
Simula Research Laboratory c©2006

Python in High-Performance Computing

Martin Sandve Alnæs, Are Magnus Bruaset,
Xing Cai, Hans Petter Langtangen, Kent-Andre
Mardal, Halvard Moe, Ola Skavhaug, Åsmund
Ødegård

Topics

Crash Course in Python 4

Scientific Computing with Python 17

Visualization in with Python 35

Performance Issues – Tips and Tricks 58

Parallel Computing via Python 64

Extend Your Favorite Library with Python 82

Various Packages for Scientific Computing 121

2

Why Scientific Computing with Python

CFORTRAN PerlC++

The old days Today

Python Java

• Languages have moved from speed and efficiency to flexibility and convenience

• Python is a powerful yet easy to use language
• Python has a rich set of libraries and extensions
• Python is an ideal glue between your applications
• Using wrapping techniques, your legacy code may get another life

• Python is suitable for computational steering
• In this tutorial we also do number crunching with Python!

3

Crash Course in Python

We begin with a crash course in Python.
In this section we cover:

• Basic variables, containers and control structures
• Functions, lambda functions and callable objects
• Object oriented features like classes and operator overloading
• String editing and file handling

• For more information on the Python language, please check out:
• The Slides "Scripting for Computational Science" [35]
• The Book "Python Scripting for Computational Science" [36]
• The Python tutorial on python.org [82]
• The Introductory Material on Python [32]

4

http://www.ifi.uio.no/~inf3330/lecsplit/index.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/Intros.html

Interactive Sessions

• Interactive sessions:
• Each line start with � � �

• Continuing lines start
with � � �

• Output appear on lines
without prefix

• Run the interactive
sessions in either
IPython[33] or IDLE.

� � �
� � � ��� � � �	�
	� �
 � � � ��� �
 �

� � � � � �
 �� � � �� � � � � ��� �

� � � � ��
 �
 � � � ��� �
 �

� � �
 � �
 ��� � � �
 � �

� � � � ��

• Otherwise, code segments
are supposed to appear in a
program file

� �� � � � � �� ���

��� � � �	�
	�

� � �
 �� � ��

� � �� � !

5

A Python example

� � �
 � � � � ��� � � � � � � � � � �

� �� � � � � �� �� �
 � � �

� � �� � � � � �� � � � �

� � � � � � � �� � � � � � � � ��� � � � �
 �� � �

� � �� � � � � � � � � � � � �� 	

� �� � �
 � � � � � � � � �

� � � � � � � ��� � �

� � � � � � ��
 � �� � � � � ��� � � � � � � � � � � �

� � ��� �
� � � �� �� � � ��� �� �
 � �
 � � �� �

A Scientific Hello World,
demonstrates how to

• Load library modules
• Read command-line

arguments
• Load and call a math

function
• Work with variables
• Print text and numbers

6

Basic Types

• Python is a dynamically typed language, meaning that the type of
every variable is determined runtime

• Everything is an object, even integers, modules and functions
• Python has the following basic variable types:

• int: 1, 2, 3
• long (arbitrary length!): 1L, 2L, 3L
• complex: 1j, 4+5j
• float (only double precision): 0.1, 0.2, 0.3
• bool: True or False
• str: "hello world"

• Casting is done like
� � ��� �� � � � � �
	 � � � � �� � � �

7

Basic Containers

Python has three built in container types, which can hold objects of
any type.

• Lists:

� � � �	 � � �� � � � � �
	 � � � �	 �
� �� � � �
 ��
�

� �	 � � � � � � � � �	 � �� �

• Tuples (immutable/constant lists):

� � ��� � � � � � � � � � �� � � � �
�

�� �	 � � � � � � � ��� � � � �� � � �

• Dictionaries (hash maps or associative arrays):

� � � �� � � � � � � � �
�

� � � � � � � �	 � � � � � � �	 � �	 � � � � � � � � �� � � � � � �

In addition, we will use NumPy arrays (see later), which are wrappers
around contiguous C arrays.

8

Basic Control Structures

� � �� � � � � �

� �� � � ��� � � � �
 �� � � �

� � � � � � � � � � � � � �
 � � �

� � � � � � � � � �� � � �� � � ��� � � � �
 �� � � �

� � � � ��� � � � � � � � ��

� � ��� � �

� � � � �

� �� � � ��� � � � � � ��� � � � � � � � � � �� � � � � � � � � �� � �

� � � � ��� � � �� � � � � �
	�

� � ��� � �

• Program blocks are defined by equal indentation
• for-loops work on anything that can be iterated over
• if-tests work on any type. None, 0, empty strings and empty lists

evaluate to false
• while-loops work similar to if

9

String and File Handling

Python has some powerful tools
for working with strings. F.ex.:

• 	 � � � 	 � � � � �
 � � � � �

creates
a list of the words in str

• 	 � � �
� � � � �
	 � � � � �	 � �

joins
the items of a list into one
string, separated by str

• Perl-like regular expressions
� �� � �
 �� � � � � � �� � � � � � � �� � � �
 �
 � � � �

� � � � � � � � � � � � � � � � �� � � � �

� � � � � � � � � � � � � � � � �� � � � � �

�
 � � � 	

� � � � ��� � ��� � � � � � �

� � � � � � � � � � � �� � ��� � � � � � � � � � � �

�
 � � � � � � � � � � �
 � � � � � � � �

� � � � � � � � � � � � � � � � � � ��� � �
 � �

10

Functions

��� � � � � � �� �
	�

� � �
 �� � � � �
 �� � �

� � ��� � � � � �� � �� �

� � �� � � � � � � �� �� � � � �
 �� � �

� � ��� � � � �� �� � �� � � � �

�� � � � �� � � � �

� � ��� � � � � � �
 � � � �
 �� � �

� � � � � � � �
� � � � ��

 � �
� � � � � � � � � � � ��� � � ��

�

�� �
� �

��� � �
� �

� � � � � � �� �
	�

� � � � � � �

� � � � � � �

�� �
� �

� � � �
� �

� � � � � � �
	�

� � �
 �� � � � � � � � � ��� � � � � � � � � �

� � � � �
 � � � � � ! � � ��� �� � � � � � �

� � � �
� � � � � � � � !� � � �

� � ��� � �
� � � �

Functions come in several forms:
• Regular functions defined

with def
• Lambda functions,

convenient for simple
oneliners

• Strings can be evaluated
with eval

• Callable objects, by defining
the __call__ operator

11

Object Oriented Numerics in Python

• Python is a powerful object oriented language
• Everything in Python is an object
• There are no protected or private variables or methods, but the

effect can be “simulated” with underscore prefix (�
� � � �� �� �

� �
� � �� � ��)

• Python supports multiple inheritance
• Dynamic typing implies support for generic programming (as with

C++ templates)

12

Special Methods (Operator Overloading)

Python supports overloading operators in your own classes by
declaring some special methods, to let your own types behave
like the builtin types. Some examples:

• � �

�

� �

�
	 � � � � � �

: Used for 	 � � � � �, i.e.,

� � � invokes � � � �

�

� �

� � �

• � �
� � � �

� �
�
	 � � � � � �

: Used for 	 � � � � � �
• � �

� � �
� �

�
	 � � � � � �

: Comparison, returning �
�

,

�

or ��

to mean � � �, � � � � or � � �, respectively
• � �

	 � �
� �

�
	 � � � �

: Used for 	 � � �
	 � � � �
, and in print statements

• � �

� � � � � � �
� �

�
	 � � � � � �

: Used for � � 	 � � � � � �

• � �
� � � �

� �
�
	 � � � �

: Used for iterating like

� � � � � � 	 � � � � � � �

13

Functional Style Programming

Lists are a central datatype in Python, like in functional languages.
A few built in functions let you do powerful yet simple manipulation of
lists.

• � �� � � � � � � � � � � � � � � �	 � � �

creates a new list, which is a copy of
the old list, and applies the passed function to each element in the
new list

•

� �	 � � �

creates a new list containing only
the elements from the old list where function evaluates to True

� ��
 � � � � � � � � � � � � � � ��� � �� � �

��
 � � � � � � � � � � � � � � � � � � � �� � � �� � � � � �

� � � � �
 � � � � � ��� � �� � �

� � �� � � � � � � � � � � � � � � � � � � � � � �� � � � � �

14

Introspection

� � � � � � � � � � �
 � � ��� ��

� � ��� � � � � � � �� ��� � � � � � � �

Python lets you examine and edit objects and their properties runtime.
•

 � � � � �	 � � � � � �

returns a list of the names of all the properties of
the object, both variables and functions

• � � � � � � �	 � � � � � �

returns the type of the object
• � � � � � � � � � � �	 � � � � � �

tells you if an object is something that can
be called like a function

• The function 	 � � � � � � lets you add new variables or functions to a
class

• All objects have a variable � �

 � �
� � that can hold a documentation

string

15

Python has a comprehensive library

We mention a few:
• A portable interface to the operating system, e.g., file and process

management (�), file compression (�� � �), threads (
� � � � �
)

• GUIs: Qt (� � � �

), Gtk (� � � � �

), Tk (

� � � � � � �), WxWindows
(�� � � � � � �), . . .

• String handling (
� � � � �), regular expressions (� �)

• Many applications with Python interface: Word/OpenOffice,
Excel/Gnumeric, Oracle, Gimp . . .

• Web modules: � � �

,

� � � � � � �

, � � �
, � � � � � � � �	

16

Scientific Computing with Python

• Computing with Numerical Python is introduced
• Constructing arrays
• Vectoring expressions
• Slicing
• Solving a linear system

• Some available modules for Scientific Computing are then
presented

• The packages covered in this tutorial are chosen on basis of our
research experiences with numerical solution of Partial
Differential Equations.

• The Vaults of Parnassus[83] have an extensive list of Python
modules

17

Numeric vs numarray vs. numpy

• There are actually three different implementations of Numerical
Python (NumPy)

• ��� � �� ��� is the original and hence widely used
• �� � 	� � 	
 was a reimplementation with some new features
• �� ��
 is a blend of the other two, again with improvements
• The three packages have almost the same interface
• The performance differs greatly: numpy is fastest for vectorized

operations, while Numeric is fastest for indexing and scalar
operations

• Now it seems best to use a common interface to Numerical Python
such that any of the three packages can be used as backend

• A common interface can be found at
http://folk.uio.no/hpl/scripting/src/tools/py4cs/numpytools.py

18

Example: Solving a Differential Equation

• Python can be used as a scientific calculator, like Matlab, Octave,
R, etc.

−u′′(x) = f(x)

x ∈ [0, 1]

u(0) = u(1) = 0

f(x) user given

• Applications:
• heat conductivity
• string deflection
• fluid flow
• electrostatics
• elasticity, ...

• Goal: Compute u using the Numerical Python module (aka
NumPy)

• NumPy is an extension module for Python that enables efficient
numerical computing

19

Numerical Solution Procedure

h = 1/(n + 1)

xi = h ∗ i, i = 0, 1, . . . , n + 1

ui = u(xi)

bi = h2 f (xi)

A =







































1 0 · · · 0

0 2 −1 0 · · ·
...

... −1 2 −1
. . .

. . .
. . .

−1 2 −1

0 −1 2 0

0 · · · 0 1







































• Divide [0, 1] into n + 1 cells
• Discretization by the Finite

Difference method
• Result:

linear system

Au = b

20

Implementation using Numerical Python

� � � � ��� � � � �
	 � �� � � �

� � � � � ��� �� � �� � � � �� � �� � � �

� �� � � � �� ��� �� � � � � �

� � � � 	 � � � � � � 	 � � �� � �� �� �

� � ��� � � �� ��� � � � !" #$

� � � � ��� � � � � � �	 � � � � 	 � � �� %

� � � � �'& $ %

� � � � �� �(
&)&

 *$
 �& � �'& $

� � " � + , � �)" $ � � � � � � �.- �

� � - � � � � � � �) *� �) *$ � / � �� �$ � �� � � �&

� � - � � � � � �) *� / � �� �$ � � � 0� �1 � �

� � - � � � � � �) *� / � �� �$ � � � � � � �� � � � � � �

& � - � � � � � �) *� / � �� �$ � 	 � � � � ��� � � � �

� � � � � � � �� � �

& ! + # � +� +

� � � � ��� & �� � � � � " � �) *$ % � � � � � �� � � � � � �

& ! � # � �
 �

� ! �2� � # � *� +

� ! � # � �

 *
 � �'& ! � #$

� � � 3 � %

� ! �)" � � # � � ! �2� �)" # � 4 " � +

� ! +� + # � � !�)" � �)" # � " � � � � � � � � �� � � �&

� ! + # � � !�)" # � + � � � � � � � � � ���

� 5 � � � � � � � � � � � � � � � ��� � � � � � 	 � � �� � � � � � � �

� � ��� �� � �� � � � �� � � �� � �

� � � � � �76
� ��� �� �6 �8 � � � � �� � � �� �$

� 	 � �� � � � � � �� � � � � � �

� � �� � � � � � � �� � � � � � � � � � � � � � �" $

�� � � � � � �9 5 � � � � � �� � � 4 � : : �'& $ � � �'& $ 9 $

� �� � � � �� � � � � �;� <� � � �'& � � � � � � � � � : � � � � � � �� : �

1 � � � � : � ��� � � � � ��� � � :$

�� � � � � � � �� � � $

21

Elements of the Code

• The code on the previous slide uses NumPy arrays for storage
• The function 	 � �� �

�

� � � � ��
�

� �� � � � � �	 from the LinearAlgebra
module is used to solve the linear system

• Indices for multidimensional NumPy arrays are specified with
tuples:

� � � � � �

instead of

� � � � � � �

• Besides this, the code looks very much like “normal” Python code
• On the following pages, we will speed up and shorten the code by

introducing features of NumPy
• Note: The matrix in our example is tridiagonal, but we do not take

advantage of this

22

Making Arrays with NumPy

Array with zeros:

� � � � � �	 � 	 � �� � � � � � � � Array with ones:

� � � � �	 �
	 � �� � � � � � � �

� � � �� � 1 � � � - � � � � %

� & ! + # � & !" # � � � � � & !� 4 " # � +

& � - � � � � � � � /� �� �$

� � �� � � �& � � - � � � �� � � � � � � �

� � - � � � � � � � � � $ $

� � � �� � � � � �� � � � �� � �

� & ! + # � & !" # � � � � � & !� 4 " # � "

& � �� � � � � � / � �� �$

� � �� � � � � � � � $ � / � �� �$

• Default type is

� � �

for all
arrays

• Often you want to specify

� � � � �

• 	 � �� � is an integer or a tuple
of integers

23

Making Arrays with NumPy, Continued

Equally spaced values:

� � �� � � � � �
	 � �� � � 	 � � � � 	 � � � � � � � � � Array from Python sequence:

� � �� � � � �
	 � �� � � � � � � � � � � 	 � � � � �

� � � � � + � � " ��� � � � � � � � � %

� � � � �� � � � � � �� � � � � � �� � �

& � � �� � � � � +� " � �$

� & +� & +) �& � � � � � & �� � 4 �& 3& " 3& �� �

& � � �� � � � �'& +� & �� �� �& $

� � � � � � � � � � � � + � � � 4 " �

& � � �� � � � � � � � � � � � / � �� �$

� � � �� � � � � �� � � � � � �� � � �� � � � �

& � � � �� � � �� � � � � � $ � �� � � � /� �� �$

� � � �� � � �� � � �& � � � � �� � � �� � � � �

- � � � �� � � ! +� " � *� (� �� � # � � �� � � � � *� ($ $

� 5 �� � � �� � � 1 � � � � � � � � � � � � �� �

1 � � � �� � � � � � �� � �� � � 	 � � � � /� � � �$

• End of range is usually not included

24

Warning: Dangerous Behavior!

• �� � � � � sometimes includes
the endpoint and sometimes
not, depending on round-off
error!

• Better solution: define a
sequence function which
behave consistently

• Right, we present a quick
solution, and a version with
most of the flexibility of

�� � � � � � � � � � � � � � � � � �

• 	 � �� � � � � always include the
endpoint

• We will use this function in
our examples

��� � � � �
� � � � � � � � � � �� � �� �� � � �

��� � � � �� � � � � � �� � �
	�

� � � �� � � �� � � �

� �� � ��� � � ��� � � �

� � �
 �� � � �� � � � � ��� � � �� � ��� � �� � ��

��� �� � � � �

� � � �
� � � � � �� � � � � � �� � �

25

Array Computing

• Consider the creation of

�

,
where we used slow loops

• We can use arithmetic
operations on NumPy
arrays!

• Such operations apply to all
elements in an array

• Our

� � � �

can work with both
scalar � or NumPy �

� � � �
 �� � � � � � � � � � � �
 � � � � � � � �

� � � � � � � ��� � � �� � �
 � ��� ��

� � � � ��
 � � � �� �� � ��
 � � � � � �

� � � � � � � � � �
 � � � � �
	�

� � � �� � � �	�

26

Array Computing, In–place Arithmetics

• Arithmetic array operations
create temporary hidden
arrays

• The first expression for

�

splits in 6 binary operations
• All of them implemented in

C, resulting in temporary
arrays

• We can do in-place
arithmetics to save storage

• Remark:

� � � will make
�

reference the same object as

� !

� � � � ��
 � � � �� �� � ��
 � � � � � �

� � � � � � � � �� � � � � � � � � � � �

� � � �� � � �
 � � � � � � � � �� � � � � �

� � � � �
 � � � � � � � � � � � � � � � �

� � � � �� � � � � � � � � � � � � � � �

� � � � �� � �
 � � � � � � ���
 � � � � �

� � � � � � �

� � � � �

� � � � �� 	

� � �

� � � � � �

� � � � �� 	

� � �

27

Indexing and Slicing of NumPy Arrays

• We can extract parts of arrays (slices)
•

�	 � �� � � � �
 �

extracts 	 � �� � � 	 � �� � �� � � � � � � �

�

�

•

�	 � �� � � � �
 � 	 � � �
 � �

extracts

	 � �� � � 	 � �� � �	 � � �
 � � � � � � � �

�	 � � �
 �

• Negative indices count from
the end:
•

�
�

� �

last element
•

�
�

� �

next last element
•

� � � �

is valid! (whole array)
•

� � � �
� �

reverse an array!

� � � � 	 � �� � � � � � � � � � � � � ��

� � � � �" �
, " +

� � � & � � �8 � �� 	 � � +� " � �$

� � �

� � � � �& 	 �� �

� � � � � � � � �� � � � � �� � � � %

� � � �� � � � � � � � & !" % 4 " #

� � � � � ��� � & !" #

+� "
� � � �� � � � � � � ! + #) � �

� � � � � ��� � & !" # � � � � � ��� � � �� � � 	 �� � � � � �

+� * � � � � �

� � � � � � � � � � % � �
	 0 �� 	 � � �	 �� � � � � � �� � � � & %

� � � & � � � � � � � & !" % 4 " % * #

• Remark: unlike regular Python lists, a slice of NumPy arrays just
references the original data!

28

More on Slicing NumPy Arrays

• We can slice multi–dimensional arrays in the same way
• Let us assign values to subsets of the matrix

�

• The function

�
 � � � � � � returns a unit matrix of given size

� � � � � � � �
 � � � �
 � � � � �� � �� � � � �� � �� � � � � �
 �� �

� �� � � �
 � 	
 � ��� � � � � � � �
 �

� � � � �
 � � � � �� � � � � �� � �� � � � � � �� � � �� �
 �� �

� ��
 � � � � 	
 � ��� � � � � � � �
 �

• In numarray, a slice can be specified as an array of indices

� � � � � � �
� � � � ��

� � � ��� � �� � � 	

� � � � � ��� � 	

� � � � � � � � � � � �
	

� � � � � �� � �� � � � �
 �

� � � � � �� � �� � � � � � �

� � � � � ��� �� � ��� �� 	 � � ��� �� � ��� �� 	
 �

29

Example Code, revisited

� � � � � � �� � �� � � �� � � �

� � � � � ��� �� � �� � � � �� � �� � � �

� �� � � � �� ��� �� � � � � �

� � �� � � � � � 	 � � �� � �� ��� �

� � ��� � � �� ��� � � � !" #$

� � � � ��� � � � � � �	 � � � � 	 � � ��

� � � � �'& $ %

� � � � �� �(
&)&

 *$
 �& � �'& $

� � " �
, � �)" $ � � � � � � � � � � � � �- �

� � � �� � � � � � � � � � � � �� � �

& � � �8 � �� 	 � � +� " � �� / � �� �$ � � � � � � � � � � � ��

� � � � �� � � �&

� � � � �� � � � � � �) *� /� �� �$

� !" % 4 " � " % 4 " #) � � � �� � � � � � � $

��� �" � �� � � � � " � � $

��� � * � �� � � � � *� �)" $

� ! �� �" � �� � * # � � ! ��� � *� ��� �" # � 4 " � +

� � �

 *
 � �'& !" % 4 " #$

� � � �	 � � � � � �� �� 	 �� � � � � ��

� ! + # � � !�)" # � +

� 5 � � � � � � � � � � � � � � � ��� � � � � � 	 � � �� � � � � � � �

� � ��� �� � �� � � � �� � � �� � �

� � � � � �76
� ��� �� �6 �8 � � � � �� � � �� �$

� 	 � �� � � � � � �� � � � � � �

� � �� � � � � � � �� � � � � � � � � � � � � � �" $

�� � � � � � �9 �1 � � � ��� � �� � � � � � � �9 $

� �� � � � �� � � � � �;� <� � � �'& � � � � � � � � � : � � � � �& : �

1 � � � � : � ��� � � � � ��� � � :$

�� � � � � � � �� � � $

• Initialization of data is
simplified using slices and
array arithmetics

• All loops removed!
• This is an important tech-

nique for optimizing Python
codes

30

More Details on Computing with NumPy Arrays

• NumPy offers the most common
mathematical functions

• These operations are very efficient
on arrays

• But they are slow on scalars, so use
the functions from � � � �

in those
cases

� � � � � � �
� � � � � �� � � � � �

� � � � � ��� � �

� � � � � � � � ��� � �

� � � � � ��� � � �

� � � � � � � � �

� � � � � � �� � !

� � � � �� � � �

� � � � �� � � � � � �

31

Vector-Matrix products

• Matrix products are different from the mathematical tradition
• NewAxis can be used in slices to add a new dimension to an array
• Arithmetics with a column vector and a row vector in a matrix

(like an outer product)

� ��� � �� � � � � � � � �� � � � � � �

� �� � � � � � � � � �� � � �

� � � � � � � � � �� � � �
 �� � ��� �	�
 � � ��� � �

� ��� � � � � � � � � � � �� 	

� � ��� � � � � � � �� � � �

� � ��� � � � � � � �� �� �

� � �� � � � � � � � � � � � � � � � � ��

� � �	� � �

� � � � � � � � � � � � � �� � � � �� ��

� � � �� � � � � � �

� � �� � �

� � � � � � � � �� � � � � � � � �

	�

� �� � � 	 � � � � � � � 	

� �
 � � � � � � � � � ��� � � � � � � � �
	�

�� � � � � � � �� � �� � 	
� � �� � � � � �� � � 	

� � � �� �

32

SciPy

SciPy[72] is a collection of modules for scientific computing. Most of
the modules are wrappers around old, well tested and fast Fortran or C
libraries.

• Based on Numeric
• Linear algebra: Lapack, BLAS, iterative solvers (CG, BiCGstab

etc.), eigenvalues, matrix decompositions
• Integration: Quadpack
• ODE solvers: ODEpack
• Interpolation: Fitpack, spline variants
• Optimalization: Least squares fit, various minimization algorithms
• Statistics: 81 continuous and 10 discrete distributions plus more
• Signal Processing: Convolution, filtering, fft etc.
• Special functions: Airy functions, Bessel functions, Fresnel

integrals etc.
33

Going Further

For further material on Python scripting for computer science, you
might want to consult the book by Langtangen on Springer

34

Visualization in with Python

This section deals with plotting/visualization in a scientific setting

• We briefly list of some of the available plotting software
• We use simple plotting from the Python shell without intermediate

storage of data on files
• We will interface more advanced visualization programs - e.g.

MayaVi

35

Python Plotting and Visualization

• Plotting has traditionally been seen as a separate task after model
simulations were accomplished

• Plots not corresponding to the data reported were (and still are)
presented

• Python is well suited to control/assist the plotting process
• Automating tedious tasks helps to ensure consistency between

input and output data

36

2D Plotting and Graphing

• We show examples for:
• Gnuplot
• Matplotlib

• The quality of the plots varies and so does the interfaces
• All packages presented here should run on both Windows and

Linux unless otherwise stated. The pieces of code presented are
however only tested on Linux

37

Comments on Code

All examples in this 2D section can use either Numeric or Numarray,
i.e. either

� �� � �
 �� � � � � � �� � � �

or

� �� � �
 � � � � � � � � �� � � �
is implied.

Also: the import or inclusion of sequence as previously defined (but
repeated here) is implied:

�� � � � �
� � � � � � ��� � � �� � �� �� � � �

� � � � � �� � � � � � �� � �
	�

� � � �� � � �� � � �

� �� � ��� � � ��� � � �

� � �
 �� � � �� � � � � ��� � � �� � ��� � �� � ��

� � �� � � � �

38

Gnuplot-py Example

� �� � � � �� � � � � �

� � �� � � � � � � �� � � � � � � � � ��� � �" $

& � � �8 � �� 	 � � +� *
 � �2� � � , " + +�
$

� � 	 � � �& $

� � �� � � � � � � <� � � �'& � � �
�

1 � � � � : � � ��� � � ((: � � � � � � � : 	 � � �'& $:$

�� � � � � � � : 5 ��� � � �� � � � � �$ � � � � � � ��� � � �� � � �� $:$

�� & � � � � � � : & :$

�� � � � � � � � : � :$

� � : � � � � � � � � � 9 �� � � � � � � � � �9 :$

� � : � � � � � � � ��� � � � � � � �	 � � � � � � � 	 � � � � �

9 � � � � �9 (* :$

�� � � � � � �� � � � � � � / � � 	 � : � �� �'& $:$ � �$

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6 7

y

x

Sine (gnuplot) and cosine (python)

sin(x)
cos(x)

39

Gnuplot in 3D

� � � � ��� � � � �
	 � �� � � �

� �� � � � �� � � � � �

� � �� � � � � � � �� � � � � � � � � � � � �" $

& � � �8 � �� 	 � � +� � " �� �� � �$

� � � �8 � �� 	 � � +� � (� � � " $ 4 " � �

& � � & ! % � � � 1 �& � � #

� � � � ! � � 1 �& � ��� % #

� � � � ��� �'& �$) +� "
& �$ 4 � �

 *

� � : � � � � � �� � � � � �
	 :$

� � : � � � �� �� � � � � � � ��� � � :$

� � : � � � � � � � �� :$

� � : � � � 	 �� � � � � �� � � :$

�� � � � � � � : �� �& � �� � � � � � � � � � � 	 � � � � � :$

�� & � � � � � � : & :$

�� � � � � � � � : � :$

� � : � � � � � � � � � 9 �� � � (�� � � �9 :$

� � : � � � � � � � ��� � � � � � � �	 � � � � � � � 	 � � � � �

9 � � � � �9 * � :$

�� � � � � � � �� � � � � �;� � � � � <� � � � �� & � � $ $

An example of a surface plot

 2
 1
 0
 -1
 -2

 0 2 4 6 8 10 12 14 16 18
x -1.5

-1
-0.5

 0
 0.5

 1
 1.5

y

-3

-2

-1

 0

 1

 2

 3

40

Gnuplot-py

• http://gnuplot-py.sourceforge.net

• Python interface to Gnuplot[26], the “old” plotting program for Unix

• SciPy has also wrapped gnuplot in their plotting module scipy.gplt

+ Gnuplot itself has been refurbished over the last years

+ Has many users

+ Has simple 3D capabilities (contour and surface plots)

− The default plots could be prettier

− The Python interface could be better

41

http://gnuplot-py.sourceforge.net

Matplotlib Example

� � � � �� � � � � � � � �� � � � � � � �� � � �

& � � �8 � �� 	 � � +� *
 � �2� � � , " + +�
$

� � � ��� �& $

- � 	 � � �& $

� � � � �'& � � $

� � � � �'& � - $

� � � � � � � : 5 ��� � � � � � � � ��� � : � � �� � � �.- � � * +$

� �& � � " � 4 +� �� � : � � �� �'& $ � : � � �� � � �.- � � * +$

� �& � � *� �� +� �� � : �	 � � �'& $ � : � � �� � � �- � � * +$

& � � � � � � : & :$

� � � � � � � : � :$

�� � � � � � : �� � � � � � � � �� � � � : � � � � �(+ +$

� � �1 �$

42

Matplotlib

• http://matplotlib.sourceforge.net

+ High quality plots 2D plots

+ Supports several output formats

+ The plotting functions has a high degree of Matlab compatibility

+ Partially supports TeX fonts

+ Actively developed

− Lacks 3D capabilities

− Still in beta

43

http://matplotlib.sourceforge.net

Summary of 2D Plotting

• Because of portability, we would recommend Gnuplot if you find
the plot quality sufficient

• Use Matplotlib if matlab compatible commands is important
• Other alternatives are PyX, Python-biggles, Pychart and RPy

44

Image Processing within Python

• Numarray contains a large set of image processing functions
• PIL (Python Imaging Library)

• http://www.pythonware.com/products/pil/index.htm
• Adds image processing capabilities to Python
• 	 � � � � � � � �� � � �

has some extra utility functions
(f.ex. mapping PIL images to Numeric arrays)

� � �� � � � � � � �

� � �

� � � � � � � � � � � � � ��� � � � � � � � � � � � �� ��

� � � �� � � � � � � �
 � ��� � � � � � � �
� � � �
 � �� �� � � � �

�

• PythonMagick
• http://www.procoders.net/moinmoin/PythonMagick
• Python bindings for GraphicsMagick
• Supports ∼90 image formats

45

http://www.pythonware.com/products/pil/index.htm
http://www.procoders.net/moinmoin/PythonMagick

Computer graphics - OpenGL and Open Inventor

• When it comes to high quality rendering, OpenGL is the de facto
standard

• Some like to program directly in OpenGL, others in libraries on
top of OpenGL like Open Inventor

• PyOpenGL[62] is the cross platform Python binding to OpenGL
• Complete low level control over the graphics

• Pivy is python bindings for Coin[11]
• http://pivy.tammura.at
• Open source implementation of Open Inventor
• Lets you work with a more abstract scene graph

46

http://pivy.tammura.at

Visualization - MayaVi and VTK

• http://mayavi.sourceforge.net
• Python interface to the Visualization ToolKit:

• http://www.vtk.org
• VTK is a very powerful object-oriented library; it supports

both structured and unstructured grids
• VTK itself comes with a Python interface: VTK-Python
• Using MayaVi is easier than using VTK-Python directly

• Focuses on visualization
• MayaVi comes with a GUI, but can also be used from scripts
• Recommended add on: Pyvtk[66], to manipulate VTK files
• The ivtk module makes it easy to experiment with VTK

47

http://mayavi.sourceforge.net
http://www.vtk.org

MayaVi Visualization

� � �� � � � � � � � �

� � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � ��� �� � �

� � � � � � �
�

� �� � � � � �

� � � � � � � � � � � � � � � � �

� �� � �� � � � � � � � � � � �
 �� � � � �� � � � � � � ��� � � �� � �� � � �� � � � � � � � � � � � � � � � � � � �

� �� �
 � � �

� �� � � � � � � � � � � � � �

� � � �� � �
�

� �� � � � � �

� � � �� � �
�

� � � � � � � � �� � � � � � � �� � � � � � � � �

� � � � � � � � � � � � �
 � � �� � � � � � !

� �� � � � �
 � � � � � � � � � � � � �

� �� � � � � � � � � � � � � � � �� �
 � � � �

� � � �� � �
�

�� �
 � � � � �
 � � � � � � � � � � �

� � � �� � �
�

�� �
 � � � � �� � � � � �

� � �� � � � � � � � � �� � � � � � � � � � � � �

� �� � � � �
 � � � � � �� � � �� �
 � � �

� � � �� � �
�

�� �
 � � � � �
 � � � � � � � �

� � �� � ��� � �
 � ��
 � � � �� � � � � � � � � � �

� � � � � � ��� � � � � �
�

�� � � � � � � � � � � � � � � �� � �

48

Play with MayaVi from Python

• The Interactive VTK module
(ivtk)

• The ivtk module included in
MayaVi makes it easier to
experiment with VTK from
Python

• Includes:
• A VTK actor viewer
• Access to VTK

documentation
• GUI for VTK

configuration
• Menus for saving

images of the scene

� �� � � � � � � � � � �� � � � � � �

� �� � � � � � � � � � � � � �� � � �

� � � � � � � � ��
 � � � �

� � � � �� � � � � � � � � � � � � �

� � � � � � � �
 � � � � � � � �
 � �
 � �

� � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �
�

� � � � � � �

� � � � � � � � � � � � �

� � �� � � � � � �

� � �� � � �

� � � � � �
�

� �� � � � � �

� � �� �� � � � � � � � � � �

49

Real MayaVi Example

t = 0 t = 30

t = 60 t = 90

50

Real MayaVi Example; Motivation

• We assume we have some efficient FORTRAN code (shown later)
for the 2D Wave equation

∂2u
∂t2 = c2

(

∂
∂x

(λ
∂u
∂x

) +
∂

∂y
(λ

∂u
∂y

)

)

• We want to make a nice animation of the solution, integrated with
the program execution

• We want to accomplish this fast with much reuse of code:
• Python class wrapping the FORTRAN simulator
• Allocate data structures in Python, pass to F77,

let MayaVi/VTK do the visualization

51

Real MayaVi Example; Python Code

� � � � � 0 � � � � �� � �� � � � � 0 < � � �� � � � �� � �
�

 � 0 5 � � � 	 � � � � � � � ��� � �

� �� � � � ��� � � � �
	 � � �

� �� � � � 1 � � " � � � � � � � � � � / � � � � � � � � �� � �

� � � � ��� � � � �
	 � �� � � � �8 � �;� � ��� � �& � � 	 � �

� � � � � � � � � �� � � � � � � �

� �� � � � �� � � �

	 � � � � �� � %

� � �
6 6

��� � �
6 6

� � � � � � � � �" � � � � � � � � � +$ %

� � � � � � � � 5 �.- � � � � � � � � � �$

� � � � � ��� � � �$

� � � � � �
	 � � � � � +

� � � � � � � � � � � � � � +

� � � � � � 5 �.- � � � � � �2� � � � � � � � �$ %

� � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � " +� +

� � � � � � � � � � � � � � � � � , � � 4 " $

� � � � � � � � �8 � � � " , � " , � � � � � � � � � � �

 *$) �

" , � � � � � � � � � � �

 *$ $ $

� � � � � � � � � � � � � � � � � �
� � � � � �

� � � ��� � � � � � � �$ %

� � 9 �9 � � � � � � � � �

� � � � � � � � �� - � � � � � !� � � #
� �$

� � � � � � � �� - � � � � � !� � � #
� �$

� � � � � � � � �� - � � � � � !� � � #
� �$

� � � � � � � � � �� �� � � � !� � � #
� �$

� � � � � � � 	 � � � � �2� � � � � � � � � � � � �� �2� � % �

�� �� � � � ! �2� � #
� : � :$ � � � � � � 	 � � � � � � �� & � � % �

� ��� �'& $
 � ��� � � $ $ %

� �� � � � � � �$

� � � � � �2� �

& � � � � � � � � � � �
 �� � �� � � � � � $

� � & ! % � �� � � 1 �& � � # � 	 � � � �$

� � � � � � � � � � � � 	 � �'& � � $

� � � � � � � � � � � � � � � �'& � � $

� � � � � � � � � � � � � � � 	 � � � �$

� � � � � � � 1 � � " � � �76 	 � � � �� 6 �� � � �6 � � � �� � � �

� � � � � � � $

� � � � � � � � 1 � � " � � �76 	 � � � �� 6 �� � � �6 � � � �� � � �

� � � � � � � �$

� � � � � � � � 1 � � " � � �76 	 � � � �� 6 �� � � �6 � � � �� � � �

� � � � � � � � $

� � � � � � � � � 1 � � " � � �76 	 � � � �� 6 �� � � �6 � � � �� � � �

� � � � � � � � �$

� � � � � �	 � � � � � � � � � �$ 4 � ��

� � � ��� � � � � � � � � � � �$ %

� � � � � � �� � � �2� �� � � � �$

� � � � � � � � � � 0 < � � � � � � � �� � �$

�� � � � � 0 5 � � � 	 � � � � � � � ��� � � �$

�� � � � 5 � � 5 � � 	 ��� � � � � � � � � � � � � � � � � �2� � � � �� � " $

�� � � � 5 � � < � � �� � � �� � � � � � � � � � � � � � � � � " $

� � � � � � � �� � � � � � � �$

52

Real MayaVi Example; Python Code, continued

�� �� � � � � � � ��� � <� � � �$
� 5 � � 5	 � � � � � � � � � � � � � �$

� � � � � � � � �� 6 � 0
6

�� � � � �� � � $

� � � � � � � �� �
6 � � �� � � � : 5 � � � � 	 � �� � : � +$

� � � � � � � �� �
6

� � � � � � � : �� � � 5	 � � � � : � 	 �� � � � � +$

� � � � � �� � � � � � � � � � � �$ %

� � � � � � � �� 5 � � � � � � � � �� � � �� � � � �� � � �

� �� � �� � � � � � � � � � � � � � $ �
� 4 " �
$ $
� � � � � � �

 *� " $

� � � � � � � �� � � � � � � � � �$

� �� 	 � � � �� � � � � � � � � �

� � � � � � � � �� 1 �� � 	 � � � �� � �- � �� � � � " $

� � � � � � � �� � � � �$

� � � �� � / � � � � � � � � � � � � � � � � +$ %

� � � � � � � �� 1 ��� � �� �6 � � � �

� : , � �� , 1 � � � + � �� � � � : �� � � � � �$

� � � � � � � � � � � � � � � � � � �2� � � � � � /� � � ��� � � � � � /� � � �$ %

� � � � � � %

� � � � � ��� � � � � � � �$

� � � � � � % � � � � � �� � / � � � �$

� �� � � � � � �$

� � � � ��� �� � � � � � � � � � � � � � � �$ %

! � � � �2� � � � � � � � � � � � � � � � � � # � 1 � � " �
�

� � � �� �
�

� � � � � � �� � � � � � � � �� � � � � � � �$

� � � � � � %

� � � � � � � �� � � � � � � �$

� � � � � � % � � � � � �� � / � � � � �)" $

� � � � � � � � � � � � � � � � � � �$ 4 � �� � � � � � � � � ��� � 5 � � � � �$

� � � � �� � � � � � � � $

� � � � � ��� � 5 � � � � � � � � �$ %

� � ��� � 9 4 4 4 4 4 4 4 4 4 4 4 4 4 49

� � ��� � 9 � � � ��� � � � � � � � �9

� � ��� � 9 4 4 4 4 4 4 4 4 4 4 4 4 4 49

� � ��� � : � � � � � � � �� * � : �

� � � � � � � �
	 � � � ���
$

� � ��� � : � � � � � � � � � � � � � �� * � : �

� � � � � � � � � � � � � � �$

� � ��� � : / �� � � �� � � � � �� * � :

� � � � � � � � � � � � � , � � � � � � � � � � � � ���
$

� � � � � � � � 	 � " �'& � � $ % � � � � �� (
 �& � � 4&
& 4 �
� $

� � � � � � � � 	 � * �'& � � $ % � � � � �� � ��� �'& $
	 � � � � $

� � � � � � � � �" �'& � � $ %

� � � � �� �� �� � � � ! � �� �'& $ � � �� � � $ #
� : � :$

� � � � � � � � �'& � � � - $ % � � � � �� &)�)-

� �
6 6 � � � �76 6 � � :
6 6 �� �� 6 6

: %

� � � � �� � � �� � � � � � �

� 6 � � " � � � � � � �76 � " + + +

� �� % � 6 � ��� � � � � � !" #$
� � � � � � �76 � �

��� � � � � � ! * #$

�& 	 � � � % � � � �

1 � �� � � � � � 6 � � � � � � � � � � � � � �76
$

1 � � � � � 	 � � � � � � 	 � � � � � � � 	 � " �

�

� � � � � � � � � � � � �" $

1 � � � � � � � � � � � � � � � � � � � �� ��� � � � � � � �� �$

53

Real MayaVi Example; FORTRAN Code

5 � � � � � � � �� � � � � � � � � � �� � � � � �� � � �

� � � � � � �� � � � � � 	 �$

� � � � ��� � � �
� � 	 �� � � � � �� � � � � � � �

� � � � � �& � �� � � �� �$ � � � � � � � �� � � � � �

� � � 1 � � �

� � �� �� � �

�� � �
 � � � � � � $ � � � � � � � $ � � � � � �� � � � � $ �

� � � � � � �� � � � � � 	 �

� � * � � ��� � �� � � �� � � � �$ � � � �� � � � � ��

� � �� � � � � � � � � � �� � � � � � 	 �

� � �� �� � �2� �

�� � �
 � & � � � � � � � �

� � � �� ��� �� � � �- � " +& " + �� & � � � �

� � � � �	 � � �� � � � � � � � � � � � 	 � � � � �.- � %

� � � � � � " +� + , � � 4 " $

< � * + � �" � �

< � " + � �" � �

& � � � 4 " $
 � � � � �

� � � � 4 " $
 � � � � �

� � �2� �$ � � � � � � 	 � �& � � $

� � � � � � � � � � � � � � � � � �& � �� � � ��

� � � �� , � � � + %

� � � �2� �$ � � � �2� �$

� ��� � � �
� � �.- � � � � � � �
� � � �

� 	 � � � � �
	 � �� � � � � � � � �� � %

� � � � �� � �2� �$ � � � � � � � �'& � � $

" + � � � � � � ��

* + � � � � � � ��

�� � � � �

� � <
5 � � � � � � � �� � � � � � � � � � � � � � � 5 � � � � � � � � � � ��

� � � � � �� � � � � �$

� � �� �� � �

�� � �
 � � � � � � � $ � � � � � � $ � � � � � � � $ �

� � � � � �� � � � � $

� � * � � ��� � �� � � ��� � � � �$ � � � � � � �

�� � �
 � � �

�� � �
 � � � � � � � � � �� 	

� � � �� � " +� + , � � 4 " $

� � " � +

� � " � +

	 � " � +

	 � � � / � � � �� � � � � � � � � �� � � � � �� � � � �� 	 �

� � � � � � � � � � � � � � � � � � � $

� � � �� � � � � � � �& � � � � � %

< � * + � �" � �

< � " + � �" � �

� � � �2� �$ � � � �� �$

� � �� �$ � � � � �� �$

" + � � � � � � ��

* + � � � � � � ��

� � <

54

Real MayaVi Example; FORTRAN Code, continued

5 � � � � � � � �� / � � � �� � � � � � � � � �� � � � � �� �

� � � �� 	 � � & � � � � � � � �& � �� $

� � � � � � � � � � � � � � � � � 4 �$

� � �� �� � � & � � �

�� � �
 � � � � � & � � � $ � � � � & � � � $ � � � � � & � � � $ �

� � � � � �� � � & � � � $

�� � �
 � � � �� 	

�� � �
 � � � � �& � ��

� � �� �� � �2� �

< � * + � � *� � � 4 "

< � " + � � *� � & 4 "

� � � �2� �$ � �
 *
 � � �� �$ 4 �
 � � � �2� �$)

� 	
 � � �
 � �$, � �&
 �& $
 � +� �
 � � � � � �� � �)" � � $)

� � � � � �� � � � � $ $
 � � � �)" � �$ 4 � � � � � $ $ 4 +� �

� � � � � � �� � � � � $) � � � � �� � � 4 " � � $ $

� � � � � � � $ 4 � � � 4 " � �$ $ $) � � �
 � �$, � ��
 �� $

� � +� �
 � � � � � �� � � � �)" $)� � � � �� � � � � $ $

� � � � � � �)" $ 4 � � � � � $ $ 4 +� �
 � � � � � �� � � � � $)

� � � � � �� � � � � 4 " $ $
 � � � � � � $ 4 � � � � �

� 4 " $ $ $

" + � � � � � � ��

* + � � � � � � ��

� � � � � �� �� � � �� � � %

� � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � �

� �"
< � (+ � � *� � � 4 "

� � � �2� �$ � �
 *
 � � �2� �$ 4

� �
 � � � �2� �$) 	
 � � �
 � �$, � �&
 �& $

� � +� �
 � � � � � �� � �)" � � $)

� � � � � �� � � � � $ $

� � � � �)" � � $ 4 � � � � � $ $ 4 +� �

� � � � � � �� � � � � $) � � � � �� � �)" � � $ $

� � � � � � � $ 4 � � �)" � �$ $ $

�) � � �
 � �$, � ��
 �� $

� � +� �
 � � � � � �� � � � �)" $)

� � � � � �� � � � � $ $

� � � � � � �)" $ 4 � � � � � $ $

� 4 +� �
 � � � � � �� � � � � $)

� � � � � �� � � � � 4 " $ $

� � � � � � � $ 4 � � � � � 4 " $ $ $

(+ � � � � � � ��

� � � � � � ! �� � � #

�� � � � �

� � <

55

Making a Movie

• In the MayaVi example above an image file is produced at each
time step

• To make a movie, use mencoder from the mplayer project
http://www.mplayerhq.hu

• Mencoder can be called from Python in this way:

� �� � � � � �

	 � � � � : � �� 	 � � � � : � : � � % , ,
� � � � : � : 4 � � : �
�

: �� � � � � � � % 1 � � + + % � � � + + % � � � � * � : � : 4 � 	 : � : � � 	 : �
�

: 4 � � 	 � � � � : � : 	 � � �	 � �� � � � : � : 4 �� 	 : � : 	 � � � : �
�

: 4 � : � : � � � � � � � � � :$

� ��� � � � 1 � � � � ��� �
6

� � � �� : � �� 	 � � � � : � 	 � �$

56

http://www.mplayerhq.hu

Conclusions for High Quality Visualizations

• There are a several possibilities for making advanced plots from
Python

• If absolute control is a must, PyOpenGL or Pivy might be the
answer

• If the purpose is to make good and quick visualization, MayaVi will
be our recommendation

• If you’re interested in Medical Image Processing, have a look at
ITK/VTK

57

Performance Issues – Tips and Tricks

• Native Python is too slow for number crunching
• Difficult to port knowledge from C/C++ and FORTRAN
• Learn by testing
• We will briefly cover:

• How to use the profiling and timing tools in Python
• Some Python performance tricks

58

Manual Timing

• � � � � module:

� � �� � � � � ��

� � � � �� � � � �� �
 � � � � � � � � � � �� � ��� � � � � � � �� � � � � � � � � � � � � �

� � � � �� � � �� �� �
 � � � � � � � � � � � �� � � � � � ��� � � � � � � � � � � � � � �

� �� � � � � � � � � �

� � � � � � �
�

� � �� � � �� � � � �� �

 � �

� �

�

� � �� � � �� � � �� �� �

 � �

• If just a few statements are involved in the test, repeat them in a
loop and compute the mean

• CPU time measurements less than a couple of seconds may be
unreliable

• Run each test several times and choose the fastest result
• The �	 �

� � � �	 function returns user, system and elapsed time

59

� � � � � �

module: for repeating code snippets

Which is fastest:
•

� � � � � � � � � � � � � � 	 � �	 	 � � � �
�

� �

•

� � � � � � � � � �	 � � � �
� 	 � � � �
�

� �

� � � � � �� � � � � �� � �

� � � � � � �� � � � � � �� � � � � � � � � � �

 � � � � �
 � � � �� � � � � � � � �� � � � ��� �

� � � � � � � �� � � � � � � � � � � �
 � �
� � � ��� � � � �

 � � � � � � � � � � � �� �

� � � � � �� � � � ! � � � �� !�

� � � � � � �� � � � � � �� � � � � � � � � � ��� � � � �

 � � � � �
 � � � � �� � � � � � � �

� � � � � � � �� � � � � � � � � � � �

� � � � � �� � � � ! ! �� � � � �

Reason
• 	 � � needs one look-up (in � � � � � �)
• � � � �

� 	 � � needs two look-ups
(in � � � � � �	 and � � � �

)

60

The

��� ��� ��� �

Module

• Basic usage:

� � �� � � � � � � � � �

� � � � � � � � � � � �� � � � � �
 � � � � � � ��

� � � �
� � � � �

� � � � �� � � �
 � � �� � � �� �
 � � � � �� � � � � � �� � � � � �

• Profile function calls: �	 � � � � � �

• Execute and profile a string: � � � � � � � � � �
� �
 � � � � � � �	 � � � � � �	 �

• Read profile data:

� � �� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � �
 � � � � � � ��

 � � �� � � � � � � � � � � ��� � � �� � �

� � � � � � � � � �
�

� � � � � �

• Sorting:

 � � � � 	 � � �
�

	 � � �	 � � 	 � � � � �
 � � � �

e.g. � � � � � � � � � �

� � � �

• Multiple sort strings can be used to tune the order

61

The

��� ��� ��� �

profiling module, continued

� �� � � � �� ��� � �

�	 � � � � � �� �� � � � !" #

� �� � � � � � � � � � � � � � � � � � �;� � � � � �

� �9 � � � � � � � �9 $

� � � � � � � � � : �& �	 � � � � � :) �	 � � � �) :$:$

� � � � � � � � � � � � � � �� � �� � �9 � � � � � � � �9 $

� � � � � � � 6
� � � � �$
� � � � �
6 � �� � � � : � � � � :$ � � � �� �
6 � �� � � � * +$

�� �� � � � � � � � � %

" + � * � � � 	 � � �� 	 � � � � � � * � � � � � � � � � 	 � � � �$ �� " �� �� + � � � � �	 �� � �

� � � � � � � �� % ��� � � �� � � � � � �

� � � � � � �� 	 � � � � � � * " + � � * + �� � � � � � � � � �
	 � � �� 3 * + �

� 	 � � � � � � � � � � � � � �	 � � � 	 � � � � � � � � �	 � � � � � � �� � � � % � ��� �� � � � � � 	 � � �� $

� �� � � + " � " � + �� � � + " � " � + �� � � % �(� � � � � " $

" *� � � + *� �� + *� � � + *� � � + �� � � % * � � � �� � � $

� *� � " + +� � + * *� � " + +� � + * �� � � % (* � �� � � � 	 *$

� *� �� + +� �� � *� �� + +� �� � �� � � % (� � �� � �$

" *� " � + *� " � + *� " � + *� " � + �� � � % " (� �� � " $

� +� + � + +� + + � " �� � * + *� � �(� � � 	 ��� � � % " * � � � � � � �$

� � �

62

Some Python Performance Tips

Use profiling and/or manual timing to find bottlenecks before bothering
to optimize.

• Exceptions are slow
• Function calls are slow
• The time of calling a function grows linearly with the number of

arguments
• Symbols are found run-time in dictionaries:

• Refering to global variables are slower than locals
(the local namespace is searched first)

• math.sin is slower than sin (two lookups)
• Be particularly careful in long loops, as usual

63

Parallel Computing via Python

• Message passing as the main principle
(thread-based parallelization not yet mature for Python)

• Intensive serial computations by mixed language implementation
• High-level inter-processor communication via Python

(user-friendly MPI modules)
• Satisfactory parallel performance relies on array slicing and

reshaping

64

Different Python MPI Modules

• pyMPI (Pat Miller, LLNL)
• pypar (Ole Nielsen, Australian National University)
• MYMPI (Timothy Kaiser, San Diego Supercomputing Center)
• pyre (Michael Aivazis, CalTech)
• ScientificPython (Konrad Hinsen, Centre de Biophysique

Moleculaie)

65

pyMPI vs. pypar

• pyMPI is an MPI module plus a special Python interpreter
(capable of interactively executing parallel programs)
• pyMPI provides a rather complete interface to MPI
• pyMPI has simple syntax
• pyMPI is flexible

(any serializable Python type can be communicated)
• pyMPI is of relatively low performance

• pypar is a light-weight MPI module of high performance
• pypar provides bindings to a small subset of MPI routines
• pypar has simple syntax

(optional functionality available via keyword arguments)
• efficient mode and flexible mode of communication

(array vs. arbitrary object)

66

An MPI Example Using pypar

� �� � � � � � � � � � � � � �� � � �� 4 � � � ��� � � � � � 	 �

� � �� � �	 � � � � � �� � �.- � �$

�� � � � � � � � �� �� � 0 �$

� � � � � � � � � �� � � �
6 � � �	 � � � � �6 � � � � �$

� � ��� � 9 � � � � � �	 � � � � � � �� � � � � � �9 � � �� � �� � � �� � �	 � � � � �$

� � �� � � � � + %

� � � � 9 � +9

� � � � �� � �� � � � � �� � � � � ��� � � � �� �" $

� � � � � � � � �� � �	 � � � � � � � �	 � �� � �� � �	 4 " $

� � �� � : � � �	 � � � � � + � �	 � � � � � � � �� � � 9 � �9 � � � � � � �	 � � � � � � � : � � � � �� � � �� � �	 4 " $

� � � � %
� � � �	 � � �� � � 4 "

� � � � ��� � � � �� � � �� � �)" $ �� � �� � �	

� � � � � � � � �� � �	 � � � � � � � �	 �$

� � � � � � �) : � :) � � � � �� � �$ � � � �� � � � � � �� � �

� � � � �� � �� � � � � �� � � � � ��� � � � �� $

� � � � �� � ��� � � �.- � �$

67

Latency and Bandwidth

• Ping-pong test: measurement of latency and bandwidth
• Platform: Linux cluster using fast ethernet (100 Mbit/s peak

bandwidth)
Latency Bandwidth

C-version MPI 133 × 10−6 s 88.176 Mbit/s

� � � �� -layered MPI 225 × 10−6 s 88.064 Mbit/s

� � �� �

-layered MPI 542 × 10−6 s 9.504 Mbit/s

• Correct use of � � � �� for efficiency:

� � � � � � � � � � � � � �
�

�
 ��� ��� � � ��� � � � � � � � � � � � � � � � �
�

� � �
�

��� � � � � � � � � � � � � � � � �� �� �
 � � � � � � �
�

���
�

�
 � � � �� � � � � � � � �
�

68

Need for Communication; Example

• Consider a five-point stencil associated with FDM

� 6
� �	 � - � � � � � � � & 6
� �)" � � � 6
� �)" $ � / � �� �$

� �6
� �	 � �� � � � � � & 6
� �)" � � � 6
� �)" $ � / � �� �$

� � � � ��� & �� � � � � " � � & 6
� �	 $ %

� � � � �� & �� � � � � " � � � 6
� �	 $ %

� 6
� �	 ! �2� � # � � �6
� �	 ! �2� � 4 " #) � �6
� �	 ! � 4 " � � # �

4 �
 � �6
� �	 ! �� � #) � �6
� �	 ! �)" � � #) � �6
� �	 ! �� �)" #

• Communication is needed across internal boundaries between
subdomains

69

Communication in x-direction

� � �� �76 � � � � �6 & 6 � � � � � � � � %

� � � � �� � �� � � � 6
� �	 !� & 6
� �	 4 " � % #
� � � � � ��� � � � �� � � � � � �6 & 6 � � � � � � � �6

� �� �� � � � � � � � � �$

� 6
� �	 !� & 6
� �	 � % # � � � � � �� � �	 � � � � � � � � �6 & 6 � � � � � � � �6
� ��

�

� � � � � � � � � � � � �6 & � �� � � � � � � � � �$

� � �� �76
� � 1 � �6 & 6 � � � � � � � � %

� � � � �� � �� � � � 6
� �	 !" � % #
� � � � � ��� � � � �� �� � 1 � �6 & 6 � � � � � � � �6

� �� �� � � � � � � � � �$

� 6
� �	 ! +� % # � � � � � �� � �	 � � � � � � 1 � �6 & 6 � � � � � � � �6
� ��

�

� � � � � � � ��� � � � �6 & � �� � � � � � � � � �$

• Preparation of an outgoing message �
�

� � �
� ��

�

� � � �
� � � �

• Use of

� � � �	 	 � � � � � option for performance
• Allocation of

�� � � � �
�

� is done beforehand

70

Communication in y-direction

� � �� �76 � � � � �6 � 6 � � � � � � � � %

� � � � �� � �� � � � 6
� �	 ! % � � � 6
� �	 4 " #
� � � � � ��� � � � �� � � � � � �6 � 6 � � � � � � � �6

� �� �� � � � � � � � � �$

� 6
� �	 ! % � � � 6
� �	 # � � � � � �� � �	 � � � � � � � � �6 � 6 � � � � � � � �6
� ��

�

� � � � � � � � � � � � �6 � � �� � � � � � � � � �$

� � �� �76
� � 1 � �6 � 6 � � � � � � � � %

� � � � �� � �� � � � 6
� �	 ! % � " #
� � � � � ��� � � � �� �� � 1 � �6 � 6 � � � � � � � �6

� �� �� � � � � � � � � �$

� 6
� �	 ! % � + # � � � � � �� � �	 � � � � � � 1 � �6 � 6 � � � � � � � �6
� ��

�

� � � � � � � ��� � � � �6 � � �� � � � � � � � � �$

• Allocation of

�� � � � �
�

� is done beforehand
• Use of array slicing is important!

71

2D Wave Equation; FDM

• Mathematical model

∂2u(x, y, t)
∂t2 = c2∇2u(x, y, t) + f(x, y, t) in Ω,

u(x, y, t) = g(x, y, t) on ∂Ω,

• FDM discretization

ul+1
i, j = −ul−1

i, j + 2ul
i, j

+ c2 ∆t2

∆x2

(

ul
i−1, j − 2ul

i, j + ul
i+1, j

)

+ c2 ∆t2

∆y2

(

ul
i, j−1 − 2ul

i, j + ul
i, j−1

)

+ ∆t2 f(xi, y j, l∆t).

72

2D Wave Equation; Parallelization

• Domain decomposition as work load partitioning
• Serial computation within each subdomain
• At the end of each time step:

• preparation of outgoing messages (array slicing)
• exchange of messages between each pair of neighboring

subdomains
• extraction of incoming messages for the update of ghost

points

73

2D Wave Equation; Measurements

• Three approaches:
• Fortran 77 (serial subdomain computation) + � � � � �
• C (serial subdomain computation) + � � � ��

• Pure C parallel implementation (no Python at all)
• 2000 × 2000 mesh; 5656 time steps

Python-Fortran Python-C Pure C
P Time Speedup Time Speedup Time Speedup
1 223.34 N/A 253.98 N/A 225.89 N/A
2 114.75 1.95 129.72 1.96 115.83 1.95
4 60.02 3.72 68.69 3.70 61.34 3.68
8 33.28 6.71 36.79 6.90 32.59 6.93

16 18.48 12.09 20.89 12.16 18.34 12.32
32 13.85 16.13 14.75 17.22 12.15 18.59
64 9.41 23.73 10.12 25.10 7.66 29.49

128 6.72 33.24 7.42 34.23 3.83 58.98

74

Schwarz-Type Parallelization

• Global PDE

L(u) = f , x ∈ Ω

u = g, x ∈ ∂Ω

• Overlapping domain decomposition: Ω = {Ωs}P
s=1

• Additive Schwarz iterations, k = 1, 2, . . .

us,k = L̃−1 f , x ∈ Ωs

u = gartificial
s , x ∈ ∂Ωs\∂Ω

u = g, x ∈ ∂Ω

• Inherently suitable for parallelization
• Reuse of serial code on each subdomain
• Message passing for inter-subdomain communication

75

Additive Schwarz Framework

• Generic tasks:
• domain decomposition
• communication between subdomains
• control of subdomain computation and check of convergence

• Python can be used to implement a generic framework 76

A High-Level Parallelization Strategy

• Reuse of existing serial code as subdomain solver (after small
modification)

• Insertion of subdomain solvers into the additive Schwarz
framework

• Python is well suited for this type of parallelization!

77

Parallelizing a Legacy F77 Code

• Boussinesq water wave equations

∂η

∂t
+ ∇ ·

(

(H +αη)∇φ +εH
(

1
6

∂η

∂t
−

1
3
∇H · ∇φ

)

∇H
)

= 0 (1)

∂φ
∂t

+
α

2
∇φ · ∇φ + η −

ε

2
H∇ ·

(

H∇
∂φ
∂t

)

+
ε

6
H2∇2 ∂φ

∂t
= 0 (2)

• A legacy F77 code consists of two main subroutines:
•

� � � � � � � � �
�

� � � � � �� � � � solves (1) for one time step
•

� � � � � � � � �
�

� � � � �� � � �

solves (2) for one time step
• A Python class

� �� � �� � � � � � � � � hierarchy has implemented the
additive Schwarz framework associated with FDM

78

Parallelization Result

� � � � � �& �� � � � � � �� � � � �� � � �

� � �� � ��� : �� � �6 	 � � � � : � : � � � � � : � : � � �� � � � : � � � � � � � � � 0 � � � � �$

� � � � � � � �� � � � �� �� � � �& �� � � � � � �� � � * < � �� 6
� � � �� 6
� �� � � �6 � � �	 � �� � �6 � � �	 ���

�� � �� �
6 � � �6 	 � � � � � �� � �6 	 � � � ���

� � �6 � � � � � � � � � � ���

� � �6 � � �� � � � � � � � � � � �$

� � � � � � � �� � �� � � � � � � �76 	 � � �� � �
	 � � � �� �$

� �	 6 � & � � �	 6 � � � � � � � � � � �� � �� � � �
6 � � �6

� �	 6 	 � � � � �$

� 	 � �� � � � � � � � �� ��� �� � � � � �� � � � � � � � � � � � 0 � � � � �$

� �� � � �	 � �� � � �
� � 	 �� � � � � �� � � � � � � � � � � 0 � � � � �$

� � 1 � �6 & 6 � � � � � � � � � � � � � �� � �� � � 1 � �6 � � � � � � � � � ! + #

� � � � �6 & 6 � � � � � � � � � � � � � �� � �� � � � � �6 � � � � � � � � � ! + #

� � 1 � �6 � 6 � � � � � � � � � � � � � �� � �� � � 1 � �6 � � � � � � � � � !" #

� � � � �6 � 6 � � � � � � � � � � � � � �� � �� � � � � �6 � � � � � � � � � !" #

� �� � � � � �
6 � � � � �6 1 �� � � � � � � � � � � ��� � � � � � 	 � � � � � �� 	 � 	 � � �

79

Parallelization Result; Cont’d

� � +� +

1 � � � � � 3 � � � � � � %

�) � � �

� � � � � � � � 	 �� � �� � � � � �8 � � � � �� %

� �
6

� � � � � +

� � �
6 	 �� � � � � � � � � � �

� � � � � +

1 � � � � � � �
6 	 �� � � � � � � � � � �
6

� � � � 3 �� & 6
� �

6
� � � � � %

� �
6

� � � �))

�
6 � � � � �� 	 � � � �$ � � � � � � � � � � � � � � � � � � � �

�� � � � � � � � �� � � � �� � � �� 6 	 �� � ��� � � �� � /� �� � �� �� � �� � �� �

�& � �� � � � � 0 � � � � 0�

� �� � � � �� � � � ��� � � � � �

� � 1 � �6 & 6 � � � � �� � � � � �6 & 6 � � � � ��

� � 1 � �6 � 6 � � � � �� � � � � �6 � 6 � � � � �$

� � � � � � � �� � �� � � �� � �6 � � �� � � 6 � � � � �� � � �$ � 	 � � �� � �
	 � � � ��

� � �
6 	 �� � � � � � � 	 � �	 0
6 	 �� � � � �� 	 � � �� �
6 � � � $

� � � � � � � � � � �� � � � � � �8 � � � � �� %

� � � � � � � � � 0 � � � � �
80

Speedup Measurements

• 1000 × 1000 global mesh, number of time steps: 40
P Partitioning Wall-time Speed-up
1 N/A 1810.69 N/A
2 1 × 2 847.53 2.14
4 2 × 2 483.11 3.75
6 2 × 3 332.91 5.44
8 2 × 4 269.85 6.71
12 3 × 4 187.61 9.65
16 2 × 8 118.53 15.28

• Better speedup results (than simple 2D wave equation) due to
heavier computational work per subdomain

81

Extend Your Favorite Library with Python

We will briefly describe how to extend Python with FORTRAN/C/C++
code

This is done by:
• Explaining the difference between Python and the compiled

languages FORTRAN/C/C++
• Showing some simple manual wrapping code
• Describing the Numeric C-API
• Describing the tool F2PY for FORTRAN
• Describing the tool SWIG for C/C++

82

Python Objects are Dynamically Typed

• A variable may contain
objects of different types

• All info is stored in a C
struct

� � � � � � � �

• A variable’s type is declared
statically in compiled
languages

• We cannot necessarily pass
a

� � � � � � � �

to a
FORTRAN/C/C++ function

• It is necessary to convert to
the underlying C/FORTRAN
data types (int, float, . . .)

� �

� � � � �� ��� � � � � �

� � �� � � �� ��� � � �

� � �� ��� � � � � �� �

� �� ��� � � � � �
 � � � � � � �

� � � � � �� �
 � � � �

83

What Do We Know About a Python Object?

• Every Python object is of the generic type

� � � � � � � �

(a C struct)
• A particular object is usually a sub type (sub class)
• For instance, the Python integer is of type

� � � � � � � � � � �

• A sub type such as a Python integer can be converted to a proper
C integer

• The conversion needs to be done (before passing the data to
FORTRAN/C/C++ code)

84

It Is “Easy” to Extend Python With C/C++/FORTRAN

• C data types may be constructed from Python data types and vica
versa

• A C-integer can be made from a Python-integer:

� � � � � � � �
�

�	
�

� �� � � � � � � � � � � � � �
�

• A Python-integer can be made from a C-integer:

� � � � � � � � � � � � � �
�

� � � � � � � � � � � � �� � � �

• A general function to extract C data is:

� � � � � � � �
�

� �� 	 � �� � � � �
� � �

�

• The corresponding function for building Python objects:

� � � � � � � � � � �
�

�� � �
� � �� � �
� � �

�

(The two last functions will be explained later)

85

A Simple Example

• Assume that we have
implemented the factorial
function in C

• The function takes one inte-
ger as input and returns an
integer

To use the function from Python
we must:

• Convert the Python integer
to a C integer

• Call the C function
• Convert the returned integer

to a Python integer

The code doing this is usually
called the wrapper code

Use in Python

� � � � �� � � � � � � � �� � � � � � �

� � � � �

� � � � � � � � � �

� � � � � ��� � �

�

C function

� � � � � � � � � � � �
 �

� � � � � �
 � � �
 �� �
�

� � � � � � �
 �� � � � � � � � �
 �

�

�

86

Wrapper Code Example

� ��� 	 � � � � 9 �� � � �� � �9

� � � � �
	 �� � � � �	 �
 1 �� � 6
� � 	 � � �� � � � �	 �
 � � � � � �� � � � �	 �
� � � �$ �

�� � � � �	 �
 � � � � � � � � � �

��� � �2� � � � � � � �

� � � � �� � � �6
�� � � � ��� � � � � � � � ��� 9 �9 � � �$ $,
 � & � �� 	 � � � � � ��� � � � � �
 ,

� � � � �� � � � � �

� � � � � � � � � 	 � � �$ �

,
 �� � � � � � � � � � 	 � � ��
 ,

� � � � �� �� 6
� � � � �� � � � � �9 �9 � � � � � � �$ �

,
 � � � � � � �� � � �� ��� � � � � � � � � � � � � �� � �
 ,

�
� � � � �
	 �� � � � � � � < � � � � 	 � � � � � � � � ! # � �

� 9 � � 	 �9 � 1 �� � 6
� � 	 � � �� � �

6
� � � � � � 5 �
�

� � � � �� � � � � �

�
�

�� � � < � � � �
6

/ � � �

�� � � � � 	 � � � � �$

�

� � � �$ �� 6
� � � � � � �� � � �9 � � 	 �9 � � � 	 � � � � � � � �$ �

�

87

Building the Python Module

We compile and link the wrapping code and the C code into a shared
library (on Unix)

� � � �
 �
 � � � � � � � �
�

� � � � � � � � � � � �
 � � �

�

 �� � � �
�

� � � � � �
�

�
 � � � � �� �� � � �
 �� � � �� � � � � ��� � �
 � � � � � � � � � � � � �

 � � � � �� �� � � �
 �� � � ��� � � � � � � � � � � � � � � � � � � �� � � � �

� � � �
 � � � � � � � � � � � � � � � �
�

� � � � � �
 � � � � � � � �

Alternatively, make a file 	 � ��� � � � � which uses

 �	 � � � � �	

� �� � � � � �
 � � � � � �� � � � � �� � � � � �
 �� �� � � � � � � �

� � �
 � � � � ��
 � � � �
 � � � � � � � �
 � � �
 �

� � �
�

�� �
 � � � � �� � � � � � � � �
 � � � �
 �

�
 � � � � � �
 �

 � � � �
�

� � � � � �
 	 � ��� � �
 ��
�

� � � � �
 �
 	
 	

To run this file type: � � � � � � 	 � ��� � � � � �� � �

88

The C Factorial Function Used in Python

We can now use the C function:

� � � � �� � � � � � � � �� � � � � � �

� � � � � �

� � � � � � � � �

� � � � � � � � �

� � � �
 � � � � � �� � �
 �� �

� � � � � � � � �

� � � � � � � �� � �� � � � � � � � � � � � � � � � �
	�

� � � �
 � � � � ��� �
 � � ��� � � � ��� �

� � � � � � �� �� �� ��� � � � � � � � � � �
 � � � �

� � �

• The function works as expected when the input is an integer
• Inappropriate input data, such as a string, results in a

(informative) Python exception

89

Preliminary Conclusion

• It is “relatively easy” to extend Python with C functions
• All wrapper functions are “similar”
• The writing of such functions are relatively easy, once you have

done a couple of such

Downside:

• A wrapper function has to be written for each C function we want
to access

• This wrapper function checks and converts the Python data to
appropriate C data, if possible

• The writing of such functions is boring
• Lots of tools exist that aid the writing of wrapper functions
• In fact, the tools let you generate wrapper functions almost

automatically, without knowing the Python C-API

90

Tools That Aid Wrapping

• SWIG [76], David Beazley et. al.
• Boost.Python [6], Dave Abrahams et. al.
• F2PY [16], Pearu Peterson
• SCXX [73], McMillan Enterprises, Inc.
• Babel [2], LLNL
• SIP [75], Riverbank Computing Ltd.
• SILOON [74], LANL and LLNL

A more extensive list of projects can be found on the SWIG homepage

91

http://www.swig.org
http://www.boost.org
http://cens.ioc.ee/projects/f2py2e/.org
http://davidf.sjsoft.com/mirrors/mcmillan-inc/scxx.html
http://www.llnl.gov/CASC/components/babel.html
http://www.riverbankcomputing.co.uk/sip/
http://acts.nersc.gov/siloon/main.html

Topics Covered in this Session

• Brief explanation of the Numeric C-API
• Use of Numeric data structures in a more complicated setting
• Brief description of two tools: F2PY and SWIG
• This will highlight the some common problems and features with

wrapper tools

92

NumPy, revisited

• NumPy contains a set of
efficient linear algebra tools
for dense arrays

• It contains the usual BLAS
and LAPACK routines

• NumPy is usually the basis
for more special purpose
Python packages

• The C-APIs of the two
NumPy packages, Numeric
and Numarray are different,
we only describe Numeric

� � � � �� � �
 �� � � � � � �� � � �

� � �
� � � � � � � � � � �� � � 	

� � � � � ��� � �

� � � � � � � � � � � �� � � 	 �

�� � � � 	

� � �
� � � � �� � � ��� � � � � � � � � � � � � �� � � �

� � �
� � � � � � � � � � � �
� � � �

� � � � � ��� � �

� � � �� � � � �� �
 � � �� � � � �� � 	

� � �
� � �

� � � � � � � � �
�

� ��� � � �
�

� �
 � � � � � � � �� �

� � �
� � � � � ��� � �

�
 � � � �� � �� � � � � � � � � �� � � 	

93

Numeric Arrays as Seen from C

An array is of type

� � � � � � � � � � � � �

, which is a
subtype of

� � � � � � � �

It has:

- � � �� �
 � � �, a pointer to the
first element of the array

-

� � � �

, the number of
dimensions

-

� � � �
 � � � �	 � � �	 , the
number of elements in each
dimension

-

� � � �	 � � �
 �	 , the address
offset between two data ele-
ments along each dimension

� � � � �� � � � �
 � � �

� � � � � � � �
�

� � � �

� � � � � � � � � �

��� � � �
�

��� � � � � �� � � � � � �� � � � � � ��� � �

� � � � � � � � � � � � � �

� � � � � � �
�

� � � � � � �� � � � �

��� � � � � � � �

� � � � � � � � � � � � � �
�

94

Numeric Array Example

Computing the l2-norm of a 1-dimensional Numeric array:

� � � � � � � � � � � � � � � � � � � �

� � � � � �
�

��
 � � � � � � �
�

�� � � �
�

��
 � � � � � � � � �
�

� � � � � �
 � � � �� � � � � � � � � 	
�

� � � � � �
�

� � � �

� � �
 �

� � � � � ��
 � � � �
 � � � � � �
 � � � � � � � � � � � � �
 � � � � � �� � � � 	

�

� � � �
�

�� � � � � � � � � �

�

� � � �
�

�� �� � � � � � � �
�

��

�

We have left out a number of safety checks

Also, we want to pass the C data from the Numeric array to a C function
(already implemented) that does not use the Numeric C-API

95

Numeric Array Example, continued

• We want to use the following
C function from Python

• It computes the l2-norm of
the plain C array

• This function knows nothing
about Numeric!

��
 � � � � � � �
�

� � ��� � � � ��
 � � � � �
 �

��� � �
�

��
 � � � � � � �
�

�� � � �
�

��
 � � � � � � �

� � � � � �
�

� � � �

� � �
 �

� � � � �
�

� � � �
�

�� � � � � � � � � �

� � �
�

�

� � � �
�

�� �� � � � � � � �
�

��

�

� � �
 �� � � � �
�

��
�

�

96

Using the Numeric C-API

Safety checks:
• Is it a Numeric array?
• Does it have the proper dimension and type?

Casting and calling the C function:
• Fetch the data, cast to the correct C type, and send the C array to

the C function

Returning to Python:
• The return value is converted to a Python double and is returned

to Python

97

Complete Code

� � � � � � � � � � � � � � � � � � �
�

�
 �

� � � � � � � � � � � � � � � � � � � �

��� � � �

��
 � � � � � � �
�

�� � � �
�

��
 � � � � � � � �

� � � � �� � � � � � � � � � �� � � �

� � � � � � � � �
�

� � � � � �
 � � � � � � � ��
 � �
 � � � � � � � � �
�

� � � � � � � � � � �

� � �
 �� �� � �
�

� � � � � � � �
 �� � � � � � � � � � �
 � ��� � � �
 � � � � �
�

�
 � � � � � � � � �
�

� � � � � �
 �

� � � � �
�

� � � � � � ��� � � � � �� �
�

� � �
� � � �� ��

 � � � � � �
 � � � � � � � �
 � � �� � � � � � � � �� � � � � � � � ��
 � � �

�

� � �
 �� �� � �
�

�

� � � � � �
 � � � �� � � � � � � � � 	
�

� � � ��� � � � � � � �� � � � � � � �

� � � � ��
 � � � �
 � � � � �
 � � � � � �

� � � � � � � � ��
 � � � � � �

� � � �
�

�� � � � �
�

� � � � � � �
 �

� � � � � � � � � � �
� � � � � � � �

� � �
 �� � � � �� � �
�

� �� � ��
 � � � � � � � �
�

��

�

� � � � �
 �� � � � � � � � ��
 � � � � �

�

98

F2PY

F2PY is a "FORTRAN to Python interface generator" with the following
features:

• Calling FORTRAN 77/90/95, and C functions from Python
• Accessing FORTRAN 77 COMMON blocks and FORTRAN 90/95

module data from Python
• Calling Python functions from FORTRAN or C (callbacks)
• It support NumPy, both Numeric and Numarray

Author: Pearu Peterson

http://cens.ioc.ee/projects/f2py2e/

99

FORTRAN CallBack Example

A function f defined in Python is used in Fortran,

y = f(x)

�
 � ��
 � ��� � � � � � � � �� � � � � �
� �

��� � � � � � �

� �� � � ��� � � � � � �
 �
 �

� �� � � ��� � � � � � ���
 �

� � � � �� � � �

� � � �

� � � � �� �
� �

� � � � �� � � �
� �

��� � � � � � �

�� � � � �

� � �
 �
� � �	� � �

� � � ��

� � �
 ��

� � �

� � � � �� �
� � � � � � � � � �

� � � � �� �

� � � ��� �	�
 � � ��

� � �
 ��

� � �

� � � � � � � � � � �� � � � � � �

100

F2PY - Simple Example

Running F2PY:

�� � �
 � � � � � � � ��
 � � � � � � � �� � �

results in the file � � � � � � � �
� 	 �

This module is used as follows:

� � �� � � � � � � � � ��

� � �� � � �
 �� � � �� � � � �

�� � � � �	�
	�

� � �
 �� � � � � � � ��� �	�
 � � ��

� �
 �� � � � � � � �� � � �

� � � � � � � �� � � � � � � � � � � �

It cannot be any simpler !!

101

Input and Output

Input and Output in Fortan (y = f(x)):

�
 � ��
 � ��� � � � � � � � �� � � � � �
� �

��� � � � � � �

� � � � �� � � �

� � � �

� � � � �� �
� �

� � � � �� � � �
� �

The array � (or �) may be input, output or both

In Python we normally want to specify whether it is input or output
(good Python style)

� � � � � � � �� � � � � � � � �� � � � �

or

� � � � � � � �� � � � � � � �	� � � �

Notice that the last example results in the allocation of a new array,
which is not wanted if � is already made!

102

Signature File

F2PY employs signature files to adjust the Python interface (written in
F90/F95)

Examples of options:
•

� � � � � �

is used to indicate input, output or both(in this case):

� � � � � �
 � � � �	 � � � � � �
� � � � � � � � � � � �� � � � � �

• � � � � � � � �

is used to indicate optional arguments.
For instance, � may be determined from �, if not given:

� �
	 � �� � � � � �
� � � � �

�

 � � � �
 � � � � � � �	 � �� � � � � �
�

Many more options!

Use the signature file generated by F2PY as a starting point

103

Example Signature File

Run F2PY to produce a signature file:

�� � �
 � � � � � � � ��
 � � � � � � � �� � � � � � � � � � � �� � �
In the signature file we can specify whether it is input, output or both

� � � � � � �� �
 � � � � � � � � �� � ���

��� � � � � � � � � ��� � � � � � � � ��

�
 � ��
 � ��� � � � � � � � �� � � � � �
� �
 � ��� � � � � � � � �� � � � � � � � �� � �

 � � � � � � �
� �

 � � �
� �

��
 � ��� � �

� � � � �� � � �� � � � � � � �

� ��� � � � � � ��� � �
 �
 � � �

� � � � �� � � �� � � � � � � �

� ��� � � � � � ���

� ��� � � � � � �
 � � �

��� � � � � � � � � � � � � �� � � � �� � � � � � �
 � �

� ��� � � � � � �
 � � � � � � � �

� � � � �� � � �
� �

� � � �
 � ��
 � ��� � � � � � �

� � � ��� � � � � � � �

� � � � � � � � � �� �
 � � � � � � � � ��

104

Specifying Input/Output in the FORTRAN Code

Earlier we saw the following code

�
 � ��
 � ��� � � � � � � � �� � � � � �
� �

��� � � � � � � �

� �� � � ��� � � � � � ��� � �
 �
 �

� �� � � ��� � � � � � ���
 �

� � � � �� � � �

� � � � �� � � �

� � � � �� �
� �

� � � � �� � � �
� �

��� � � � � � �

� � �

Here the F2PY directive and FORTRAN comment

� � � � � specifies that �

is both input and output, � is only input

105

SWIG

SWIG generates wrapper code for C and C++
• It supports Python, Perl, Tcl, Java and many more languages
• It has a large user and developer base
• It is well documented
• It is more complicated than F2PY “because” C and C++ are more

complicated than FORTRAN
• It relies on interface files (equivalent to F2PY signature files)

It has been developed for almost 10 years and supports C and most
C++ features, i.e., operator/function overloading, templates (STL),
classes and inheritance (even cross-language), . . .

106

Factorial Example

Remember the factorial function implemented in C:

��� � � � � � � ��� � �
 �

� � � � � �
 � � �
 �� �
�

� � � � � � �
 �� � � � � � � � �
 �

�

�

A corresponding interface file is

� �� �
 � � � � � � � � � � � � � � � � � �� �
 � � � � ��

� �

� � �
 � � � � ��� � � �� � � � � � � �� � � � � � � � � � � � � � � � �

� ��� � �
 �� � � � � � � � �

� �

� � �� � ��� � � � � � � � ��� � ��� � � � � � � � � � � �
� � � � � � � � �� � �
 � � �
 � �

��� � � � � � � ��� � �

�

Notice that:
• SWIG directives start with %
• The rest is plain C/C++

107

Making a Python Module with SWIG

Running SWIG:

� � � �
 � � � � � � � � � � � �

produces a file

� � � �
�

� � �� � �

Both

� � � �
�

� � �� � � and

� � � �
� � are compiled and linked to a shared

library �
� � � �

� 	 � (on Unix):

� � � �
 �
 � � � � � � � �
�

� � � � � � � � � � � �
 � �
 �� � � �
�

� � � � � �
�

� �

 � � �� � � � � ��� � �
 �� � � � � � � � � � �
 � � �� �

� � � �
 � � � � � � � � � � � � � � � �
�

� � � � � �
 � � � � � � �
 � � �� � � � � � � � �
 �

�
� � � � � � �

Additionally, a Python module

� � � �
� � � is made, which is Python layer

on top of �
� � � �

� 	 �
108

Use in Python

� � � � �� � � � � � � � �� � � � � � �

� � � � � � � � � � � �

� � � � � � � �
 � � � � � � �

 � � �

� � � � � � �
 � � � � � � � � �

� � �
� � � �� � � � � �
 � � � � � �� � �
 �� �

� � � � � � � �� � �� � � � � � � � � � � � � � � � �
	�

� � � �
 � � � � ��� �
 � � ��� � � � ��� �

� � � � � � �� �� � �� � � � � � � � � � � � �

This is almost as simple as with F2PY!!

109

A “Problem” with C/C++

Consider the function:

�� � � � � � � ��� � � � ��
 � � � � �� ��� � �� ��
 � � � � �

�

What is � (or

)?
• A pointer to a double?
• A pointer to a double array with length � (or �)?

→ There is no “easy” correspondence between C arrays and Numeric
arrays

Additionally, we do not know whether � and

are input, output or both?

110

A Vector Implemented in C++

Many numerical libraries have arrays as fundamental building blocks

• We will now describe how a simple C++ implementation of a
vector can be interfaced by SWIG

• We will show the details of a mapping between this Vector and a
Numeric array

• We will subclass the C++ Vector class in Python
• We will notice that the cross language inheritance provides a nice

way to construct certain types of callbacks

(It is easy to extend this to n-dimensional arrays)

111

Comments About the Interface

• Public data is wrapped, private or protected data is not
• There are some ambiguities, e.g,

• C/C++ has both float and double, Python only has double
• C/C++ distinguish between const and non-const, Python does

not have const
• In case of ambiguity, SWIG only wrappes the first occurrence

SWIG has many directives for adjusting the interface, some examples
are

•

� � � � � � � for renaming e.g. functions
•

� �� � � �

for extending the C++ with e.g. helper functions
•

� � � � � � � for ignoring problematic or unwanted things

112

A Vector Implemented in C++ and Its Interface

, , � � �	 � � � � � � � � �� �))

	 � � � � � �	 �

�� � � � � �

, , � � � � �	 � � � �� � � � �

� � � � � �
 �� � � �

, , � � � 	 � � �� � � � � � � �

, , 1 �� � � � ��

� � �� �
	 %

� �	 �$
�

� �	 � ��� � �$ �

� � �	 �$ � �

, , � � � � � � � � � � 	 � � �� �

 � � � � � � � � � �� � �$ �

�� � � �.- � �$ 	 �� � � � � � � � �� � � � �

�

, , � � � � � � � �� � � � �

	 �� � � � � � � � � � � � �� � � � �$ � ��� � �$ 	 �� � � �

� � � � � � � � � � �� � � � �$ � ��� � �$ �

� �	 � � � � �� � � � � � 	 �� � � � �	 � �	 $ �

, , � � � � � � � � � � � � � 	 � � �� �

 � � � � � � � � � � � � � � � � � �� � � � � �$ �

 � � � � � � � � � �� � � � � � �$ �

�
�

, , � � � ��� � � � � � 	 � � � � � � �	 � �

� � � �� � � � �	

� �
� ��� 	 � � � � 3 � �	 � � �

� �

, , � �� � � � � � � � � 	 � � � � � � �� � ��� �

, , �� � � �� � � � �� � � �

� � �� � � � �
6 6 � � � � � � �6 6

$ � �	 % % � � � �� � � � �$
�

� ��� 	 � � � � � �	 � � , , 1 �� � � � � 1 � � � � 	 � � � �

, , � � 	 � � �& � �� � � � � 	 � � � � 1 � � � � � � � � � � � � �

, , � � � 	 � � �� � �� � � ��� � � � � �& � �� � � � � �	 � � ���

, , � � � � 1 � � � � � � � 6 6 � � � � � � �6 6 � � � �� � � �

, , 1 � �
	 � 1 � � � �� � � � � �� � � � � � � � � � � �� � ��

, , � � 	 �� � � ,� �� 4 	 �� � � � � � �� � � � �$

� �& � �� � � �	 �

 � � �
6 6 � � � � � � �6 6

� ��� � �� � � � � � � � $

�

�
 � � � �$ � �$ � � �

�

�
�

113

A Vector to Numeric Filter

• There are many ways to construct mappings between two data
structures

• SWIG has a mechanism: Typemaps (which we will not use)
• We are working with large arrays → the programmer should

explicitly invoke the mapping
• It is implemented as a class, where the constructor provides the

necessary initialization (more on this later)
• We copy the data for safety, although it is possible to pass

pointers

� � � � � � � �� �
 � � � �

�
 � � � ��

� � �� �
 � � � �

�

�� � � �
 � � �� � � � � � � � � � � � � � � � � � �� � � � � � � �

�

� � � � � � � � � � � �� �
 � � � � �� � � � � � � � � � �

�

�
�

114

A Vector to Numeric Filter, continued

�� � � � � �� �
 � � �� � �
 � � �� � � � � � � � � � � � � � � �
�

� � � � � � � � � � �

�

� � � � � � � � � � �
�

� � � �� � � �
�

� � �

 �

� � � � �
�

� � � � � � ��� � � � � �� �
�

� � � � � � �� ��
 �� � � �
 � � � � � � � �

�

� � �
 �� �

� � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � �
�

� � � � � �
�
 � � �� � � � � � � � � � �
�

� � � � � � � � � � �
�

� � � � � �� � � �

�

� � � � � � � � �� � �
 �

� � � � �
�

� � � � � � � � � � � � �� �
�

� � � � � � �� ��

 �� � �
 �

�

� � �
 �� �

�
� � � � ��� � � � � � �
 � � � �� � � � � � � � � 	

�

� � � � � � � � � � � ��� �

�

� � � � ��� � � �
�

� � � ��� � �

� � �
 �

� � � � �
 � � ��
 � � � �
 � � � � � �
 � � � � � � � � � � �
 � � � � � ��� � � � 	 � �

�

�

�

�

115

A Vector to Numeric Filter, continued

� � �� �
 � � �� � � � �� �
 � � � �
 �

� � �� � �
 �� � � � �� �
 � � �
 � � � � ��� � � � � � ��� � � � � � � � �
 � � � �

� � �� � �
�

� � � � � �

�

�
� � � � � � � � � � � �� �
 � � �� � � � �� �
 � � � � �� � � � � � � � � � �

�

��� � � � � � � � � � ��� � �

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 �

� � � � � � �
�

� �� � � � � � � � � � � � �� � � � � � � �
�

� � � � � �

�

� � � � � � � � �
�

� � � � � � � ��� � �

�

� � �
 �

� � ��
 � � � �
 � � � � � �
 � � � � � � � � � � �
 � � � � � �� � � � 	 � �
 � � � � �

�

�
� � �
 �� � � � � � � �

�
�� �
 �� � � � � � �
 �

�

116

Example of Use in Python

� � � � �� � � � � � � �� � � �

� � � � �� � �
 �� � � � � � �� � � �

� � �
� � � � � � � � �

� � � � � � 	 �
� � �� 	 � � � �� 	
 �

� � � � � ��� �
 � � � 	
 � � � � 	

� � � 	 � � �

� � � � � ��� �
 � �� 	
 � � �� 	

� �� 	 � � �

� � � � � ��� �
 � �� 	
 � � �� 	

� �� 	
 � � �

� � �
� � � � � ��� �
 � � � � � � �
 � � � � � � � �

� � � � � � � � � �� �� � � ! � � � �

� � �
� � � � � � � � � � � �� �
 � � � �

� � � � � � � � � � � � � �� �
 � � � � �

� � �
� � � � � ��� �
 �
 � � � � � � � �
 � �

�
 � � � � � � � � � � � � �
 � �
	

117

Some Computations on the Vector

Other classes employ

� � � :

� � � � � �� �� �� � � � �
 � � � � � � � �

� � � � � �

�
 � � � ��

�� �� �� � � � �
 � � � � � � � �
 � �

�� � � � � � � � � � � � � � �
�

�

�� � � � � � �
 � � �

�

�
�

Example of use:

�� � � �� ��� �� � � � �
 � � � � � � �� � �� � �
 � � �
 �

� � � � � � � � � �

� � �
�

� � �
 �

�
 � � � � � � � � � � �

�

�

�

What happens in � � � � � � � if we subclass

� � � in Python?
(� � � � � � � knows nothing about Python)

118

CallBack Through Inheritance

Director classes provide the mechanism:

� �� �
 � � � � � � � � � � � �
 �

 � � �

� �
� ��� � �
 �� � � � � � � �

� �

� � � � �
 � � �
 � � � � � � � �

 � � � �

� ��� � �
 �� � � � � �

� ��� � �
 �� �� ��� �� � � � �
 � � � � � � � � �

Virtual functions in

� � � can now be redefined in Python

(Notice that director classes in SWIG are new and are considered
experimental)

119

A Sub Class of Vec in Python

� � � � �� � � � � � � �� � � �
�

� � �� � �
�

� � �

� � � � � � � � � � � � � � � � �
	�

� � � �� �

� �
� � � �

� �
� � � � � � �
	�

� � � � � � � � �
� � � �

� �
� � � � � � �

� � � � � � ��
� � � � �

� � � �� � � � � � � � � � � � �
	�

� � � � � ��� �
 � � � � �� � � � � �� � � � � �

� � � �
� � � � � � �

�
� � � � � � � � � � �

� � � � � � � � ��
� � � � � �

� � �
� � � � � � � � � � �

� � � � � � 	 �
� � �� 	 � � � �� 	
 �

� � �
� � � �� � �
 � � � �� �� �� � � � �
 � � � � � � � �

� � � �� � �
 � � � � � � � � � � � �

� � � �� � �
 � � � � �� � �
 � � �

� � � � �� � � � � �� � � � � �

� � � � �� � � � � �� � � � � �

� � �
� � � � � ��� � � � ��
� � � �

�
� � � � � ��� � � � � � � � �

� � � � � �� ! � � � �� �

120

Kent Andre Mardal

Various Packages for Scientific Computing

121

PyPkg

• Intention: Distribute software
• URL: http://home.simula.no/˜arvenk/pypkg
• Author: Arve Knudsen
• License: GPL-2

122

PyPkg Usage

� � � � �� � � �� + � 4 ��� � � � � � � �� � �

This will install:
• Dolfin, FFC, FIAT
• GiNaC, Swiginac
• Instant
• MayaVi, Vtk
• PETSc
• PyCC
• PySE
• Trilinos

123

GiNaC

• Intention: Computer Algebra System
• URL: www.ginac.de
• Authors: C. Bauer, A. Frink, R. Kreckel, and J. Vollinga
• License: GPL
• GiNaC is a C++ library
• GiNaC has strong support for polynomials
• Among other things, GiNaC supports differentiation, integration

and code generation

124

Swiginac

• Intention: Python interface to GiNaC
• URL: http://swiginac.berlios.de/
• Authors: O. Skavhaug and O. Certik
• License: Open
• Swiginac provides a nice interface to GiNaC from Python
• Swiginac gives a seemless conversion between standard Python

datatypes and GiNaC datatypes

125

Swiginac Usage: Differentiation and integration

� � � � � 1 � � ��� � 	 � �� � � �

& � �� � � � � � : & :$ � � � �� � � � � � : � :$

� � � ��� �&
&
� $

� � �� � 9 � � 9 � �

� 	 � � � � �� � �� � � ��

� � �� � 9 � ��� � 9 � � � � � ��� �	 �$

� � �� � 9 � ��� �� � � � 9 � � � � � ��� � � � � �& �$

� � � � � � � �� � �
� � � ��

� � �& � � � � � � �2� & $

� � �� � 9 � � , �& � 9 � � � �&

� �� � � � � � � � � � �

� � � � � �6
� � � � � � � � � � �'& � � +� " +$

� � �� � 9 �� � � � � �& � � � � � �� � � � 9 � �� � � � �6
�

� �� � � � �� � � ��

� � � � 1 �& � � $
 � " 4& $

��� � � � � � �
6

�� � � � � ��� � � � �� � �'& � +� " � �$ $

� � �� � 9 �� � � � �� � � � � � � � � + � � " 9 � ��� � �

126

Inlining Tools

There are several tools that enable inlining of C/C++/Fortran code in
Python

• Weave (http://www.scipy.org/), C/C++ inlining
• PyInline (http://pyinline.sourceforge.net), C/C++ inlining
• Instant (http://pyinstant.sourceforge.net), C/C++ inlining
• F2PY (http://cens.ioc.ee/projects/f2py2e/), Fortran inlining

127

Instant

• Intention: Inlining of plain C/C++ code
• URL: pyinstant.sourceforge.net
• Authors: M. Westlie and K.-A. Mardal
• License: Open
• Instant uses SWIG to generate wrapper code
• Instant uses Distutils to compile the wrapper code and create a

shared library that can be imported in Python

128

Instant Usage: Inlining of a simple function

� �� � � � � � � � � � �

	 6 	 � � � � 9 9 9

� � � �� � � � � � � � � � � � � � � � � �� � �$ �

� � � � �� �) � �

�

9 9 9
�& � � � � � � � � � � � � � � � � � �$

�& � � 	 � �� � �76 �& � �� � � �� � 	 � � � �	 6 	 � � ���

� � �� � � � : � � � � "
6 �& � :$

� � � � � � � � "
6 �& � � �� � � � � � �

� � (� �

� � �� �

	 � � � � � � � �$

� � ��� � 9 � � � � � � � � � � � � � � � � � � �9 � � � � �� 	 $

• Instant also supports C/C++-functions with C-arrays, C++ classes
etc.

129

Linear Algebra Tools

Several Linear Algebra tools have Python interfaces

Dense Matrix Tools:
• Numeric

Sparse Matrix Tools:
• Trilinos (http://software.sandia.gov/trilinos)
• PETSc (http://www-unix.mcs.anl.gov/petsc/petsc-as)
• Hypre (http://acts.nersc.gov/hypre)

130

Trilinos

• Intention: Parallel framework for large scale linear/non-linear
algebra problems

• URL: http://software.sandia.gov/trilinos
• Authors: M. Heroux and many more
• License: LGPL

Trilinos has
• Dense Matrices tools
• Standard Krylov solvers, preconditioners
• Algebraic Multigrid
• Eigenvalue/Eigenvector computations
• Nonlinear Solvers
• and much more

131

Trilinos Usage: Solving a Poisson equation

� �� � � � � �� � � � � � � � ��� �- � �	 � �� � � � � ��

� & � " + + � � � � " + +

� � � � � � � � � �� � �� � � � � �$

�� � � � �� � � � � � � � � ��� � � � �� � � �& �� � � � �� �9 � � � � � 	 �76
* �9 � � � � �$

�� � � � �� � 5 � � �9 � & 9 � � & $ � �� � � � �� � 5 � � �9 � � 9 � � � $

�� � � �& � �� � � � �� � � � � �� � � �& �$

� � 5 � �� � � � �� � � � � 5 � � � � ��� � 5 � � � � � �� �$

� � 5 � �� � � � �� � � � � � � 5 �$

� � � � � � � � 9 �� & � � � � �9 % (� 9 � � � � � �9 % " +�

9 � � � � � � � � % � � � �9 % 9 �� � � � � � �
	 �� � � � 4 5 � � � � � 9 �

9 � � � � � �� � � �� % �� � �9 % 9 �� 	 � � � � � �9 �

� � �	 � � �� �� � � � � � � � � � �	 �� � � � � �� � � � �� � � �& � /� � � �$

� � �	 � 5 � � �� �� � � � � � � � � � � � � � � � �$

� � �	 � � � �� � � � � � �	 �� � � � � �� � � �$

5 � � � � � �- � �	 � �� �- � �	 � � � �� � � �& � � � 5� � � 5$

5 � � � �� 5 � � � � �	 � � � �� � � � � � � �	 $

5 � � � �� 5 � � �- � �	 � � � � �� � �- � �	 � �� � �
6 � � � � �� �- � �	 � �� � �
6 	 �$

5 � � � �� 5 � � �- � �	 � � � � �� � �- � �	 � �� � �
6 � � � � � � � " �$

5 � � � �� � � � �� � � � " � � +� " � 4 �$

132

PySE

• Intention: Finite Difference Tools in Python
• URL: http://pyfdm.sourceforge.net/

• Author: Å. Ødegård
• License: Open
• PySE provides a parallel framework for finite difference methods
• PySE gives a high-level environment for working with stencils

133

PySE Usage: Solving a Heat Equation

� � � � � � / < � � �� � � �

� � � � � � �� � � � � � 	 �'& � � $ % � � � � �� � ��� �'& $
	 � � � � $

� � � ��� � � �
� � � � � 	 �'& � � $ % � � � � �� � ��� �'& $
	 � � � � $

� � � � � � � � � �� ��� � � ! +� " �
! +� " #$
� � � � � � �� � � " + +� " + +$ $

� � / � � � � � �$

� � + � � � � � ,� �

� � 5 � �� 	 � � 5 � � � �$

��� � � � � � �� 	 � � � � � �� � � � � � �� � � �$) � �
 �� � � � 	 � � �$

��� � � � ��� � � �� � � � 5 � �� 	 � � � ��� � � � � � �� 	 � � � �� ��� � � � � � ��� � � �$ $

�) � 	 � �� � � � � � �� � � � � � � �� �� � �� � � � � � �� 	 � � � �� � � � �� � � � � � 	 $

� � � � � � � �� � � �
� � � � � 	 $

� � � � 3 � %

� � � � � $

�) � � �

� � � � � � $
134

Finite Element Tools

• FIAT, automates the generation of finite elements
• FFC, automates the evaluation of variational forms
• SyFi, a tool for defining finite elements and variational forms
• Dolfin, a finite element framework
• PyCC, a finite element framework

135

FIAT

•• Intention: To automate the generation of finite elements
• URL: http://www.fenics.org/fiat/
• Author: R. C. Kirby
• License: LGPL
• FIAT currently supports Lagrange, Hermite, Crouzeix-Raviart,

Raviart-Thomas and Nedelec elements

136

FIAT Usage: The Lagrange Element

� � � � / � � �� �� � �� � � � � �� � � �

� � � � / � � �� � �� � � � � �� � � �

� � � � �� � � �� � �� � � � � � � � � � � � � � " $

� " � � � � � �� � � � � � 	 � � �� 6 � � � 	 � �$

 + � � " ! + #

 " � � " !" #

 * � � " ! * #

� � ��� � � � �� 0 �76
� � � � �
	 � � � � � � � � � � � " +$

& � � � ��� � � ! + #

� � � & ��� � � ��� � � %

� � ��� � + �'& $

� � � & ��� � � ��� � � %

� � ��� � + �'& $) " �& $) * �'& $

� � ��� � ! + �& $) " �'& $) * �& $ � � � & �� � � �� � � #

 � � � � � � ! + �'& $ � � � & ��� � � ��� � � #

137

FFC

• Intention: Automatic and efficient evaluation of general multilinear
forms

• URL: http://www.fenics.org/ffc/
• Author: A. Logg
• License: GPL
• FFC works as a compiler for multilinear forms by generating code

(C or C++)
• The generated code is as efficient as hand-optimized code

138

FFC Usage: A Poisson Equation

� � � � � � 	 � �� � � �

� � � � �� � � / ��� � � � � � � � �� � �9 �� � �� � � �9 � 9 � � �
� � �� �9 � " $

 � � � � � / � � 	 � � �� � � � � � �� �$

� � � � �
� � /�� � 	 � � �� � � � � � �� �$

� � /�� � 	 � � �� � � � � � �� �$

� � � � � � � �� � � $ � � �� � � �$ $
 �&

� �
 �
 �&

� � 	 � �� � � � �$

139

Dolfin

• Intention: A Finite Element Framework
• URL: http://www.fenics.org/dolfin/
• Authors: J. Hoffman, J. Jansson, A. Logg and G. N. Wells
• License: GPL
• Large library with PDE and ODE solvers

140

Dolfin Usage: Solving a Poisson Equation

� � � � � � � � ��� � �� � � �

	 � � � � 5 � � �	 � � / � � 	 � � �� $ %

� � � � � � � � � � � � � � ��� �;� �$ % � � � � �� � � ��� � � �) " � +

	 � � � � 5 � �� � � � � � � � � � �� �� � �� � � � � �� $ %

� � � � � � � � � � � � � � � �� � � �� � � �$ %

� � � � ��� � � & � � +� + � � � � ��� �;� & � � " � + % � � � � � +� +

� � 5 � � �	 � �$
� �	 � 5 � �� � � � � �$

� � � � � �� � � 58 � � � � � " +� " +$

� � � � � � � �� � � �
6

� � � � � � � � �9 � � � � � �� * <� � � � �9 $

� � � � � � ��� � � � � � �� * < � � � �� �� � / � � � �$

� � � � � � ��� � � � � � �� * < � ��� �� � / � � � � �$

� � �� � � �& �$

� � � �	 � � � �$

� � � � � � � � � � � �� �� �� � � � �� �	 $

& � � �	 � � � �$

� � � � � � � �� � � 5 � � � � �$

� � � � �� � � � � � �� & � �$

141

SyFi

• Intention: Ease the definition of finite elements and their usage by
symbolic mathematics

• URL: syfi.sourceforge.net
• Author: K.-A. Mardal
• License: GPL
• SyFi relies on GiNaC and Swiginac
• SyFi supports the Lagrange, Hermite, Nedelec, Raviart-Thomas,

Crouzeix-Raviart elements
• SyFi supports differentiation, integration etc of finite elements

functions/polynomials over polygons
• SyFi/Swiginac/GiNaC have tools for C++ code generation

142

SyFi Usage: Element matrix for Poisson equation

� � � � � 1 � � �� � 	 � �� � � �

� � � � 5� / � � �� � � �

� � �
� � �� � � � � � � � �� 	 � � � �
� � �� � �$

� � � �� � �� � � � / � �$

� ��� � � � �($

� ��� � � � � � � �� � �� �$

� ��� 	 � �� � � �6
�� � � �76
� � � 	 � � �� � �$

� � � � ��� �� � � � � +� � ��� � � � �$ $ %

� � � � ��� �� � � � � +� � ��� � � � �$ $ %

�� � � � �� � � � ��� � � � � � �� � � � ��� � � �$ $
� � �� � � � ��� � � �$ $ $

� � � � � � �
� � �� ��� �� � � � �� � � � �� � � � �� � �$

� � ��� � 9 � � � ��
� �$ �9 � � �2� �$ � � � �

143

SyFi Usage: The Jacobian of a nonlinear PDE

� � � � � 1 � � ��� � 	 � �� � � �

� � � � 5� / � � �� � � �

� � �
� � �� � � � � � � � �� 	 � � � �
� � �� � �$

� � � �� � �� � � � /� �$

� ��� � � � �($

� ��� � � � � � � �
� � �� �$

� ��� 	 � �� � � �76
�� � � �76
� � � 	 � � �� � �$

� � � �� � � � � �
	 6 �� � � �& � " � � ��� � � � �$
� 9 � 9 $

� � +

� � � � ��� �� � � � � +� � �� � � � �$ $ %

�) � � ��� � � � �$
 � ��� � � �$

� � � � ��� �� � � � � +� � �� � � � �$ $ %

� � � ��� � � � � � �� � � �
 � $ � � �� � � � ��� � � �$ $ $

/ � � � � �
� � �� ��� ��� � � � �� � � � � �$

� � � � �� �� � � � � +� � ��� � � � �$ $ %

� � � � ��� � � � �$

� � � � � � � � � / �2� � �$

� � ��� � 9 � � � ��
� �$ �9 � � �2� �$ � � � �

144

PyCC

• Intention: Finite Element Framework
• URL: http://folk.uio.no/skavhaug/heart_simulations.html

• Author: G. Lines, K.-A. Mardal, O. Skavhaug, G. Staff, Å. Ødegård
• License: Soon to be open
• PyCC is a library with PDE and ODE solvers
• PyCC is particularly strong on computations concerning the

electrical activity of the heart

145

PyCC Usage: Solving a Poisson equation

� � � � �'& � � $ % � � � � �� *
 � �
 � �
	 � � � � �
& $
	 � � � � �
� $

� � � � � � � � � � � ��� � � � �� � � ��� � 	 � � � �� � <� � � < � �� 9 � �& 9 � 9 � �& * <� & �� � �- 9 $ $

�� � � �& 6
� � 	 � � �� � �� � � �& /� 	 � � �� � � � � �$

� � �� � � �& 6
�
� 	 � � �� � 	 � �� � � � 5 � � � � � � � � �� � � �& �$

� � - � � � � � �� � � �� � �	 � � � � : � :$

� � � � �� �� � � � � +� � �� � �$ $ %

� ! � # � � �'& ! � # � � ! � #$

� � �� � � �& 6
�
� 	 � � �� � 	 � �� � � � �� � � �� � � �& �$

� � �
 �

� � � � �� �� 6
��� � � � � � � �� �� � �� � � �& 6
�
� 	 � � �� � � � � � � � � � �$

� �� � �� �$ � � � � �
	 �� � �
6

� � � � �� �� 	 �� � � � � �� � �� � � � � �� �� 6
��� �$

� � /� � � �� � � � �	 � �$

� 6
�	 � - � � � � � � �� � �$ � �� � �	 � � � � : � :$

� � � � �� � � � � �� �� 6
��� � %

� 6
�	 ! � # � �& � 	 � �'& ! � # � � ! � #$

� � � �
 � 4 �
 � 6
�	

� � � 6
�	 � 	 � � � �$

� � � � �	 �� �	 �� � � �� � � �� �� � � �� " + � 4 �� � � � �$

146

References
[1] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. Numerical

Python. http://www.pfdubois.com/numpy/.

[2] Babel software package. http://www.llnl.gov/CASC/components/babel.html.

[3] D. Beazley. Python Essential Reference. SAMS, 2nd edition, 2001.

[4] Biggles package. http://biggles.sourceforge.net.

[5] Blt software package. http://blt.sourceforge.net.

[6] Boost.Python software package. http://www.boost.org.

[7] M. C. Brown. Python, The Complete Reference. McGraw-Hill, 2001.

[8] X. Cai and H. P. Langtangen. Parallelizing PDE solvers using the Python
programming language, pages 295–325. Lecture Notes in Computational
Science and Engineering. Springer, 2006.

[9] X. Cai, H. P. Langtangen, and H. Moe. On the performance of the Python
programming language for serial and parallel scientific computations. Sci-
entific Programming, 13(1):31–56, 2005.

[10] ChomboVis package.
http://seesar.lbl.gov/anag/chombo/chombovis.html.

[11] Coin - Inventor implementation. http://www.coin3d.org.

[12] Disipyl - Dislin Python interface.
http://kim.bio.upenn.edu/˜pmagwene/disipyl.html.

[13] Dislin package. http://www.linmpi.mpg.de/dislin.

[14] Dolfin software package. http://www.fenics.org/dolfin/.

[15] D. Beazley et. al. Swig 1.3 Development Documentation.
http://www.swig.org/doc.html.

[16] F2PY software package.
http://cens.ioc.ee/projects/f2py2e.

[17] FFC software package. http://www.fenics.org/ffc/.

[18] FIAT software package. http://www.fenics.org/fiat/.

[19] Gd package. http://www.boutell.com/gd.

[20] Gd Python interface.
http://newcenturycomputers.net/projects/gdmodule.html.

[21] Roman Geus. Pysparse - handling sparse matrices in python.
http://people.web.psi.ch/geus/pyfemax/pysparse.html.

[22] GiNaC software package. http://www.ginac.de.

[23] Gmt package. http://gmt.soest.hawaii.edu.

[24] Gmt Python interface.
http://www.cdc.noaa.gov/˜jsw/python/gmt.

[25] Gnu Plotutils package. http://www.gnu.org/software/plotutils.

[26] Gnuplot package. http://www.gnuplot.info.

[27] GraphicsMagick package. http://www.graphicsmagick.org.

[28] D. Harms and K. McDonald. The Quick Python Book. Manning, 1999.

[29] M. L. Hetland. Practical Python. APress, 2002.

[30] S. Holden. Python Web Programming. New Riders, 2002.

[31] Instant software package. http://syfi.sf.net.

[32] Introductory material on python.
http://www.python.org/doc/Intros.html.

[33] IPython software package. http://ipython.scipy.org.

[34] K. Hinsen and H. P. Langtangen and O. Skavhaug and Å. Ødegård. Us-
ing BSP and Python to simplify parallel programming. Future Generation
Computer Systems, 2004. In press.

[35] H. P. Langtangen. Slides collection: Scripting for Computational Science.
http://www.ifi.uio.no/˜inf3330/lecsplit/index.html.

[36] H. P. Langtangen. Python Scripting for Computational Science, volume 3
of Texts in Computational Science and Engineering. Springer, 2004.

[37] H. P. Langtangen. Scripting Resources.
http://www.ifi.uio.no/˜inf3330/scripting/doc.html, 2004.

[38] M. Lutz. Programming Python. O’Reilly, second edition, 2001.

[39] M. Lutz and D. Ascher. Learning Python. O’Reilly, 1999.

[40] A. Martelli. Python in a Nutshell. O’Reilly, 2003.

[41] A. Martelli and D. Ascher. Python Cookbook. O’Reilly, 2002.

[42] Matplotlib package. http://matplotlib.sourceforge.net.

[43] MayaVi package. http://mayavi.sourceforge.net.

[44] D. Mertz. Text Processing in Python. McGraw-Hill, 2003.

[45] Mplayer package. http://www.mplayerhq.hu.

[46] Ncarg package.
http://ngwww.ucar.edu/ng/download.html.

[47] Ncarg Python interface.
http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/python/ncarg.

[48] Numerical Python software package.
http://sourceforge.net/projects/numpy.

[49] OpenDX package. http://www.opendx.org.

[50] Pgplot package. http://www.astro.caltech.edu/ tjp/pgplot.

[51] Piddle package. http://piddle.sourceforge.net.

[52] M. Pilgrim. Dive Into Python. http://diveintopython.org/, 2002.

[53] Pivy - Inventor Python interface. http://pivy.tammura.at.

[54] Plplot package. http://plplot.sourceforge.net/index.html.

[55] Pmw - python megawidgets. http://pmw.sourceforge.net.

[56] Ppgplot - Pgplot Python interface. http://efault.net/npat/hacks/ppgplot.

[57] Py4dat package. http://pydvt.sourceforge.net.

[58] PyCC software package. http://folk.uio.no/skavhaug/heart_simulations.html.

[59] Pychart package.
http://www.hpl.hp.com/personal/Yasushi_Saito/pychart.

[60] Pymat Python-Matlab interface.
http://claymore.engineer.gvsu.edu/˜steriana/Python.

[61] PyOpenDX - OpenDX Python interface.
http://people.freebsd.org/˜rhh/py-opendx.

[62] PyOpenGL - OpenGL Python interface.
http://pyopengl.sourceforge.net.

[63] PySE software package. http://pyfdm.sf.net.

[64] Python-gnuplot interface.
http://gnuplot-py.sourceforge.net.

[65] Python Imaging Library.
http://www.pythonware.com/products/pil/index.htm.

[66] Python Vtk manipulation. http://cens.ioc.ee/projects/pyvtk.

[67] Pythonmagick - GraphicsMagick Python interface.
http://www.procoders.net/moinmoin/PythonMagick.

[68] PyX package. http://pyx.sourceforge.net.

[69] R package. http://www.r-project.org.

[70] Rpy - R Python interface. http://rpy.sourceforge.net.

[71] ScientificPython software package.
http://starship.python.net/crew/hinsen.

[72] SciPy software package. http://www.scipy.org.

[73] SCXX software package.
http://davidf.sjsoft.com/mirrors/mcmillan-inc/scxx.html.

[74] SILOON software package. http://acts.nersc.gov/siloon/main.html.

[75] SIP software package. http://www.riverbankcomputing.co.uk/sip/.

[76] SWIG software package. http://www.swig.org.

[77] Swiginac software package. http://swiginac.berlios.de/.

[78] SyFi software package. http://syfi.sf.net.

[79] Trilinos software package. http://software.sandia.gov/trilinos.

[80] G. van Rossum and F. L. Drake. Extending and Embedding the Python
Interpreter. http://docs.python.org/ext/ext.html.

[81] G. van Rossum and F. L. Drake. Python Library Reference.
http://docs.python.org/lib/lib.html.

[82] G. van Rossum and F. L. Drake. Python Tutorial.
http://docs.python.org/tut/tut.html.

[83] The Vaults of Parnassus. http://www.vex.net/parnassus.

[84] Visual Python. http://www.vpython.org.

[85] Vtk package. http://www.vtk.org.

	Crash Course in Python 1.18
	Scientific Computing with Python 1.18
	Visualization in with Python 1.18
	Performance Issues -- Tips and Tricks 1.18
	Parallel Computing via Python 1.18
	Extend Your Favorite Library with Python 1.18
	Various Packages for Scientific Computing 1.18
	@Title
	Topics
	Why Scientific Computing with Python
	addtothetoc {Crash Course in Python}
	Interactive Sessions
	A Python example
	Basic Types
	Basic Containers
	Basic Control Structures
	String and File Handling
	Functions
	Object Oriented Numerics in Python
	Special Methods (Operator Overloading)
	Functional Style Programming
	Introspection
	Python has a comprehensive library
	addtothetoc {Scientific Computing with Python}
	Numeric vs numarray vs. numpy
	Example: Solving a Differential Equation
	Numerical Solution Procedure
	Implementation using Numerical Python
	Elements of the Code
	Making Arrays with NumPy
	Making Arrays with NumPy, Continued
	Warning: Dangerous Behavior!
	Array Computing
	Array Computing, In--place Arithmetics
	Indexing and Slicing of NumPy Arrays
	More on Slicing NumPy Arrays
	Example Code, revisited
	More Details on Computing with NumPy Arrays
	Vector-Matrix products
	SciPy
	Going Further
	addtothetoc {Visualization in with Python}
	Python Plotting and Visualization
	2D Plotting and Graphing
	Comments on Code
	Gnuplot-py Example
	Gnuplot in 3D
	Gnuplot-py
	Matplotlib Example
	Matplotlib
	Summary of 2D Plotting
	Image Processing within Python
	Computer graphics - OpenGL and Open Inventor
	Visualization - MayaVi and VTK
	MayaVi Visualization
	Play with MayaVi from Python
	Real MayaVi Example
	Real MayaVi Example; Motivation
	Real MayaVi Example; Python Code
	Real MayaVi Example; Python Code, continued
	Real MayaVi Example; FORTRAN Code
	Real MayaVi Example; FORTRAN Code, continued
	Making a Movie
	Conclusions for High Quality Visualizations
	addtothetoc {Performance Issues -- Tips and Tricks}
	Manual Timing
	empbig {timeit} module: for repeating code snippets
	The empbig {hotshot} Module
	The empbig {hotshot} profiling module, continued
	Some Python Performance Tips
	addtothetoc {Parallel Computing via Python}
	Different Python MPI Modules
	pyMPI vs.~pypar
	An MPI Example Using pypar
	Latency and Bandwidth
	Need for Communication; Example
	Communication in x-direction
	Communication in y-direction
	2D Wave Equation; FDM
	2D Wave Equation; Parallelization
	2D Wave Equation; Measurements
	Schwarz-Type Parallelization
	Additive Schwarz Framework
	A High-Level Parallelization Strategy
	Parallelizing a Legacy F77 Code
	Parallelization Result
	Parallelization Result; Cont'd
	Speedup Measurements
	addtothetoc {Extend Your Favorite Library with Python}
	Python Objects are Dynamically Typed
	What Do We Know About a Python Object?
	It Is ``Easy'' to Extend Python With C/C++/FORTRAN
	A Simple Example
	Wrapper Code Example
	Building the Python Module
	The C Factorial Function Used in Python
	Preliminary Conclusion
	Tools That Aid Wrapping
	Topics Covered in this Session
	NumPy, revisited
	Numeric Arrays as Seen from C
	Numeric Array Example
	Numeric Array Example, continued
	Using the Numeric C-API
	Complete Code
	F2PY
	FORTRAN CallBack Example
	F2PY - Simple Example
	Input and Output
	Signature File
	Example Signature File
	Specifying Input/Output in the FORTRAN Code
	SWIG
	Factorial Example
	Making a Python Module with SWIG
	Use in Python
	A ``Problem'' with C/C++
	A Vector Implemented in C++
	Comments About the Interface
	A Vector Implemented in C++ and Its Interface
	A Vector to Numeric Filter
	A Vector to Numeric Filter, continued
	A Vector to Numeric Filter, continued
	Example of Use in Python
	Some Computations on the Vector
	CallBack Through Inheritance
	A Sub Class of Vec in Python
	addtothetoc {Various Packages for Scientific Computing}
	PyPkg
	PyPkg Usage
	GiNaC
	Swiginac
	Swiginac Usage: Differentiation and integration
	Inlining Tools
	Instant
	Instant Usage: Inlining of a simple function
	Linear Algebra Tools
	Trilinos
	Trilinos Usage: Solving a Poisson equation
	PySE
	PySE Usage: Solving a Heat Equation
	Finite Element Tools
	FIAT
	FIAT Usage: The Lagrange Element
	FFC
	FFC Usage: A Poisson Equation
	Dolfin
	Dolfin Usage: Solving a Poisson Equation
	SyFi
	SyFi Usage: Element matrix for Poisson equation
	SyFi Usage: The Jacobian of a nonlinear PDE
	PyCC
	PyCC Usage: Solving a Poisson equation

