption is equivalent
to

d

dt

(
1

aH

)
< 0

d

dt

(
1

da/dt

)
< 0

− d2a/dt2

(da/dt)2
< 0

d2a

dt2
> 0. (3.8)

Thus the universe must be in an accelerated state of expansion during infla-
tion.

3.4.2 Negative Pressure

The question now is what sort of substance can cause an accelerated expan-
sion. To answer this we must return to the unperturbed zero order Einstein
equations. These are

(
1

a

da

dt

)2

=
8πG

3
ρ (3.9)

1

a2

d2a

dt2
+

1

2

(
1

a

da

dt

)2

= −4πGP, (3.10)
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where P and ρ are the zero order pressure and density respectively. Com-
bining these two equations gives us

1

a2

d2a

dt2
= −4πG

3
(ρ + 3P ) . (3.11)

Demanding an accelerated state leads to

ρ + 3P < 0, (3.12)

or simply P < −ρ/3. Since energy density is by assumption always positive,
we are forced to conclude that the species responsible for inflation has a
negative pressure. Recall that baryonic matter has P = 0 and radiation has
P = ρ/3. Hence this substance must be completely different from what we
have already discovered. Before we move on to model this substance, let
us see how we can quantify the amount of inflation required for solving the
horizon problem.

3.4.3 The Amount of Inflation: e-foldings

Let us now see how inflation can account for the large scale homogeneity of
the CMB. To do this we will make an order of magnitude estimate comparing
the comoving Hubble radius at the end of inflation and at the present time.
The ratio of these quantities is

(Heae)
−1

(H0a0)−1
=

H0a0

Heae

. (3.13)

Here we have defined ae ≡ a(te) where te is the time when inflation ends. For
simplicity we will assume that the universe is completely radiation dominated
after inflation until the present time. In a radiation dominated universe
ρ ∼ a−4. Using equation (3.9) we get

H ∼ √
ρ ∼ a−2. (3.14)

Hence He ∼ a−2
e H0. Using this result (with a0 = 1 ) gives

H0a0

Heae

∼ a2
eHe

Heae

∼ ae. (3.15)

The typical energy scale[27] at inflation is T ∼ 1015GeV . With T0 ∼ 10−4eV ,
we obtain

ae ∼ T0

1015GeV
∼ 10−4eV

1015GeV
∼ 10−28. (3.16)
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Hence for inflation to work the comoving Hubble radius must decrease by 28
orders of magnitude. We are dealing with large numbers here, it is therefore
convenient to define the number of e-foldings N(t) as the logarithm of the
inverse of the above ratio.

N(t) ≡ ln
Heae

Ha
. (3.17)

This is a measure of the amount of inflation. The Hubble factor during infla-
tion varies much slower than the expansion factor a, hence we can take H to
be constant whenever it multiplies a. We will in fact use this approximation
a great deal in the calculations in the coming sections. The nearly constancy
of H has made it more common to define the number of e-foldings as

N(t) ≡ ln
ae

a
=

∫ te

t

H(t′)dt′. (3.18)

With the estimation we have recently carried out, we would need N ∼
ln 1028 ∼ 60 e-foldings to solve the horizon problem[10].

3.5 The Inflaton Field

In this section we will implement a scalar field φ(~x, t) to try to describe the
substance responsible of inflation. We will use a field theoretical approach,
characterized by a Lagrangian density L for φ, which is often referred to as
the inflaton field. There are many different ways to describe the inflaton field,
we will opt for the easiest approach here, namely a single field description.
The Lagrangian of the single scalar field [27] is

L = −1

2
gµν ∂φ

∂xµ

∂φ

∂xν
− V (φ). (3.19)

where V (φ) is the potential of the field φ. We will at first be regarding a
field which is mostly homogenous in space leaving the study of first order
perturbation of the field to section 3.7.2 .

3.5.1 Density and Pressure of the Inflaton Field

As an introduction to the study of the field, let us determine its pressure and
density. We will then need the energy- momentum tensor of a classical field
[27].The energy-momentum tensor is given by

Tµν = −2
∂L
∂gµν

+ gµνL. (3.20)
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Inserting the expression for L leads to

Tµν =
∂φ

∂xµ

∂φ

∂xν
− gµν

[
1

2
gαβ ∂φ

∂xα

∂φ

∂xβ
+ V (φ)

]
. (3.21)

Recall that the simplest form of the energy-momentum tensor is the one
with mixed indices whose components is T µ

ν = diag(−ρ, P, P, P ). Raising
an index in the above equation leads us to

T µ
ν = gµα ∂φ

∂xα

∂φ

∂xν
− gµ

ν

[
1

2
gαβ ∂φ

∂xα

∂φ

∂xβ
+ V (φ)

]
. (3.22)

We want to find an expression for the pressure P and the density ρ in terms of
the field variables. We are at the present studying the zero order homogenous
part of the field where the spatial derivatives vanish, and we will be using
the unperturbed metric gµν = diag(−1, a2, a2, a2). Since T 0

0 = −ρ, we get

T 0
0 = g0α ∂φ

∂xα

∂φ

∂x0
− g0

0

[
1

2
gαβ ∂φ

∂xα

∂φ

∂xβ
+ V (φ)

]

= g00 ∂φ

∂x0

∂φ

∂x0
−

[
1

2
g00 ∂φ

∂x0

∂φ

∂x0
+ V (φ)

]

= −
(

∂φ

∂t

)2

+
1

2

(
∂φ

∂t

)2

− V (φ)

= −1

2

(
∂φ

∂t

)2

− V (φ). (3.23)

Hence the field density becomes

ρ =
1

2

(
∂φ

∂t

)2

+ V (φ). (3.24)

We find the pressure in a similar way, calculating T i
i which is equal to P .

Choosing T 1
1 we obtain

T 1
1 = g10 ∂φ

∂x0

∂φ

∂x1
− g1

1

[
1

2
gαβ ∂φ

∂xα

∂φ

∂xβ
+ V (φ)

]

= 0−
[
−1

2

(
∂φ

∂t

)2

+ V (φ)

]

=
1

2

(
∂φ

∂t

)2

− V (φ). (3.25)

Hence the pressure of the field is

P =
1

2

(
∂φ

∂t

)2

− V (φ). (3.26)

We will return to the study of these in section 3.6.
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3.5.2 Field Equations

We will here find an expression for the field equations of the homogenous
inflaton field. We will use the Euler-Lagrange equation [10] given by

∂

∂xµ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0. (3.27)

We will however make no assumption of spatial independence in the below
calculations as the resulting equation will be useful when finding the first
order perturbations of φ. It will in addition be most useful to obtain the
field equation in conformal time, hence we will take the metric to be gµν =
a2diag(−1, 1, 1, 1). Using equation (3.19) we obtain

∂L
∂(∂µφ)

= −gµν∂νφ (3.28)

∂L
∂φ

= −V ′(φ). (3.29)

This leads to

∂

∂xµ

(
∂L

∂(∂µφ)

)
= −∂µg

µν∂νφ− gµν∂µ∂νφ

= −∂0g
00 ∂0φ +

1

a2
φ̈− 1

a2
∇2φ

= 2
ȧ

a3
φ̇ +

1

a2
φ̈− 1

a2
∇2φ. (3.30)

The Euler-Lagrange equation becomes

2
ȧ

a3
φ̇ +

1

a2
φ̈− 1

a2
∇2φ + V ′(φ) = 0

φ̈ + 2
ȧ

a
φ̇ + a2V ′(φ)−∇2φ = 0. (3.31)

Using that ȧ = a2H, the homogenous equation of the inflaton field becomes

φ̈ + 2aHφ̇ + a2V ′(φ) = 0. (3.32)

This is the equation describing the dynamics of φ. Given a potential V , we
could in principle solve this equation, although not many analytic solutions
are known. We will in the next section study the slow roll approximation
of inflation which has become an integral part of inflationary theory. For
this we will need the above equation with respect to ordinary time. This is
simply[27]

d2φ

dt2
+ 3H

dφ

dt
+ V ′(φ) = 0. (3.33)



64 Inflation

3.6 Slow Roll Inflation

Let us revisit the negative pressure criteria we found in section 3.4.2. This
condition gives

P =
1

2

(
∂φ

∂t

)2

− V (φ) < 0. (3.34)

This corresponds to a field configuration with more potential than kinetic
energy[39]. In a sense the field is trapped in a local potential minimum, also
known as a false vacuum, where the global minimum is the true vacuum.
Sooner or later the field must reach its’ true vacuum state, but if the field
is trapped, it must change very slowly with time. This is the basis of the
slow roll approximation, where we demand that the field “rolls slowly” from
its’ false vacuum state to the true global minimum of the potential. Moving
too fast may violate the negative pressure condition. There is also the notion
that the field quantum mechanically tunnels to this state, but I will not cover
this here. Since φ varies very slowly, equation (3.9) becomes

H2 =
8πG

3
ρ

≈ 8πG

3
V (φ) (3.35)

This also shows that H varies very slowly during inflation. We can also omit
the φ̈ term in equation (3.33). This gives

3H
dφ

dt
≈ −V ′(φ). (3.36)

3.6.1 Slow Roll Parameters

It has become customary and useful to define two parameters to quantify
slow-roll inflation[27]. The first of which is

ε ≡ d

dt

(
1

H

)
= − 1

H2

dH

dt
= − Ḣ

aH2
. (3.37)

This quantity is related to our work in the following way. Recall that during
inflation we require d2a/dt2 > 0, thus

1

a

d2a

dt2
=

dH

dt
+ H2 > 0. (3.38)

This gives

− 1

H2

dH

dt
< 1. (3.39)
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Hence during inflation, ε < 1. Many inflationary models use ε = 1 as an
inflation ending criterium. We also see that ε is always positive during infla-
tion since dH/dt is negative. For a slowly rolling field we require ε ¿ 1.
The second parameter we will use is defined as

δ ≡ 1

8πG

V ′′

V
. (3.40)

Observe that this parameter is more commonly referred to as η in the lit-
erature, which we cannot use since this is our conformal time symbol. We
require |δ| ¿ 1. One may also express ε in terms of the field potential V (φ)
in the following manner. Firstly if we differentiate equation (3.35), we get

6H
dH

dt
= 8πGV ′(φ)

dφ

dt
. (3.41)

Using equation (3.36) to solve for dφ/dt we get

dφ

dt
≈ −V ′(φ)

3H
. (3.42)

This leads to

18H
dH

dt
= −8πG

(V ′(φ))2

H
. (3.43)

Dividing by the square of equation (3.35) we get

18H2 dH
dt

9H4
= −8πG

(V ′)2

64π2G2V 2
. (3.44)

This leads to

−
dH
dt

H2
=

(V ′)2

16πGV 2
. (3.45)

Hence we obtain

ε =
1

16πG

(
V ′

V

)2

. (3.46)

We will in the upcoming calculations express encountered quantities by the
slow roll parameters. It turns out that this will simplify our work consider-
ably.

3.7 Cosmological Density Perturbations Dur-

ing Inflation

We will in this section find the equation for the perturbations in the inflaton
field. This we will accomplish by splitting up the field into a zero order
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homogenous part and a first order perturbative part δφ, and use the field
equation we found in section 3.5.2 to find the equation for the perturbations.
The perturbations in δφ are thought to be partially quantum mechanical in
nature. We will thus define the power spectrum of these fluctuations and see
that they are directly related to the metric perturbations, which are believed
to set the seeds of the large scale structure in the universe.

3.7.1 Rescaling Conformal Time

In this framework, anisotropic stress is completely negligible, hence Ψ = −Φ.
Recall also that k = 2π/λ, where λ is the comoving wavelength of a given
k-mode. If the ratio kη is much less than 1, the mode in question has a
wavelength larger than the horizon[10]. Equivalently kη = 1 corresponds to
horizon sized modes and kη > 1 translates into sub-horizon modes. Observe
also that of all cosmological epochs, η undergoes the greatest increase during
inflation. It has thus been customary to redefine η by subtracting off the
primordial part ηprim. This implies that

η ≡
∫ t

te

1

a(t′)
dt′. (3.47)

where te is the time when inflation ends. The comoving horizon has now
become ηprim + η. One can also see that η is negative during inflation. Since
H varies very slowly during inflation, we can get a rough estimate of η. We
will later refine this estimate to include the slow roll parameters.

η =

∫ t

te

1

a(t′)
dt′

=

∫ a

ae

1

Ha′2
da′

≈ 1

H

∫ a

ae

1

a′2
da′

= − 1

H

[
1

a′

]a

ae

= − 1

H

[
1

a
− 1

ae

]
. (3.48)

Since ae À a we get

η ≈ − 1

aH
. (3.49)
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3.7.2 Perturbative Inflaton Equation

We will now find the equation of the first order perturbation of the inflaton
field φ → φ + δφ. The complete field equation for φ is

φ̈ + 2aHφ̇ + a2V ′(φ)−∇2φ = 0 . (3.50)

Observe that this procedure will give a slight error in the resulting equation
since we are in principle neglecting the effect of the metric perturbation Ψ on
δφ. We could account for this by going to the perturbative Einstein equation
δGµ

ν = 4πGδT µ
ν , which would give us a set of coupled equations for Ψ and

δφ. It turns out that this rather tedious approach will give us roughly the
same equation for δφ, give or take a factor proportional to ε δφ. This will in
turn infer a slight modification in the spectral index n to be defined later.
Hence the error we are making is quite small with our approach. Thus let us
set φ → φ + δφ in equation (3.50). We get

φ̈ + δ̈φ + 2aH(φ̇ + ˙δφ) + a2V ′(φ + δφ)−∇2(φ + δφ) = 0

φ̈ + 2aHφ̇ + a2V ′(φ + δφ) + δ̈φ + 2aH ˙δφ−∇2δφ = 0. (3.51)

The derivative of φ can be expanded to first order as

V ′(φ + δφ) ≈ V ′(φ) + δφV ′′(φ). (3.52)

This gives

φ̈ + 2aHφ̇ + a2V ′(φ) + a2V ′′(φ)δφ + δ̈φ + 2aH ˙δφ−∇2δφ = 0 . (3.53)

The first three terms add up to zero by virtue of the zero order equation. We
then obtain

δ̈φ + 2aH ˙δφ−∇2δφ + a2V ′′(φ) δφ = 0 . (3.54)

Going to Fourier space, we finally get

δ̈φ + 2aH ˙δφ +
(
k2 + a2V ′′) δφ = 0 . (3.55)

This is the equation of the perturbations induced by the field.
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3.7.3 Solving the Perturbation Equation

We will now solve the perturbation equation obtained in the previous section.
First, we redefine the field[39] by h ≡ aδφ. Differentiation gives

δφ =
h

a
(3.56)

˙δφ =
ḣ

a
− ȧ

a2
h (3.57)

δ̈φ =
ḧ

a
− 2

ȧ

a2
ḣ− ä

a2
h + 2

ȧ2

a3
h . (3.58)

Inserting these into equation (3.55) leads to

ḧ

a
− 2

ȧ

a2
ḣ− ä

a2
h + 2

ȧ2

a3
h + 2

ȧ

a

(
ḣ

a
− ȧ

a2
h

)
+

(
k2 + a2V ′′) h

a
= 0 . (3.59)

This gives

ḧ

a
+

(
k2 + a2V ′′ − ä

a

)
h

a
= 0 . (3.60)

Multiplication by a finally leads to

ḧ +

(
k2 + a2V ′′ − ä

a

)
h = 0 . (3.61)

We can simplify this equation further by introducing the slow roll parameters.
First we can note that

d

dη

(
1

aH

)
= − 1

a2H2

d

dη
(aH)

= − 1

a2H2

(
ȧH + aḢ

)

= − ȧ

a2H
− Ḣ

aH2
. (3.62)

The last term is simply ε. Since ȧ = a2H we get

d

dη

(
1

aH

)
= ε− 1 . (3.63)
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We can use this equation to approximate the ä/a term. Since 1
aH

= a
ȧ
, we

obtain

d

dη

(a

ȧ

)
= ε− 1

1− aä

ȧ2
= ε− 1

2− ε =
a2

ȧ2
ä

2− ε =
1

a2H2

ä

a
. (3.64)

Thus we get
ä

a
= a2H2(2− ε) . (3.65)

We could now have approximated a2H2 ∼ η−2 as suggested in section 3.7.1,
but refining this approximation will give us a less erroneous solution. As-
suming a slowly varying ε, we can integrate equation (3.63) to obtain

1

aH
= η(ε− 1)

1

a2H2
= η2(ε− 1)2

1

a2H2
≈ η2(1− 2ε) . (3.66)

which gives

a2H2 =
1

η2(1− 2ε)
≈ 1

η2
(1 + 2ε) . (3.67)

Combining this with equation (3.65) leads to

ä

a
≈ 1

η2
(1 + 2ε)(2− ε) ≈ 1

η2
(2 + 3ε) . (3.68)

Working now with the a2V ′′ term, we have to first order

a2V ′′ = a2V
V ′′

V
≈ a2 3H2

8πG

V ′′

V
= 3a2H2δ ≈ 3

η2
(1 + 2ε)δ ≈ 3δ

η2
. (3.69)

where I have used 8πG ≈ 3H2 (valid only in the slow roll limit). Inserting
the above results into equation (3.61) gives

ḧ +

(
k2 +

3δ

η2
− 1

η2
(2 + 3ε)

)
h = 0

ḧ +

(
k2 − 1

η2
(2− 3δ + 3ε)

)
h = 0 . (3.70)
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Defining ν2 = 9
4
− 3δ + 3ε we get

ḧ +

(
k2 +

1

η2

(
1

4
− ν2

))
h = 0 . (3.71)

Assuming now a slow variation of ν, the general solution of this equation
can be expressed by the Hankel functions H

(1)
ν (−kη) and H

(2)
ν (−kη) of the

1. and 2. kind[6], see section C.1 for details. Hence our general solution is

h =
√−η

[
c1H

(1)
ν (−kη) + c2H

(2)
ν (−kη)

]
, (3.72)

where c1 and c2 are integration constants, To find these we can first note that
−kη À 1, in sub-horizon regions, equation (3.71) reduces to the well known
quantum mechanical oscillator equation[39]. The solution in this limit must

thus take on the form e−ikη√
2k

. Studying the large valued limit of the Hankel

functions, we see that this automatically excludes H
(2)
ν (−kη) which is of the

order ∼ eikη. Hence c2 = 0. The large valued limit of H
(1)
ν (−kη) is

H(1)
ν (−kη) '

√
2

π

1√−kη
e−ikηe−i(ν+ 1

2
)π
2 . (3.73)

For h we now have

h =
√−η c1H

(1)
ν (−kη)

!
=

e−ikη

√
2k

. (3.74)

Combining equation (3.73) with the above condition gives

√−η c1

√
2

π

1√−kη
e−ikηe−i(ν+ 1

2
)π
2 =

e−ikη

√
2k

. (3.75)

Solving for c1 leads to

c1 =

√
π

2
ei(ν+ 1

2
)π
2 . (3.76)

Thus our solution becomes

h =

√
π

2

√−η ei(ν+ 1
2
)π
2 H(1)

ν (−kη) . (3.77)

To go further, let us study the super-horizon limit of the above expression,
i.e. when −kη ¿ 1. The Hankel function at this limit reduces to

H(1)
ν (−kη) ' 2ν

i
Γ(ν) (−kη)−ν (3.78)
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This leads us into

h '
√

π

2

√−η ei(ν+ 1
2
)π
2
2ν

i
Γ(ν) (−kη)−ν

=
2ν− 1

2√
2πk3

ei(ν− 1
2
)π
2 k

3
2
−ν(−η)

1
2
−νΓ(ν) . (3.79)

Recall that to a first approximation, −η ∼ (aH)−1 , and Γ(ν) ' Γ(3/2) =√
π/2 since ε and δ are quite small. This gives

h ' 2ν− 1
2√

2πk3
ei(ν− 1

2
)π
2 k

3
2
−ν

(
1

aH

) 1
2
−ν √

π

2

=
2ν− 3

2√
2k3

ei(ν− 1
2
)π
2 k

3
2
−νaH

(
1

aH

) 3
2
−ν

=
2ν− 3

2√
2k3

ei(ν− 1
2
)π
2 aH

(
k

aH

) 3
2
−ν

' ei(ν− 1
2
)π
2√

2k3
aH

(
k

aH

) 3
2
−ν

, (3.80)

where in the last line I have approximated 2ν− 3
2 ' 1. Thus the inflaton

perturbation δφ is given by

δφ =
Hei(ν− 1

2
)π
2√

2k3

(
k

aH

) 3
2
−ν

. (3.81)

We will in the coming section only be interested in the amplitude |δφ| of the
inflaton perturbation. This is

|δφ| = H√
2k3

(
k

aH

) 3
2
−ν

. (3.82)

We will now see how these fluctuations relate to the curvature perturbations
which are responsible for the large scale structure in the universe[39].

3.8 Primordial Metric Perturbations

We will now define the power spectrum of the metric perturbation Φ = −Ψ.
It is defined[10]as

< Ψ̂†Ψ̂ > = (2π)3PΨδ3(~k − ~k′)

= (2π)3|Ψ|2δ3(~k − ~k′) . (3.83)
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Here Ψ̂ is viewed as a quantum mechanical operator. The appearance of
the delta function is a consequence of the independent evolution of different
k-modes. We can in a similar fashion define the power spectrum Pδφ for the
inflaton perturbation

< δ̂φ
†
δ̂φ > = (2π)3Pδφ δ3(~k − ~k′)

= (2π)3|δφ|2δ3(~k − ~k′) . (3.84)

Observe that some authors include an extra factor of k3 in the definition of
the power spectrum like in [16]. We will now undertake the task of relating
PΨ = PΦ with Pδφ. Later in this chapter we shall relate PΨ with the matter
power spectrum P(k) defined as

< δ̂†(~k)δ̂(~k′) > = (2π)3P(k)δ3(~k − ~k′). (3.85)

where δ is the matter density contrast of the total matter component of the
universe defined earlier in chapter 2.

3.8.1 The Curvature Perturbation ζ

A straightforward way of relating Ψ to δφ that might seem strange at first is
to define a function ζ by

ζ = − ikiδT
0
iH

k2(ρ + P )
−Ψ, (3.86)

where δT 0
i is the 0

i-component of the perturbed energy-momentum tensor.
It turns out that ζ is in fact a gauge invariant quantity, first identified by
Bardeen [4] which is a constant in time. We will take this as given at this
time, leaving the proof of this to section 3.8.4. Let us see what this fact
implies.
For modes at horizon crossing (aH = k), Ψ is completely negligible[39]. In
addition we have that

P + ρ =
φ̇2

a2
. (3.87)

To find δT 0
i we can use equation (3.22)

T 0
i = g00 ∂φ

∂x0

∂φ

∂xi
− g0

i

[
1

2
gαβ ∂φ

∂xα

∂φ

∂xβ
+ V (φ)

]

= − φ̇

a3

∂φ

∂xi
. (3.88)
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This is of course 0 for the homogenous part of the field. Letting φ → φ + δφ
leads to

T 0
i + δT 0

i = − φ̇ + ˙δφ

a3

∂φ

∂xi
− φ̇ + ˙δφ

a3

∂δφ

∂xi

= T 0
i −

˙δφ

a3

∂φ

∂xi
− φ̇

a3

∂δφ

∂xi
. (3.89)

Subtracting off the zero order part and retaining only the 1. order term, we
obtain

δT 0
i = − φ̇

a3

∂δφ

∂xi
. (3.90)

In Fourier space this expression becomes

δT 0
i = −ikiφ̇ δφ

a3
. (3.91)

Using this result equation (3.86) reduces to

ζ = −
ikiH

(
− ikiφ̇ δφ

a3

)

k2 φ̇2

a2

= −ak2φ̇ δφH

k2φ̇2

= −aδφH

φ̇
. (3.92)

Observe that this expression should be evaluated at the time of horizon
crossing. Let us now see what happens to ζ as inflation ends.

3.8.2 Perturbed Energy-Momentum Tensor for Radi-
ation

As inflation ends, the universe becomes dominated by radiation. We will
now evaluate ζ at this epoch, and for this we will need the expression for the
energy-momentum tensor. In general it is given by[10]

T µ
ν = gi

∫
dP1dP2dP3

(2π)3
(−|g|)− 1

2
P µPν

P0

fi , (3.93)

where fi is the distribution function for species i. For the photon, gi = 2.
We are interested in T 0

i, for which the above expression reduces to

T 0
i = 2a

∫
d3p

(2π)3
pif , (3.94)
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where pi is the photon momentum. We shall now perturb the above expres-
sion to obtain δT 0

i . In chapter 2 we saw that the first order perturbation of
the distribution function is

f = fo − p
∂f0

∂p
Θ. (3.95)

This gives

T 0
i(0) + δT 0

i = 2a

∫
d3p

(2π)3
pif0 − 2a

∫
d3p

(2π)3
ppi

∂f0

∂p
Θ . (3.96)

Subtracting off the zero order part we get

δT 0
i = −2a

∫
d3p

(2π)3
p2ni

∂f0

∂p
Θ . (3.97)

Recalling that kini = µk, we can contract with iki to obtain

ikiδT
0
i = −2ak

∫
d3p

(2π)3
ip2µ

∂f0

∂p
Θ

= −2ak

∫ ∞

0

dpp4∂f0

∂p

1

−i

∫
dΩ

(2π)3
µΘ

= −2ak

∫ ∞

0

dp

2π2
p4∂f0

∂p

1

−i

∫ 1

−1

dµ

2
µΘ . (3.98)

We have calculated the momentum integral before, it is simply −2ρr. The
angle integral is by definition the dipole Θ1. We thus get

ikiδT
0
i = 4akρrΘ1 . (3.99)

3.8.3 The Metric Power Spectrum

Obtaining a result for ikiδT
0
i at the end of inflation allows us to find an

expression for ζ, which we can compare to the one we found in section 3.8.1.
Using the fact that when radiation dominates, P +ρ = 4ρr/3, equation (3.86)
becomes

ζ = −4akρrΘ1H

k2 4
3
ρr

−Ψ

= −3aΘ1H

k
−Ψ (3.100)
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A result obtained from [10] is that for adiabatic initial conditions we have
that Θ1 = kΨ

6aH
. This gives us

ζ = −1

2
Ψ−Ψ = −3

2
Ψ . (3.101)

Since ζ is constant in time, we can finally relate ψ to ζ at horizon crossing.
This is

Ψ = −2

3
ζ =

2

3

aHδφ

φ̇
, (3.102)

where I have used the result of equation (3.92). We have thus obtained a
relation between the post-inflation metric perturbation with the inflationary
perturbation at horizon crossing. This implies again that the metric power
spectrum is given by

PΦ = PΨ =
4

9

a2H2

φ̇2
|δφ|2 . (3.103)

Using the result from equation (3.82) we get

PΨ =
4

9

a2H2

φ̇2

H2

2k3

(
k

aH

)3−2ν

=
2

9k3

(
aH

φ̇

)2

H2

(
k

aH

)3−2ν

=
8πG

9k3

H2

ε

(
k

aH

)3−2ν

, (3.104)

where in the last line I have used that (aH/φ̇)2 = 4πG/ε. We can simplify
this expression further by recalling that since ν2 = 9/4− 3δ + 3ε, we get

ν =
3

2

√
1 +

(
−4

3
δ +

4

3
ε

)

' 3

2

(
1− 2

3
δ +

2

3
ε

)

=
3

2
− δ + ε . (3.105)

Hence the exponent of the k/aH term becomes

3− 2ν = 2δ − 2ε . (3.106)

Defining now the spectral index n as n− 1 ≡ 2δ − 2ε we obtain

PΨ =
8πG

9k3

H2

ε

(
k

aH

)n−1

. (3.107)
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We will need this expression later when we calculate the CMB power spec-
trum in chapter 6. In our representation of the power spectrum, a spectrum
is called scale invariant if k3PΨ(k) is independent of k. This is in fact the
case if we require n = 1 in equation (3.107). This is equivalent to the well
known Harrison-Zel’dovich-Peebles spectrum. We will see in chapter 6 that
a scale invariant power spectrum will give rise to a nearly flat Sachs-Wolfe
plateau in the CMB spectrum for low multipoles. Recent measurements from
the ongoing WMAP experiment seem however to indicate a deviation from
the flat spectrum at very large scales.
Recall that we have obtained our result here without making use of the Ein-
stein equations (equations (2.193)-(2.195)). If we had done that equation
(3.107) would actually remain unchanged[27]. The difference being in the
spectral index which would become

n− 1 = 2δ − 6ε . (3.108)

Hence our approach gave an error of the order 4ε.

3.8.4 Proof of the Constancy of ζ

We will now set about to prove the constancy of ζ, the curvature perturbation
function first introduced in section 3.8.1. Recall that it was defined as

ζ = − ikiδT
0
iH

k2(ρ + P )
−Ψ . (3.109)

With a bit of handwaving we used this function to relate the scalar pertur-
bations set up by inflation with the perturbations to the metric.
We begin with the equation of the conservation of energy-momentum given
by

T µ
ν;µ = T µ

ν,µ + Γµ
αµT

α
ν − Γα

νµT
µ
α = 0 . (3.110)

The metric is now

g00 = −1− 2Ψ , gij = δija
2 (1 + 2Φ) . (3.111)
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We will need the Christoffel symbols. These are

Γ0
00 =

∂Ψ

∂t
(3.112)

Γ0
0i = Γ0

i0 = Ψ,i (3.113)

Γ0
ij = δija

2

[
H + 2H

(
Φ− ∂Ψ

∂t

)]
(3.114)

Γi
00 =

1

a2
Ψ,i (3.115)

Γi
j0 = δij

(
H +

∂Φ

∂t

)
(3.116)

Γi
jk = δijΦ,k +δikΦ,j −δjkΦ,i . (3.117)

We will now split the perturbed conservation equation into a zero order part
and a perturbative part by letting T µ

ν → T µ
ν + δT µ

ν . Observe that we will
only need the 0

0-component of the energy-momentum equation, and that we
as usual will only keep 1. order terms in the perturbations.
We thus get

∂

∂t

(
T 0

0 + δT 0
0

)
+

∂

∂xi

(
T i

0 + δT i
0

)

+Γµ
αµ (Tα

0 + δTα
0)− Γα

0µ

(
T µ

α + δT µ
α

)
= 0 . (3.118)

Starting with the third term, we obtain

Γµ
αµ (Tα

0 + δT α
0) =Γµ

0µ

(
T 0

0 + δT 0
0

)
+ Γµ

iµ

(
T i

0 + δT i
0

)

=

[
∂Ψ

∂t
+ 3

(
H +

∂Φ

∂t

)] (
T 0

0 + δT 0
0

)

+

[
∂Ψ

∂xi
+ Γi

jk

] (
T i

0 + δT i
0

)
. (3.119)

In the last term, recall that the zero order energy-momentum tensor is diag-
onal, hence T i

0 = 0. We are then left with two first order terms multiplying
the first order expression δT i

0 . Thus we can set the complete product to 0
in our approximation. We are left with

Γµ
αµ (Tα

0 + δT α
0) ≈

[
∂Ψ

∂t
+ 3

(
H +

∂Φ

∂t

)] (
T 0

0 + δT 0
0

)
. (3.120)

Moving now to the last term of equation (3.118), we get

−Γα
0µ

(
T µ

α + δT µ
α

)
= −Γα

00

(
T 0

α + δT 0
α

)− Γα
0i

(
T i

α + δT i
α

)

= −∂Ψ

∂t

(
T 0

0 + δT 0
0

)− 1

a2

∂Ψ

∂xi

(
T 0

i + δT 0
i

)

−Ψ,i
(
T i

0 + δT i
0

)− Γj
0i

(
T i

j + δT i
j

)
. (3.121)
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We can as mentioned before ignore all non-diagonal parts of the zero-order
energy-momentum tensor (being 0), in addition to all second order terms.
We thus obtain

−Γα
0µ

(
T µ

α + δT µ
α

) ≈ −∂Ψ

∂t
T 0

0 − Γj
0i

(
T i

j + δT i
j

)

= −∂Ψ

∂t
T 0

0 − 3HT i
i − 3

∂Φ

∂t
T i

i −HδT i
i . (3.122)

Here I have used the expression for the Christoffel symbols. Observe that in
the last term the sum over i is implicit.
Putting it all together, equation (3.118) becomes

∂

∂t
T 0

0 +
∂

∂t
δT 0

0 +
∂

∂xi
δT i

0 +
∂Ψ

∂t
T 0

0 + 3HT 0
0 + 3

∂Φ

∂t
T 0

0

+3HδT 0
0 −

∂Ψ

∂t
T 0

0 − 3HT i
i − 3

∂Φ

∂t
T i

i −HδT i
i = 0 . (3.123)

Rearrangement gives

∂

∂t
T 0

0 + 3HT 0
0 − 3HT i

i +
∂

∂t
δT 0

0 +
∂

∂xi
δT i

0 + 3
∂Φ

∂t

(
T 0

0 − T i
i

)

+3HδT 0
0 −HδT i

i = 0 .
(3.124)

The first three terms of the above equation add up to 0 by virtue of the zero-
order equation T µ

ν;µ = 0. It will also be convenient at this stage to return to
Fourier space. We are hence left with

∂

∂t
δT 0

0 + ikiδT
i
0 + 3HδT 0

0 −HδT i
i = −3

∂Φ

∂t

(
T 0

0 − T i
i

)
. (3.125)

If we now make the following substitutions

T 0
0 = −ρ, T i

i = P, Φ = −Ψ , (3.126)

we get

∂

∂t
δT 0

0 + ikiδT
i
0 + 3HδT 0

0 −HδT i
i = −3

∂Ψ

∂t
(ρ + P ) . (3.127)

Now that we have acquired the conservation equation, let us see where it will
lead us. First of all in our setting we are interested in large scales. We can
thus omit the term ikiδT

i
0, since we already calculated δT i

0 in section 3.8.2
and discovered that it is of the order k . Hence the term we are neglecting is
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of the order k2, which is an acceptable approximation at this level. We are
now left with

∂

∂t
δT 0

0 + 3HδT 0
0 −HδT i

i = −3
∂Ψ

∂t
(ρ + P ) . (3.128)

To go further we will need the perturbed Einstein equations. From [10], these
are given by

−3H
∂Φ

∂t
+ 3ΨH2 − k2Φ

a2
= 4πGδT 0

0 (3.129)

iki

(
∂Φ

∂t
−HΨ

)
= 4πGkiδT

0
i . (3.130)

If we contract with ki and rearrange a little, the last equation becomes

3H
∂Φ

∂t
− 3ΨH2 = −12πGikiHδT 0

i

k2
. (3.131)

Combining this result with equation (3.129) gives us

−k2Φ

a2
= 4πGδT 0

0 −
12πGikiHδT 0

i

k2
. (3.132)

Recall that we are working in the large scale regime. We can thus neglect
the term on the left. This gives us

4πGδT 0
0 =

12πGikiHδT 0
i

k2
(3.133)

⇓
ikiHδT 0

i

k2
=

δT 0
0

3
. (3.134)

This enables us to simplify the expression for ζ in the following manner

ζ = − ikiHδT 0
i

k2(ρ + P )
−Ψ

= − δT 0
0

3(ρ + P )
−Ψ . (3.135)

Solving for Ψ and inserting the result into equation (3.128) gives us (working
with the right hand side)

−3
∂Ψ

∂t
(ρ + P ) = 3(ρ + P )

∂

∂t

(
ζ +

δT 0
0

3(ρ + P )

)

= 3(ρ + P )
∂ζ

∂t
+ (ρ + P )

∂

∂t

(
δT 0

0

ρ + P

)

= 3(ρ + P )
∂ζ

∂t
+

∂

∂t
δT 0

0 −
δT 0

0

ρ + P

(
∂ρ

∂t
+

∂P

∂t

)
. (3.136)
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Comparing this result with the left hand side of equation (3.128), we can
already see that the ∂ (δT 0

0) /∂t term cancel. The full equation is reduced to

3HδT 0
0 −HδT i

i = 3(ρ + P )
∂ζ

∂t
− δT 0

0

ρ + P

(
∂ρ

∂t
+

∂P

∂t

)
. (3.137)

Our equation can be simplified even further. The homogenous continuity
equation from chapter 1 (equation (1.5)) is given by

∂ρ

∂t
= −3H(ρ + P ) . (3.138)

This gives us

3HδT 0
0 −HδT i

i = 3(ρ + P )
∂ζ

∂t
+ 3HδT 0

0 −
δT 0

0

ρ + P

∂P

∂t
(3.139)

⇓

3(ρ + P )
∂ζ

∂t
=

δT 0
0

ρ + P

dP

dt
−HδT i

i (3.140)

⇓
∂ζ

∂t
=

1

3(ρ + P )2

(
δT 0

0

dP

dt
−H(ρ + P )δT i

i

)
. (3.141)

We can use equation (3.138) again to obtain

∂ζ

∂t
=

1

3(ρ + P )2

(
δT 0

0

dP

dt
+

δT i
i

3

dρ

dt

)
. (3.142)

Observe that we can interpret δT 0
0 as the density contrast −δρ, and δT i

i/3
as the perturbation to the pressure δP . We can hence write

∂ζ

∂t
=

1

3(ρ + P )2

(
−δρ

dP

dt
+ δP

dρ

dt

)
. (3.143)

Notice that for adiabatic perturbations we require[10]that

δP

δρ
= c2

s , (3.144)

where cs is the sound speed defined earlier. An alternative definition [37] of
the sound speed is

dP

dρ
= c2

s . (3.145)
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This implies that δpdρ = δρdp. Inserted into equation (3.143) gives us

∂ζ

∂t
= 0 . (3.146)

We have thus finally proven that the function ζ is indeed a time independent
quantity, hence justifying our previous assumption.
This concludes our work on inflation. Now that we have an understanding of
the early universe, we shall return to the Boltzmann equations we acquired
in chapter 2 and study these in detail.
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Chapter 4

Perturbations in the Cosmic
Plasma

4.1 Introduction

In this chapter we will undergo the task of calculating and explaining the
dynamics of the CMB power spectrum. We will use the tools devolved in
the previous chapter to study this phenomenon in upcoming chapters. The
equations describing the CMB spectrum are an infinite set of coupled dif-
ferential equations, where analytical solutions are impossible to obtain. We
will hence make some approximations, specifically the so called tight coupling
limit, where the baryons and photons are so strongly coupled by Compton
collisions that they act as a single fluid[25]. This will simplify matters a great
deal, leading us into studying the acoustic oscillations of the cosmic plasma,
where the peak locations of these oscillations have direct consequences for
the full CMB power spectrum.

4.2 Initial Conditions

We start by dealing with the problem of initial conditions [19]. As we saw
in chapter 3, our model for inflation sets an initial non-zero spectrum for
Ψ, hence setting the seeds for structure formation. We want to see how
this initial excitation of the gravitational potential Ψ effects the temperature
perturbation Θ in the large scale [40] limit. Returning for simplicity to cosmic
time t, we have that T ∼ a−1 we have that

Θ ≡ δT

T
= −δa

a
. (4.1)
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Since a ∝ t
2

3(1+ω) , we obtain

Θ = − 2

3(1 + ω)

δt

t
. (4.2)

The perturbation δt/t can be viewed as a time-dilation effect from the varying
gravitational potential Ψ, and since ds =

√
1 + 2Ψdt ' (1 + Ψ)dt, the time

perturbation is simply Ψ. We thus obtain

Θ = − 2

3(1 + ω)
Ψ. (4.3)

Since the observed temperature fluctuation is Θ + Ψ we get

Θ + Ψ =
1 + 3ω

3 + 3ω
Ψ. (4.4)

In a matter dominated universe with ω = 0 the above equation reduces to
Θ + Ψ = 1

3
Ψ. This is again another manifestation of Sachs-Wolfe effect[40],

which we will study more in section 6.4. For now it is suffice to know that
inflation sets a non-zero value for the initial perturbations of Θ and Ψ.

4.3 Boltzmann Hierarchy

4.3.1 Multipole Expansion Θ̃l

In the previous chapter we saw defined the zeroth and first moment of the
temperature perturbation ˜Θ(µ, η), where ~n · ~k = µ/k, as

Θ̃0 =

∫ 1

−1

dµ

2
Θ̃(µ) (4.5)

Θ̃1 = i

∫ 1

−1

dµ

2
µ Θ̃(µ), (4.6)

which we refer to as the monopole and the dipole respectively. We will now
generalize this into defining the l’th multipole moment of ˜Θ(µ, η) as

Θ̃l =
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ) Θ̃(µ), (4.7)
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where Pl is the l’th order Legendre polynomial. The Legendre polynomials
are a complete set of orthogonal functions. To name the first polynomials

P0(µ) = 1 (4.8)

P1(µ) = µ (4.9)

P2(µ) =
3µ2 − 1

2
. (4.10)

An important property of the Legendre polynomials [1] is the recurrence
relation

(l + 1)Pl+1(µ) = (2l + 1)µPl(µ)− lPl−1(µ). (4.11)

We will be using this equation in the next section to obtain the Boltzmann
Hierarchy.

4.3.2 Multipole Boltzmann Equations

We will now revisit the full Boltzmann equation obtained in chapter 2 and
combine these with the definitions of the previous section. Recall that the
photon Boltzmann equation was

˙̃Θ + i kµ Θ̃ + ˙̃Φ + i kµ Ψ̃ = −τ̇
[
Θ̃0 − Θ̃ + µ ṽb

]
. (4.12)

Observe now that all perturbations that are indexed will have no µ depen-
dance.If we now multiply by dµ

2
P0(µ) and integrate, we obtain

∫ 1

−1

dµ

2
˙̃Θ+i

∫ 1

−1

dµ

2
kµ Θ̃ +

∫ 1

−1

dµ

2
˙̃Φ

+ i

∫ 1

−1

dµ

2
kµ Ψ̃ = −τ̇

[ ∫ 1

−1

dµ

2
Θ̃0 −

∫ 1

−1

dµ

2
Θ̃ +

∫ 1

−1

dµ

2
µ ṽb

]
.

(4.13)

In addition, the gravitational perturbations Φ̃ and Ψ̃, and the baryon velocity
ṽb, are independent [10] of µ. We then get

˙̃Θ0 + k Θ̃1 + ˙̃Φ + 0 = −τ̇
[
Θ̃0 − Θ̃0 + 0

]
, (4.14)

which gives
˙̃Θ0 + k Θ̃1 = − ˙̃Φ (4.15)
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Taking now the 2. moment of the Boltzmann equation, i.e. we multiply by
idµ

2
P1(µ) and integrate, we get

i

∫ 1

−1

dµ

2
P1(µ) ˙̃Θ− k

∫ 1

−1

dµ

2
µ P1(µ)Θ̃ + i

∫ 1

−1

dµ

2
P1(µ) ˙̃Φ− k

∫ 1

−1

dµ

2
µP1(µ)Ψ̃

= −τ̇
[
i

∫ 1

−1

dµ

2
P1(µ)Θ̃0

− i

∫ 1

−1

dµ

2
P1(µ)Θ̃ + i

∫ 1

−1

dµ

2
µP1(µ)ṽb

]
. (4.16)

The third term on the left hand side and the first term on the right hand
side both integrates to 0. In addition we have that

µP1(µ) = µ2 =
2

3
P2(µ) +

1

3
P0(µ) . (4.17)

Using this result we get

˙̃Θ1 − k
2

3

∫ 1

−1

dµ

2
P2(µ)Θ̃− k

1

3

∫ 1

−1

dµ

2
P0(µ)Θ̃− k

3
Ψ̃ = −τ̇

[− Θ̃1 + i
ṽb

3

]
,

(4.18)

which gives

˙̃Θ1 − 2

3
kΘ̃2 − 1

3
kΘ̃0 − k

3
Ψ̃ = τ̇

[
Θ̃1 − i

ṽb

3

]
. (4.19)

Rearrangement leads to

˙̃Θ1 − 2k

3
Θ̃2 − k

3
Θ̃0 =

k

3
Ψ̃ + τ̇

[
Θ̃1 − i

ṽb

3

]
. (4.20)

We can see a pattern emerging, for each moment of the Boltzmann equation
we take, we get a coupling of the given multipole with the higher multipole
and a lower one. Let us generalize what we have done to all higher moments
l > 2. We can then multiply by 1

(−i)l
dµ
2

Pl(µ)

1

(−i)l

∫ 1

−1

dµ

2
Pl(µ) ˙̃Θ +

k

(−i)l+1

∫ 1

−1

dµ

2
Pl(µ)µ Θ̃ +

1

(−i)l

∫ 1

−1

dµ

2
Pl(µ) ˙̃Φ+

k

(−i)l+1

∫ 1

−1

dµ

2
Pl(µ)µ Ψ̃ = −τ̇

[ 1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ̃0 − 1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ̃

+ṽb
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)µ

]
. (4.21)
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Because of the orthogonality of the Pl(µ) , the two last terms on the left
hand side in addition to the first and third term on the right hand side are

all 0. The first term on the left hand side is simply ˙̃Θl and the remaining
term in the bracket on the right hand side is −Θ̃l. We thus obtain

˙̃Θl +
k

(−i)l+1

∫ 1

−1

dµ

2
µPl(µ) Θ̃ = τ̇Θ̃l . (4.22)

From equation (4.11), we have that

µPl(µ) =
l + 1

2l + 1
Pl+1(µ)− l

2l + 1
Pl−1(µ) . (4.23)

Using this relation, the remaining integral becomes

k

(−i)l+1

∫ 1

−1

dµ

2
µPl(µ) Θ̃ = k

l + 1

2l + 1

1

(−i)l+1

∫ 1

−1

dµ

2
Pl+1(µ) Θ̃

− k
l

2l + 1

1

(−i)l+1

∫ 1

−1

dµ

2
Pl−1(µ) Θ̃

= k
l + 1

2l + 1
Θ̃l+1 − k

l

2l + 1
Θ̃l−1 . (4.24)

Inserting this into equation (4.22) finally gives

˙̃Θl + k
l + 1

2l + 1
Θ̃l+1 − k

l

2l + 1
Θ̃l−1 = τ̇Θ̃l . (4.25)

This equation, together with equations (4.15) and (4.20), is called the Boltz-
mann Hierarchy. They are an infinite set of coupled ordinary differential
equations for the temperature perturbations Θ̃l. We will later see that the
CMB power spectrum is directly related to these mutltpoles in a relatively
simple way, hence the challenge is to calculate the Θ̃l. One can use numerical
tools to calculate the power spectrum, like the installation CMBEasy which
uses the CMBFast code for the calculations, but has a graphical interface
where one can easily vary cosmological parameters. In these codes one obvi-
ously has to set a cutoff value for l. This cutoff value must not be set too low
because roundoff errors will propagate down to the lower multipoles. The
codes typically[28]recommend a cutoff at l ∼ 1500 − 2000. I will later in
chapter 7 use these codes to show some examples of CMB power spectra.
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4.4 Tight Coupling Approximation

It is quite hard to obtain analytic solution of the Boltzmann Hierarchy1 in
it’s fullness. It is however possible to obtain approximate solutions in certain
cosmological eras. Before the time of recombination η∗, the very large amount
of free electrons drastically reduces the mean free path of the photons ∼ η/τ ,
which corresponds to a very large optical depth τ À 1. This implies that the
photons behave very much like a fluid, tightly coupled to the electron-proton
plasma. Returning to the Boltzmann Hierarchy for l > 2, let us make an

order of magnitude analysis of this equation. Firstly, the term ˙̃Θl is of the
order Θ̃l/η. Similarly, τ̇Θ̃l ∼ τΘ̃l/η , k(l + 1)/(2l + 1)Θ̃l+1 ∼ kΘ̃l+1/2 and
kl/(2l + 1)Θ̃l−1 ∼ kΘ̃l−1/2. Hence equation (4.25) becomes

Θ̃l

η
+

k

2
Θ̃l+1 − k

2
Θ̃l−1 ∼ τ

η
Θ̃l . (4.26)

Since τ À 1, we can neglect the first term on the left hand side Θ̃l

η
. We thus

get

Θ̃l+1 − Θ̃l−1 ∼ 2τ

kη
Θ̃l . (4.27)

The equivalent equation for a higher mutlipole is

Θ̃l+2 − Θ̃l ∼ 2τ

kη
Θ̃l+1 . (4.28)

So the order of Θ̃l+1 is

Θ̃l+1 ∼ kη

2τ
(Θ̃l+2 − Θ̃l) . (4.29)

Inserting this into equation (4.27) gives

kη

2τ
Θ̃l+2 − kη

2τ
Θ̃l − Θ̃l−1 ∼ 2τ

kη
Θ̃l . (4.30)

Horizon sized modes have kη ∼ 1. Hence we can neglect the two first terms
on the left hand side. Thus we get

Θ̃l ∼ kη

2τ
Θ̃l−1 . (4.31)

Hence in the tightly coupled limit, |Θ̃l| ¿ |Θ̃l−1|. This implies that all higher
multipoles other than the monopole and the dipole are highly suppressed.

1Impossible ?
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Thus we will only need the first two moment equations, omitting Θ̃2 in the
latter. We have thus gone from a setting with infinitely many equations to
a set of three coupled first order equations

˙̃Θ0 + k Θ̃1 = − ˙̃Φ (4.32)

˙̃Θ1 − k

3
Θ̃0 =

k

3
Ψ̃ + τ̇

[
Θ̃1 − i

ṽb

3

]
(4.33)

ṽb = −3iΘ̃1 +
R

τ̇

[
˙̃vb +H ṽb + i kΨ̃

]
, (4.34)

where the last equation is the baryon velocity equation obtained in chapter
2. This approach was first formalized in [22].

4.5 Acoustic Oscillation Equation

We want to turn the above equations into one equation for one of the vari-
ables. Firstly we can make a simplification in the velocity equation (4.34).
The second term is of the order ∼ τ−1, hence to lowest order we can set

ṽb ≈ −3iΘ̃1 . (4.35)

Inserting this value into equation (4.34) we get

ṽb = −3iΘ̃1 +
R

τ̇

[
−3i ˙̃Θ1 − 3iH Θ̃1 + i kΨ̃

]
. (4.36)

Combining this expression with equation (4.33) gives

˙̃Θ1 − k

3
Θ̃0 =

k

3
Ψ̃ + τ̇

[
Θ̃1 − i

3

(
−3iΘ̃1 +

R

τ̇

[
−3i ˙̃Θ1 − 3iH Θ̃1 + i kΨ̃

]) ]

=
k

3
Ψ̃ + τ̇

[
Θ̃1 − Θ̃1 +

R

τ̇

[ ˙̃Θ1 +H Θ̃1 − kΨ̃

3

]]

=
kΨ̃

3
−R ˙̃Θ1 −RH Θ̃1 + R

kΨ̃

3
, (4.37)

or simply

(1 + R) ˙̃Θ1 + RH Θ̃1 − k

3
Θ̃0 = (1 + R)

kΨ̃

3
. (4.38)

Division by (1 + R) leads to the following equation

˙̃Θ1 +H R

1 + R
Θ̃1 − k

3(1 + R)
Θ̃0 =

kΨ̃

3
. (4.39)
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We can now eliminate Θ̃1 by rewriting equation (4.32) as

Θ̃1 = −
˙̃Θ0

k
−

˙̃Φ

k
(4.40)

˙̃Θ1 = −
¨̃Θ0

k
−

¨̃Φ

k
. (4.41)

Inserting these expressions into equation (4.39) gives

−
¨̃Θ0

k
−

¨̃Φ

k
+H R

1 + R

(
−

˙̃Θ0

k
−

˙̃Φ

k

)
− k

3(1 + R)
Θ̃0 =

kΨ̃

3

¨̃Θ0 + ¨̃Φ +H R

1 + R
˙̃Θ0 +H R

1 + R
˙̃Φ +

k2

3(1 + R)
Θ̃0 = −k2Ψ̃

3
. (4.42)

Rearrangement leads to

¨̃Θ0 +H R

1 + R
˙̃Θ0 +

k2

3(1 + R)
Θ̃0 = − ¨̃Φ− k2Ψ̃

3
−H R

1 + R
˙̃Φ . (4.43)

This is an equation for a damped harmonic oscillator with a driving force
F (k, η) defined as

F (k, η) = − ¨̃Φ− k2Ψ̃

3
−H R

1 + R
˙̃Φ (4.44)

The ˙̃Θ0 can be interpreted as a damping term, thus we can already see
that a high baryon number will dampen the oscillations, in addition to the
expansion of the background space, quantified by H. We can simplify this
term by noting that

Ṙ =
d

dη

(
3ρb

4ρr

)
=

3

4

ρ̇bρr − ρbρ̇r

ρ2
r

=
3

4

−3Hρbρr + 4Hρbρr

ρ2
r

=
3

4

H ρbρr

ρ2
r

= HR . (4.45)

We can in addition define the sound speed cs as

c2
s ≡

1

3(1 + R)
. (4.46)

Using these last results and definitions we finally obtain

¨̃Θ0 +
Ṙ

1 + R
˙̃Θ0 + k2c2

sΘ̃0 = F (k, η) . (4.47)
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I will now obtain a semi-analytic solution of this equation by first solving
the homogenous counterpart, i.e. with no driving force, utilizing the WKB
approximation.

4.6 WKB Solution Of The Homogenous Acoustic

Equation

In solving the full oscillator equation (4.47) we will be using a Greens func-
tion method consisting of finding the Greens function which is a solution
of the homogenous equation[22]. Then we use this function to induce the
inhomogeneous solutions which we will do in the next section. Let us first
solve the homogenous equation

¨̃Θ0 +
Ṙ

1 + R
˙̃Θ0 + k2c2

sΘ̃0 = 0 . (4.48)

Let us now assume a solution of the form

Θ̃0 = AeiB , (4.49)

where A and B are functions of conformal time η. Differentiation gives

˙̃Θ0 = ȦeiB + iAḂeiB (4.50)

¨̃Θ0 = ÄeiB + 2iȦḂeiB + iAB̈eiB − A(Ḃ)2eiB . (4.51)

Inserting this into equation (4.48) gives

ÄeiB + 2iȦḂeiB + iAB̈eiB − A(Ḃ)2eiB +
Ṙ

1 + R

(
ȦeiB + iAḂeiB

)

+k2c2
sAeiB = 0 .

(4.52)

Gathering the real and imaginary parts we get two equations for the unknown
functions A and B

Ä +
Ṙ

1 + R
Ȧ + k2c2

sA− A(Ḃ)2 = 0 (4.53)

AB̈ +
Ṙ

1 + R
AḂ + 2ȦḂ = 0 . (4.54)
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The assumption now is that the function B changes much more rapidly than
A. We can thus neglect the first two terms in equation (4.53). Assuming
that A 6= 0, equation (4.53) becomes

k2c2
s − (Ḃ)2 = 0

Ḃ = k cs (4.55)

Integration gives (with B(0) = 0)
∫ η

0

dη′Ḃ = k

∫ η

0

dη′cs(η
′)

B = k

∫ η

0

dη′cs(η
′) ≡ k rs(η) , (4.56)

where we have defined the sound horizon rs(η), which I will find an explicit
expression for in section 4.9 . We can now use equation (4.54) to find A.
First note that

B̈Ḃ = k2csċs (4.57)

ċs = −3

2
c3
sṘ . (4.58)

Combining this with equation (4.54) we get (after multiplication with Ḃ)

A k2csċs +
Ṙ

1 + R
Ak2c2

s + 2Ȧk2c2
s = 0

−3

2
Ac2

sṘ +
Ṙ

1 + R
A + 2Ȧ = 0 . (4.59)

Inserting the expression for the sound speed we obtain

3 c2
sṘ− 2Ṙ

1 + R
= 4

Ȧ

A

− Ṙ

1 + R
= 4

Ȧ

A
. (4.60)

Integrating on both sides leads to

4 ln A = − ln(1 + R)

A = (1 + R)−
1
4 . (4.61)

Hence the two linearly independent solutions of the homogenous oscillator
equation are

Θ̃1
0(k, η) = (1 + R)−

1
4 sin(k rs(η)) (4.62)

Θ̃2
0(k, η) = (1 + R)−

1
4 cos(k rs(η)) . (4.63)
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The solutions are as expected sinusoidal with a varying amplitude (1+R)−
1
4 ,

where the role of R becomes more apparent as a damping factor, as higher
R decreases the amplitude.

4.7 Solving The Inhomogeneous Acoustic Equa-

tion

Now that we have a semi-analytic solution of the homogenous equation (4.48),
we can embark on solving the full acoustic equation. Before we do that, we
can simplify equation (4.47) a little by noting that Φ̃ appears in almost the
same manner as Θ̃0. Hence we can write

¨̃Θ0 + ¨̃Φ +
Ṙ

1 + R
˙̃Θ0 +H R

1 + R
˙̃Φ + k2c2

sΘ̃0 + k2c2
sΦ̃ = −k2Ψ̃

3
+ k2c2

sΦ̃

¨̃Θ0 + ¨̃Φ +
Ṙ

1 + R

(
˙̃Θ0 + ˙̃Φ

)
+ k2c2

s

(
Θ̃0 + Φ̃

)
=

k2

3

(
3 c2

sΦ̃− Ψ̃
)

,

(4.64)

which gives
[

d2

dη2
+

Ṙ

1 + R

d

dη
+ k2c2

s

] [
Θ̃0 + Φ̃

]
=

k2

3

[
1

1 + R
Φ̃− Ψ̃

]
. (4.65)

Note that the homogenous version of this equation is exactly the same as
equation (4.48). Hence the solutions found in section 4.6 will be equally
applicable for this equation. As a first approximation, we can assume that
R ¿ 1 , thus we can omit occurrences of R in the expressions, except in the
cosine and sine functions for obvious reasons. Physically this is equivalent to
saying that we have very little dampening. We can thus write down the two
homogenous solutions of equation (4.65)

S̃1(k, η) = sin(k rs(η)) (4.66)

S̃2(k, η) = cos(k rs(η)) . (4.67)

The general solution of equation (4.65) is thus[10]

Θ̃0(η) + Φ̃(η) =D1S̃1(k, η) + D2S̃2(k, η)

+
k2

3

∫ η

0

dη′
[
Φ̃(η′)− Ψ̃(η′)

] S̃1(η
′)S̃2(η)− S̃1(η)S̃2(η

′)

S̃1(η′)
˙̃S2(η′)− ˙̃S1(η′)S̃2(η′)

,

(4.68)
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where D1 and D2 are integration constants. Observe that I have set the
factor (1 + R)−1 of the Φ̃ term to unity.
To find the integration constants we will need knowledge about the initial
conditions of the perturbations. For our purposes we will only need to know
the main implications of inflation, which is that on early times, the pertur-
bations Θ̃0(η) and Φ̃ are constant and non-zero[10]. This will be enough
to determine the constants D1 and D2 in this simplified setting. In fact by
differentiating equation (4.68) and setting η = 0 we get

˙̃Θ0(0) + ˙̃Φ(0) = D1 . (4.69)

Since the perturbations are constant at early times, D1 = 0. This again
implies that D2 = Θ̃0(0) + Φ̃(0). Our solution then becomes

Θ̃0(η) + Φ̃(η) =
[
Θ̃0(0) + Φ̃(0)

]
cos(k rs(η))

+
k2

3

∫ η

0

dη′
[
Φ̃(η′)− Ψ̃(η′)

] S̃1(η
′)S̃2(η)− S̃1(η)S̃2(η

′)

S̃1(η′)
˙̃S2(η′)− ˙̃S1(η′)S̃2(η′)

.

(4.70)

In addition we have that

S̃1(η
′)S̃2(η)− S̃1(η)S̃2(η

′) = sin(k rs(η
′)) cos(k rs(η))

− sin(k rs(η)) cos(k rs(η
′))

= − sin (k(rs − r′s)) , (4.71)

and the denominator in the integral is

S̃1(η
′) ˙̃S2(η

′)− ˙̃S1(η
′)S̃2(η

′) = −kcs(η
′) sin2(kr′s)− kcs(η

′) cos2(kr′s)

= −kcs(η
′)

= −k
1√

3(1 + R′)

≈ − k√
3

. (4.72)

Using these results we obtain

Θ̃0(η) + Φ̃(η) =
[
Θ̃0(0) + Φ̃(0)

]
cos(k rs(η))

+
k√
3

∫ η

0

dη′
[
Φ̃(η′)− Ψ̃(η′)

]
sin (k(rs − r′s)) . (4.73)
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We can now commence in finding the dipole Θ̃1. Recall that equation (4.32)
says that

kΘ̃1 = −
(

˙̃Θ0 + ˙̃Φ
)

. (4.74)

Differentiating equation (4.73) with respect to η leads to

˙̃Θ0(η) + ˙̃Φ(η) =−
[
Θ̃0(0) + Φ̃(0)

]
k cs sin(k rs(η))

+
k√
3
k cs

∫ η

0

dη′
[
Φ̃(η′)− Ψ̃(η′)

]
cos (k(rs − r′s))

≈− k√
3

[
Θ̃0(0) + Φ̃(0)

]
sin(k rs(η))

+
k2

3

∫ η

0

dη′
[
Φ̃(η′)− Ψ̃(η′)

]
cos (k(rs − r′s)) . (4.75)

Then the dipole becomes

Θ̃1(η) =
1√
3

[
Θ̃0(0) + Φ̃(0)

]
sin(k rs(η))

− k

3

∫ η

0

dη′
[
Φ̃(η′)− Ψ̃(η′)

]
cos (k(rs − r′s)) . (4.76)

We will analyze these results in section 4.10, specifically about the location
of the peaks in the CMB spectrum. Let us now look at a specific case of the
acoustic equation where we can obtain a semi-analytic solution.

4.8 Inhomogeneous Solution for a Constant

Φ̃

We can now simplify our solution somewhat by going back to our acoustic
equation (equation (4.65)) and assume from the beginning that the gravi-
tational potential is approximately constant. The time variation of the po-
tential Φ̃ is quite small compared to the monopole and dipole in the matter
dominated era [10], hence we will make this approximation at this time. We
will thus commence in finding a solution for the dipole and the monopole in
this setting. Working with the monopole, recall that the WKB solution of
the homogenous equation was

[Θ̃0(η) + Φ̃]Hom = (1 + R)−
1
4 CA cos krs. (4.77)

where CA is an integration constant. Since the right hand side of equation
(4.65) is now taken to be constant, we can find a solution by adding an
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unknown constant to our expression above, i.e

[Θ̃0(η) + Φ̃] = [Θ̃0(η) + Φ̃]Hom + A(k). (4.78)

Inserting our above guess into equation (4.65) will lead to a cancelation of
the homogenous solution. We are left with

k2c2
sA(k) =

k2

3

[
1

1 + R
Φ̃− Ψ̃

]
. (4.79)

Recalling that c2
s = 1/(3(1 + R)) we obtain

A(k) = Φ̃− (1 + R)Ψ̃. (4.80)

We can hence write down the full solution

[Θ̃0(η) + Φ̃] = (1 + R)−
1
4 CA cos krs + Φ̃− (1 + R)Ψ̃, (4.81)

which we can simplify as

Θ̃0(η) = (1 + R)−
1
4 CA cos krs − (1 + R)Ψ̃. (4.82)

This form is quite satisfactory as it actually tells us a great deal about the
nature of the perturbations. First we can observe that the zero point of
the oscillations is displaced by an amount of (1 + R)Ψ̃. Since the sound
speed is given by c2

s = 1/(3(1 + R)) , the effective mass of our oscillator is
approximately (1+R). Hence an increase in R increases the effective inertia,
dampening the oscillations, which one can see from the appearance of the

(1 + R)−
1
4 factor. For the dipole we obtain

Θ̃1(η) =
(1 + R)−

3
4

√
3

CA sin krs . (4.83)

We will in chapter 6 return to these expressions when studying the small
scale temperature anistropies.

4.9 The Sound Horizon

We defined the sound horizon as

rs(η) =
1√
3

∫ η

0

dη′
1√

1 + R′ , (4.84)
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where all the primes from now on denote quantities that are functions of η′.
If the sound speed is constant, the sound horizon is simply rs = ηcs. This
is not a very realistic scenario, requiring either the baryons to be completely
dominant, or that the baryon to photon ratio is constant, which in fact should
be of the order ∼ a. In the tightly coupled limit, the universe is dominated
by both matter and radiation, so I will take this assumption to hold here. I
will however make no presumption on whether matter-radiation equality has
occurred or not. It is however generally assumed that recombination occurs
long after the era of equality ηeq . I will now calculate an expression for rs

in this setting. We will first need the expansion factor for a matter-radiation
dominated universe. This is given by

η =
2√

ΩmH2
0

[√
a + aeq −√aeq

]
, (4.85)

where aeq = a(ηeq), H0 is the Hubble rate presently and Ωm is the matter
density. One way to calculate the integral in equation (4.84) is to change the
integration measure dη′ to dR′. This can be accomplished by recalling that
in section 4.5 we proved that

Ṙ = HR . (4.86)

Hence

dR =
da

a
R . (4.87)

This implies that

ln R = ln a + c

R = λ a (4.88)

where λ is a constant which we could in principle find, but we will not actually
need it. This result is of course expected since ρb ∼ a−3 and ρr ∼ a−4.
Returning to equation (4.85) which after differentiating becomes

dη =
1√

ΩmH2
0

da√
a + aeq

, (4.89)

which when combined with equation (4.87) gives

dR =
da

a
R = λ da

= λ
√

ΩmH2
0

√
a + aeq dη

=
√

λΩmH2
0

√
R + Req dη , (4.90)
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where I have defined Req = R(ηeq). Hence we obtain

dη =
1√

λΩmH2
0

dR√
R + Req

. (4.91)

Thus the expression for the sound horizon becomes

rs(η) =
1√

3 λΩmH2
0

∫ R

0

dR′ 1√
R′ + Req

√
1 + R′ . (4.92)

This integral is analytically solvable. Performing the change of variable

u = ln
[√

R′ + Req +
√

1 + R′
]

(4.93)

2 du =
dR√

R′ + Req

√
1 + R′ , (4.94)

we get

rs(η) =
2√

3 λΩmH2
0

∫ u(R)

u(0)

du

=
2√

3 λΩmH2
0

[u(R)− u(0)]

=
2√

3 λΩmH2
0

ln

[√
R + Req +

√
1 + R

1 +
√

Req

]
. (4.95)

We can make additional adjustments to the above expression. For reasons
that will become clearer later, it is convenient to define the wavenumber of
the mode keq which equals the comoving Hubble radius at matter-radiation
equality, i.e when keq = aeqH(aeq). The Hubble factor at equality is

H2(ηeq) = H2
0 Ωtot =

2H2
0 Ωm

a3
eq

. (4.96)

This gives

keq = aeqH(aeq) = aeq

√
2H2

0Ωm

a3
eq

=

√
2H2

0Ωm

aeq

. (4.97)

The above definition leads to

1

2
λ aeqk

2
eq = λH2

0Ωm , (4.98)
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which gives

rs(η) =
2
√

2

keq

√
3 λaeq

ln

[√
R + Req +

√
1 + R

1 +
√

Req

]
. (4.99)

Thus the sound horizon of the baryon-photon fluid becomes

rs(η) =
2

3 keq

√
6

Req

ln

[√
R + Req +

√
1 + R

1 +
√

Req

]
. (4.100)

We will see in chapter 7 how the changing some cosmological parameters,
mainly Ωm0 and Ωb, effects the sound horizon.

4.10 The Acoustic Peaks

Let us now return to our description of the photon monopole and dipole and
see what information we can obtain on the acoustic peaks. Observe that
have neglected diffusion damping effects in the plasma for time being. First
if we omit the integrals in the expressions we are left with

Θ̃0(η) + Φ̃(η) =
[
Θ̃0(0) + Φ̃(0)

]
cos(k rs(η)) (4.101)

Θ̃1(η) =
k√
3

[
Θ̃0(0) + Φ̃(0)

]
sin(k rs(η)) . (4.102)

Already we can spot the locations of the peaks. For the monopole these are

k0 =
nπ

rs

n = 0, 1, 2 .... (4.103)

and for the dipole

k1 =

(
n +

1

2

)
π

2rs

n = 0, 1, 2 .... (4.104)

Observe that the dipole and monopole are out of phase. This will obviously
have an effect on the final CMB power spectrum as higher multipoles will
be out of phase with the lower ones. As we will see the peak location of the
monopole is the most significant one, the higher multipoles being suppressed
[22]. If we in addition include the effects of gravity through Ψ as we did in
section 4.8, there will be an alteration in the hight of the peaks [20]. We will
study more of these effects in chapter 6 where we finally introduce the CMB
power spectrum.
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4.11 Free Streaming Solution

We have up to now seen how in the tight-coupling limit the perturbations
in the cosmological plasma induce acoustic oscillations that have well de-
fined peaks. The peaks of the monopole Θ̃0 will as we will see correspond to
the peaks in the total CMB anisotropy spectrum. As the universe expands
cooling will naturally occur. The photon-baryon plasma will be tightly cou-
pled as photon mean free paths are quite low ∼ τ−1 the temperature reaches
T ∼ 6−7000 k. At this stage stable hydrogen can exist, and we have reached
the era of recombination η∗. The acoustic state which the universe was in at
this time will then have been frozen into the radiation emitted. The photon
mean free paths drastically increase, the universe becomes transparent.

In this section we want to study how the perturbations Θ̃l evolve as the
photons free stream towards us from the last scattering surface. In section
2.1.8 we already calculated the effects of free streaming in the absence of
collisions with other particles. Though this approach is inherently flawed, it
hinted towards what effects we might expect, as we encountered the Sachs-
Wolfe effect and the integrated Sachs-Wolfe effect for the first time. We will
thus find an expression for the perturbations at our time η0 , using a simi-
lar procedure as in section 2.1.8, bearing in mind that scattering effects will
complicate matters to a certain extent. First let us introduce a function that
will turn out to be quite useful in our calculations.

4.11.1 The Visibility Function

In the cosmic plasma, photons are continuously colliding with other particles,
creating an effective pressure effect. The mean free path of the photons
is quite small, but as recombination occurs the photons can travel further
and further before encountering other particles. We will now define[10] the
visibility function as

g(η) ≡ −τ̇ e−τ , (4.105)

where τ is the optical depth introduced earlier. Recall that at early times, τ
is very large. Conversely, τ is very small at η = η0. This implies that

∫ η0

0

g(η)dη = −
∫ η0

0

τ̇ e−τdη =
[
e−τ

]η0

0
= 1. (4.106)

Thus g can be interpreted as a probability. It is the probability that an
observed photon last scattered at time η, thereby retaining the information
of it’s last scattering as it free streams towards us. In [10] , Dodelsen shows
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that g is quite small for times prior and after recombination. The reason for
this is that τ is quite large at early times, and that −τ̇ = σnea decreases
rapidly after η∗ . In fact g is strongly peaked[25] about η = η∗, at least
compared to Θ̃0(η) and Φ̃(η). We will use this to our advantage in the
calculations in the next section.

4.11.2 Calculation of Θ̃l(η0)

We will now undertake the task of finding out hoe the perturbations at early
times evolve as the photons free stream towards us. For this we return to
the Boltzmann equation which was

˙̃Θ + i kµ Θ̃ + ˙̃Φ + i kµ Ψ̃ = −τ̇
[
Θ̃0 − Θ̃ + µ ṽb

]
. (4.107)

We can rewrite the above equation as

˙̃Θ + (i kµ − τ̇) Θ̃ = − ˙̃Φ− ikµ Ψ̃− τ̇
[
Θ̃0 + µ ṽb

] ≡ S, (4.108)

where we have defined the right hand side as a source term S with

S = − ˙̃Φ− ikµ Ψ̃− τ̇
[
Θ̃0 + µ ṽb

]
. (4.109)

The left hand side of equation (4.108) we can write

e−ikµη+τ ∂

∂η

(
Θ̃eikµη−τ

)
, (4.110)

as we did in the collisionless case. Equation (4.108) thus becomes

∂

∂η

(
Θ̃eikµη−τ

)
= eikµη−τS. (4.111)

Integration from η = 0 to η = η0 gives

[
Θ̃eikµη−τ

]η0

0
=

∫ η0

0

dηeikµη−τS

Θ̃(η0)e
ikµη0−τ(η0) − Θ̃(0)e−τ(0) =

∫ η0

0

dηeikµη−τS. (4.112)

Recall that τ(0) is very large, hence the second term on the left hand side
tends to 0. In addition τ(η0) is completely negligible. We thus obtain

Θ̃(η0)e
ikµη0 =

∫ η0

0

dηeikµη−τS, (4.113)
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which when multiplied by e−ikµη0 leads to

Θ̃(η0) =

∫ η0

0

dηeikµ(η−η0)−τS. (4.114)

We would at this stage like to find an expression for the multipoles Θ̃l. To
obtain these we need to multiply by dµPl(µ)/2(−i)l and integrate over all
µ, i.e. from µ = −1 to µ = 1. If we do this to equation (4.114) , the left
hand side is trivial, it is simply Θ̃l. But the right hand side is a completely
different matter, as the source function S has an explicit µ dependence where
our formulas of Legendre functions do not seem to apply. We can circumvent
this problem by noting that for a function f = f(η)
∫ η0

0

dη µeikµ(η−η0)−τf =

∫ η0

0

dη f
e−τ

ik

∂

∂η

(
eikµ(η−η0)

)

=

[
f

e−τ

ik
eikµ(η−η0)

]η0

0

− 1

ik

∫ η0

0

dη eikµ(η−η0) ∂

∂η

(
fe−τ

)

= f(η0)
e−τ(η0)

ik
− 1

ik

∫ η0

0

dη eikµ(η−η0) ∂

∂η

(
fe−τ

)

=
f(η0)

ik
− 1

ik

∫ η0

0

dη eikµ(η−η0) ∂

∂η

(
fe−τ

)
. (4.115)

The first term here has no µ dependence. It will become 0 as we integrate
over µ for all l > 0. Only l = 0 will be non-zero, but this will contribute
to the only non-measurable part of the perturbations, namely Θ̃0. We can
hence omit the first term[10]. The above equation then becomes

∫ η0

0

dη µeikµ(η−η0)−τf = − 1

ik

∫ η0

0

dη eikµ(η−η0) ∂

∂η

(
fe−τ

)
. (4.116)

We see that each occurrence of µ can be replaced by− 1
ik

∂
∂η

in our calculations.

Returning to equation (4.114), the right hand side becomes
∫ η0

0

dηeikµ(η−η0)−τS =

∫ η0

0

dη(− ˙̃Φ− ikµ Ψ̃− τ̇
[
Θ̃0 + µ ṽb

]
)eikµ(η−η0)−τ

=

∫ η0

0

dη
[
(− ˙̃Φ− τ̇Θ̃0)e

−τeikµ(η−η0)

−
[
ikµ Ψ̃e−τ + τ̇µ ṽb e−τ

]
eikµ(η−η0)

]

=

∫ η0

0

dη
[
(− ˙̃Φ− τ̇Θ̃0)e

−τeikµ(η−η0)

+ eikµ(η−η0) ∂

∂η

(
Ψ̃e−τ +

τ̇

k
iṽb e−τ

) ]
. (4.117)
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It is now appropriate to insert the visibility function g = −τ̇ e−τ , introduced
in section 4.11.1. This gives

Θ̃(η0) =

∫ η0

0

dη
[
− ˙̃Φe−τ + gΘ̃0 +

∂

∂η

(
Ψ̃e−τ +

iṽbg

k

) ]
eikµ(η−η0)

=

∫ η0

0

dη
[
− ˙̃Φe−τ + gΘ̃0 + ˙̃Ψe−τ − Ψ̃τ̇ e−τ +

∂

∂η

(
iṽbg

k

) ]
eikµ(η−η0)

≡
∫ η0

0

dηS̄eikµ(η−η0), (4.118)

where we have conveniently set

S̄ =
(

˙̃Ψ− ˙̃Φ
)

e−τ +
[
Θ̃0 + Ψ̃

]
g +

∂

∂η

(
i ṽbg

k

)
. (4.119)

As one can see, we have with the above calculations effectively removed the
µ-factor from the integrand. We are now ready to proceed with the task of
finding Θ̃l. We have now that

Θ̃(η0) =

∫ η0

0

dηS̄eikµ(η−η0). (4.120)

Multiplying by dµPl(µ)/2 and integrating gives

∫ 1

−1

dµ

2
Pl(µ)Θ̃(η0) =

∫ η0

0

dηS̄

∫ 1

−1

dµ

2
Pl(µ)eikµ(η−η0) (4.121)

⇓

(−i)lΘ̃l(η0) =

∫ η0

0

dηS̄

∫ 1

−1

dµ

2
Pl(µ)eikµ(η−η0). (4.122)

It turns out that we can use the our knowledge on spherical Bessel func-
tions to calculate the µ-integral on the right hand side [1] , as we have that∫ 1

−1
dµPl(µ)eixµ = 2jl(x)/(−i)l , where jl(x) is the l’th spherical Bessel func-

tion. We thus obtain

Θ̃l(η0) = (−1)l

∫ η0

0

dη S̄jl (k(η − η0)) , (4.123)

where I have used that (−i)l(−i)l = (−i)2l = (−1)l. Taking in addition, the
formula (−1)ljl(x) = jl(−x), into account the above equation reduces to

Θ̃l(η0) =

∫ η0

0

dη S̄jl (k(η0 − η)) . (4.124)
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Let us now write out the full expression of the integral. We find that

Θ̃l(η0) =

∫ η0

0

dη g(η)
[
Θ̃0 + Ψ̃

]
jl (k(η0 − η))

+

∫ η0

0

dη
∂

∂η

(
i ṽbg

k

)
jl (k(η0 − η))

+

∫ η0

0

dη e−τ
(

˙̃Ψ− ˙̃Φ
)

jl (k(η0 − η)) . (4.125)

It is at this stage where the visibility function comes in really handy. Because
of the strongly peaked nature [25], at least compared with Ψ̃ and Φ̃, and the
fact that prior and after it’s peak g is effectively 0. The function g will in
fact mimic a delta function behavior centered about η = η∗. The integrals
involving g will be greatly simplified. The first integral is simply

∫ η0

0

dη g(η)
[
Θ̃0(η) + Ψ̃(η)

]
jl (k(η0 − η)) '

[
Θ̃0(η∗) + Ψ̃(η∗)

]

× jl (k(η0 − η∗)) . (4.126)

The second integral of equation (4.125) will require a little more work, but
not much. Firstly, integration by parts gives (recall that g(0) = g(η0) = 0)

∫ η0

0

dη
∂

∂η

(
i ṽbg

k

)
jl (k(η0 − η)) =

[
i ṽbg(η)

k
jl (k(η0 − η))

]η0

0

−
∫ η0

0

dη
i ṽbg(η)

k

∂

∂η
jl (k(η0 − η))

= −
∫ η0

0

dη
i ṽbg(η)

k

∂

∂η
jl (k(η0 − η))

(4.127)

Using that djl

dx
= jl−1 − l+1

x
jl with x = k(η − η∗) gives

∫ η0

0

dη
∂

∂η

(
i ṽbg

k

)
jl (k(η0 − η)) = −

∫ η0

0

dη
i ṽbg(η)

k

[
jl−1 (k(η0 − η))

− l + 1

k(η0 − η)
jl (k(η0 − η))

]

' i ṽb(η∗)
[
jl−1 (k(η0 − η∗))

− l + 1

k(η0 − η∗)
jl (k(η0 − η))

]
. (4.128)
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At recombination τ̇ is very large [10]. We can hence use as we did before
that vb ' −3iΘ̃1 in the above expression. Putting it all together we finally
obtain

Θ̃l(η0) =
[
Θ̃0(η∗) + Ψ̃(η∗)

]
jl (k(η0 − η∗))

+ 3Θ̃1(η∗)
[
jl−1 (k(η0 − η∗))− l + 1

k(η0 − η∗)
jl (k(η0 − η))

]

+

∫ η0

0

dη e−τ
(

˙̃Ψ− ˙̃Φ
)

jl (k(η0 − η)) . (4.129)

This equation is a very important to our work and is the basis for the CMB
power spectrum we are going to study in chapter 6 . The above equation
is somewhat similar to equation 2.78 in chapter 2 , although with a higher
degree of accuracy. It draws a clearer picture of the effects influencing the
perturbations. First we see again that the temperature perturbations ob-
served today are not only affected by Θ̃0(η∗) and Θ̃1(η∗), but also Ψ̃. This is
what we expect as photons lose energy by climbing out of gravity wells. This
is of course another hint of the Sachs-Wolf effect, which we will calculate
in section 6.4 . In addition, the last term quantifies the Integrated Sachs-
Wolf effect, which describes the changes in the photon energy while passing
through time-varying potentials.

4.12 Silk Dampening

There is one important aspect of the CMB anisotropies that we have not
discussed yet, namely diffusion dampening [24] of the anisotropies. We will
treat this with the same detail as we did for the acoustic oscillations in
section 4.6, but we will present here the basic facts and ideas developed in
the literature, extracting what we need to treat the CMB power spectrum in
a more precise manner. Recall that in our tight-coupling approximation, we
argued that the photons are tightly coupled to the baryon plasma through
compton scattering of the electrons, which effectively reduced the mean free
path of a photon to 0. This would be correct if the scattering rate was infinite,
which of course it is not. Hence a fraction of the photons will free stream
an amount before scattering. This will cause dampening of the acoustic
oscillations, which is called Silk dampening (Silk 1968).
We can imagine the photons scattering of the electrons generating a path
as a random walker. The mean free path of a generic photon being τ̇−1 =
(neσT )−1. During a Hubble time H−1 the photons scatter an amount τ̇ ·H−1.
Thus the total distance λD traveled by a random walker is the mean free
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path times the square root of the scattering rate [22]. This leads us to
λD = (neσT )−1

√
neσT H−1 = 1/

√
neσT H. Hence a relevant dampening scale

would be
kD =

√
neσT H. (4.130)

This means that the modes with wave number k > kD should be damped in
some fashion. This is of course a very rough estimate which we will improve
upon in the next section.

4.13 The Effect of Diffusion Dampening

There are two main diffusion effects [24] , viscous dampening from the
quadropole Θ̃2 and heat conduction from the relative photon-baryon velocity
3̃Θ1/i − vb. Recall that we set the latter quantity to 0 at the end of sec-
tion 4.11.2. We thus need to incorporate Θ̃2 in our work. We would now
have to return to the Boltzmann Hierarchy (equation (4.25)) and include an
equation for Θ̃2 in addition to the ones we had for Θ̃0 and Θ̃1 in the tight
coupling approximation. Solving the resulting equations is a straight forward
calculation (see [10]), where we basically obtain the following solutions

Θ̃0 ∼ exp

(
ik

∫
csdη

)
exp

(
− k2

k2
D

)
(4.131)

Θ̃1 ∼ exp

(
−ik

∫
csdη

)
exp

(
− k2

k2
D

)
. (4.132)

As one can see, we recover the same solutions as in the tight-coupling limit,
but with an additional exponential dampening factor, where there is basically
no dampening for k values smaller than kD. This was expected from the
previous heuristic argument in section 4.12. However the dampening scale is
now changed to

1

k2
D(η)

=
1

6

∫ η

0

dη′

(1 + R)neσT a(η′)

[
R2

1 + R
+

8

9

]
. (4.133)

An estimate for kD is given in [10] where one takes the pre-recombination
limit where are the electrons are free. The calculation leads to

k−2
D ' 3.1·106Mpc2a5/2fD(a/aeq)(Ωbh

2)−1

(
1− Yp

2

)−1

(Ωm0h
2)−1/2. (4.134)

Here Yp is the mass fraction of helium with Yp ' 0.24. fD is a function we do
not need as fd → 1 when a/aeq becomes large. However this expression is not
entirely correct at recombination, we will thus use a different approximation
to kD in our numerical work in section 7.2.
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4.14 Finite Duration of Recombination

We end this chapter with a discussion of including the effects of diffusion
dampening and the fact that recombination most probably was not an in-
stantaneous process. The latter is often abbreviated by the finite thickness
of the last scattering surface.

To include the diffusion effects we would in principle add a factor of exp
(
− k2

k2
D

)

in equation (4.125) and repeat our steps onwards. But because of the peak
in the dampening factor about η = η∗, our delta function argument would
no longer apply, leaving us with a complicated integral to solve. But thanks
to Hu in [24] there is a way out of this dilemma. Recall that the visibility
function g(η) is basically a filter peaked about η = η∗, where the width of
the peak is proportional to the thickness of the last scattering surface. In
[24], Hu. et. al showed that including the finite thickness of the LSS would
be accomplished by changing the dampening factor

D(k) =

∫ η0

0

dηg(η) exp

(
− k2

k2
D(η)

)
. (4.135)

Thus we multiply equation (4.125) by the above factor instead of exp
(
− k2

k2
D

)
,

now accounting for both effects.
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Chapter 5

Growth of Inhomogeneities

5.1 Introduction

We will in this chapter investigate in a limited fashion some aspects of how
the primordial inhomogeneities generated by inflation evolve to the large
scale structure observed today. We will introduce some key aspects that has
become convention in this field of study. But bear in mind that the treatment
of this subject will be quite superficial, concentrating largely on concepts we
require to increase our understanding of the CMB.

5.2 The Primordial Potential

As we saw in chapter 3, the quantum fluctuations in the Inflaton field gave
rise to fluctuations in the potential Φ(~k, η). We will refer to the primordial

value of the potential as Φp(~k). Our aim is to see how this value relates to
the potential Φ at later times. Observe that right after inflation ends, most
modes k lie outside the horizon only to gradually re-enter the horizon as the
universe expands. But as this happens the universe eventually goes from
being radiation dominated to matter dominated after aeq. Hence modes that
re-enter the horizon prior to equality grow differently than the ones entering
after. Once most modes are inside the horizon they all evolve equally, inde-
pendent of wavelength.

We see that there are two distinct types of evolution, a wavelength dependent
growth at “early” times, and a wavelength independent growth setting in at
“late” times, which we refer to for the time being as alate. It has thus become
convention to separate these two growth patterns. The potential Φ(~k, a) can
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be expressed by Φp(~k) by

Φ(~k, η) ∝ Φp(k)× [Growth function (k)]× [Growth function (a)]. (5.1)

The wavelength dependent growth function is called the Transfer Function,
denoted as T (k). Following convention, it is defined in such a way that it is
1 at large scales. This means that

T (k) ≡ Φ(k.alate)

ΦL−S(k, alate)
, (5.2)

where ΦL−S(k, alate) is the large scale solution of the potential at alate. We
will in section 5.3 give explicit expressions for the transfer function .
Moving on to the wavelength independent growth at later times. It is defined
as

D(a) ≡ a · Φ(a)

Φ(alate)
. (5.3)

This function is simply known as the Growth factor. The growth factor is
the matter perturbation δ, D(a) ≡ δ, when most scales are well within the
horizon, i.e. when a > alate (see [13, 10]). Our potential now looks like

Φ(~k, η) ∝ Φp(k)T (k)
D(a)

a
. (5.4)

Concerning the proportionality factor, it is in fact 9/10, which follow from
detailed calculations of the evolution equations for Φ on the large scale level.
Indeed, it is the factor that the potential decreases as the universe becomes
matter dominated. See [10] for details on the calculations. Hence we have

Φ(~k, η) =
9

10
Φp(k)T (k)

D(a)

a
. (5.5)

5.3 The Transfer Function

In the light of our recent discussions a natural question arises. When does
the Transfer function regime end to leave D(a) in charge of growth ? This
brings keq, the mode with the wavenumber entering the horizon at equality,
which we introduced in chapter 4, under a new light. It gives us a relevant
scale at which T (k) is dominant. Thus for k ¿ keq = aeqH(aeq) we set
T (k) ∼ 1 and use D(a) for studying the evolution of Φ. It has thus become
natural to express the transfer function as a function of k/keq.
To calculate T(k) and the growth factor D(a), we would in principle have to
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solve the full set of Boltzmann equation for the photons, matter and neutrinos
coupled with the Einstein equations for Ψ and Φ. The equations in question,
reproduced here for convenience, are

Θ̇ + i kµ Θ + Φ̇ + i kµ Ψ = −τ̇
[
Θ0 −Θ + µ vb

]
(5.6)

v̇b +
ȧ

a
vb = −ikΨ +

τ̇

R
[3iΘ1 + vb] (5.7)

δ̇b + ikvb = −3Φ̇ (5.8)

v̇ +Hv = −ikΨ (5.9)

δ̇ + ikv = −3Φ̇ (5.10)

k2(Φ + Ψ) = −32Ga2 [ργΘ2 + ρνN2] (5.11)

k2Φ− 4πGa2 [ρmδm + 4 (ργΘ0 + ρνN0)] = 12πG
a2H

k
[iρmvm + 4ρrΘr]

(5.12)

Ṅ + i kµN = −Φ̇− i kµ Ψ, (5.13)

where ρr = ργ + ρν and Θr = Θγ + Θν . There are many ways of attacking
this problem, one way being to solve the full set numerically by ignoring the
baryons as dark matter is dominant. One solution obtained by Bardeen et.al,
known as the BBKS1 transfer function[3] given by

T (x) =
ln(1 + 0.171x)

0.171x

[
1 + 0.284x + (1.18x)2 + (0.399x)3 + (0.490x)4

]−0.25

(5.14)
where x = k/keq. But one can also obtain a semi-analytic solution by study-
ing different extreme limits of the equations. Dodelsen does this in [10]. A
small scale solution which we will use is

T (k) = 12
k2

eq

k2
ln

(
k

8keq

)
, (5.15)

valid for k À keq. We will see this expression reappear in chapter 6 when
studying the small scale CMB power spectrum.

5.4 The Growth Function

As mentioned earlier, after most interesting modes have entered the horizon,
each wavelength k evolves in the same fashion [10]. A widely accepted time
when this occurs corresponds to z ∼ 10 which is approximately a ∼ 10−1.

1Bardeen, Bond, Kaiser and Szalay.
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We will in this section find an expression for D(a) valid for a À aeq. At these
times ρr is negligible compared to ρdm, and τ̇ is small. In addition as most
modes are well within the horizon, we can take the small scale limit of the
equations quantified by a2H

k
¿ 1. The equations we are working with reduce

to

v̇ +
ȧ

a
v = ikΦ (5.16)

δ̇ + ikv = −3Φ̇ (5.17)

k2Φ = 4πGa2ρdmδ. (5.18)

We have also set Φ = −Ψ as anisotropic stress is small, and we are ignoring
the baryons which is natural in this setting. We can set about to solve the
above equations. We will do this by eliminating Φ and v from the picture to
obtain one equation for δ. First we note that

4πGρdm ' 4πGρm = 4πGρcrΩm0a
−3

= 4πG
3H2

0

8πG
Ωm0a

−3

=
3

2
H2

0Ωm0a
−3. (5.19)

This leads to

v̇ +
ȧ

a
v = ikΦ (5.20)

δ̇ + ikv = −3Φ̇ (5.21)

k2Φ =
3

2
H2

0Ωm0a
−1δ. (5.22)

If we differentiate equation (5.21) we get

δ̈ + ikv̇ = −3Φ̈. (5.23)

Using equation (5.20) to eliminate v̇ gives

δ̈ + ik

(
ikΦ− ȧ

a
v

)
= −3Φ̈

δ̈ − k2Φ− ȧ

a
ik v = −3Φ̈ (5.24)

We can eliminate the velocity term by assuming that v À Φ in the small
scales we are studying here. This leads us to conclude from equation (5.21)
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that δ̇ ' −ikv, and implies that

δ̈ − k2Φ +
ȧ

a
δ̇ = −3Φ̈

δ̈ +
ȧ

a
δ̇ = −3Φ̈ + k2Φ. (5.25)

Since Φ̈ is of the order Φ/η2 ∼ Φ/(aH)2, we can completely ignore it as k2Φ
is much larger in this small scale setting. Joined with equation (5.22) the
above equation becomes

δ̈ +
ȧ

a
δ̇ =

3

2
H2

0Ωm0a
−1δ. (5.26)

We have successfully eliminated Φ and v and are left with a second order
equation for δ. Observe that our equation involves some factors of a, hence
a natural way we can simplify our problem is to change variables from η to
a. To do this we need the differential operators

d

dη
=

da

dη

d

da
= ȧ

d

da
= a2H

d

da
(5.27)

d2

dη2
= a2H

d

da

(
a2H

d

da

)
= a2H

d

da

(
a2H

) d

da
+ a4H2 d2

da2
. (5.28)

Changing the variable to a turns equation (5.26) into

a4H2δ′′ + a2H
d

da

(
a2H

)
δ′ + a3H2δ′ =

3

2
H2

0Ωm0a
−1δ

δ′′ +
1

a2H

d

da

(
a2H

)
δ′ + a−1δ′ =

3H2
0Ωm0

2H2a5
δ

δ′′ +
(

1

H

dH

da
+ 3a−1

)
δ′ =

3H2
0Ωm0

2H2a5
δ . (5.29)

Observe that primes indicate differentiation with respect to a. This new
equation does not seem any simpler then equation (5.26), in fact quite the
contrary. But this form will in fact allow us to find an analytical expression
for D(a). We start by guessing a solution of equation (5.29), then using this
solution to find the interesting one, a standard approach in solving D.E.’s.
The simplest guess being δ = H.

5.4.1 Proof of the D(a) = H Solution

We will now assume that δ = H is a solution of equation (5.29) and prove
that this is indeed the case. Inserting this assumption in equation (5.29)
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gives

H ′′ +
(

1

H

dH

da
+ 3a−1

)
H ′ =

3H2
0Ωm0

2Ha5
. (5.30)

At late times we can assume that the Hubble factor is of the form

H = H0

√
Ωm0a−3 + Ωλ, (5.31)

where we have in addition to a mass term a cosmological constant term. We
are not excluding a possibility of dark energy by this assumption, as long
as the change in ωde is smaller than the change in a. Differentiating with
respect to a gives

dH

da
= −3

2
H0

Ωm0a
−4

√
Ωm0a−3 + Ωλ

= −3

2

H2
0Ωm0

a4H
(5.32)

d2H

da2
= −3

2
H2

0Ωm0

(
−4

a−5

H
− a−4

H2
H ′

)
=

3

2

H2
0Ωm0

Ha5

(
4 +

aH ′

H

)
. (5.33)

Inserting these results into equation (5.30) gives for the left hand side

LHS :
3

2

H2
0Ωm0

Ha5

(
4 +

aH ′

H

)
−

(
H ′

H
+ 3a−1

)
· 3

2

H2
0Ωm0

a4H

=
3

2

H2
0Ωm0

Ha5

[(
4 +

aH ′

H

)
−

(
aH ′

H
+ 3

)]

=
3

2

H2
0Ωm0

Ha5
(5.34)

The right hand side of equation (5.30) is indeed this factor, which proves
that δ ≡ D(a) = H is a solution of equation (5.29). But is this the mode
we are looking for ? A solution that grows as the Hubble factor is really not
that interesting [10]. We will thus proceed in finding another solution.

5.4.2 Solving the Growth Equation

We will now find a different solution of equation (5.29) than the one found in
the previous section. We start by introducing a new variable the u = δ/H.
Differentiation gives

δ′ = u′H + uH ′ (5.35)

δ′′ = u′′H + 2u′H ′ + uH ′′. (5.36)
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Inserting these into equation (5.29) leads to

u′′H + 2u′H ′ + uH ′′ +
(

H ′

H
+ 3a−1

)
(u′H + uH ′) =

3H2
0Ωm0

2Ha5
u

u′′H + 3u′H ′ + 3a−1u′H +

(
H ′′ +

(
H ′

H
+ 3a−1

)
H ′

)

︸ ︷︷ ︸
=

3H2
0Ωm0

2Ha5 by eq.(5.30)

u =
3H2

0Ωm0

2Ha5
u

u′′H + 3u′H ′ + 3a−1u′H +
3H2

0Ωm0

2Ha5
u =

3H2
0Ωm0

2Ha5
u,

(5.37)

which leads to

u′′H + 3u′H ′ + 3a−1u′H = 0

u′′ + 3

(
H ′

H
+ a−1

)
u′ = 0. (5.38)

We have obtained an equation that we can readily integrate. Integration
gives

ln u′ = −3 ln H − 3 ln a + const

u′ =
C

(aH)3

⇓
u = C

∫ a

0

da′

(a′H(a′))3
(5.39)

Recalling that D(a) ≡ δ at late times by construction, we get

D(a) = CH

∫ a

0

da′

(a′H(a′))3
(5.40)

In (ref) it is shown that when matter is completely dominant , D(a) = a is
a solution of (5.29). This corresponds to a constant Φ. We can use this to
find the integration constant C

D(a) = C H

∫ a

0

da′

(a′H(a′))3

= C H

∫ a

0

da′

(a′H0

√
Ωm0a′−3 )3

= C HΩ
−3/2
m0 H−3

0

∫ a

0

a′
3
2 da′

=
2

5
C HΩ

−3/2
m0 H−3

0 a
5
2 . (5.41)
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This is supposed to equal a. We get the equation

2

5
C HΩ

−3/2
m0 H−3

0 a
5
2 = a

⇒ C =
5

2
Ωm0H

2
0 (5.42)

We hence obtain the growth function

D(a) =
5

2
Ωm0H

2
0H

∫ a

0

da′

(a′H(a′))3

=
5

2
Ωm0

H

H0

∫ a

0

da′

(a′H(a′)/H0)3
(5.43)

We have now found a formula describing the clustering of matter at times
after recombination. One can now readily calculate the growth function for
different cosmological models. Of particular interest is of course the λCDM
model with Ωm0 = 0.3 and Ωλ = 0.7. We will calculate the growth factor for
this cosmology in section 5.5, although we must do this numerically since in
this case the above integral is a hypergeometric function not easily analyzed2.

5.5 The Growth Function for some Cosmolo-

gies

In this section we will find the growth function for a flat λCDM model with
Ωm0 = 0.3 and Ωλ = 0.7. For a matter-dark energy model the Hubble factor
is

H = H0

√
Ωm0a−3 + Ωdea−3(1+ω). (5.44)

The growth function then takes the form

D(a) =
5

2
Ωm0

H(a)

H0

∫ a

0

r−3
(
Ωm0r

−3 + Ωder
−3(1+ω)

)− 3
2 dr (5.45)

A cosmological constant universe has as we know ω = −1. Unfortunately
the above integral cannot be expressed in elementary functions, so we must
turn to numerical techniques to solve this problem. It will also be instructive
to compare our results with other universe models, like a completely matter
dominated one and some dark energy models with different values of ω.
Appendix B.1 shows a simple numerical integration code written in Python
used to produce the different graphs shown below. Figure 5.1 shows the

2Curiously enough, the case with ω = −5/6 is analytically solvable.
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Figure 5.1: The growth factor for a ΛCDM model with Ωm0 = 0.3 and
Ωλ = 0.7, compared to a cosmology with Ωm0 = 1.

growth function for a ΛCDM compared to a completely matter dominated flat
universe with Ωm0 = 1. We see here how at later times structure formation
is damped a little by the presence of a cosmological constant.
We can also note in figure 5.2 the difference between a dark energy model
with ω = −0.5 compared to the other two models considered.

5.6 The Matter Power Spectrum

In the end of this chapter we will see what our recent development has
implications to our previous work, specifically regarding the matter power
spectrum we defined in chapter 3. How do we relate this to the primordial
spectrum PΦ generated by inflation. The formal definition [10] of PΦ was

< Φp(k)Φ∗
p(k

′) >= (2π)3δ(~k − ~k′)PΦ (5.46)

Recall that from chapter 3 we found that

PΦ =
8πG

9k3

H2

ε

(
k

aH

)n−1

. (5.47)

We want to relate this to the matter power spectrum < δ(k)δ∗(k′) >=

(2π)3δ(~k − ~k′)P(k) at late times, i.e. a > alate. To do this we start by
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Figure 5.2: The growth factor for a ΛCDM model with Ωm0 = 0.3 and
Ωλ = 0.7, compared to a cosmology with Ωm0 = 1 and a dark energy model
with ω = −0.5.

defining the Scalar Amplitude

δ2
H ≡ 8G

πε

(
H0

aH

)n−1 (
HD(a0)

5
2
Ωm0

)2

. (5.48)

It has become convention to include the growth function into the definition
of the scalar amplitude, the presence of H and Ωm0 renders the last factor
dimensionless. Inserting this definition into equation (5.47) gives

PΦ =
50π2

9k3

(
k

H0

)n−1

δ2
H

Ω2
m0

D2(a0)
(5.49)

We need a relation between Φ and δ at late times. The natural choice is to
use the sub-horizon equation we used before

k2Φ = 4πGρma2δ =
3

2
H2

0Ωm0a
−1δ, (5.50)

which when solved for δ gives

δ =
2ak2

3H2
0Ωm0

Φ. (5.51)
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Using equation (5.5) we get

δ =
2ak2

3H2
0Ωm0

· 9

10
T (k)

D(a)

a
Φp

=
3k2

5H2
0Ωm0

T (k)D(a)Φp (5.52)

Taking the variance on both side’s leads to

< δδ∗ > =
9k4

25H4
0Ω2

m0

T 2(k)D2(a) < ΦpΦ
∗
p >, (5.53)

which when combined with equation (5.49) gives

P(k) =
9k4

25H4
0Ω2

m0

T 2(k)D2(a) · 50π2

9k3

(
k

H0

)n−1

δ2
H

Ω2
m0

D2(a0)

⇓

P(k) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D(a)

D(a0)

)2

. (5.54)

This is the matter power spectrum in it’s final form. We can see that the
addition of D(a) in the definition of δH gave the power spectrum a symmetric
form. Although there are many ways in the literature to define the power
spectrum and no clear standard have arisen at the time of this writing ( see
[8, 31, 16] for alternative ways to implement this). The physics is after all the
same, so it boils down to taste and convenience. We have chosen the present
approach as it is most suited for our work on the CMB power spectrum.
Indeed as we will discover soon, equation (5.54) will play an integral part in
chapter 6.
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Chapter 6

The CMB Power Spectrum

6.1 Introduction

In this chapter we will investigate how our previous theoretical work can be
turned into something measurable, namely the CMB power spectrum. We
have referred to it numerous times throughout this work, it is thus time to
deal with the concept in a quantitative manner.
Returning to first principles, we imagine that the temperature field of the
universe T (x̄, ~n, η) being uniform in the largest scales. As we did earlier, we
expand the temperature into a zero order homogenous part and a first order
part δT .

T (x̄, ~n, η) = T (η)

[
1 +

δT (x̄, ~n, η)

T

]
. (6.1)

The temperature field is mostly uniform, where the deviation from homogene-
ity is of the order δT

T
≡ Θ ∼ 10−5. We can visualize the CMB-temperature

field as defined on points on the spherical sky. It will thus be useful to expand
Θ in spherical harmonics, being nothing else than functions defined on the
sphere. This procedure will be analogous to a fourier expansion of the field.

6.2 The Power Spectrum

Although we have talked a great deal about it through this work, we have not
really defined the CMB power spectrum. That is the aim of this section. We
start by expanding the temperature contrast Θ in spherical harmonics[10].

Θ(x̄, n̄, η) =
∞∑

l=1

∑
m

almYlm(n̄) (6.2)
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This equation defines the spherical coefficients alm ≡ alm(x̄, η). These are
in principle stochastic random variables originating from the quantum fluc-
tuations set by inflation. We are also assuming that the fluctuations are
Gaussian, like most inflation models predict. Hence the mean value <
alm >= 0. One non-zero quantity we can extract1 from the alm’s is the
two-point correlation function, or simply the variance. This is given by

< alma∗l′m′ >= δll′δmm′Cl. (6.3)

This equation defines the much talked about Cl, the CMB Power Spectrum.
It is the sought after link between the theoretical and observational matters
of the CMB.

6.2.1 Cosmic Variance

We must note however that there is a fundamental uncertainty when in mea-
suring the Cl’s which has been called Cosmic variance. The cosmic variance
[12] is given by

4Cl

Cl

=

√
2

2l + 1
, (6.4)

where 4Cl is the variance of the difference between observed Cl and theo-
retical Cl. This means that for low l (large scales) our measurements will be
inherently uncertain. This stems from the fact that we are observing only
one sample of all the possible Cl. Having access to more universes would
undoubtedly reduce this problem. But as we can see the cosmic variance
reduces for higher l-values. Let us proceed in extracting an expression for Cl

in terms of quantities acquired in previous chapters.

6.2.2 Spherical Expansion of alm

To find Cl we will need first to isolate alm from our given expressions and then
square it [16]. Returning to equation (6.2), we can multiply it by dΩY ∗

lm(n̄)
and integrate to obtain

∫
dΩY ∗

lm(n̄)Θ(x̄, n̄, η) =
∞∑

l′=1

∑

m′
al′m′

∫
dΩY ∗

lm(n̄)Yl′m′(n̄)

=
∞∑

l′=1

∑

m′
al′m′δll′δmm′

= alm. (6.5)

1There are others, but beyond the scope of our work.
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Recall now that our analysis of the Θ has mainly been done in Fourier space.
We can imagine that we have an expression for Θ in Fourier space and want
to relate it to it’s value in real space, i.e. we need to invert the Fourier
transformed value. Hence in our Fourier convention we get

alm =

∫
d3k

(2π)3
ei~k·~x

∫
dΩY ∗

lm(n̄)Θ̃(k̄, n̄, η). (6.6)

The complex conjugate is simply

a∗lm =

∫
d3k

(2π)3
e−i~k·~x

∫
dΩYlm(n̄)Θ̃∗(k̄, n̄, η). (6.7)

To obtain an expression for Cl we must square alm. This gives

Cl =< alma∗lm >

=

∫
d3k

(2π)3
ei~k·~x

∫
d3k′

(2π)3
e−i~k′·~x′

×
∫

dΩ′Y ∗
lm(n̄′)

∫
dΩYlm(n̄) < Θ̃(k̄, n̄)Θ̃∗(k̄′, n̄′) > . (6.8)

The subtlety now is to incorporate the matter power spectrum from chapter
5 into our setting. We rewrite Θ̃ = δ · Θ̃

δ
where δ is the dark matter density

contrast[10]. This allows us to write

< Θ̃(k̄, n̄)Θ̃∗(k̄′, n̄′) > =< δ(~k)δ∗(~k′) >
Θ̃(k̄)

δ(k)

Θ̃∗(k̄′)
δ∗(k′)

= (2π)3δ(~k − ~k′)P(k)
Θ̃(k̄)

δ(k)

Θ̃∗(k̄′)
δ∗(k′)

. (6.9)

Here we have used equation (5.54) from chapter 5 for the matter power
spectrum. Inserting the above equation into equation (6.8) gives

Cl =

∫
d3k

(2π)3
ei~k·~x

∫
d3k′e−i~k′·~x′δ(~k − ~k′)P(k)

×
∫

dΩ′Y ∗
lm(n̄′)

∫
dΩYlm(n̄)

Θ̃(k̄, n̄)

δ(k)

Θ̃∗(k̄′, n̄′)
δ∗(k′)

=

∫
d3k

(2π)3

P(k)

|δ(k)|2
∫

dΩ′Y ∗
lm(n̄′)

∫
dΩYlm(n̄)Θ̃(k̄, n̄)Θ̃∗(k̄, n̄′), (6.10)

where we have evaluated the k′-integral with the help of the delta function.
Using the multipole expansion of Θ̃ given by

Θ̃(k, n̄) =
∞∑

l=0

(−i)l(2l + 1)Pl(k̄ · n̄)Θ̃l(k), (6.11)



124 The CMB Power Spectrum

we obtain

Cl =

∫
d3k

(2π)3

P(k)

|δ(k)|2
∑

l′l′′
(−i)l′il

′′
(2l′ + 1)(2l′′ + 1)Θ̃l′Θ̃

∗
l′′

×
∫

dΩ′Y ∗
lm(n̄′)Pl′(k̄ · n̄′)×

∫
dΩYlm(n̄)Pl′′(k̄ · n̄)

eq. (C.20)︷︸︸︷
=

∫
d3k

(2π)3

P(k)

|δ(k)|2
∑

l′l′′
(−i)l′il

′′
(2l′ + 1)(2l′′ + 1)Θ̃l′Θ̃

∗
l′′

× Y ∗
lm(k̄)Ylm(k̄)δl′lδl′′l

(4π)2

(2l + 1)2

=

∫
d3k

(2π)3

P(k)

|δ(k)|2 |Ylm(k̄)|2(4π)2|Θ̃l|2. (6.12)

Inserting d3k = dk k2dΩ we finally get

Cl = Cl(η) =
2

π

∫ ∞

0

dkk2P(k)
∣∣∣Θ̃l(k)

δ(k)

∣∣∣
2
∫

dΩ|Ylm(k̄)|2

=
2

π

∫ ∞

0

dkk2P(k)
∣∣∣Θ̃l(k)

δ(k)

∣∣∣
2

, (6.13)

since the last integral is 1 by orthogonality. Observe I have here written the
explicit time dependance of Cl just to remind us that it is a time varying
quantity.
We have now found an expression for the CMB power spectrum that can
be used in numerical calculations. All one needs to do is to calculate the
multipoles given by the Boltzmann hierarchy in chapter 4, coupled with a
reasonable expression for the dark matter contrast δ(k). This is what is
in principle done in CMBFast and other numerical codes, but they include
much more of the more of the details like reionization and neutrinos, effects
which I have not discussed here. What we will now do is to see how much
information we can obtain from an analytic approach. Let us see how we can
link the obtained expression with our previous work.

6.3 The Cl’s

In the previous section we proved that

Cl(η) =
2

π

∫ ∞

0

dkk2P(k)
∣∣∣Θ̃l(k)

δ(k)

∣∣∣
2

, (6.14)
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where P(k) is the matter power spectrum and δ(k) is the matter density
contrast. Recall that in chapter 5 we found an expression for the matter
power spectrum which is

P(k) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D(a)

D(a0)

)2

, (6.15)

where δH is the scalar amplitude set by inflation, T (k) is the transfer function
and D(a) is the growth function , all of which where introduced in chapter
5 . We can insert this expression into equation (6.14) to obtain

Cl(η) =
2

π

∫ ∞

0

dkk22π2δ2
H

kn

Hn+3
0

T 2(k)

(
D(a)

D(a0)

)2 ∣∣∣Θ̃l(k)

δ(k)

∣∣∣
2

=
4π

Hn+3
0

δ2
H

(
D(a)

D(a0)

)2 ∫ ∞

0

dk k2+nT 2(k)
∣∣∣Θ̃l(k)

δ(k)

∣∣∣
2

. (6.16)

We are measuring the power spectrum at η = η0, we hence get

Cl ≡ Cl(η0) =
4π

Hn+3
0

δ2
H

∫ ∞

0

dk k2+nT 2(k)
∣∣∣Θ̃l(k, η0)

δ(k, η0)

∣∣∣
2

. (6.17)

In the upcoming sections, we will see how we can find an expression for Cl,
where the solution depends on what scales we are looking at.

6.4 Large Scale Solution : Sachs-Wolf Plataue

The large scale domain is characterized by small wavenumbers k ¿ 1 which
corresponds to large spatial dimensions. We must hence seek the small k limit
of equation (6.17). The following calculation can also be viewed as a warm
up exercise for the upcoming small scale calculation awaiting us in section
6.5. In the large scale limit [16], only the monopole term contributes in the
free streaming solution we found in chapter 4 . This means that equation
(4.129) reduces to

Θ̃l(η0) =
[
Θ̃0(η∗) + Ψ̃(η∗)

]
jl (k(η0 − η∗)) . (6.18)

Equation (6.17) thus becomes

Cl =
4π

Hn+3
0

δ2
H

∫ ∞

0

dk k2+nT 2(k)
[Θ̃0(η∗) + Ψ̃(η∗)]2

| δ(k, a0)|2 j2
l (k(η0 − η∗)) . (6.19)
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We need to find an expression for the large scale monopole at the time of
recombination. We can do this by going to the small k limit of equation
(4.32) on page 89 which is simply

˙̃Θ0 = − ˙̃Φ

⇓
Θ̃(η) + Φ̃(η) = C . (6.20)

Since we are considering adiabatic initial conditions, we have that Θ̃(0) =
Φ̃(0)/2. This allows us to find the constant C above. We obtain

Θ̃(0) + Φ̃(0) = C

Φ̃(0)

2
+ Φ̃(0) = C

C =
3Φ̃(0)

2
, (6.21)

which allows us to write

Θ̃0(η) = −Φ̃(η) +
3Φ̃(0)

2
. (6.22)

From [10] we obtain that the large scale solution of the gravitational potential

is given by Φ̃(k, η∗) ' 9Φ̃(0)
10

. This means that

Θ̃0(k, η∗) = −Φ̃(k, η∗) +
3Φ̃(0)

2

= −Φ̃(k, η∗) +
5Φ̃(k, η∗)

3

=
2Φ̃(k, η∗)

3
(6.23)

We are interested in the quantity Θ̃0(η∗)+Ψ̃(η∗). We are still ignoring setting
anisotropic stress to 0, hence we get

Θ̃0(η∗) + Ψ̃(η∗) =
2Φ̃(k, η∗)

3
− Φ̃(k, η∗)

= −1

3
Φ̃(k, η∗) (6.24)

This equation is often referred to as the Sachs-Wolf effect. We have seen many
different manifestations of this effect during our work, but we are finally in
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a position to see what implications the Sachs-Wolf effect has on the CMB
power spectrum.
Returning to equation (6.19), our new information leads us to

Cl =
4π

Hn+3
0

δ2
H

∫ ∞

0

dk k2+nT 2(k)
1
9
Φ̃(η∗)2

| δ(k, a0)|2 j2
l (k(η0 − η∗)) . (6.25)

An additional simplification comes from that the transfer function T (k) ≡ 1
at large scales. We are thus left with

Cl =
4π

Hn+3
0

δ2
H

∫ ∞

0

dk k2+n
1
9
Φ̃(η∗)2

| δ(k, a0)|2 j2
l (k(η0 − η∗)) . (6.26)

Observe now that the times which the gravitational potential Φ̃ and the
matter contrast δ are to be evaluated are different. One easy way of solving
this is to use the growth function from chapter 5 to relate the potential today
(a0) with the potential at recombination (a∗). From equation (5.3) we get

Φ̃(a0) =
Φ̃(a∗)D(a0)

a0

. (6.27)

In addition, the matter perturbation δ(k, a0) is related with the gravitational
potential by

δ(k, a0) =
k2Φ(a0)a0

3
2
Ωm0H2

0

. (6.28)

Taking these two equations together we obtain

1

3
Φ(a∗) =

1

3

Φ̃(a0)a0

D(a0)

=
1

3

a0

D(a0)
· 3

2
Ωm0H

2
0

δ(k, a0)

k2a0

=
1

2

Ωm0H
2
0

k2D(a0)
δ(k, a0). (6.29)

Using the above result with equation (6.26) we get

Cl =
4π

Hn+3
0

δ2
H

∫ ∞

0

dk k2+n

1
4

Ω2
m0H4

0

k4D2(a0)
| δ(k, a0)|2

| δ(k, a0)|2 j2
l (k(η0 − η∗))

=
πΩ2

m0

Hn−1
0 D2(a0)

δ2
H

∫ ∞

0

dk kn−2j2
l (k(η0 − η∗)) (6.30)
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Changing the variable to x = k(η0 − η∗) and using the fact that η0 À η∗ we
get

Cl =
πΩ2

m0

Hn−1
0 D2(a0)

δ2
H

∫ ∞

0

dx
xn−2

ηn−1
0

j2
l (x)

=
πΩ2

m0

(H0η0)n−1D2(a0)
δ2
H

∫ ∞

0

dxxn−2j2
l (x). (6.31)

We are left with an integral that is in fact analytically solvable . Most integral
tables are tabulated for ordinary Bessel functions than the spherical bessel
functions, we need a transform formula between the two. This is simply

jl(x) =

√
π/2

x
Jl+ 1

2
(x), (6.32)

where the Jl+ 1
2
(x) is an ordinary Bessel function. Using this result gives us

Cl =
πΩ2

m0δ
2
H

(H0η0)n−1D2(a0)

∫ ∞

0

dxxn−2π/2

x
J2

l+ 1
2
(x)

=
π2Ω2

m0δ
2
H

2(H0η0)n−1D2(a0)

∫ ∞

0

dxxn−3J2
l+ 1

2
(x) (6.33)

Referring to the tables given in section C.3, the above integral can be written
in terms of gamma functions in the following manner

CLS
l =

π2Ω2
m0δ

2
H

2(H0η0)n−1D2(a0)

Γ(3− n)Γ(l + n
2
− 1

2
)

23−nΓ2(4−n
2

)Γ(l − n
2

+ 5
2
)
. (6.34)

We have finally obtained an expression for the large scale power spectrum,
valid for low values of l. Equation (6.34) becomes particulary simple if the
spectral index n is 1. This would lead to

CLS
l =

π2Ω2
m0δ

2
H

2D2(a0)

Γ(2)Γ(l + 1
2
− 1

2
)

22Γ2(3
2
)Γ(l − 1

2
+ 5

2
)

=
π2Ω2

m0δ
2
H

2D2(a0)

Γ(l)

4 · 1
4
πΓ(l + 2)

=
πΩ2

m0δ
2
H

2D2(a0)

(l − 1)!

(l + 1)!

=
πΩ2

m0δ
2
H

2D2(a0)

1

l(l + 1)
. (6.35)
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It has become convention to display l(l+1)Cl in the literature, mainly because
if we multiply the above equation by l(l + 1) we get

l(l + 1)CLS
l =

πΩ2
m0δ

2
H

2D2(a0)
. (6.36)

Observe that this is a constant, hence the main contribution of the Sachs-
Wolfe effect is to create a plateau in the CMB power spectrum[25]. The
figures below shows l(l+1)CLS

l for a ΛCDM model. This concludes our work
on the large scale power spectrum. The next section we will investigate the
behavior of the small scale anisotropy which will be more computationally
challenging than the large scale treatment we have done here.

6.5 Small Scale Solution

In smaller scales, both the monopole and the dipole have a significant effect
on the spectrum. In chapter 4 we found the free streaming solution of the
temperature perturbation Θ̃l(η0) given by

Θ̃l(η0) =
[
Θ̃0(η∗) + Ψ̃(η∗)

]
jl (k(η0 − η∗))

+ 3Θ̃1(η∗)
[
jl−1 (k(η0 − η∗))− l + 1

k(η0 − η∗)
jl (k(η0 − η))

]

+

∫ η0

0

dη e−τ
(

˙̃Ψ− ˙̃Φ
)

jl (k(η0 − η)) . (6.37)

We will use this result with equation (6.17) above, but we will at this stage
simplify matters by omitting the integrated Sachs-Wolfe effect, i.e. ignoring
the last integral. Setting jl (k(η0 − η)) ≡ jl for simplicity, we get

∣∣Θ̃l(η0)
∣∣2 =

∣∣∣
[
Θ̃0(η∗) + Ψ̃(η∗)

]
jl + 3Θ̃1(η∗)

[
jl−1 − l + 1

k(η0 − η∗)
jl

]∣∣∣
2

=
[
Θ̃0(η∗) + Ψ̃(η∗)

]2
j2
l + 6Θ̃1(η∗)

[
Θ̃0(η∗) + Ψ̃(η∗)

][
jljl−1 − l + 1

k(η0 − η∗)
j2
l

]

+ 9 Θ̃1(η∗)2
[
j2
l−1 − 2

l + 1

k(η0 − η∗)
jljl−1 +

(l + 1)2

k2(η0 − η∗)2
j2
l

]
. (6.38)

We will from now onwards ease the notation by omitting the explicit time
dependence in the perturbations. This will not create any confusion as long
we remember that the perturbations are to be evaluated at recombination.
Recall that also in chapter 4, we solved the Boltzmann equation for the
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monopole and dipole in the tight coupling approximation. These were given
by

Θ̃0 + Ψ̃ = (1 + R)−
1
4 CA cos krs + RΦ̃ (6.39)

Θ̃1 =
(1 + R)−

3
4

√
3

CA sin krs. (6.40)

Recall that at recombination, we can [24] approximate RΦ̃(η∗) ' RΦ̃(0) T (k)
where T(k) is the matter transfer function which we will write down in a
moment. We will not include the effects of diffusion dampening at this time,
leaving the treatment of the subject to section 6.6. In addition we shall at
this time omit the cross term between the dipole and the monopole as this
term will not contribute to our expression (see Appendix C.4 for justification
of this). Squaring the above equations gives us

[Θ̃0 + Ψ̃]2 = (1 + R)−
1
2 C2

A cos2 krs

+ 2R (1 + R)−
1
4 CA cos krsΦ̃(0)T (k)

+ R2Φ̃(0)2T 2(k) (6.41)

Θ̃2
1 =

(1 + R)−
3
2

3
C2

A sin2 krs. (6.42)

Reverting now to the initial conditions, in [42] it is shown that the small
scale adiabatic initial condition is 2 CA = 3Φ̃(0)/2. Inserting this into the
above equations gives us

[Θ̃0 + Ψ̃]2 =
9

4
Φ̃2(0) (1 + R)−

1
2 cos2 krs

+ 3Φ̃2(0)R (1 + R)−
1
4 cos krsT (k) +

9

4
Φ̃(0)2R2T 2(k) (6.43)

Θ̃2
1 =

9

4
Φ̃2(0)

(1 + R)−
3
2

3
sin2 krs. (6.44)

Inserting the above into equation (6.38) gives

4
∣∣Θ̃l(η0)

∣∣2

9 Φ̃2(0)
= (1 + R)−

1
2 cos2(krs) j2

l +
4

3
R (1 + R)−

1
4 cos krsT (k)j2

l + R2T 2(k)j2
l

+ 3 (1 + R)−
3
2 sin2(krs)

× [
j2
l−1 − 2

l + 1

k(η0 − η∗)
jljl−1 +

(l + 1)2

k2(η0 − η∗)2
j2
l

]
. (6.45)

2Observe that this means we are setting up initial conditions in the radiation dominated
era.
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Returning now to the integral of equation (6.17), we see we need an expression
for the dark matter density perturbation at η∗. We can do the same as we did
in section 6.4 for the large scale case, i.e by relating the matter contrast at
η0 with the gravitational potential at recombination. Using equation (5.22)
from chapter 5 and Φ̃(a0) = Φ̃(a∗)D(a0)/a0 we get

δ(k, a0) ' k2

3
2
Ωm0H2

0

Φ(a0)a0

=
k2

3
2
Ωm0H2

0

Φ̃(a∗)D(a0)

'=
k2

3
2
Ωm0H2

0

Φ̃(0)T (k)D(a0) (6.46)

Inserting this into equation (6.17) implies that

Cl =
4π

Hn+3
0

δ2
H

∫ ∞

0

dk k2+nT 2(k)
Θ2

l (η0, k)
9
4

k4

Ω2
m0H4

0
Φ2(0)T 2(k)D2(a0)

=
4π

Hn−1
0

Ω2
m0

D2(a0)
δ2
H

∫ ∞

0

dk kn−2 4Θ2
l (η0, k)

9Φ2(0)
. (6.47)

We can make further simplifications to the above integral. Since η0 À η∗, we
can set the Bessel function argument to kη0. This leads us to introduce the
variable x = kη0 into the integral. This substitution gives

Cl =
4π

(η0H0)n−1

Ω2
m0

D2(a0)
δ2
H

∫ ∞

0

dx xn−2 ×
[

(1 + R)−
1
2 cos2(xrs/η0) j2

l

+
4

3
R (1 + R)−

1
4 cos(xrs/η0)T (x/η0)j

2
l

+ R2T 2(x/η0)j
2
l + 3 (1 + R)−

3
2 sin2(xrs/η0)

× [
j2
l−1 − 2

l + 1

x
jljl−1 +

(l + 1)2

x2
j2
l

]
]
,

(6.48)

where we have inserted the expressions obtained for the monopole and dipole,
and we have as mentioned earlier omitted the dipole-monopole cross term.
To be able to calculate the above integrals, we will first need to relate the
spherical Bessel functions to ordinary Bessel functions as most integral tables
give only formulas for the latter. The relation between a spherical function
jl(x) and an ordinary Bessel function Jν(x) is given by

jl(x) =

√
π/2

x
Jl+ 1

2
(x) (6.49)
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We can easily see that using this relation with equation (6.48) will infer an
extra factor of π/(2x) throughout the entire integrand as each term includes
products of two Bessel functions. We thus obtain

Cl =
2π2

(η0H0)n−1

Ω2
m0

D2(a0)
δ2
H

∫ ∞

0

dx xn−3 ×
[

(1 + R)−
1
2 cos2(xrs/η0) J2

l+1/2

+
4

3
R (1 + R)−

1
4 cos(xrs/η0)T (x/η0)J

2
l+1/2

+ R2T 2(x/η0)J
2
l+1/2 + 3 (1 + R)−

3
2 sin2(xrs/η0)

× [
J2

l−1/2 − 2
l + 1

x
Jl+1/2Jl−1/2 +

(l + 1)2

x2
J2

l+1/2

]
]
.

(6.50)

Before we move on to calculate the integral we can make one additional
simplification. Recall that the angular scale l corresponds roughly to x = kη0

in our flat cosmology. At small scales (large x), the Bessel function J2
l+ 1

2

(x)

fluctuates much faster than the sine and cosine functions. Hence we can,
at least as a first approximation take sin2(xrs/η0) and cos2(xrs/η0) to be
constant with the identification x → l. We can therefore set∫ ∞

0

dx xn−3 cos2(xrs/η0)J
2
l+ 1

2
' cos2(lrs/η0)

∫ ∞

0

dx xn−3J2
l+ 1

2
, (6.51)

in our integral, with equivalent approximations for all the occurring trigono-
metric functions3. Using this simplification leads to

Cl ' 2π2

(η0H0)n−1

Ω2
m0

D2(a0)
δ2
H

∫ ∞

0

dx xn−3 ×
[

(1 + R)−
1
2 cos2(lrs/η0) J2

l+1/2

+
4

3
R (1 + R)−

1
4 cos(lrs/η0)T (x/η0)J

2
l+1/2

+ R2T 2(x/η0)J
2
l+1/2 + 3 (1 + R)−

3
2 sin2(lrs/η0)

× [
J2

l−1/2 − 2
l + 1

x
Jl+1/2Jl−1/2 +

(l + 1)2

x2
J2

l+1/2

]
]
.

(6.52)

For convenience we will define

Y −1 ≡ 2π2

(η0H0)n−1

Ω2
m0

D2(a0)
δ2
H , (6.53)

3We will make a similar approximation for the logarithmic terms appearing in the
transfer function.
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just to ease the notation. In addition ,we will for the spectral index n make
the natural choice of n ≡ 1 , corresponding to the Harrison-Zeldovich spec-
trum. We are thus left with

ClY '
∫ ∞

0

dx x−2 ×
[

(1 + R)−
1
2 cos2(lrs/η0) J2

l+1/2

+
4

3
R (1 + R)−

1
4 cos(lrs/η0)T (x/η0)J

2
l+1/2

+ R2T 2(x/η0)J
2
l+1/2 + 3 (1 + R)−

3
2 sin2(lrs/η0)

× [
J2

l−1/2 − 2
l + 1

x
Jl+1/2Jl−1/2 +

(l + 1)2

x2
J2

l+1/2

]
]
.

(6.54)

6.5.1 Matter Transfer Function

As we can see from equation (6.54), the expression for the Cl’s include the
matter transfer function T (k). We need a transfer function that includes the
effects of Baryons as well as dark matter. A reasonable way to do this is to
split up the matter transfer function into two distinct parts

T (k) =

(
1− Ωb

Ωm0

)
Tc(k) +

Ωb

Ωm0

Tb(k), (6.55)

where Tc(k) is the (cold) dark matter transfer function and Tb(k) is the
baryonic transfer function. We have already introduced the small scale dark
matter transfer function in chapter 5 which is given by

Tc(k) ' 12
k2

eq

k2
ln

(
k

8keq

)
(6.56)

For the baryonic transfer function we turn to the expression obtained by
Eisenstein et al in [13]. This is

Tb(k) ' 2.07 (1 + R)−
3
4

keq

k
sin(krs)GDl. (6.57)

Here, Dl is the diffusion dampening term which we will obtain later in section
6.6. The term G in our notation is given by

G =
a∗
aeq


−6

√
1 +

a∗
aeq

+

(
2 + 3

a∗
aeq

)
ln




√
1 + a∗

aeq
+ 1

√
1 + a∗

aeq
− 1





 . (6.58)
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The appearance of the ’sine’ term is a direct manifestation of the so called
velocity overshoot effect. As recombination occurs, the baryons are released
from the photon-coupling and move kinematically according to their veloc-
ity. This generates additional perturbations which are proportional to their
velocity vb ∼ Θ̃1.
We shall now use these expressions with equation (6.54). To ease the nota-
tion we will set σ ≡ 1 − Ωb

Ωm0
and ν ≡ Ωb

Ωm0
and define leq ≡ keqη0. We will

thus need the following expressions

T (x/η0) = 12σ
l2eq
x2

ln

(
x

8leq

)
+ 2.07ν (1 + R)−

3
4

leq
x

sin(xrs/η0)GDl (6.59)

T 2(x/η0) = 144σ2
l4eq
x4

ln2

(
x

8leq

)

+ 49.68 (1 + R)−
3
4 σν

l3eq
x3

ln

(
x

8leq

)
sin(xrs/η0)GDl

+ 4, 2849ν2 (1 + R)−
3
2

l2eq
x2

sin2(xrs/η0)G
2D2

l (6.60)

Inserting these expressions into equation (6.54) gives

ClY ' (1 + R)−
1
2 cos2(lrs/η0)

∫ ∞

0

dx x−2J2
l+1/2

+ 12
4

3
R (1 + R)−

1
4 σ cos(lrs/η0)

∫ ∞

0

dx J2
l+1/2

l2eq
x4

ln

(
x

8leq

)

+ 2.07
4

3
R (1 + R)−1 cos(lrs/η0)ν

∫ ∞

0

dxJ2
l+1/2

leq
x3

sin(xrs/η0)G Dl

+ 144σ2R2

∫ ∞

0

dxJ2
l+1/2

l4eq
x6

ln2

(
x

8leq

)

+ 49.68R2 (1 + R)−
3
4 σν

∫ ∞

0

dxJ2
l+1/2

l3eq
x5

ln

(
x

8leq

)
sin(xrs/η0)GDl

+ 4, 2849ν2R2 (1 + R)−
3
2

∫ ∞

0

dxJ2
l+1/2

l2eq
x4

sin2(xrs/η0)G
2D2

l

+ 3 (1 + R)−
3
2 sin2(lrs/η0)

∫ ∞

0

dxx−2
[
J2

l−1/2 − 2
l + 1

x
Jl+1/2Jl−1/2

+
(l + 1)2

x2
J2

l+1/2

]
. (6.61)

We can again simplify our problem bit further by noting that for large x, ln x
and ln2 x are approximately constant (as d lnm x/dx → 0 for large x). Since
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the Bessel functions oscillate much more than the logarithm, we will set

∫ ∞

0

dx x−λ ln(x)J2
l+ 1

2
' ln l

∫ ∞

0

dx x−λJ2
l+ 1

2
, (6.62)

as we did for the trigonometric function case. Using this approximation we
obtain

ClY ' (1 + R)−
1
2 cos2(lrs/η0)

∫ ∞

0

dx x−2J2
l+1/2

+ 12
4

3
R (1 + R)−

1
4 σ cos(lrs/η0) ln

(
l

8leq

) ∫ ∞

0

dx J2
l+1/2

l2eq
x4

+ 2.07
4

3
R (1 + R)−1 cos(lrs/η0)ν sin(lrs/η0)GDl

∫ ∞

0

dxJ2
l+1/2

leq
x3

+ 144σ2R2 ln2

(
l

8leq

) ∫ ∞

0

dxJ2
l+1/2

l4eq
x6

+ 49.68R2 (1 + R)−
3
4 σν ln

(
l

8leq

)
sin(lrs/η0)GDl

∫ ∞

0

dxJ2
l+1/2

l3eq
x5

+ 4, 2849ν2R2 (1 + R)−
3
2 sin2(lrs/η0)G

2D2
l

∫ ∞

0

dxJ2
l+1/2

l2eq
x4

+ 3 (1 + R)−
3
2 sin2(lrs/η0)

∫ ∞

0

dxx−2
[
J2

l−1/2 − 2
l + 1

x
Jl+1/2Jl−1/2

+
(l + 1)2

x2
J2

l+1/2

]
. (6.63)

We are now in a position to be able to find an expression for Cl. But first
we will need to know some Bessel integrals.

6.5.2 Calculation of Cl

We have now all the tools we need to calculate Cl. All the remaining inte-
grals in equation (6.63) correspond exactly to the ones given in section C.3.
By refereing to these equations we can easily write down the values of the
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integrals

ClY ' (1 + R)−
1
2 cos2(lrs/η0)

1!(l − 1)!

22Γ2(3/2)(l + 1)!

+ 12
4

3
R (1 + R)−

1
4 σ cos(lrs/η0)l

2
eq ln

(
l

8leq

)
3!(l − 2)!

24Γ2(5/2)(l + 2)!

+ 2.07
4

3
R (1 + R)−1 cos(lrs/η0)ν sin(lrs/η0)GDlleq

2!Γ(l − 1/2)

231!1!Γ(l + 5/2)

+ 144σ2R2l4eq ln2

(
l

8leq

)
5!(l − 3)!

26Γ2(7/2)(l + 3)!

+ 49.68R2 (1 + R)−
3
4 σνl3eq ln

(
l

8leq

)
sin(lrs/η0)GDl

4!Γ(l − 3/2)

252!2!Γ(l + 5/2)

+ 4, 2849ν2R2 (1 + R)−
3
2 sin2(lrs/η0)G

2l2eqD
2
l

3!(l − 2)!

24Γ2(5/2)(l + 2)!

+ 3 (1 + R)−
3
2 sin2(lrs/η0)

×
[ 1!(l − 2)!

22Γ2(3/2)l!
− 2(l + 1)2!(l − 2)!

23Γ(5/2)Γ(3/2)(l + 1)!

+
(l + 1)23!(l − 2)!

24Γ2(5/2)(l + 2)!

]
. (6.64)

We are as in the large scale case interested in displaying l(l + 1)Cl instead
of simply Cl. We can hence sort out all the factorials by using the Gamma
function relations Γ(x + 1) = xΓ(x) with Γ(1/2) =

√
π. In addition we

multiply equation (6.64) by πl(l + 1) and go the large l limit. We are left
with

πl(l + 1)ClY ' (1 + R)−
1
2 cos2(lrs/η0)

+
32

3
R (1 + R)−

1
4 σ cos(lrs/η0)

l2eq
l2

ln

(
l

8leq

)

+ 0.69πR (1 + R)−1 cos(lrs/η0)ν sin(lrs/η0)GDl
leq
l

+ 76.8σ2R2
l4eq
l4

ln2

(
l

8leq

)

+ 9.315πR2 (1 + R)−
3
4 σν

l3eq
l3

ln

(
l

8leq

)
sin(lrs/η0)GDl

+ 2.8556ν2R2 (1 + R)−
3
2 sin2(lrs/η0)G

2
l2eq
l2

D2
l

+ (1 + R)−
3
2 sin2(lrs/η0). (6.65)
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We have almost reached our goal. The only thing remaining to account for
Silk dampening.

6.6 Small Scale Diffusion Dampening

Recall that in chapter 4 we quantified the effect of diffusion dampening and
the finite thickness of the LSS by the inclusion of the function

D(k) =

∫ η0

0

dη g(η) exp

(
− k2

k2
D(η)

)
. (6.66)

Hence we would have to include this factor in the calculation of the Cl’s
earlier. The natural thought one might have is to make the projection to
l-space by setting x → l as we did earlier. It turns out from [24] that the
dampening effect can be approximated in l-space by

Dl = exp
[−(l/lD)−m

]
, (6.67)

where lD = kDη0 and

m = a3(Ωbh
2)a4

[
1 + (Ωbh

2)1.8
]1/5

(6.68)

a3 = 1.03(Ωm0h
2)0.0335 (6.69)

a4 = −0.0473(Ωm0h
2)−0.0639, (6.70)

which are parameters obtained in a best-fit power law estimation. Plugging
in the numbers for a ΛCDM model we obtain m ' 1.2 which is slightly less
than the expected m = 2 by a kη0 → l projection. This is due to the finite
thickness effect we included by virtue of the visibility function that serves
to smooth out the dampening. Thus we only need add a factor of Dl in our
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acquired expression for the Cl’s . The final expression we obtain is thus

πl(l + 1)ClY ' (1 + R)−
1
2 cos2(lrs/η0)D

2
l

+
32

3
σR (1 + R)−

1
4 cos(lrs/η0)

l2eq
l2

ln

(
l

8leq

)
Dl

+ 0.69πνR (1 + R)−1 cos(lrs/η0) sin(lrs/η0)GD2
l

leq
l

+ 76.8σ2R2
l4eq
l4

ln2

(
l

8leq

)

+ 9.315πνσR2 (1 + R)−
3
4

l3eq
l3

ln

(
l

8leq

)
sin(lrs/η0)GDl

+ 2.8556ν2R2 (1 + R)−
3
2 sin2(lrs/η0)G

2
l2eq
l2

D2
l

+ (1 + R)−
3
2 sin2(lrs/η0)D

2
l . (6.71)

We have finally reached our goal. This is our approximation for the CMB
power spectrum at small scales. In chapter 7 we will outline how to simulate
the graph of Cl and see what we can learn from it. Recall that all the
functions on the right hand side are to be evaluated at η = η∗ .



Chapter 7

Discussion and Conclusions

7.1 Introduction

We will in this chapter study the implications of our previous work, focusing
mainly on the small scale CMB power spectrum obtained in chapter 6. Al-
though our somewhat limited model for the Cl’s have been approximate at
the least, we will see that our results are mostly in accordance with the power
spectrum obtained from numerical codes such as CMBFast or CMBEasy. Re-
call that we have omitted the Integrated Sachs-Wolfe effect (late and early),
neutrinos and Reionization into our approximation. We will mention some
of the effects that occur with the power spectrum towards the end of this
chapter.

7.2 Numerical Assumptions and Relations

We will in this section outline the numerics necessary to plot the small scale
Cl’s. To clarify what we need we can insert the explicit time dependencies
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back into equation (6.71) from chapter 6. This gives

πl(l + 1)ClY ' (1 + R(η∗))
− 1

2 cos2(lrs(η∗)/η0)D
2
l

+
32

3
σR(η∗) (1 + R(η∗))

− 1
4 cos(lrs(η∗)/η0)

l2eq
l2

ln

(
l

8leq

)
Dl

+ 0.69πνR (1 + R(η∗))
−1 cos(lrs(η∗)/η0) sin(lrs(η∗)/η0)GD2

l

leq
l

+ 76.8σ2R2(η∗)
l4eq
l4

ln2

(
l

8leq

)

+ 9.315πνσR2(η∗) (1 + R(η∗))
− 3

4
l3eq
l3

ln

(
l

8leq

)
sin(lrs(η∗)/η0)GDl

+ 2.8556ν2R2(η∗) (1 + R(η∗))
− 3

2 sin2(lrs(η∗)/η0)G
2
l2eq
l2

D2
l

+ (1 + R(η∗))
− 3

2 sin2(lrs(η∗)/η0)D
2
l , (7.1)

where Y was defined as

Y −1 ≡ 2π2 Ω2
m0

D2(a0)
δ2
H . (7.2)

We need to calculate the baryon-photon ratio R, the sound horizon rs(η)
and the Growth function D(a), where most of them are to be evaluated at
η = η∗. Firstly for the epoch of recombination we will use the expression
obtained for the conformal time in chapter 1

η∗ =
2

H0

√
Ωm0

[√
a∗ + aeq −√aeq

]
, (7.3)

where a∗ ' (1101)−1 is the scale factor at recombination, and the scale factor
at matter-radiation equality is

aeq = 4.15 · 10−5
(
Ωm0h

2
)−1

. (7.4)

For the time conformal time today we will use

η0 = η∗ +

∫ 1

a∗

da

a2H(a)
. (7.5)

Here H(a) is the Hubble factor given as

H = H0

√
Ωm0a−3 + Ωdea−3(1+ω). (7.6)
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We are thus assuming that dark energy did not play a major role at early
times, but we are including it’s effect in determining the conformal time
today. Recall that we are employing units of c = 1, hence the value of the
Hubble constant is

H0 = 100h Mpc−1km s−1 ' 3.33 · 10−4h Mpc−1. (7.7)

Recall that leq ≡ keqη0, where keq is the wavelength of the mode entering the

horizon at equality. In chapter 4 we showed that it is given by keq =
√

Ωm0H2
0

aeq

which we can simplify

keq =

√
Ωm0H2

0

aeq

=

√
Ωm0H2

0

4.15 · 10−5 (Ωm0h2)−1 = 0.073Mpc−1Ωm0h
2. (7.8)

This gives us a value of leq ' 150 − 160 for a standard ΛCDM model. We
now turn to the Baryon-Photon density fraction R, which is given by

R =
3

4

ρb

ργ

(7.9)

where the densities are

ρb = Ωbρcra
−3 (7.10)

ργ = ρcr
2.47 · 10−5

h2
a−4, (7.11)

where ρcr = 1.88 h2 × 10−29g cm−3 is the critical density. These equations
can be used to simplify the expression for R as

R =
3

4

ρb

ργ

=
3

4

Ωba
−3

2.47·10−5

h2 a−4

= 3.0364 · 104Ωbh
2a. (7.12)

At recombination the typical value for R for a standard ΛCDM model is

R(η∗) ' 3.0364 · 104Ωbh
2a∗ ' 0.676. (7.13)

Once we have the value for R∗ = R(η∗), we can calculate the sound horizon
of the baryon-photon fluid which is

rs(η) =
2

3 keq

√
6

Req

ln

[√
R∗ + Req +

√
1 + R∗

1 +
√

Req

]
. (7.14)
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For the spectral amplitude δH we will use from [13]

δH = 1.94 · 10−5Ω−0.785−0.05 lnΩm0
m0 , (7.15)

and from the same article find that the silk dampening wavelength can be
approximated by

kD ' 1.6(Ωbh
2)0.52(Ωm0h

2)0.73
[
1 + (10.4Ωm0h

2)−0.95
]
Mpc−1, (7.16)

which gives kD ' 1600 for a standard ΛCDM model.
This concludes our discussion of the numerics of the issue. We now have
all we need to plot the small scale Cl. To do this we have written the code
caclPowerSpec.py for a user friendly plotting procedure. A typical usage of
the code is

python calcPowerSpec.py --omegab=0.07 --omegam=0.4\

--omegaw=0.6 --lmin=300 etc...

The default values of in the code coincides with those of a standard ΛCDM
model, hence supplying the code with no command line arguments will plot
the power spectrum of a standard ΛCDM model with Ωb = 0.05, ΩΛ = 0.7,
Ωm0 = 0.3 , h = 0.7 and ω = −1. We will now move onwards to see what we
can extract from our model.

7.2.1 Accuracy

We will not dwell too much on the question of accuracy at this time, but
one thing is worth mentioning. The transfer functions we utilized in our
method are strictly not valid for intermediate to large scales, i.e. they are
only valid for k À keq which translates into angular space to approximately
l À leq ' 160. We therefore expect our solution to diverge around leq.
Unfortunately the first acoustic peak is not far from this value, so we expect
the first peak to be blurred out from the occurring divergencies appearing
from the transfer functions. The natural way to fix this would of course be
to use a transfer function valid on all scales. There does exists [13] a transfer
function for baryons and cold dark matter valid on all scales, but these are
quite complicated which will yield a corresponding raise in the complexity
level in the final expression for the CMB. For our purposes, the gains in
transparency in our model far outweigh the need for the inclusion of the first
peak. A great deal of work has been done in the litterateur on the first peak,
so we will concentrate on the other peaks instead.
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Figure 7.1: CMB power spectrum with Ωb = 0.05, ΩΛ = 0.7, Ωm0 = 0.3 ,
h = 0.7 and ωde = −1.

7.3 Peak Locations

In chapter 4, we discussed the possible locations of the peaks of the CMB
power spectrum. These corresponded to the locations where cos(krs(η∗)) =
±1, which in angular space would be

lp = nπη0/rs(η∗). (7.17)

This would be entirely true if the the projection from k-space to l-space,
kη0 → l was exact. This is because the spherical Bessel function jl(x) does
not peak exactly at x = l, but at a slightly lesser value. For instance[10], the
function j100(x) peaks at approximately x ' 90. As a first approximation we
could then set l → l/0.9 in our code to see the result. This turns our to be
in a good correspondence with the power spectrum obtained by CMBFast or
other codes. Hence a better approximation to the peaks would be

lp = 0.9nπη0/rs(η∗). (7.18)

Figure 7.1 shows the power spectrum for a standard ΛCDM model. In a
flat cosmology, the distance between the peaks is more or less constant. The
peak locations are sensitive to Ωm0 and Ωb, and to some extent ΩΛ (which
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changes the value of η0). From figure 7.2 we can see how the position of the
second peak shifts to lower l as the matter content increase and to slightly
higher l with increasing Ωb. Observe that this graph also includes a change
in ΩΛ through Ωm0 = 1− ΩΛ.

� � � � � � � � � � � � � � � � � � � � � � � 	 � � 
 �
0mΩ

� 	 �� � �� � �� � �� � �� 	 �� � �� � �� � �� � �
0

s
∗
)

η(
r
/

η
9.
0
π2

� � 
 � � � � � � � � �
b 50.0=Ω

b 70.0=Ω

Figure 7.2: Location of the second peak in terms of a changing Ωm0. The
two curves represent two models with a differing baryon content of Ωb = 0.05
and Ωb = 0.07 respectively .

7.3.1 Peak Heights

We can first observe from figure 7.1 that where we would expect the Cl’s to
be zero (where cos(lrs(η∗)/η0) ' 0 ), we see a trough instead. The reason
for this is quite simply the effects of the dipole. Although smaller than the
monopole, the dipole contributes the most to the Cl’s where the monopole is
0. This changes the zero’s of the CMB to a trough.
Concerning the peak heights, we can clearly see that our solution is a bit
underestimated when comparing figure 7.1 to figure 7.4. The reason for
this is twofold. Firstly we have assumed that only the highest peak of the
spherical Bessel contributes to our integral. This is not entirely correct, as
j2
l (x) has many peaks before x ' l. Although these peaks have a much lower

amplitude than the one at x ' l, they do contribute a minute amount to the
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final expression for the CMB.
The second reason for the underestimation of our solution is the concept of
Radiation driving. It is caused by the decay of the gravitational potential
Φ̃ in the transition between radiation-dominated to matter-dominated epoch
(see [37]). A decay of the gravitational potential causes the perturbations to
rise in power, hence being called Radiation driving. This effect would give
a rise in the power of the Cl. We have for simplicity ignored this effect in
our derivation of the CMB, hence we have a noticeable lack of power in our
result.

7.4 Baryon Signature

We can imagine the perturbations of the baryon-photon plasma as an oscil-
lator with an effective mass of (1 + R) in our tight coupling approximation.
The zeros of Θ̃0 is shifted by an amount of of (1 + R)Φ̃ (see equation (4.82)
), and we can see that even and odd peaks get increased and suppressed
respectively. This effect creates a characteristic effect in the CMB power
spectrum known as Baryon Suppression. The effect would be non-existent in
a cosmology with no baryons and therefore makes estimation of the baryon
content easier than other cosmological parameters [14, 13].

As we can see from figure 7.3, the second and third peak get suppressed
and increased respectively. There is also a slight shift in the peak locations
due to larger baryon fraction. But observe that this dampening effect oc-
curs only in these two peaks as Silk dampening becomes more significant
at higher l-values, although we can see the fourth peak get’s slightly more
damped. See [5, 38] for more details on cosmological parameter dependence.

7.5 Integrated Sachs-Wolfe Effect

In our treatment here we have simplified our problem by not including the
integrated Sachs-Wolfe term in the calculation of the CMB power spectrum.
We will here mention some of the aspects of the ISW, without going into too
much of the details. Recall that that the effect was quantified by the integral

Θ̃ISW
l '

∫ η0

0

dη e−τ
(

˙̃Ψ− ˙̃Φ
)

jl (k(η0 − η∗)) . (7.19)

The ISW quantifies the shift in energy of the photons from time varying
gravitational potentials after recombination. In the standard ΛCDM model
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Figure 7.3: Recovering baryon signature from the CMB. The two curves
represent two models with a differing baryon content of Ωb = 0.05 and Ωb =
0.07 respectively .

there is a slight decay of Ψ because of the remaining radiation after last scat-
tering, in addition to a change induced by dark energy at later times. It has
therefore natural to split up these effects into an early ISW and a late ISW.
The early ISW effects the higher multipoles[10] l and can be approximated
roughly by

Θ̃early−ISW
l ' 2(Φ̃(η∗)− Φ̃(η0))jl (kη0) , (7.20)

which adds coherently with the dipole and monopole, since they have the
same bessel function dependence. This gives a slight increase in power at
higher l-values[21]. This also explains some of the under-estimation of our
analytic model.
The late ISW is sensitive to the dark energy[9] component of the universe.
Since Λ domination is a recent event, only modes entering the horizon at
later times are affected, i.e at large scales. These modes will get a boost
in power, tilting the SW-plateau from section 6.4 to some extent[7]. The
interested reader can in [11] see more about the effects of more exotic dark
energy models on the CMB power spectrum.
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Figure 7.4: The CMB power spectrum obtained from CMBEasy. The curve
is for a standard ΛCDM model with Ωb = 0.05, Ωm0 = 0.3 and ΩΛ = 0.7 .

7.6 Conclusion

In the previous sections we have seen how our simplified model works to
reconstruct the small scale CMB power spectrum. Considering all the ap-
proximations we have done throughout our calculations, our model is in good
accordance with the CMBEasy result. As mentioned earlier, the lack of in-
clusion of the first peak comes from the Transfer functions utilized which
diverge when l → leq . Hence a first improvement of our model would be to
use a Transfer function valid on all scales, which one can find in [13]. Another
rectification of our work on small scales would be to include the effects of
the decay of Φ̃ during radiation domination. This would increase the ampli-
tude on intermediate to small scales[24], an effect that comes from the fact
that radiation inhibits clumping. Adding a decaying Φ̃ in our setting would
mean to return to the formal solution of the monopole (equation (4.73)) and
split up the integral into a radiation part (from η ' 0 to η ' ηeq), and a
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Figure 7.5: The full CMB power spectrum obtained from CMBEasy for all
l. The curve is for a standard ΛCDM model with Ωb = 0.05, Ωm0 = 0.3 and
ΩΛ = 0.7 .

matter part (from η ' ηeq to η ' η∗). For the gravitational potential during
radiation domination we would use from [37]

Φrad ' 3
Φ̃(0)

(csη)3
[sin(csη)− csη cos(csη)] (7.21)

But of course, for realistic models including effects such as reionization and
neutrinos, we would have to solve our problem numerically. To complete
the picture we have drawn of the CMB anisotropies we would also have to
include the effect of polarization which we unfortunately did not cover. For
a review of CMB polarization see[23].
With the work we have done in this thesis we are able to understand much
better how the ”black box” numerical codes work. But more importantly
we have developed the tools necessary to write codes for non-standard cos-
mological models like anisotropic and inhomogenous universes. By the time
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of this writing [26] seem to indicate an anisotropically expanding universe.
Hence to get an accurate description of the power spectrum in this setting
we would have to return to the Boltzmann equation from chapter 2 and redo
much of our calculations.
The present work represents an effort to present in a physically transparent
manner the theory of the anisotropies of the Cosmic Microwave Background
radiation.
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Chapter 8

Epilog

Some final comments are in order at this time. As mentioned earlier I have
presented the current cosmological paradigm on the CMB temperature fluc-
tuations. One might ask if what I have added to our field of research.
Through out this work I have tried to find alternate ways (from the lit-
erature) on doing things. In chapter 2, I opted to do the full calculation of
the Boltzmann equation in conformal time, where in the literature this is
done in cosmic time and conformal time is introduced at the end. In chapter
3, I made an interesting discovery that one can obtain the expression for the
perturbation to the gravitational potential from inflation without using the
Einstein equations. And maybe more importantly, the small scale solution
of the CMB power spectrum in chapter 6 is new. But as mentioned in the
conclusion there are many ways to improve this model. In future work I
would especially like to do a full calculation of the CMB power spectrum for
an anisotropic universe.
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Appendix A

The Boltzmann Equation

A.1 The Boltzmann Equation

We will in this section derive[17] the Boltzmann equation which is an integral
part of a detailed study of the CMB fluctuations. We begin by defining
the distribution function in phase space f(t, r,v) for a monoatomic particle
ensemble consisting of N particles. The phase space here is the configuration
s pace coordinates r = (x1, x2, x3) and the velocity field v = (v1, v2, x3). With
the time parameter t, the distribution function is a function of 7 variables,
which we assume to be independent.
Let d3r d3v be the volume element in phase space cantered about position r.
The number of particles in the volume element at time t and velocity in the
range v and v + d3v is given by

dN = f(t, r, v)d3r d3v . (A.1)

In this derivation we are assuming that the acceleration a(t, r, v) imposed
on the molecules by external forces are divergence free in velocity space, i.e.
∇v · a(t, r, v) = 0. This is the case for most (external) force fields including
gravity and the Lorentz force.
Assuming (for now) no intermolecular collisions, we let t → t′ = t + dt with
dt ¿ 1. Thus we will working in the linear regime in dt in all the following
calculations. The particles in the original phase space element would now be
found in thee volume element d3r′ about the spatial location r′ = r + vdt.
They would acquire new velocity in the range v′ = v+a(t, r, v) dt and v′+d3v′.
The number of particles in this phase space element would now be

dN ′ = f(t + dt, r + vdt, v + adt)d3r′ d3v′. (A.2)

We want to find a relation between the new phase space element d3r′ d3v′ and
the original one d3r d3v. Recall that volume elements between two coordinate
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systems are related by the Jacobian of the transformation by

d3r′ d3v′ = |J | d3r d3v , (A.3)

where |J | is the determinant of the Jacobian Matrix given by

J =
∂(r′, v′)
∂(r, v)

=

[
∂x′i
∂xj

∂v′i
∂xj

∂x′i
∂vj

∂v′i
∂vj

]
=

[
[δij] [∂jaidt]

[δijdt]
[
δij + ∂vj

aidt
]
]

.

Here, ∂j = ∂
∂xj

and ∂vj
= ∂

∂vj
. The brackets denotes a matrix with the

indicated elements. Calculating the determinant of J up to linear terms in
dt gives

|J | = 1 +
3∑

i=1

∂vj
ai dt + (...higher order terms... ) . (A.4)

Remembering that the acceleration field is divergence free in velocity space,
we get

|J | = 1 .

Thus the phase space volume element remains unchanged throughout the
displacement in phase space. In the lack of collision effects, the particles in
d3r d3v at time t, would be found in d3r′ d3v′ at time t + dt. Hence

dN ′ = dN (...no collisions... ) . (A.5)

If we now add scattering effects, the number of particles in the phase space
element may change,

dN ′ − dN = dNcollision (...with collisions... ) , (A.6)

where dNcollision is the net flow of particles in/out of the phase element.
Inserting equations (A.1) and (A.2) in equation (A.6) we get

[f(t + dt, r + vdt, v + adt)− f(t, r, v)] d3r d3v =
δf(t, r, v)

δt
d3r d3v dt , (A.7)

where we have defined

dNcollision ≡ δf(t, r, v)d3r d3v =
δf(t, r, v)

δt
d3r d3v dt . (A.8)

The expression δf(t,r,v)
δt

is at this point just formally introduced, which at a
later time will be replaced by an integral (collision integral).
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Equation (A.8) is valid for all phase space volumes d3r d3v. Hence, after
division by dt we obtain

f(t + dt, r + vdt, v + adt)− f(t, r, v)

dt
=

δf(t, r, v)

δt
. (A.9)

Recall that the LHS is the (total) time derivative of a multivariable function
, thus we get

df

dt
=

δf(t, r, v)

δt
≡ C[f ] , (A.10)

where the RHS is often referred to as the collision term. By the preceding
line of argument we have proven

df

dt
= C[f ] . (A.11)

This is The Boltzmann Equation, which is valid in both equilibrium and
non-equilibrium conditions, and serves as a basis for our work.
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Appendix B

Numerical Codes

Here I will present some of the computer codes used in this thesis. For
some of the simulations I have opted to use the Python scripting language
as numerical schemes are easy and fast to implement in this language. For
efficiency I have used either the NumPy or the mathlibplot package which is
included in most python installments or can be acquired for free.

B.1 The Growth Function

In chapter 5 we encountered the growth function which was defined by an
integral. The following code implements a numeric scheme (specifically the
Trapezium rule) to integrate the function given by equation (5.45).

#!/usr/bin/env python

#calcNumericInt.py

# Code for calculating functions defined as a function multiplied by

#an integral,writing the result to file .Function is of the form

#F(xmax)=factor(xmax) \int_xmin^xmaxfunction(x’) dx’

import sys, re, os from NumPy import *

try:

factor=sys.argv[1]

func=sys.argv[2]

text=sys.argv[3]

interval=sys.argv[4]

dx=float(sys.argv[5])
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except:

usage="Usage: %s ’factor(x)’ ’function(x)’ ’header text’ \

’[xmin,xmax]’ dx " % sys.argv[0]

print usage; sys.exit(1)

intervalpattern=r"([+\-]?\d\.\d+[Ee][+\-]\d\d?|[+\-]?\d+\.?\d*|

[+\-]?\.\d+)"

numbs = [ float(x) for x in re.findall(intervalpattern,interval)]

xmin=numbs[0] xmax=numbs[1]

def funct(x):

return eval(func)

def funct2(x):

return eval(factor)

def trap(min,max):

n=40

h=(max-min)/(n-1)

x=[ (min +z*(h)) for z in range(0,n)]

x=array(x)

#print x

#print funct(x)

integral = (h/2* ( funct(x[0])+funct(x[n-1]) +

2*sum(funct(x)[1:n-1])))

#print integral

return integral

h2=int((xmax-xmin)/dx)

xv=[(xmin +dx*num) for num in range(0,h2+1) ] xv=array(xv)

yv=[(funct2(xv[i])*trap(xmin,xv[i])) for i in range(0,h2+1)]

filen=text+’.dat’ ofile = open(filen, ’w’)

ofile.write(text+"\n")

for i in range(0,h2+1):

ofile.write("%f %f \n"% (xv[i],yv[i]))

ofile.close()
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This next code plots data output from calcNumericInt.py script and saves
the plot to a ps file. The plots in figure (ref) is created by this program.

#!/usr/bin/env python

# plotNumInt.py

# Code for plotting sets of data and saving output

import sys, re, os,time

from NumPy import *

import Gnuplot

filename=sys.argv[1]

ifile = open(filename, ’r’)#open file for reading

file=ifile.readlines()

ifile.close()

x=[]

y=[]

filename=file[0][:-1]#strip new line

file=file[1:]

for line in file:

line=line.split()

x.append(float(line[0]))

y.append(float(line[1]))

if(len(sys.argv)>2):

filename2=sys.argv[2]

ifile = open(filename2, ’r’) # open file for reading

file=ifile.readlines()

ifile.close()

x2=[]

y2=[]

filename2=file[0][:-1]

file=file[1:]
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for line in file:

line=line.split()

x2.append(float(line[0]))

y2.append(float(line[1]))

if(len(sys.argv)>3):

filename3=sys.argv[3]

ifile = open(filename3, ’r’) # open file for reading

file=ifile.readlines()

ifile.close()

x3=[]

y3=[]

filename3=file[0][:-1]

file=file[1:]

for line in file:

line=line.split()

x3.append(float(line[0]))

y3.append(float(line[1]))

g = Gnuplot.Gnuplot(persist=1)#,debug=1)

#persist=1: let plot remain on the screen

#g(’set pointsize 2’) g(’set data style lines’)

d1 = Gnuplot.Data(x,y, title=’%(filename)s’ % vars())

if(len(sys.argv)==3):

d2 = Gnuplot.Data(x2,y2, title=’%(filename2)s’ % vars())

elif(len(sys.argv)==4):

d2 = Gnuplot.Data(x2,y2, title=’%(filename2)s’ % vars())

d3 = Gnuplot.Data(x3,y3, title=’%(filename3)s’ % vars())

if(len(sys.argv)==3):

g.plot( d1,d2,xlabel=’Expansion Factor a’,

ylabel=’Growth Function D(a)’)

elif(len(sys.argv)==4):

g.plot( d1,d2,d3,xlabel=’Expansion Factor a’,

ylabel=’Growth Function D(a)’)

else:

g.plot(d1,xlabel=’Expansion Factor a’,

ylabel=’Growth Function D(a)’)
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g.hardcopy(filename=’case.eps’, enhanced=1,

color=1, fontname=’Times-Roman’, fontsize=28)

time.sleep(3)

B.2 The CMB Power Spectrum

In this section we present the code used to simulate and plot the CMB power
spectrum , specifically equation (6.71) from chapter 6.

#!/usr/bin/env python

# calcPowerSpectrum.py

# Code for calculating the CMB power spectrum

import sys, re, os,getopt,time

from scipy import integrate

from pylab import *

alpha=1.0

lmin=150 lmax=1500 omegam=0.3 omegab=0.05 omegaw=0.7

w=-1.0 h=0.7 arec=1.0/1101 case=’powspec1’ approx=1 Yp=0.23

def setDefault():

return 0.3,0.05,0.7,-1.0,0.7,1.0

options, args = getopt.getopt(sys.argv[1:],

’’,[’xsi=’,’phase=’,’beta=’,’alpha=’,’lmin=’,’lmax=’,’omegam=’\

,’omegab=’,’omegaw=’,’w=’,’h=’,’arec=’,’case=’,’approx=’])

for option, value in options:

if option in (’--alpha’):

alpha=float(value)
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elif option in (’--lmin’):

lmin=float(value)

elif option in (’--lmax’):

lmax=float(value)

elif option in (’--omegam’):

omegam=float(value)

elif option in (’--omegab’):

omegab=float(value)

elif option in (’--omegaw’):

omegaw=float(value)

elif option in (’--w’):

w=float(value)

elif option in (’--arec’):

arec=float(value)

elif option in (’--case’):

case=value

elif option in (’--approx’):

approx=int(value)

elif option in (’--beta’):

beta=float(value)

# The baryon to photon density ratio

def R(a):

return (30364.0*omegab *pow(h,2)*a)

# The Hubble factor without H_0 def H(a):

return (pow(omegam*pow(a,-3)+omegaw*pow(a,-3.0*(1+w)),0.5))

keq=0.073*omegam *pow(h,2) aeq=4.15*pow(10,-5.0)/(omegam *pow(h,2))

eta_rec=6000.0/(h*pow(omegab,0.5))*(pow(arec+aeq,0.5)-pow(aeq,0.5))

eta_eq=6000.0/(h*pow(omegab,0.5))*(pow(aeq+aeq,0.5)-pow(aeq,0.5))

#The integrand of the conformal time integral

def f2(a):

return (1.0/(a*a*H(a)))

eta_0=eta_rec+3000.0/h*integrate.quad(f2,arec,1)[0]

leq=eta_0*keq

k_D=1.6*pow(omegab*h*h,0.52)*pow(omegam*h*h,0.73)\

*(1+pow(10.4*omegam*h*h,-0.95))

lD=k_D*eta_0 a4=-0.0473*pow(omegam*pow(h,2),-0.0639)

a3=1.03*pow(omegam*pow(h,2),0.0335)
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m=a3*pow(omegab*pow(h,2),a4)*pow(1+pow(omegab*pow(h,2),1.8),0.2)

Req=1.2060106*omegab/omegam

l=arange(lmin,lmax,1.0)

# Growth function

def Gf(a):

return (5.0/2.0*omegam*H(a)*\

integrate.quad(lambda x:(1.0/pow(x*H(x),3)),0.0,a)[0])

#Silk dampening function D_l

def D(l):

return (exp(-pow(l/lD,m)))

# The modified sound horizon

Zr=2.0/3.0*pow(6.0/Req,0.5)*(log(pow(1+R(arec),0.5)+pow(R(arec)+Req,0.5))\

-log(1+pow(Req,0.5)))

# Estimation of the spectral amplitude d_H from C_10 from COBE

dH=1.94*pow(10,-5)*pow(omegam,-0.785-0.05*log(omegam))/pow(25,0.5)

clconst=2*2.7*2.7*pow(10,12)*pi/2.0*pow(omegam*dH/Gf(1),2)

arec/aeq*(-6.0*pow(1+arec/aeq,0.5)+(2.0+3.0*arec/aeq)*\

log((pow(1+arec/aeq,0.5)+1)/(pow(1+arec/aeq,0.5)-1)))

#The power spectrum

def Cl(x):

x=x/0.9

sigma=(1-omegab/omegam)

nu=omegab/omegam

g=Ds(x)*arec/aeq*(-6.0*pow(1+arec/aeq,0.5)+(2.0+3.0*arec/aeq)*\

log((pow(1+arec/aeq,0.5)+1)/(pow(1+arec/aeq,0.5)-1)))

part11=Ds(x)*Ds(x)*pow(1+R(arec),-0.5)*pow(cos(alpha*x/leq*Zr),2)

part12=(Ds(x)*R(arec)*pow(1+R(arec),-0.25)*\

4.0/3.0*cos(alpha*x/leq*Zr))\

*(12.0*sigma*2.0/3.0*pow(leq/alpha,2)/(x*x)*log(beta*x/(8*leq))+\

1.0/4.0*pi*pow(leq/(alpha*x),1)*2.07*nu*pow(1+R(arec),-0.75)*\

g*sin(alpha*x/leq*Zr) )

part13=(4.0/9.0*pow(R(arec),2))*(144.0*8.0/15.0*\

pow(leq/alpha,4)/((x+3)*(x+2.0)*(x-1.0)*(x-2.0))*\

\pow(log(beta*x/(8*leq)),2)*\

sigma*sigma+24*nu*sigma*3.0/16.0*pi*pow(log(beta*x/(8*leq)),1)*\

pow(leq/(alpha*x),3)*2.07*pow(1+R(arec),-0.75)*\
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g*pow(sin(alpha*x/leq*Zr),1)+\

2.07*2.07*2.0/3.0*pow(leq/(alpha*x),2)*\

pow(g*nu*sin(alpha*x/leq*Zr)*nu,2)*pow(1+R(arec),-1.5) )

part1=part11+part12+part13

part21=0.0#pi*pow(1+R(arec),-1)*pow(3.0,0.5)*sin(2.0*alpha*x/leq*Zr)

part22=x*(x+1.0)/( (2.0*x+1.0)*(2.0*x-1.0))-\

2.0*x*pow(x+1.0,2)/((2.0*x+3.0)*(2.0*x+1.0)*(2.0*x-1.0))

part31=3*Ds(x)*Ds(x)*pow(1+R(arec),-1.5)*pow(sin(alpha*x/leq*Zr),2)

part32=-1.0/3.0*(x+1.0)/(x-1.0)+2.0/3.0*pow(x+1.0,2)/((x+2.0)*(x-1.0))

return (part1+part21*part22+part31*part32)

y=clconst*Cl(l)

S1=r’$\Omega_b=%s , \Omega_{m0}=%s , \Omega_{DE}=%s $’ \

%(omegab,omegam,omegaw)

omegam,omegab,omegaw,w,h,xsi=setDefault()

keq=0.073*omegam *pow(h,2)

aeq=4.15*pow(10,-5.0)/(omegam *pow(h,2))

eta_rec=6000.0/(h*pow(omegab,0.5))*(pow(arec+aeq,0.5)-pow(aeq,0.5))

eta_eq=6000.0/(h*pow(omegab,0.5))*(pow(aeq+aeq,0.5)-pow(aeq,0.5))

#The integrand of the conformal time integral

def f2(a):

return (1.0/(a*a*H(a)))

eta_0=eta_rec+3000.0/h*integrate.quad(f2,arec,1)[0]

leq=eta_0*keq

k_D=1.6*pow(omegab*h*h,0.52)*pow(omegam*h*h,0.73)*\

(1+pow(10.4*omegam*h*h,-0.95))

lD=k_D*eta_0 a4=-0.0473*pow(omegam*pow(h,2),-0.0639)

a3=1.03*pow(omegam*pow(h,2),0.0335)

m=a3*pow(omegab*pow(h,2),a4)*pow(1+pow(omegab*pow(h,2),1.8),0.2)

Req=1.2060106*omegab/omegam

l=arange(lmin,lmax,1.0) #l=r_[lmin:lmax+1:1.0] # Growth function def

Gf(a):

return (5.0/2.0*omegam*H(a)*integrate.quad(lambda

x:(1.0/pow(x*H(x),3)),0.0,a)[0])

#Silk dampening function D_l

def Ds(l):
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return (exp(-pow(l/lD,m)))

# The modified sound horizon

Zr=2.0/3.0*pow(6.0/Req,0.5)*(log(pow(1+R(arec),0.5)+\

pow(R(arec)+Req,0.5))-log(1+pow(Req,0.5)))

# Estimation of the spectral amplitude d_H from C_10 from COBE

dH=1.94*pow(10,-5)*pow(omegam,-0.785-0.05*log(omegam))/pow(25,0.5)

clconst=2*2.7*2.7*pow(10,12)*pi/2.0*pow(omegam*dH/Gf(1),2)

S2=r’$\Omega_b=%s , \Omega_{m0}=%s , \Omega_{DE}=%s $’

%(omegab,omegam,omegaw)

y2=clconst*Cl12(l)

plot(l,y2,l,y)

legend((S2, S1),’upper right’, shadow=True)

#legend((S1),’upper right’, shadow=True)

title("CMB Power Spectrum")

ylabel(r"$l(l+1) C_l /(2\pi) [\mu K^2]$")

xlabel(r"$ l$")

#text(lmax-(lmax-lmin)/2.0,0.9*max(y),S1) show()

B.3 The Sound Horizon

Here we give the script used to plot the inverse sound horizon in chapter 7.

#!/usr/bin/env python # plotSoundHorizon.py

# Code for plotting the inverse sound horizon

import sys, re, os,getopt,time
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from scipy import*

from pylab import *

alpha=1.0

lmin=150 lmax=1500 omegam=0.3 omegab=0.05 omegaw=0.7

w=-1.0 h=0.7 arec=1.0/1001 case=’powspec1’ approx=1 Yp=0.23

options, args = getopt.getopt(sys.argv[1:],

’’,[’xsi=’,’phase=’,’beta=’,’alpha=’,’lmin=’,

’lmax=’,’omegam=’,’omegab=’,’omegaw=’,’w=’,

’h=’,’arec=’,’case=’,’approx=’])

#print options #print args

for option, value in options:

if option in (’--alpha’):

alpha=float(value)

elif option in (’--lmin’):

lmin=float(value)

elif option in (’--lmax’):

lmax=float(value)

elif option in (’--omegam’):

omegam=float(value)

elif option in (’--omegab’):

omegab=float(value)

elif option in (’--omegaw’):

omegaw=float(value)

elif option in (’--w’):

w=float(value)

elif option in (’--arec’):

arec=float(value)

elif option in (’--case’):

case=value

elif option in (’--approx’):

approx=int(value)

elif option in (’--beta’):

beta=float(value)

# The baryon to photon density ratio

def R(a):

return (30364.0*omegab *pow(h,2)*a)
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# The Hubble factor without H_0 def H(a):

return (pow(omegam*pow(a,-3)+omegaw*pow(a,-3.0*(1+w)),0.5))

keq=0.073*omegam *pow(h,2) aeq=4.15*pow(10,-5.0)/(omegam *pow(h,2))

eta_rec=6000.0/(h*pow(omegab,0.5))*(pow(arec+aeq,0.5)-pow(aeq,0.5))

eta_eq=6000.0/(h*pow(omegab,0.5))*(pow(aeq+aeq,0.5)-pow(aeq,0.5))

#The integrand of the conformal time integral

def f2(a):

return (1.0/(a*a*H(a)))

eta_0=eta_rec+3000.0/h*integrate.quad(f2,arec,1)[0]

l=arange(0.1,1.0,0.05)

Growth function def Gf(a):

return (5.0/2.0*omegam*H(a)*\

integrate.quad(lambda x:(1.0/pow(x*H(x),3)),0.0,a)[0])

Gf2=vectorize(Gf)

def f2(a):

return (1.0/(a*a*H(a)))

def f3(a,b):

def f(z):return (1.0/(z*z*(pow(b*pow(z,-3)+\

(1-b)*pow(z,-3.0*(1+w)),0.5))))

return integrate.quad(f,a,1)[0]

f32=vectorize(f3)

def Func(x):

z=x

keq=0.073*x*pow(h,2)

aeq=4.15*pow(10,-5.0)/(x*pow(h,2))

eta_rec=6000.0/(h*pow(omegab,0.5))*(pow(arec+aeq,0.5)-pow(aeq,0.5))

eta_eq=6000.0/(h*pow(omegab,0.5))*(pow(aeq+aeq,0.5)-pow(aeq,0.5))

eta_0=eta_rec+3000.0/h*f32(arec,x)

leq=eta_0*keq

Req=1.2060106*omegab/x

Zr=2.0/3.0*pow(6.0/Req,0.5)*(log(pow(1+R(arec),0.5)+\

pow(R(arec)+Req,0.5))-log(1+pow(Req,0.5)))

return (2*0.9*leq/Zr*pi)
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y=Func(l)

S1=r’$\Omega_b=%s $’ %(omegab)

omegab=0.07

y2=Func(l)

S2=r’$\Omega_b=%s $’ %(omegab)

title("Peak Position ")

ylabel(r"$2\pi 0.9\eta_0/r_s(\eta_*) $")

xlabel(r"$ \Omega_{m0}$")

plot(l,y,l,y2)

legend((S1, S2),’upper right’, shadow=True)

show()



Appendix C

Mathematical Supplement

In this part we present some of the mathematics required throughout this
work.

C.1 A short note on Hankel Functions

Given a function u(z) that satisfies the modified Bessel equation

u′′ +
1− 2α

z
u′ +

[(
βγzγ−1

)2
+

α2 − ν2γ2

z2

]
u = 0 (C.1)

Where all the Greek letters are parameters. The solution of this equation
can written as

u = zαZν (βzγ) (C.2)

where Zν(z) = C1Jν(z) + C2J−ν(z). Here Jν(z) is the ordinary Bessel func-
tion. Instead of using the ordinary Bessel function as solution, one can in-
stead express the solution in the Hankel Functions of 1. and 2. kind H

(1)
ν (z)

and H
(2)
ν (z). We will use these functions instead because they have a simpler

asymptotic behaviour. Hence our solution can be expressed as

Zν(z) = c1H
(1)
ν (z) + c2H

(2)
ν (z) (C.3)

The asymptotic limit of the Hankel functions for large z is

H(1)
ν (z) '

√
2

πz
ei(z− 1

2
νπ− 1

4
π) (C.4)

H(2)
ν (z) '

√
2

πz
e−i(z− 1

2
νπ− 1

4
π) (C.5)
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For small z we will only need H
(1)
ν (z). This is

H(1)
ν (z) ' 2ν

iπ
Γ(ν)z−ν (C.6)

If we now choose

α =
1

2
γ = 1 β = k z = −η (C.7)

We see that equation (C.1) reduces to

u′′ +
(

k2 +
1

η2

(
1

4
− ν2

))
u = 0 (C.8)

Which is exactly equation (3.71) in section 3.7.3. The solution of this equa-
tion is given by

u =
√−η Zν (−kη) (C.9)

C.2 Short Note on Spherical Harmonics

The functions that are known as spherical harmonics are solutions of the
eigenvalue problem

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ). (C.10)

The Ylm’s form a complete set of orthogonal eigenfunctions satisfying
∫

dΩYlm(n̄)Yl′m′(n̄) = δll′δmm′ , (C.11)

where dΩ is the solid angle element subtended by the unit vector n̄ with
components

nx = sin θ cos φ (C.12)

ny = sin θ sin φ (C.13)

nz = cos θ (C.14)

The first few spherical harmonics are

Y00(θ, φ) =
1√
4π

(C.15)

Y10(θ, φ) = i

√
3

4π
cos θ (C.16)

Y1,±1(θ, φ) = ∓i

√
3

8π
sin θe±iφ (C.17)
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One important formula is the relation with the Legendre functions given by

Pl(n̄ · n̄′) =
4π

2l + 1

l∑

m=−l

Ylm(n̄)Y ∗
l′m′(n̄′) (C.18)

This formula can be “inverted” to obtain Ylm(n̄) in terms of Legendre func-
tions. If we multiply the above equation by dΩYl′m′(n̄′) and integrate, we
get

∫
dΩYl′m′(n̄′)Pl(n̄ · n̄′) =

4π

2l + 1

l∑

m=−l

Ylm(n̄)

∫
dΩYl′m′(n̄′)Y ∗

l′m′(n̄′)

=
4π

2l + 1

l∑

m=−l

Ylm(n̄)δll′δmm′

=
4π

2l + 1
Ylm′(n̄′)δll′ , (C.19)

where we have used the orthogonality condition (C.11). We hence obtain
∫

dΩYl′m(n̄′)Pl(n̄ · n̄′) = δll′
4π

2l + 1
Ylm(n̄′) (C.20)

C.3 Some Integrals of Bessel Functions

We will need some integrals of Bessel functions to be able to calculate the Cl’s.
For easy reference I will reproduce them here, including some simplifications
of these formulae. Using the expression given in [18]

∫ ∞

0

dx
JµJν

xλ
=

Γ(λ)Γ(µ+ν−λ+1
2

)

2λΓ(−ν+µ+λ+1
2

)Γ(ν+µ+λ+1
2

)Γ(ν−µ+λ+1
2

)
, (C.21)

where Γ(z) is the gamma function. By choosing one-half integer values for µ
and ν we get the following equations

∫ ∞

0

dx
J2

l+ 1
2

xλ
=

Γ(λ)Γ(l − λ
2

+ 1)

2λΓ2(λ+1
2

)Γ(l + λ
2

+ 1)
(C.22)

∫ ∞

0

dx
Jl+ 1

2
Jl− 1

2

xλ
=

Γ(λ)Γ(l − λ
2

+ 1
2
)

2λΓ(2+λ
2

)Γ(l + λ+1
2

)Γ(λ
2
)

(C.23)

∫ ∞

0

dx
J2

l− 1
2

xλ
=

Γ(λ)Γ(l − λ
2
)

2λΓ2(λ+1
2

)Γ(l + λ
2
)

(C.24)
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For λ = 2m we can simplify further to get

∫ ∞

0

dx
J2

l+ 1
2

x2m
=

(2m− 1)!(l −m)!

22mΓ2(m + 1
2
)(l + m)!

(C.25)

∫ ∞

0

dx
Jl+ 1

2
Jl− 1

2

x2m
=

(2m− 1)!Γ(l −m + 1
2
)

22mm!(m− 1)!Γ(l + m + 1
2
)

(C.26)

∫ ∞

0

dx
J2

l− 1
2

x2m
=

(2m− 1)!(l −m− 1)!

22mΓ2(m + 1
2
)(l + m− 1)!

. (C.27)

For odd values of λ we obtain

∫ ∞

0

dx
J2

l+ 1
2

x2m+1
=

(2m)!Γ(l −m + 1
2
)

22m+1(m!)2Γ(l + m + 3
2
)

(C.28)

∫ ∞

0

dx
Jl+ 1

2
Jl− 1

2

x2m+1
=

(2m)!(l −m− 1)!

22m+1Γ(m + 3
2
)Γ(m + 1

2
)(l + m)!

(C.29)

∫ ∞

0

dx
J2

l− 1
2

x2m+1
=

(2m)!Γ(l −m− 1
2
)

22m+1(m!)2Γ(l + m + 1
2
)
. (C.30)

In addition to these equations, we will need to remember that Γ(x + 1) =
xΓ(x) and

Γ

(
2n + 1

2

)
= (2n− 1)(2n− 3) · · · 3 · 1

√
π

2n
. (C.31)

We will use these formulae in the section 6.5.2.

C.4 The Vanishing of the Cross Term in the

CMB Power Spectrum

In this section we will show that the cross term of the monopole and dipole
in the expression for the small scale Cl’s (equation (6.48)) from section 6.5
vanishes for large l. The cross term is

C.T. ∝
∫ ∞

0

dxx3−nΘ̃1

[
Θ̃0 +Ψ̃

][
Jl+1/2(x)Jl−1/2(x)− l + 1

x
J2

l+1/2(x)
]
. (C.32)

If we use the same approximation for the Bessel integrals as we did in section
6.5 (equations (6.51) and (6.62)), the only relevant x-dependence comes from
the gravitational potential1, which is of the order ∼ x−p for positive integer

1This x dependence comes from the Transfer functions. Observe that we are also
assuming a spectral index of n = 1.
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p. Hence we are left several terms proportional to the expression below.

I ≡
∫ ∞

0

dxx−k
[
Jl+1/2(x)Jl−1/2(x)− l + 1

x
J2

l+1/2(x)
]
. (C.33)

We shall now calculate the above integral. Multiplying through with the
factor x−k gives

I =

∫ ∞

0

dx
[
x−kJl+1/2(x)Jl−1/2(x)− (l + 1)x−k−1J2

l+1/2(x)
]
. (C.34)

We have two possibilities, either k is odd or even.

Case 1: Even k

Using the Bessel integrals from section C.3, we obtain for even k = 2m

I =

∫ ∞

0

dx
[
x−2mJl+1/2(x)Jl−1/2(x)− (l + 1)x−2m−1J2

l+1/2(x)
]

=
(2m− 1)!Γ(l −m + 1

2
)

22mm!(m− 1)!Γ(l + m + 1
2
)
− (l + 1)

(2m)!Γ(l −m + 1
2
)

22m+1(m!)2Γ(l + m + 3
2
)

=
Γ(l −m + 1

2
)

Γ(l + m + 1
2
)

[
(2m− 1)!

22mm!(m− 1)!
− (2m)!(l + 1)

22m+1(m!)2(l + m + 1
2
)

]

=
Γ(l −m + 1

2
)

Γ(l + m + 1
2
)

1

22mm!

[
(2m− 1)!

(m− 1)!
− (2m)!(l + 1)

2(m)!(l + m + 1
2
)

]

=
Γ(l −m + 1

2
)

Γ(l + m + 1
2
)

(2m)!

22mm!

[
1

2(m)!
− l + 1

2(m)!(l + m + 1
2
)

]
, (C.35)

where we have used that Γ(l + m + 3
2
) = (l + m + 1

2
)Γ(l + m + 1

2
). As l

becomes large, the first fraction2 of gamma functions is always ≤ 1, and the
l dependent ratio in the second term in the brackets tends to 1 . We hence
get

I ' (2m)!

22mm!

[
1

2(m)!
− 1

2(m)!

]

= 0, (C.36)

which is what we wanted to prove.

2Observe that this always the case even when we multiply by l(l + 1) since since k is 2
at the least.
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Case 2: Odd k

For odd values of k we set k = 2m + 1. We obtain

I =

∫ ∞

0

dx
[
x−2m−1Jl+1/2(x)Jl−1/2(x)− (l + 1)x−2m−2J2

l+1/2(x)
]

=
(2m)!(l −m− 1)!

22m+1Γ(m + 3
2
)Γ(m + 1

2
)(l + m)!

− (l + 1)(2m + 1)!(l −m− 1)!

22m+2Γ2(m + 3
2
)(l + m + 1)!

=
(l −m− 1)!

22m+1(l + m)!

[
(2m)!

Γ(m + 3
2
)Γ(m + 1

2
)
− (2m + 1)!(l + 1)

2Γ2(m + 3
2
)(l + m)

]

=
(l −m− 1)!

22m+1(l + m)!

1

Γ(m + 3
2
)Γ(m + 1

2
)

[
(2m)!− (2m + 1)!(l + 1)

2(m + 1
2
)(l + m)

]
. (C.37)

As we let l get large, the factorial fraction is at the most 1 since m is at least
one in our setting3. Hence for large l we get

I ' 1

22m+1

1

Γ(m + 3
2
)Γ(m + 1

2
)

[
(2m)!− (2m + 1)!

(2m + 1)

]

=
1

22m+1

1

Γ(m + 3
2
)Γ(m + 1

2
)
[(2m)!− (2m)!]

= 0. (C.38)

We have thus proved that the cross term does not contribute to the small
scale CMB power spectrum and it is therefore justified not to include it in
our calculations in section 6.5. This proof confirms a result from [10] which
is done numerically.

3It actually tends to 0 for all m larger than one, even when we include the factor of
l(l + 1).
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