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Why Scientific Computing with Python

CFORTRAN PerlC++

The old days Today

Python Java

• Languages have moved from speed and efficiency to flexibility and convenience

• Python is a powerful yet easy to use language
• Python has a rich set of libraries and extensions
• Python is an ideal glue between your applications
• Using wrapping techniques, your legacy code may get another life

• Python is suitable for computational steering
• In this tutorial we also do number crunching with Python!
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Crash Course in Python

We begin with a crash course in Python.
In this section we cover:

• Basic variables, containers and control structures
• Functions, lambda functions and callable objects
• Object oriented features like classes and operator overloading
• String editing and file handling

• For more information on the Python language, please check out:
• The Slides "Scripting for Computational Science" [35]
• The Book "Python Scripting for Computational Science" [36]
• The Python tutorial on python.org [82]
• The Introductory Material on Python [32]
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Interactive Sessions

• Interactive sessions:
• Each line start with � � �

• Continuing lines start
with � � �

• Output appear on lines
without prefix

• Run the interactive
sessions in either
IPython[33] or IDLE.
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	� � 
 � � � ��� � 
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• Otherwise, code segments
are supposed to appear in a
program file

� �� � � � � �� ���

��� � � �	� 
	�

� � � 
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�  � �� � ! 
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A Python example
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A Scientific Hello World,
demonstrates how to

• Load library modules
• Read command-line

arguments
• Load and call a math

function
• Work with variables
• Print text and numbers
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Basic Types

• Python is a dynamically typed language, meaning that the type of
every variable is determined runtime

• Everything is an object, even integers, modules and functions
• Python has the following basic variable types:

• int: 1, 2, 3
• long (arbitrary length!): 1L, 2L, 3L
• complex: 1j, 4+5j
• float (only double precision): 0.1, 0.2, 0.3
• bool: True or False
• str: "hello world"

• Casting is done like
� � ��� �� � � � � �
	 � � � � �� � � �
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Basic Containers

Python has three built in container types, which can hold objects of
any type.

• Lists:

� � � �	 � � �� � � � � �
	 � � � �	 �
� �� � � � 
 ��
�

� �	 � � � � � � � � �	 � �� �

• Tuples (immutable/constant lists):

� � ��� � � � � � � � � � �� � � � �
�

�� �	 � � � � � � � ��� � � � �� � � �

• Dictionaries (hash maps or associative arrays):

� � � �� � � � � � � � �
�

� � � � � � � �	 � � � � � � �	 � �	 � � � � � � � � �� � � � � � �

In addition, we will use NumPy arrays (see later), which are wrappers
around contiguous C arrays.
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Basic Control Structures

� � �� � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �� � � ��� � � � � 
 �� � � �

� � � � � � � � � � � � � � 
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� � � � ��� � � � � � � � ��

� � ��� � �

� � � � �

� �� � � ��� � � � � � ��� � � � � � � � � � �� � � � � � � � � �� � �

� � � � ��� � � �� � � � � � 
	�

� � ��� � �

• Program blocks are defined by equal indentation
• for-loops work on anything that can be iterated over
• if-tests work on any type. None, 0, empty strings and empty lists

evaluate to false
• while-loops work similar to if
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String and File Handling

Python has some powerful tools
for working with strings. F.ex.:

• 	 � � � 	 � � � � � 
 � � � � �

creates
a list of the words in str

• 	 � � �
� � � � �
	 � � � � �	 � �

joins
the items of a list into one
string, separated by str

• Perl-like regular expressions
� �� � � 
 �� � � � � � �� � � � � � � �� � � � 
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� � � � �  � � � � � � � � � � � �� � � � � � 
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� � � � � �  � � � � � �� � ��� � � � � � � � � � � � 
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 � � � � � � � � � � � 
 � � � � � � � � 
 


� � � � � � � � � � � � � � � � � � ��� � � 
 � � 
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Functions
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 �� � � � � � � � � ��� � � � � � � � � � 


� � � � � 
 � � � � � ! � � ��� �� � � � � � � 


�  � � � 
� � � � � � � � !� � � � 


� � ��� � �
� � � � 


Functions come in several forms:
• Regular functions defined

with def
• Lambda functions,

convenient for simple
oneliners

• Strings can be evaluated
with eval

• Callable objects, by defining
the __call__ operator
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Object Oriented Numerics in Python

• Python is a powerful object oriented language
• Everything in Python is an object
• There are no protected or private variables or methods, but the

effect can be “simulated” with underscore prefix ( �
� � � �� �� �

� �
� � �� � �� )

• Python supports multiple inheritance
• Dynamic typing implies support for generic programming (as with

C++ templates)
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Special Methods (Operator Overloading)

Python supports overloading operators in your own classes by
declaring some special methods, to let your own types behave
like the builtin types. Some examples:

• � �

� 
 

� �

�
	 � � � � � �

: Used for 	 � � � � �, i.e.,

� � � invokes � � � �

� 
 

� �

� � �

• � �
� � � �

� �
�
	 � � � � � �

: Used for 	 � � � � � �
• � �

� � �
� �

�
	 � � � � � �

: Comparison, returning �
�

,

�

or ��

to mean � � �, � � � � or � � �, respectively
• � �

	 � �
� �

�
	 � � � �

: Used for 	 � � �
	 � � � �
, and in print statements

• � �

� � � � � � �
� �

�
	 � � � � � �

: Used for � � 	 � � � � � �

• � �
� � � �

� �
�
	 � � � �

: Used for iterating like

� � � � � � 	 � � � � � � �
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Functional Style Programming

Lists are a central datatype in Python, like in functional languages.
A few built in functions let you do powerful yet simple manipulation of
lists.

• � �� � � � � � � � � � � � � � � �	 � � �

creates a new list, which is a copy of
the old list, and applies the passed function to each element in the
new list

•

� � � � � � � � � � � � � � � � � � � � �	 � � �

creates a new list containing only
the elements from the old list where function evaluates to True

� �� 
 � � � � � � � � � � � � � � ��� � �� � � 


�� 
 � � � � �  � � � � � � � � � � � � � � �� � � �� � � � � � 
 


� � � � � 
 � � � � � ��� � �� � � 


� � ��  � � � � � � � � � � � � � � � � � �   � � � �� � � � � � 
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Introspection

� � � � � � � � � � � 
 � � ��� ��

� � ��� � � � � � � �� ��� � � � � � � �

Python lets you examine and edit objects and their properties runtime.
•


 � � � � �	 � � � � � �

returns a list of the names of all the properties of
the object, both variables and functions

• � � � � � � �	 � � � � � �

returns the type of the object
• � � � � � � � � � � �	 � � � � � �

tells you if an object is something that can
be called like a function

• The function 	 � � � � � � lets you add new variables or functions to a
class

• All objects have a variable � �


 � �
� � that can hold a documentation

string
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Python has a comprehensive library

We mention a few:
• A portable interface to the operating system, e.g., file and process

management ( �	 ), file compression ( �� � � ), threads (
� � � � � 
	 )

• GUIs: Qt (� � � �

), Gtk (� � � � �

), Tk (

� � � � � � � ), WxWindows
( �� � � � � � �), . . .

• String handling (	
� � � � �), regular expressions (� �)

• Many applications with Python interface: Word/OpenOffice,
Excel/Gnumeric, Oracle, Gimp . . .

• Web modules: � � �

,

� � � � � � �

, � � �
, � � � � � � � �	
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Scientific Computing with Python

• Computing with Numerical Python is introduced
• Constructing arrays
• Vectoring expressions
• Slicing
• Solving a linear system

• Some available modules for Scientific Computing are then
presented

• The packages covered in this tutorial are chosen on basis of our
research experiences with numerical solution of Partial
Differential Equations.

• The Vaults of Parnassus[83] have an extensive list of Python
modules
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Numeric vs numarray vs. numpy

• There are actually three different implementations of Numerical
Python (NumPy)

• ��� � �� ��� is the original and hence widely used
• �� � 	� � 	
 was a reimplementation with some new features
• �� �� 
 is a blend of the other two, again with improvements
• The three packages have almost the same interface
• The performance differs greatly: numpy is fastest for vectorized

operations, while Numeric is fastest for indexing and scalar
operations

• Now it seems best to use a common interface to Numerical Python
such that any of the three packages can be used as backend

• A common interface can be found at
http://folk.uio.no/hpl/scripting/src/tools/py4cs/numpytools.py
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Example: Solving a Differential Equation

• Python can be used as a scientific calculator, like Matlab, Octave,
R, etc.

−u′′(x) = f(x)

x ∈ [0, 1]

u(0) = u(1) = 0

f(x) user given

• Applications:
• heat conductivity
• string deflection
• fluid flow
• electrostatics
• elasticity, ...

• Goal: Compute u using the Numerical Python module (aka
NumPy)

• NumPy is an extension module for Python that enables efficient
numerical computing
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Numerical Solution Procedure

h = 1/(n + 1)

xi = h ∗ i, i = 0, 1, . . . , n + 1

ui = u(xi)

bi = h2 f (xi)

A =







































1 0 · · · 0

0 2 −1 0 · · ·
...

... −1 2 −1
. . .

. . .
. . .

−1 2 −1

0 −1 2 0

0 · · · 0 1







































• Divide [0, 1] into n + 1 cells
• Discretization by the Finite

Difference method
• Result:

linear system

Au = b
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Implementation using Numerical Python

� � � � ��� � � � �
	 � �� � � � 


� � � � � ��� �� � �� � � � �� � �� � � � 


� �� � � � �� ��� �� � � � � �

� � � � 	 � � � � � � 	 � � �� � �� �� �

� � ��� � � �� ��� � � � !" #$

� � � � ��� � � � � � �	 � � � � 	 � � �� %

� � � � �'& $ %

� � � � �� �( 
& )& 
 
 *$ 
 �& � �'& $

� � " � + , � � )" $ � � � � � � �.- �

� � - � � � � � � � ) *� � ) *$ � / � �� �$ � �� � � �&

� � - � � � � � � ) *� / � �� �$ � � � 0� �1 � �

� � - � � � � � � ) *� / � �� �$ � � � � � � �� � � � � � �

& � - � � � � � � ) *� / � �� �$ � 	 � � � � ��� � � � �

� � � � � � � �� � �

& ! + # � +� +

� � � � ��� & �� � � � � " � � ) *$ % � � � � � �� � � � � � �

& ! � # � � 
 �

� ! �2� � # � *� +

� ! � # � � 
 
 * 
 � �'& ! � #$

� � � 3 � %

� ! � )" � � # � � ! �2� � )" # � 4 " � +

� ! +� + # � � !� )" � � )" # � " � � � � � � � � �� � � �&

� ! + # � � !� )" # � + � � � � � � � � � ���

� 5 � �  � � � � � � � � � � � � � ��� � � � � � 	 � � �� � � � � � � �

� � ��� �� � �� � � � �� � � �� � �

� � � � �  �76
� ��� �� �6 �8 � � � � �� � � �� �$

� 	 � �� � � � � � �� � � � � � �

� � �� � � � � � � �� � � � � � � � � � � � � � �" $

�� � � � � � �9 5 � � � � � �� � � 4 � : : �'& $ � � �'& $ 9 $

� �� � � � �� � � � � �;� <� � � �'& � � � � � � � � � : � � � � � � �� : �

1 � � � � : � ��� � � � � ��� � � :$

�� � � � � � � �� � � $
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Elements of the Code

• The code on the previous slide uses NumPy arrays for storage
• The function 	 � �� �

�

� � � � ��
�

� �� � � � � �	 from the LinearAlgebra
module is used to solve the linear system

• Indices for multidimensional NumPy arrays are specified with
tuples:

� � � � � �

instead of

� � � � � � �

• Besides this, the code looks very much like “normal” Python code
• On the following pages, we will speed up and shorten the code by

introducing features of NumPy
• Note: The matrix in our example is tridiagonal, but we do not take

advantage of this
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Making Arrays with NumPy

Array with zeros:

� � � � � �	 � 	 � �� � � � � � � � Array with ones:

� � � � �	 �
	 � �� � � � � � � �

� � � �� � 1 � � � - � � � � %

� & ! + # � & !" # � � � � � & !� 4 " # � +

& � - � � � � � � � /� �� �$

� � �� � � �& � � - � � � �� � � � � � � �

� � - � � � � � � � � � $ $

� � � �� � � � � �� � � � �� � �

� & ! + # � & !" # � � � � � & !� 4 " # � "

& � �� � � � � � / � �� �$

� � �� � � � � � � � $ � / � �� �$

• Default type is

� � �

for all
arrays

• Often you want to specify

� � � � �

• 	 � �� � is an integer or a tuple
of integers
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Making Arrays with NumPy, Continued

Equally spaced values:

� � �� � � � � �
	 � �� � � 	 � � � � 	 � � � � � � � � � Array from Python sequence:

� � �� � � � �
	 � �� � � � � � � � � � � 	 � � � � �

� � � � � + � � " ��� � � � � � � � � %

� � � � �� � � � � � �� � � � � � �� � �

& � � �� � � � � +� " � �$

� & +� & + ) �& � � � � � & �� � 4 �& 3& " 3& �� �

& � � �� � � � �'& +� & �� �� �& $

� � � � � � � � � � � � + � � � 4 " �

& � � �� � � � � � � � � � � � / � �� �$

� � � �� � � � � �� � � � � � �� � � �� � � � �

& � � � �� � � �� � � � � � $ � �� � � � /� �� �$

� � � �� � � �� � � �& � � � � �� � � �� � � � �

- � � � �� � � ! +� " � *� ( � �� � # � � �� � � � � *� ( $ $

� 5 �� � � �� � � 1 � � � � � � � � � � � � �� �

1 � � � �� � � � � � �� � �� � � 	 � � � � /� � � �$

• End of range is usually not included
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Warning: Dangerous Behavior!

• �� � � � � sometimes includes
the endpoint and sometimes
not, depending on round-off
error!

• Better solution: define a
sequence function which
behave consistently

• Right, we present a quick
solution, and a version with
most of the flexibility of

�� � � � � � � � � � � � � � � � � �

• 	 � �� � � � � always include the
endpoint

• We will use this function in
our examples

��� � � � � 
� � � � � � � �  � � �� � ��  �� � � �

��� �  � � �� � � � �  � �� � � 
	�

� � � �� � � �� � � �

� ��  � ��� � � ���  � � �

� � � 
 �� � � �� � � � � ��� � � �� � ��� � �� � ��

��� �� � � � � 


�  � � � 
� � � � � �� � � � � � �� � � 
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Array Computing

• Consider the creation of

�

,
where we used slow loops

• We can use arithmetic
operations on NumPy
arrays!

• Such operations apply to all
elements in an array

• Our

� � � �

can work with both
scalar � or NumPy �

� � � � 
 �� � � � � � � � � � � � 
 � � � � � � � �

� � � � � � � ��� � � �� � � 
 � ��� ��

�  � � � �� 
 � � � �� �� � �� 
 � � � � � � 


� � � � � � � � � � 
 � � � � � 
	�

�  � � �� � � �	� 
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Array Computing, In–place Arithmetics

• Arithmetic array operations
create temporary hidden
arrays

• The first expression for

�

splits in 6 binary operations
• All of them implemented in

C, resulting in temporary
arrays

• We can do in-place
arithmetics to save storage

• Remark:

� � � will make
�

reference the same object as

� !

�  � � � �� 
 � � � �� �� � �� 
 � � � � � � 
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 � � � � � � � � �� � � � � �

� �  � � � 
 � � � � � � � � � � � � � � � �

� �  � � �� � � � � � � � � � � � � � � �

� �  � � �� � � 
 � � � � � � ��� 
 � � � � �

� �  � � � � � 


� � � �  �

� � � � �� 	

� � �

� � � � �  �

� � � � �� 	

� � �
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Indexing and Slicing of NumPy Arrays

• We can extract parts of arrays (slices)
•

�	 � �� � � � � 
 �

extracts 	 � �� � � 	 � �� � �� � � � � � � � 

�

�

•

�	 � �� � � � � 
 � 	 � � � 
 � �

extracts

	 � �� � � 	 � �� � �	 � � � 
 � � � � � � � � 

�	 � � � 
 �

• Negative indices count from
the end:
•

�
�

� �

last element
•

�
�

� �

next last element
•

� � � �

is valid! (whole array)
•

� � � �
� �

reverse an array!

� � � � 	 � �� � � � � � � � � � � � � ��

� � � � �" �
, " +

� � � & � � �8 � �� 	 � � +� " � �$

� � �

� � � � �& 	 � � � � � � � � � � � � � � � � � � � � �� �

� � � � � � � � �� � �  � � �� � � � %

� � � �� � � � � � � � & !" % 4 " #

� � � � � ��� � & !" #

+� "
� � � �� � � � � � � ! + # ) � �

� � � � � ��� � & !" # � � � � � ��� � � �� � � 	 �� � � � � �

+� * � � � � �

� � � � � � � � � � % � �
	 0 �� 	 � � �	 �� � � � � � �� � � � & %

� � � & � � � � � � � & !" % 4 " % * #

• Remark: unlike regular Python lists, a slice of NumPy arrays just
references the original data!
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More on Slicing NumPy Arrays

• We can slice multi–dimensional arrays in the same way
• Let us assign values to subsets of the matrix

�

• The function

� 
 � � � � � � returns a unit matrix of given size

� � � � � � � � 
 � � � � 
 � � � � �� � �� � � � �� � �� � � � � � 
 �� �

� �� � � � 
 � 	  
 � ��� � � � � � � � 
 � 


� � � � � 
 � � � � �� � � � � �� � �� � � � � � �� � � �� � 
 �� �

� �� 
 � � � � 	  
 � ��� � � � � � � � 
 � 

• In numarray, a slice can be specified as an array of indices

� � � �  � � � 
� � � � �� 


� � � ��� �  �� � � 	

� � � � � ��� � 	

� � � � � � � � � � � �
	 


� � � � � ��  � �� � � � � 
 � 


� � � � � ��  � �� � � � � � � 


� � � � � ��� �� � ��� �� 	  � � ��� �� � ��� �� 	  
 �
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Example Code, revisited

� � � � � � �� � �� � � �� � � � 
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� �� � � � �� ��� �� � � � � �

� � �� � � � � � 	 � � �� � �� ��� �

� � ��� � � �� ��� � � � !" #$

� � � � ��� � � � � � �	 � � � � 	 � � ��

� � � � �'& $ %

� � � � �� �( 
& )& 
 
 *$ 
 �& � �'& $

� � " �
, � � )" $ � � � � � � � � � � � � �- �

� � � �� � � � � � � � � � � � �� � �

& � � �8 � �� 	 � � +� " � �� / � �� �$ � � � � � � � � � � � ��

� � � � �� � � �&

� � � � �� � � � � � � ) *� /� �� �$

� !" % 4 " � " % 4 " # ) � � � �� � � � � � � $

��� �" � �� � � � � " � � $

��� � * � �� � � � � *� � )" $

� ! �� �" � �� � * # � � ! ��� � *� ��� �" # � 4 " � +

� � � 
 
 * 
 � �'& !" % 4 " #$

� � � �	 � � � � � �� �� 	 �� � � � � ��

� ! + # � � !� )" # � +

� 5 � �  � � � � � � � � � � � � � ��� � � � � � 	 � � �� � � � � � � �

� � ��� �� � �� � � � �� � � �� � �

� � � � �  �76
� ��� �� �6 �8 � � � � �� � � �� �$

� 	 � �� � � � � � �� � � � � � �

� � �� � � � � � � �� � � � � � � � � � � � � � �" $

�� � � � � � �9 �1 � � � ��� � �� � � � � � � �9 $

� �� � � � �� � � � � �;� <� � � �'& � � � � � � � � � : � � � � �& : �

1 � � � � : � ��� � � � � ��� � � :$

�� � � � � � � �� � � $

• Initialization of data is
simplified using slices and
array arithmetics

• All loops removed!
• This is an important tech-

nique for optimizing Python
codes
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More Details on Computing with NumPy Arrays

• NumPy offers the most common
mathematical functions

• These operations are very efficient
on arrays

• But they are slow on scalars, so use
the functions from � � � �

in those
cases

� � � �  � � � 
� � � � � �� � � � � �
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Vector-Matrix products

• Matrix products are different from the mathematical tradition
• NewAxis can be used in slices to add a new dimension to an array
• Arithmetics with a column vector and a row vector in a matrix

(like an outer product)

� ��� � �� � � � � � � � �� � � � � � �
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SciPy

SciPy[72] is a collection of modules for scientific computing. Most of
the modules are wrappers around old, well tested and fast Fortran or C
libraries.

• Based on Numeric
• Linear algebra: Lapack, BLAS, iterative solvers (CG, BiCGstab

etc.), eigenvalues, matrix decompositions
• Integration: Quadpack
• ODE solvers: ODEpack
• Interpolation: Fitpack, spline variants
• Optimalization: Least squares fit, various minimization algorithms
• Statistics: 81 continuous and 10 discrete distributions plus more
• Signal Processing: Convolution, filtering, fft etc.
• Special functions: Airy functions, Bessel functions, Fresnel

integrals etc.
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Going Further

For further material on Python scripting for computer science, you
might want to consult the book by Langtangen on Springer
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Visualization in with Python

This section deals with plotting/visualization in a scientific setting

• We briefly list of some of the available plotting software
• We use simple plotting from the Python shell without intermediate

storage of data on files
• We will interface more advanced visualization programs - e.g.

MayaVi
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Python Plotting and Visualization

• Plotting has traditionally been seen as a separate task after model
simulations were accomplished

• Plots not corresponding to the data reported were (and still are)
presented

• Python is well suited to control/assist the plotting process
• Automating tedious tasks helps to ensure consistency between

input and output data
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2D Plotting and Graphing

• We show examples for:
• Gnuplot
• Matplotlib

• The quality of the plots varies and so does the interfaces
• All packages presented here should run on both Windows and

Linux unless otherwise stated. The pieces of code presented are
however only tested on Linux
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Comments on Code

All examples in this 2D section can use either Numeric or Numarray,
i.e. either

� �� � � 
 �� � � � � � �� � � �

or

� �� � � 
 � � � � � � � � �� � � �
is implied.

Also: the import or inclusion of sequence as previously defined (but
repeated here) is implied:

�� � � � � 
� � � � � � ���  � � �� � ��  �� � � �

� � �  � � �� � � � �  � �� � � 
	�

� � � �� � � �� � � �
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Gnuplot-py Example

� �� � � � �� � � � � �

� � �� � � � � � � �� � � � � � � � � ��� � �" $
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�� � � � � � � : 5 ��� � � �� � � � � �$ � � � � � � ��� � � �� � � �� $ :$

�� & � � � � � � : & :$

�� � � � � � � � : � :$

� � : � � � � � � � � � 9 �� � � � � � � � � �9 :$

� � : � � � � � � � ��� � � � � � � �	 � � � � � � � 	 � � � � �

9 � � � � �9 ( * :$
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Gnuplot in 3D

� � � � ��� � � � �
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�� & � � � � � � : & :$

�� � � � � � � � : � :$
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Gnuplot-py

• http://gnuplot-py.sourceforge.net

• Python interface to Gnuplot[26], the “old” plotting program for Unix

• SciPy has also wrapped gnuplot in their plotting module scipy.gplt

+ Gnuplot itself has been refurbished over the last years

+ Has many users

+ Has simple 3D capabilities (contour and surface plots)

− The default plots could be prettier

− The Python interface could be better
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Matplotlib Example

� � � � �� � � � � � � � �� � � � � � � �� � � � 
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Matplotlib

• http://matplotlib.sourceforge.net

+ High quality plots 2D plots

+ Supports several output formats

+ The plotting functions has a high degree of Matlab compatibility

+ Partially supports TeX fonts

+ Actively developed

− Lacks 3D capabilities

− Still in beta
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Summary of 2D Plotting

• Because of portability, we would recommend Gnuplot if you find
the plot quality sufficient

• Use Matplotlib if matlab compatible commands is important
• Other alternatives are PyX, Python-biggles, Pychart and RPy
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Image Processing within Python

• Numarray contains a large set of image processing functions
• PIL (Python Imaging Library)

• http://www.pythonware.com/products/pil/index.htm
• Adds image processing capabilities to Python
• 	 � � � � � � � �� � � �

has some extra utility functions
(f.ex. mapping PIL images to Numeric arrays)
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• PythonMagick
• http://www.procoders.net/moinmoin/PythonMagick
• Python bindings for GraphicsMagick
• Supports ∼90 image formats
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Computer graphics - OpenGL and Open Inventor

• When it comes to high quality rendering, OpenGL is the de facto
standard

• Some like to program directly in OpenGL, others in libraries on
top of OpenGL like Open Inventor

• PyOpenGL[62] is the cross platform Python binding to OpenGL
• Complete low level control over the graphics

• Pivy is python bindings for Coin[11]
• http://pivy.tammura.at
• Open source implementation of Open Inventor
• Lets you work with a more abstract scene graph
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Visualization - MayaVi and VTK

• http://mayavi.sourceforge.net
• Python interface to the Visualization ToolKit:

• http://www.vtk.org
• VTK is a very powerful object-oriented library; it supports

both structured and unstructured grids
• VTK itself comes with a Python interface: VTK-Python
• Using MayaVi is easier than using VTK-Python directly

• Focuses on visualization
• MayaVi comes with a GUI, but can also be used from scripts
• Recommended add on: Pyvtk[66], to manipulate VTK files
• The ivtk module makes it easy to experiment with VTK

47

http://mayavi.sourceforge.net
http://www.vtk.org


MayaVi Visualization

� � �� � � � � � � � �

�  � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � ��� �� � �

�  � � � � � �
�

� � � � � � � � � � � � � � � � � � � � �� � � � �  � 


� � � � � � � � � � � � � � � � �

� �� � �� � � � � � � � � � � � 
 �� � � � �� � � � � � � ��� � � �� � �� � � �� � � � � � � � � � � � � � � � � � � �

� �� � 
 � � �

� �� � � � � � � � � � � � � �

�  � � �� � �
�

� � � � � � � � � � � � � � � � � � � � �� � � � �  � 


�  � � �� � �
�

� � � � � � � � �� � � � � � � �� � � � � � � � � 


� � � � � � � � � � � � � 
 � � �� � � � � � ! 


� �� � � � � 
 � � � � � � � � � � � � �

� �� � � � � � � � � � � � � � � �� � 
 � � � �

�  � � �� � �
�

�� � 
 � � � � � 
 � � � � � � � � � � � 


�  � � �� � �
�

�� � 
 � � � � �� � � � � � 


� � �� � � � � � � � � �� � � � � � � � � � � � � 


� �� � � � � 
 � � � � � �� � � �� � 
 � � �

�  � � �� � �
�

�� � 
 � � � � � 
 � � � � � � � � 


� � �� � ��� � � 
 � �� 
 � � � �� � � � � � � � � � �

� � � � � � ��� � � � � �
�

�� � � � � � � � � � � � � � � �� � � 


48



Play with MayaVi from Python

• The Interactive VTK module
(ivtk)

• The ivtk module included in
MayaVi makes it easier to
experiment with VTK from
Python

• Includes:
• A VTK actor viewer
• Access to VTK

documentation
• GUI for VTK

configuration
• Menus for saving

images of the scene
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Real MayaVi Example

t = 0 t = 30

t = 60 t = 90
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Real MayaVi Example; Motivation

• We assume we have some efficient FORTRAN code (shown later)
for the 2D Wave equation

∂2u
∂t2 = c2

(

∂
∂x

(λ
∂u
∂x

) +
∂

∂y
(λ

∂u
∂y

)

)

• We want to make a nice animation of the solution, integrated with
the program execution

• We want to accomplish this fast with much reuse of code:
• Python class wrapping the FORTRAN simulator
• Allocate data structures in Python, pass to F77,

let MayaVi/VTK do the visualization
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Making a Movie

• In the MayaVi example above an image file is produced at each
time step

• To make a movie, use mencoder from the mplayer project
http://www.mplayerhq.hu

• Mencoder can be called from Python in this way:

� �� � � � � �
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Conclusions for High Quality Visualizations

• There are a several possibilities for making advanced plots from
Python

• If absolute control is a must, PyOpenGL or Pivy might be the
answer

• If the purpose is to make good and quick visualization, MayaVi will
be our recommendation

• If you’re interested in Medical Image Processing, have a look at
ITK/VTK
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Performance Issues – Tips and Tricks

• Native Python is too slow for number crunching
• Difficult to port knowledge from C/C++ and FORTRAN
• Learn by testing
• We will briefly cover:

• How to use the profiling and timing tools in Python
• Some Python performance tricks
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Manual Timing

• � � � � module:

� � �� � � � � ��
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 � �
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�

� � ��  � � �� � � �� �� � 
 
 � �

• If just a few statements are involved in the test, repeat them in a
loop and compute the mean

• CPU time measurements less than a couple of seconds may be
unreliable

• Run each test several times and choose the fastest result
• The �	 �

� � � �	 function returns user, system and elapsed time
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� � � � � �

module: for repeating code snippets

Which is fastest:
•

� � � � � � � � � � � � � � 	 � �	 	 � � � �
�

� �

•
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� � � � � �� � � � ! ! �� � � � �

Reason
• 	 � � needs one look-up (in � � � � � �	 )
• � � � �

� 	 � � needs two look-ups
(in � � � � � �	 and � � � �

)
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The

��� ��� ��� �

Module

• Basic usage:

� � �� � � � � � � � � �

� �  � � � � � � � � � �� � � � � � 
 � � � � � � �� 
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� � � � �� � � � 
 � � �� � � �� �
 � � � � �� � � � � � �� � � � � �

• Profile function calls: � � � � � � � � � � � � � � � � � � � �	 � � � � � �

• Execute and profile a string: � � � � � � � � � �
� � 
 � � � � � � �	 � � � � � �	 �

• Read profile data:

� � �� � � � � � � � � � � � � � � �

� � � �  � � � � � � � � � � � � � � �� � � � 
 � � � � � � �� 
 
 � � �� � � � � � � � � � � ��� � � �� � �

� � � � � � � � � �
�

� � � � � � 


• Sorting:


 � � � � 	 � � �
�

	 � � �	 � � 	 � � � � � 
 � � � �

e.g. � � � � � � � � � �

� � � �

• Multiple sort strings can be used to tune the order
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The

��� ��� ��� �

profiling module, continued
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Some Python Performance Tips

Use profiling and/or manual timing to find bottlenecks before bothering
to optimize.

• Exceptions are slow
• Function calls are slow
• The time of calling a function grows linearly with the number of

arguments
• Symbols are found run-time in dictionaries:

• Refering to global variables are slower than locals
(the local namespace is searched first)

• math.sin is slower than sin (two lookups)
• Be particularly careful in long loops, as usual
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Parallel Computing via Python

• Message passing as the main principle
(thread-based parallelization not yet mature for Python)

• Intensive serial computations by mixed language implementation
• High-level inter-processor communication via Python

(user-friendly MPI modules)
• Satisfactory parallel performance relies on array slicing and

reshaping
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Different Python MPI Modules

• pyMPI (Pat Miller, LLNL)
• pypar (Ole Nielsen, Australian National University)
• MYMPI (Timothy Kaiser, San Diego Supercomputing Center)
• pyre (Michael Aivazis, CalTech)
• ScientificPython (Konrad Hinsen, Centre de Biophysique

Moleculaie)
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pyMPI vs. pypar

• pyMPI is an MPI module plus a special Python interpreter
(capable of interactively executing parallel programs)
• pyMPI provides a rather complete interface to MPI
• pyMPI has simple syntax
• pyMPI is flexible

(any serializable Python type can be communicated)
• pyMPI is of relatively low performance

• pypar is a light-weight MPI module of high performance
• pypar provides bindings to a small subset of MPI routines
• pypar has simple syntax

(optional functionality available via keyword arguments)
• efficient mode and flexible mode of communication

(array vs. arbitrary object)
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An MPI Example Using pypar
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Latency and Bandwidth

• Ping-pong test: measurement of latency and bandwidth
• Platform: Linux cluster using fast ethernet (100 Mbit/s peak

bandwidth)
Latency Bandwidth

C-version MPI 133 × 10−6 s 88.176 Mbit/s

� � � �� -layered MPI 225 × 10−6 s 88.064 Mbit/s

� � �� �

-layered MPI 542 × 10−6 s 9.504 Mbit/s

• Correct use of � � � �� for efficiency:
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Need for Communication; Example

• Consider a five-point stencil associated with FDM

� 6
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 � �6
� �	 ! �� � # ) � �6
� �	 ! � )" � � # ) � �6
� �	 ! �� � )" #

• Communication is needed across internal boundaries between
subdomains
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Communication in x-direction
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• Preparation of an outgoing message �
�

� � �
� ��

�

� � � �
� � � �

• Use of

� � � �	 	 � � � � � option for performance
• Allocation of

�� � � � �
�

� is done beforehand
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Communication in y-direction
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• Allocation of

�� � � � �
�

� is done beforehand
• Use of array slicing is important!
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2D Wave Equation; FDM

• Mathematical model

∂2u(x, y, t)
∂t2 = c2∇2u(x, y, t) + f(x, y, t) in Ω,

u(x, y, t) = g(x, y, t) on ∂Ω,

• FDM discretization

ul+1
i, j = −ul−1

i, j + 2ul
i, j

+ c2 ∆t2

∆x2

(

ul
i−1, j − 2ul

i, j + ul
i+1, j

)

+ c2 ∆t2

∆y2

(

ul
i, j−1 − 2ul

i, j + ul
i, j−1

)

+ ∆t2 f(xi, y j, l∆t).
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2D Wave Equation; Parallelization

• Domain decomposition as work load partitioning
• Serial computation within each subdomain
• At the end of each time step:

• preparation of outgoing messages (array slicing)
• exchange of messages between each pair of neighboring

subdomains
• extraction of incoming messages for the update of ghost

points
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2D Wave Equation; Measurements

• Three approaches:
• Fortran 77 (serial subdomain computation) + � � � � �
• C (serial subdomain computation) + � � � ��

• Pure C parallel implementation (no Python at all)
• 2000 × 2000 mesh; 5656 time steps

Python-Fortran Python-C Pure C
P Time Speedup Time Speedup Time Speedup
1 223.34 N/A 253.98 N/A 225.89 N/A
2 114.75 1.95 129.72 1.96 115.83 1.95
4 60.02 3.72 68.69 3.70 61.34 3.68
8 33.28 6.71 36.79 6.90 32.59 6.93

16 18.48 12.09 20.89 12.16 18.34 12.32
32 13.85 16.13 14.75 17.22 12.15 18.59
64 9.41 23.73 10.12 25.10 7.66 29.49

128 6.72 33.24 7.42 34.23 3.83 58.98
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Schwarz-Type Parallelization

• Global PDE

L(u) = f , x ∈ Ω

u = g, x ∈ ∂Ω

• Overlapping domain decomposition: Ω = {Ωs}P
s=1

• Additive Schwarz iterations, k = 1, 2, . . .

us,k = L̃−1 f , x ∈ Ωs

u = gartificial
s , x ∈ ∂Ωs\∂Ω

u = g, x ∈ ∂Ω

• Inherently suitable for parallelization
• Reuse of serial code on each subdomain
• Message passing for inter-subdomain communication
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Additive Schwarz Framework

• Generic tasks:
• domain decomposition
• communication between subdomains
• control of subdomain computation and check of convergence

• Python can be used to implement a generic framework 76



A High-Level Parallelization Strategy

• Reuse of existing serial code as subdomain solver (after small
modification)

• Insertion of subdomain solvers into the additive Schwarz
framework

• Python is well suited for this type of parallelization!
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Parallelizing a Legacy F77 Code

• Boussinesq water wave equations

∂η

∂t
+ ∇ ·

(

(H +αη)∇φ +εH
(

1
6

∂η

∂t
−

1
3
∇H · ∇φ

)

∇H
)

= 0 (1)

∂φ
∂t

+
α

2
∇φ · ∇φ + η −

ε

2
H∇ ·

(

H∇
∂φ
∂t

)

+
ε

6
H2∇2 ∂φ

∂t
= 0 (2)

• A legacy F77 code consists of two main subroutines:
•

� � � � � � � � �
�

� � � � � �� � � � solves (1) for one time step
•

� � � � � � � � �
�

� � � � �� � � �

solves (2) for one time step
• A Python class

� �� � �� � � � � � � � � hierarchy has implemented the
additive Schwarz framework associated with FDM

78



Parallelization Result
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Parallelization Result; Cont’d
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Speedup Measurements

• 1000 × 1000 global mesh, number of time steps: 40
P Partitioning Wall-time Speed-up
1 N/A 1810.69 N/A
2 1 × 2 847.53 2.14
4 2 × 2 483.11 3.75
6 2 × 3 332.91 5.44
8 2 × 4 269.85 6.71
12 3 × 4 187.61 9.65
16 2 × 8 118.53 15.28

• Better speedup results (than simple 2D wave equation) due to
heavier computational work per subdomain
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Extend Your Favorite Library with Python

We will briefly describe how to extend Python with FORTRAN/C/C++
code

This is done by:
• Explaining the difference between Python and the compiled

languages FORTRAN/C/C++
• Showing some simple manual wrapping code
• Describing the Numeric C-API
• Describing the tool F2PY for FORTRAN
• Describing the tool SWIG for C/C++
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Python Objects are Dynamically Typed

• A variable may contain
objects of different types

• All info is stored in a C
struct

� � � � � � � �

• A variable’s type is declared
statically in compiled
languages

• We cannot necessarily pass
a

� � � � � � � �

to a
FORTRAN/C/C++ function

• It is necessary to convert to
the underlying C/FORTRAN
data types (int, float, . . . )

�  �

� � � � �� ��� � � � � �

� � �� � � �� ��� � � �

� �  �� ��� � � � � �� � 


�  �� ��� � � � � � 
 � � � � � � � 


� � � � � �� � 
 � � � �
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What Do We Know About a Python Object?

• Every Python object is of the generic type

� � � � � � � �

(a C struct)
• A particular object is usually a sub type (sub class)
• For instance, the Python integer is of type

� � � � � � � � � � �

• A sub type such as a Python integer can be converted to a proper
C integer

• The conversion needs to be done (before passing the data to
FORTRAN/C/C++ code)

84



It Is “Easy” to Extend Python With C/C++/FORTRAN

• C data types may be constructed from Python data types and vica
versa

• A C-integer can be made from a Python-integer:

� � � � � � � �
�

�	
�

� �� � � � � � � � � � � � � �
�

• A Python-integer can be made from a C-integer:

� � � � � � � � � � � � � �
�

� � � � � � � � � � � � �� � � �

• A general function to extract C data is:

� � � � � � � �
�

� �� 	 � �� � � � �
� � �

�

• The corresponding function for building Python objects:

� � � � � � � � � � �
�

�� � � 
� � �� � �
� � �

�

(The two last functions will be explained later)
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A Simple Example

• Assume that we have
implemented the factorial
function in C

• The function takes one inte-
ger as input and returns an
integer

To use the function from Python
we must:

• Convert the Python integer
to a C integer

• Call the C function
• Convert the returned integer

to a Python integer

The code doing this is usually
called the wrapper code

Use in Python

� � � � �� � � � � � � � �� � � � � � �

� � � �  �

� � � �  � � � � � � 


� � � � � ��� � �

�

C function

� � � � � � � � � � � � 
 �

� � � � �  � 
 � � � 
 �� �
�

� � � � � � � 
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 � 

�

�
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Wrapper Code Example
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Building the Python Module

We compile and link the wrapping code and the C code into a shared
library (on Unix)

� � � � 
 � 
 � � � � � � � �
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Alternatively, make a file 	 � ��� � � � � which uses
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To run this file type: � � � � � � 	 � ��� � � � � �� � � 
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The C Factorial Function Used in Python

We can now use the C function:

� � � � �� � � � � � � � �� � � � � � �

� � � �  � �
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� � � � � � � � �
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� � � � � � � �� � �� � � � � � � � � � � � � � � � � 
	�

� � � � 
 � � � � ��� � 
 � � ��� � � � ��� �

� � � � � � �� �� �� ��� � � � � � � � � � � 
 � � � �

� � �

• The function works as expected when the input is an integer
• Inappropriate input data, such as a string, results in a

(informative) Python exception
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Preliminary Conclusion

• It is “relatively easy” to extend Python with C functions
• All wrapper functions are “similar”
• The writing of such functions are relatively easy, once you have

done a couple of such

Downside:

• A wrapper function has to be written for each C function we want
to access

• This wrapper function checks and converts the Python data to
appropriate C data, if possible

• The writing of such functions is boring
• Lots of tools exist that aid the writing of wrapper functions
• In fact, the tools let you generate wrapper functions almost

automatically, without knowing the Python C-API
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Tools That Aid Wrapping

• SWIG [76], David Beazley et. al.
• Boost.Python [6], Dave Abrahams et. al.
• F2PY [16], Pearu Peterson
• SCXX [73], McMillan Enterprises, Inc.
• Babel [2], LLNL
• SIP [75], Riverbank Computing Ltd.
• SILOON [74], LANL and LLNL

A more extensive list of projects can be found on the SWIG homepage
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Topics Covered in this Session

• Brief explanation of the Numeric C-API
• Use of Numeric data structures in a more complicated setting
• Brief description of two tools: F2PY and SWIG
• This will highlight the some common problems and features with

wrapper tools
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NumPy, revisited

• NumPy contains a set of
efficient linear algebra tools
for dense arrays

• It contains the usual BLAS
and LAPACK routines

• NumPy is usually the basis
for more special purpose
Python packages

• The C-APIs of the two
NumPy packages, Numeric
and Numarray are different,
we only describe Numeric
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Numeric Arrays as Seen from C

An array is of type

� � � � � � � � � � � � �

, which is a
subtype of

� � � � � � � �

It has:

- � � �� � 
 � � �, a pointer to the
first element of the array

-

� � � � 


, the number of
dimensions

-

� � � � 
 � � � �	 � � �	 , the
number of elements in each
dimension

-

� � � �	 � � � 
 �	 , the address
offset between two data ele-
ments along each dimension
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Numeric Array Example

Computing the l2-norm of a 1-dimensional Numeric array:
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We have left out a number of safety checks

Also, we want to pass the C data from the Numeric array to a C function
(already implemented) that does not use the Numeric C-API
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Numeric Array Example, continued

• We want to use the following
C function from Python

• It computes the l2-norm of
the plain C array




• This function knows nothing
about Numeric!
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Using the Numeric C-API

Safety checks:
• Is it a Numeric array?
• Does it have the proper dimension and type?

Casting and calling the C function:
• Fetch the data, cast to the correct C type, and send the C array to

the C function

Returning to Python:
• The return value is converted to a Python double and is returned

to Python
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Complete Code
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F2PY

F2PY is a "FORTRAN to Python interface generator" with the following
features:

• Calling FORTRAN 77/90/95, and C functions from Python
• Accessing FORTRAN 77 COMMON blocks and FORTRAN 90/95

module data from Python
• Calling Python functions from FORTRAN or C (callbacks)
• It support NumPy, both Numeric and Numarray

Author: Pearu Peterson

http://cens.ioc.ee/projects/f2py2e/
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FORTRAN CallBack Example

A function f defined in Python is used in Fortran,

y = f(x)
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F2PY - Simple Example

Running F2PY:

�� � � 
 � � � � � � � �� 
 � � � � � � � �� � �

results in the file � � � � � � � �
� 	 �

This module is used as follows:
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It cannot be any simpler !!
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Input and Output

Input and Output in Fortan (y = f(x)):
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The array � (or � ) may be input, output or both

In Python we normally want to specify whether it is input or output
(good Python style)

�  � � � � � � �� � � � � � � � �� � � � � 


or

�  � � � � � � �� � � � � � � �	� � � � 


Notice that the last example results in the allocation of a new array,
which is not wanted if � is already made!
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Signature File

F2PY employs signature files to adjust the Python interface (written in
F90/F95)

Examples of options:
•

� � � � � �

is used to indicate input, output or both(in this case):

� � � � � � 
 � � � �	 � � � � � �
� � � � � � � � � � � �� � � � � �

• � � � � � � � �

is used to indicate optional arguments.
For instance, � may be determined from �, if not given:

� � � � � � � � � � � � � � � � � � � � � �
	 � �� � � � � �
� � � � �

�


 � � � � 
 � � � � � � �	 � �� � � � � �
�

Many more options!

Use the signature file generated by F2PY as a starting point
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Example Signature File

Run F2PY to produce a signature file:
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In the signature file we can specify whether it is input, output or both
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Specifying Input/Output in the FORTRAN Code

Earlier we saw the following code
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 � ��� � � � � � � � �� � � � � � 
� � 


��� � � � � � � �

� �� � � ��� � � � � � ��� � � 
 � 
 �

� �� � � ��� � � � � � ��� 
 �

� � � � �� � � � 


� � � � �� � � � 


� � � � �� � 
� �

� � � � �� � � � 
� �

��� � � � � � �
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Here the F2PY directive and FORTRAN comment

� � � � � specifies that �

is both input and output, � is only input
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SWIG

SWIG generates wrapper code for C and C++
• It supports Python, Perl, Tcl, Java and many more languages
• It has a large user and developer base
• It is well documented
• It is more complicated than F2PY “because” C and C++ are more

complicated than FORTRAN
• It relies on interface files (equivalent to F2PY signature files)

It has been developed for almost 10 years and supports C and most
C++ features, i.e., operator/function overloading, templates (STL),
classes and inheritance (even cross-language), . . .
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Factorial Example

Remember the factorial function implemented in C:

��� � � � � � � ��� � � 
 �
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A corresponding interface file is
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Notice that:
• SWIG directives start with %
• The rest is plain C/C++
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Making a Python Module with SWIG

Running SWIG:

� � � � 
 � � � � � � � � � � � �

produces a file
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� 	 � (on Unix):
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Additionally, a Python module

� � � �
� � � is made, which is Python layer

on top of �
� � � �

� 	 �
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Use in Python
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This is almost as simple as with F2PY!!
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A “Problem” with C/C++

Consider the function:

�� � � � � � � ��� � � � �� 
 � � � � �� ��� � �� �� 
 � � � � � 

�

What is � (or




)?
• A pointer to a double?
• A pointer to a double array with length � (or � )?

→ There is no “easy” correspondence between C arrays and Numeric
arrays

Additionally, we do not know whether � and




are input, output or both?
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A Vector Implemented in C++

Many numerical libraries have arrays as fundamental building blocks

• We will now describe how a simple C++ implementation of a
vector can be interfaced by SWIG

• We will show the details of a mapping between this Vector and a
Numeric array

• We will subclass the C++ Vector class in Python
• We will notice that the cross language inheritance provides a nice

way to construct certain types of callbacks

(It is easy to extend this to n-dimensional arrays)
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Comments About the Interface

• Public data is wrapped, private or protected data is not
• There are some ambiguities, e.g,

• C/C++ has both float and double, Python only has double
• C/C++ distinguish between const and non-const, Python does

not have const
• In case of ambiguity, SWIG only wrappes the first occurrence

SWIG has many directives for adjusting the interface, some examples
are

•

� � � � � � � for renaming e.g. functions
•

� �� � � � 


for extending the C++ with e.g. helper functions
•

� � � � � � � for ignoring problematic or unwanted things
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A Vector Implemented in C++ and Its Interface
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A Vector to Numeric Filter

• There are many ways to construct mappings between two data
structures

• SWIG has a mechanism: Typemaps (which we will not use)
• We are working with large arrays → the programmer should

explicitly invoke the mapping
• It is implemented as a class, where the constructor provides the

necessary initialization (more on this later)
• We copy the data for safety, although it is possible to pass

pointers
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A Vector to Numeric Filter, continued
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A Vector to Numeric Filter, continued
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Example of Use in Python
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Some Computations on the Vector

Other classes employ
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Example of use:
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What happens in � � � � � � � if we subclass

� � � in Python?
( � � � � � � � knows nothing about Python)
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CallBack Through Inheritance

Director classes provide the mechanism:
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Virtual functions in

� � � can now be redefined in Python

(Notice that director classes in SWIG are new and are considered
experimental)
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A Sub Class of Vec in Python
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Kent Andre Mardal

Various Packages for Scientific Computing

121



PyPkg

• Intention: Distribute software
• URL: http://home.simula.no/˜arvenk/pypkg
• Author: Arve Knudsen
• License: GPL-2
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PyPkg Usage

� � � � �� � � �� + � 4 ��� � � � � � � �� � �

This will install:
• Dolfin, FFC, FIAT
• GiNaC, Swiginac
• Instant
• MayaVi, Vtk
• PETSc
• PyCC
• PySE
• Trilinos
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GiNaC

• Intention: Computer Algebra System
• URL: www.ginac.de
• Authors: C. Bauer, A. Frink, R. Kreckel, and J. Vollinga
• License: GPL
• GiNaC is a C++ library
• GiNaC has strong support for polynomials
• Among other things, GiNaC supports differentiation, integration

and code generation
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Swiginac

• Intention: Python interface to GiNaC
• URL: http://swiginac.berlios.de/
• Authors: O. Skavhaug and O. Certik
• License: Open
• Swiginac provides a nice interface to GiNaC from Python
• Swiginac gives a seemless conversion between standard Python

datatypes and GiNaC datatypes
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Swiginac Usage: Differentiation and integration
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Inlining Tools

There are several tools that enable inlining of C/C++/Fortran code in
Python

• Weave (http://www.scipy.org/), C/C++ inlining
• PyInline (http://pyinline.sourceforge.net), C/C++ inlining
• Instant (http://pyinstant.sourceforge.net), C/C++ inlining
• F2PY (http://cens.ioc.ee/projects/f2py2e/), Fortran inlining
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Instant

• Intention: Inlining of plain C/C++ code
• URL: pyinstant.sourceforge.net
• Authors: M. Westlie and K.-A. Mardal
• License: Open
• Instant uses SWIG to generate wrapper code
• Instant uses Distutils to compile the wrapper code and create a

shared library that can be imported in Python
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Instant Usage: Inlining of a simple function
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• Instant also supports C/C++-functions with C-arrays, C++ classes
etc.
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Linear Algebra Tools

Several Linear Algebra tools have Python interfaces

Dense Matrix Tools:
• Numeric

Sparse Matrix Tools:
• Trilinos (http://software.sandia.gov/trilinos)
• PETSc (http://www-unix.mcs.anl.gov/petsc/petsc-as)
• Hypre (http://acts.nersc.gov/hypre)
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Trilinos

• Intention: Parallel framework for large scale linear/non-linear
algebra problems

• URL: http://software.sandia.gov/trilinos
• Authors: M. Heroux and many more
• License: LGPL

Trilinos has
• Dense Matrices tools
• Standard Krylov solvers, preconditioners
• Algebraic Multigrid
• Eigenvalue/Eigenvector computations
• Nonlinear Solvers
• and much more

131



Trilinos Usage: Solving a Poisson equation
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PySE

• Intention: Finite Difference Tools in Python
• URL: http://pyfdm.sourceforge.net/

• Author: Å. Ødegård
• License: Open
• PySE provides a parallel framework for finite difference methods
• PySE gives a high-level environment for working with stencils
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PySE Usage: Solving a Heat Equation
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Finite Element Tools

• FIAT, automates the generation of finite elements
• FFC, automates the evaluation of variational forms
• SyFi, a tool for defining finite elements and variational forms
• Dolfin, a finite element framework
• PyCC, a finite element framework
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FIAT

•• Intention: To automate the generation of finite elements
• URL: http://www.fenics.org/fiat/
• Author: R. C. Kirby
• License: LGPL
• FIAT currently supports Lagrange, Hermite, Crouzeix-Raviart,

Raviart-Thomas and Nedelec elements
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FIAT Usage: The Lagrange Element
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FFC

• Intention: Automatic and efficient evaluation of general multilinear
forms

• URL: http://www.fenics.org/ffc/
• Author: A. Logg
• License: GPL
• FFC works as a compiler for multilinear forms by generating code

(C or C++)
• The generated code is as efficient as hand-optimized code
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FFC Usage: A Poisson Equation
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Dolfin

• Intention: A Finite Element Framework
• URL: http://www.fenics.org/dolfin/
• Authors: J. Hoffman, J. Jansson, A. Logg and G. N. Wells
• License: GPL
• Large library with PDE and ODE solvers
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Dolfin Usage: Solving a Poisson Equation
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SyFi

• Intention: Ease the definition of finite elements and their usage by
symbolic mathematics

• URL: syfi.sourceforge.net
• Author: K.-A. Mardal
• License: GPL
• SyFi relies on GiNaC and Swiginac
• SyFi supports the Lagrange, Hermite, Nedelec, Raviart-Thomas,

Crouzeix-Raviart elements
• SyFi supports differentiation, integration etc of finite elements

functions/polynomials over polygons
• SyFi/Swiginac/GiNaC have tools for C++ code generation
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SyFi Usage: Element matrix for Poisson equation
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SyFi Usage: The Jacobian of a nonlinear PDE
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PyCC

• Intention: Finite Element Framework
• URL: http://folk.uio.no/skavhaug/heart_simulations.html

• Author: G. Lines, K.-A. Mardal, O. Skavhaug, G. Staff, Å. Ødegård
• License: Soon to be open
• PyCC is a library with PDE and ODE solvers
• PyCC is particularly strong on computations concerning the

electrical activity of the heart
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PyCC Usage: Solving a Poisson equation

� � � � �'& � � $ % � � � � �� * 
 � � 
 � � 
	 � � � � � 
& $ 
	 � � � � � 
� $

� � � � � � � � � � � ��� � � � �� � � ��� � 	 � � � �� � <� � � < � �� 9 � �& 9 � 9 � �& * <� & �� � �- 9 $ $

�� � � �& 6
� � 	 � � �� � �� � � �& /� 	 � � �� � � � � �$

� � �� � � �& 6
�
� 	 � � �� � 	 � �� � � � 5 � � � � � � � � �� � � �& �$

� � - � � � � � �� � � �� � �	 � � � � : � :$

� � � � �� �� � � � � +� � �� � �$ $ %

� ! � # � � �'& ! � # � � ! � #$

� � �� � � �& 6
�
� 	 � � �� � 	 � �� � � � �� � � �� � � �& �$

� � � 
 �

� � � � �� �� 6
��� � � � � � � �� �� � �� � � �& 6
�
� 	 � � �� � � � � � � � � � �$

� �� � �� �$ � � � � �
	 �� � �
6

� � � � �� �� 	 �� � � � � �� � �� � � � � �� �� 6
��� �$

� � /� � � �� � � � �	 � �$

� 6
�	 � - � � � � � � �� � �$ � �� � �	 � � � � : � :$

� � � � �� � � � � �� �� 6
��� � %

� 6
�	 ! � # � �& � 	 � �'& ! � # � � ! � #$

� � � � 
 � 4 � 
 � 6
�	

� � � 6
�	 � 	 � � � �$

� � � � �	 �� �	 �� � � �� � � �� �� � � �� " + � 4 �� � � � �$

146



References
[1] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. Numerical

Python. http://www.pfdubois.com/numpy/.

[2] Babel software package. http://www.llnl.gov/CASC/components/babel.html.

[3] D. Beazley. Python Essential Reference. SAMS, 2nd edition, 2001.

[4] Biggles package. http://biggles.sourceforge.net.

[5] Blt software package. http://blt.sourceforge.net.

[6] Boost.Python software package. http://www.boost.org.

[7] M. C. Brown. Python, The Complete Reference. McGraw-Hill, 2001.

[8] X. Cai and H. P. Langtangen. Parallelizing PDE solvers using the Python
programming language, pages 295–325. Lecture Notes in Computational
Science and Engineering. Springer, 2006.

[9] X. Cai, H. P. Langtangen, and H. Moe. On the performance of the Python
programming language for serial and parallel scientific computations. Sci-
entific Programming, 13(1):31–56, 2005.



[10] ChomboVis package.
http://seesar.lbl.gov/anag/chombo/chombovis.html.

[11] Coin - Inventor implementation. http://www.coin3d.org.

[12] Disipyl - Dislin Python interface.
http://kim.bio.upenn.edu/˜pmagwene/disipyl.html.

[13] Dislin package. http://www.linmpi.mpg.de/dislin.

[14] Dolfin software package. http://www.fenics.org/dolfin/.

[15] D. Beazley et. al. Swig 1.3 Development Documentation.
http://www.swig.org/doc.html.

[16] F2PY software package.
http://cens.ioc.ee/projects/f2py2e.

[17] FFC software package. http://www.fenics.org/ffc/.

[18] FIAT software package. http://www.fenics.org/fiat/.

[19] Gd package. http://www.boutell.com/gd.

[20] Gd Python interface.
http://newcenturycomputers.net/projects/gdmodule.html.



[21] Roman Geus. Pysparse - handling sparse matrices in python.
http://people.web.psi.ch/geus/pyfemax/pysparse.html.

[22] GiNaC software package. http://www.ginac.de.

[23] Gmt package. http://gmt.soest.hawaii.edu.

[24] Gmt Python interface.
http://www.cdc.noaa.gov/˜jsw/python/gmt.

[25] Gnu Plotutils package. http://www.gnu.org/software/plotutils.

[26] Gnuplot package. http://www.gnuplot.info.

[27] GraphicsMagick package. http://www.graphicsmagick.org.

[28] D. Harms and K. McDonald. The Quick Python Book. Manning, 1999.

[29] M. L. Hetland. Practical Python. APress, 2002.

[30] S. Holden. Python Web Programming. New Riders, 2002.

[31] Instant software package. http://syfi.sf.net.

[32] Introductory material on python.
http://www.python.org/doc/Intros.html.



[33] IPython software package. http://ipython.scipy.org.

[34] K. Hinsen and H. P. Langtangen and O. Skavhaug and Å. Ødegård. Us-
ing BSP and Python to simplify parallel programming. Future Generation
Computer Systems, 2004. In press.

[35] H. P. Langtangen. Slides collection: Scripting for Computational Science.
http://www.ifi.uio.no/˜inf3330/lecsplit/index.html.

[36] H. P. Langtangen. Python Scripting for Computational Science, volume 3
of Texts in Computational Science and Engineering. Springer, 2004.

[37] H. P. Langtangen. Scripting Resources.
http://www.ifi.uio.no/˜inf3330/scripting/doc.html, 2004.

[38] M. Lutz. Programming Python. O’Reilly, second edition, 2001.

[39] M. Lutz and D. Ascher. Learning Python. O’Reilly, 1999.

[40] A. Martelli. Python in a Nutshell. O’Reilly, 2003.

[41] A. Martelli and D. Ascher. Python Cookbook. O’Reilly, 2002.

[42] Matplotlib package. http://matplotlib.sourceforge.net.

[43] MayaVi package. http://mayavi.sourceforge.net.



[44] D. Mertz. Text Processing in Python. McGraw-Hill, 2003.

[45] Mplayer package. http://www.mplayerhq.hu.

[46] Ncarg package.
http://ngwww.ucar.edu/ng/download.html.

[47] Ncarg Python interface.
http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/python/ncarg.

[48] Numerical Python software package.
http://sourceforge.net/projects/numpy.

[49] OpenDX package. http://www.opendx.org.

[50] Pgplot package. http://www.astro.caltech.edu/ tjp/pgplot.

[51] Piddle package. http://piddle.sourceforge.net.

[52] M. Pilgrim. Dive Into Python. http://diveintopython.org/, 2002.

[53] Pivy - Inventor Python interface. http://pivy.tammura.at.

[54] Plplot package. http://plplot.sourceforge.net/index.html.

[55] Pmw - python megawidgets. http://pmw.sourceforge.net.



[56] Ppgplot - Pgplot Python interface. http://efault.net/npat/hacks/ppgplot.

[57] Py4dat package. http://pydvt.sourceforge.net.

[58] PyCC software package. http://folk.uio.no/skavhaug/heart_simulations.html.

[59] Pychart package.
http://www.hpl.hp.com/personal/Yasushi_Saito/pychart.

[60] Pymat Python-Matlab interface.
http://claymore.engineer.gvsu.edu/˜steriana/Python.

[61] PyOpenDX - OpenDX Python interface.
http://people.freebsd.org/˜rhh/py-opendx.

[62] PyOpenGL - OpenGL Python interface.
http://pyopengl.sourceforge.net.

[63] PySE software package. http://pyfdm.sf.net.

[64] Python-gnuplot interface.
http://gnuplot-py.sourceforge.net.

[65] Python Imaging Library.
http://www.pythonware.com/products/pil/index.htm.

[66] Python Vtk manipulation. http://cens.ioc.ee/projects/pyvtk.



[67] Pythonmagick - GraphicsMagick Python interface.
http://www.procoders.net/moinmoin/PythonMagick.

[68] PyX package. http://pyx.sourceforge.net.

[69] R package. http://www.r-project.org.

[70] Rpy - R Python interface. http://rpy.sourceforge.net.

[71] ScientificPython software package.
http://starship.python.net/crew/hinsen.

[72] SciPy software package. http://www.scipy.org.

[73] SCXX software package.
http://davidf.sjsoft.com/mirrors/mcmillan-inc/scxx.html.

[74] SILOON software package. http://acts.nersc.gov/siloon/main.html.

[75] SIP software package. http://www.riverbankcomputing.co.uk/sip/.

[76] SWIG software package. http://www.swig.org.

[77] Swiginac software package. http://swiginac.berlios.de/.

[78] SyFi software package. http://syfi.sf.net.



[79] Trilinos software package. http://software.sandia.gov/trilinos.

[80] G. van Rossum and F. L. Drake. Extending and Embedding the Python
Interpreter. http://docs.python.org/ext/ext.html.

[81] G. van Rossum and F. L. Drake. Python Library Reference.
http://docs.python.org/lib/lib.html.

[82] G. van Rossum and F. L. Drake. Python Tutorial.
http://docs.python.org/tut/tut.html.

[83] The Vaults of Parnassus. http://www.vex.net/parnassus.

[84] Visual Python. http://www.vpython.org.

[85] Vtk package. http://www.vtk.org.


	Crash Course in Python 1.18
	Scientific Computing with Python 1.18
	Visualization in with Python 1.18
	Performance Issues -- Tips and Tricks 1.18
	Parallel Computing via Python 1.18
	Extend Your Favorite Library with Python 1.18
	Various Packages for Scientific Computing 1.18
	@Title 
	Topics
	Why Scientific Computing with Python
	addtothetoc {Crash Course in Python}
	Interactive Sessions
	A Python example
	Basic Types
	Basic Containers
	Basic Control Structures
	String and File Handling
	Functions
	Object Oriented Numerics in Python
	Special Methods (Operator Overloading)
	Functional Style Programming
	Introspection
	Python has a comprehensive library
	addtothetoc {Scientific Computing with Python}
	Numeric vs numarray vs. numpy
	Example: Solving a Differential Equation
	Numerical Solution Procedure
	Implementation using Numerical Python
	Elements of the Code
	Making Arrays with NumPy
	Making Arrays with NumPy, Continued
	Warning: Dangerous Behavior!
	Array Computing
	Array Computing, In--place Arithmetics
	Indexing and Slicing of NumPy Arrays
	More on Slicing NumPy Arrays
	Example Code, revisited
	More Details on Computing with NumPy Arrays
	Vector-Matrix products
	SciPy
	Going Further
	addtothetoc {Visualization in with Python}
	Python Plotting and Visualization
	2D Plotting and Graphing
	Comments on Code
	Gnuplot-py Example
	Gnuplot in 3D
	Gnuplot-py
	Matplotlib Example
	Matplotlib
	Summary of 2D Plotting
	Image Processing within Python
	Computer graphics - OpenGL and Open Inventor
	Visualization - MayaVi and VTK
	MayaVi Visualization
	Play with MayaVi from Python
	Real MayaVi Example
	Real MayaVi Example; Motivation
	Real MayaVi Example; Python Code
	Real MayaVi Example; Python Code, continued
	Real MayaVi Example; FORTRAN Code
	Real MayaVi Example; FORTRAN Code, continued
	Making a Movie
	Conclusions for High Quality Visualizations
	addtothetoc {Performance Issues -- Tips and Tricks}
	Manual Timing
	empbig {timeit} module: for repeating code snippets
	The empbig {hotshot} Module
	The empbig {hotshot} profiling module, continued
	Some Python Performance Tips
	addtothetoc {Parallel Computing via Python}
	Different Python MPI Modules
	pyMPI vs.~pypar
	An MPI Example Using pypar
	Latency and Bandwidth
	Need for Communication; Example
	Communication in x-direction
	Communication in y-direction
	2D Wave Equation; FDM
	2D Wave Equation; Parallelization
	2D Wave Equation; Measurements
	Schwarz-Type Parallelization
	Additive Schwarz Framework
	A High-Level Parallelization Strategy
	Parallelizing a Legacy F77 Code
	Parallelization Result
	Parallelization Result; Cont'd
	Speedup Measurements
	addtothetoc {Extend Your Favorite Library with Python}
	Python Objects are Dynamically Typed
	What Do We Know About a Python Object?
	It Is ``Easy'' to Extend Python With C/C++/FORTRAN
	A Simple Example
	Wrapper Code Example
	Building the Python Module
	The C Factorial Function Used in Python
	Preliminary Conclusion
	Tools That Aid Wrapping
	Topics Covered in this Session
	NumPy, revisited
	Numeric Arrays as Seen from C
	Numeric Array Example
	Numeric Array Example, continued
	Using the Numeric C-API
	Complete Code
	F2PY
	FORTRAN CallBack Example
	F2PY - Simple Example
	Input and Output
	Signature File
	Example Signature File
	Specifying Input/Output in the FORTRAN Code
	SWIG
	Factorial Example
	Making a Python Module with SWIG
	Use in Python
	A ``Problem'' with C/C++
	A Vector Implemented in C++ 
	Comments About the Interface
	A Vector Implemented in C++ and Its Interface
	A Vector to Numeric Filter
	A Vector to Numeric Filter, continued
	A Vector to Numeric Filter, continued
	Example of Use in Python
	Some Computations on the Vector
	CallBack Through Inheritance
	A Sub Class of Vec in Python
	addtothetoc {Various Packages for Scientific Computing}
	PyPkg
	PyPkg Usage
	GiNaC
	Swiginac
	Swiginac Usage: Differentiation and integration 
	Inlining Tools
	Instant
	Instant Usage: Inlining of a simple function
	Linear Algebra Tools
	Trilinos
	Trilinos Usage: Solving a Poisson equation
	PySE
	PySE Usage: Solving a Heat Equation
	Finite Element Tools
	FIAT
	FIAT Usage: The Lagrange Element
	FFC
	FFC Usage: A Poisson Equation
	Dolfin
	Dolfin Usage: Solving a Poisson Equation
	SyFi
	SyFi Usage: Element matrix for Poisson equation
	SyFi Usage: The Jacobian of a nonlinear PDE
	PyCC
	PyCC Usage: Solving a Poisson equation

