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Abstract 

Several approaches have been proposed for the transition from functional requirements to object-oriented 
design. In a use case-driven development process, the use cases are important input for the identification 
of classes and their methods. There is, however, no established, empirically validated technique for the 
transition from use cases to class diagrams. One recommended technique is to derive classes by analyzing 
the use cases. It has, nevertheless, been reported that this technique leads to problems, such as the 
developers missing requirements and mistaking requirements for design. An alternative technique is to 
identify classes from a textual requirements specification and subsequently apply the use case model to 
validate the resulting class diagram. This paper describes two controlled experiments conducted to 
investigate these two approaches to applying use case models in an object-oriented design process. The 
first experiment was conducted with 53 students as subjects. Half of the subjects used a professional 
modelling tool; the other half used pen and paper. The second experiment was conducted with 22 
professional software developers as subjects, all of whom used one of several modelling tools. The first 
experiment showed that applying use cases to validate class diagrams constructed from textual 
requirements led to more complete class diagrams than did the derivation of classes from a use case 
model. In the second experiment, however, we found no such difference between the two techniques. In 
both experiments, deriving class diagrams from the use cases led to a better structure of the class 
diagrams. The results of the experiments therefore show that the technique chosen for the transition from 
use cases to class diagrams affects the quality of the class diagrams, but also that the effects of the 
techniques depend on the categories of developer applying it and on the tool with which the technique is 
applied. 
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1. Introduction 

The functional requirements of a software system can be captured and documented in use cases, 
which determine the functional scope of the objects in the system. A use case driven process in 
which the use case model is a primary artefact in the identification of system classes, is 
frequently recommended together with UML [3,6,7,15,16,18,19,25]. Nevertheless, there is no 
established technique for the transition from use cases to class diagrams. One technique is to 
derive class diagrams directly from the use cases [7,15]. We call this the derivation technique. It 
is claimed that such a development process may lead to missing classes because the use case 
model is insufficient for deriving all necessary classes, and to the developers mistaking 
requirements for design [11,31]. Alternatively, an initial class diagram can be created 
independently of the use case model, for example using grammatical analysis of textual 
requirements documents as a mechanism for identifying classes [30]. Subsequently, the use case 
model can be applied as a means of validating and improving the class diagram [22,24,28]. We 
call this technique the validation technique. 

Even though use cases are important in the creation of a class diagram, there is, to our 
knowledge, little empirical research on how to extract class diagrams effectively from use case 
models. Our goal was therefore to investigate empirically advantages and disadvantages of the 
two alternative ways of applying a use case model in an object-oriented design process.  

We previously conducted a pilot experiment with 26 students to compare the derivation 
technique with the validation technique [32]. Based on the results, we formulated hypotheses to 
test whether the two techniques result in differences in the quality of the resulting class diagrams 
with respect to their completeness and structure, and the time required for constructing them.  

The hypotheses were tested in an experiment with 53 students (called Experiment 1 in this 
paper) and another experiment with 22 professional software developers (called Experiment 2). 
The task was to construct a class diagram for a library system.  

In the pilot experiment, the subjects used only pen and paper. To increase the realism of the 
context [13,28], we introduced the use of professional modelling tools in Experiments 1 and 2. 
In Experiment 1 half of the subjects used a modelling tool, in Experiment 2 all the subjects used 
such tools. Another way of making experiments more similar to an industrial context is to use 
professionals instead of students as subjects. Hence, we replicated the student experiment with 
an experiment with professionals as subjects.  

The results from Experiment 1 showed that the validation technique led to more complete 
class diagrams in that they implemented more of the requirements than did the derivation 
technique. In Experiment 2 we found no difference between the two techniques with respect to 
completeness. However, the derivation technique resulted in class diagrams with slightly better 



structure in both experiments, although the difference was not significant in Experiment 2. There 
was no difference with respect to time for the two techniques. 

The remainder of this paper is organized as follows. Section 2 gives an overview of different 
techniques for the transition from requirements to design models and describes the two 
techniques evaluated in this experiment in detail. Section 3 presents the experimental design. 
Sections 4 and 5 report the detailed design and results of Experiments 1 and 2, respectively. 
Section 6 discusses the results of both experiments. Section 7 discusses some threats to the 
validity of the results. Section 8 presents some experiences from organising the experiments. 
Section 9 concludes and suggests further work. 

2. Transition from Use Case Model to an Object-Oriented Design 

There are several approaches to identifying classes from requirements specifications [22]:  

1. In grammatical analysis the requirements specification is searched for nouns, which are 
candidate classes or attributes of classes, and services to be delivered by the system, which 
are candidates for methods. If the emphasis is on searching the requirements specification for 
nouns, the approach can be characterized as data-driven [27]; if the emphasis is on services, 
however, the approach can be classified as responsibility-driven [34].  

2. The approach termed “common class pattern” is based on the identification of various kinds 
of classes, of which a system will typically consist [4]. Examples are physical classes, 
business classes, logical classes, application classes, computer classes and behavioural 
classes.  

3. CRC cards are specially prepared for use in brainstorming sessions. Each developer plays one 
or more cards. New classes are identified from the message passing between the players. This 
is a responsibility-driven approach [34] and requires developers/participants who know the 
system requirements well. 

4. In the use case-driven approach, the use cases are important in the identification of classes. A 
use case specifies the sequences of actions that the use case should be able to perform, that is, 
changes of state and communications with the environment. This implies that a use case 
contains a state and behaviour from which classes, attributes and methods can be derived, or 
against which class diagrams can be validated. Sequence and/or collaboration diagrams, 
which detail the requirements, are made for each use case scenario. The objects used in these 
diagrams contribute to the discovery of analysis classes. The analysis class diagram is then 
elaborated upon to produce a design model, from which code can be developed. A variant of 
the use case-driven approach, in which the classes are identified from the goals of each use 
case instead of from the scenarios, is suggested in [20]. 

 



Our goal was to investigate the two different techniques of approach (4), in which use cases are 
applied in the creation of class diagrams; namely (i) the derivation technique, in which class 
diagrams are directly derived from the use cases, and (ii) the validation technique, in which the 
use cases are applied as a means for validation. The independent variable in the experiments 
described in this paper is the technique for applying use cases in the design of class diagrams. 
The two techniques were refined in order to compare them in a controlled setting. Figure 1 and 
Table 1 describe the steps of the derivation technique, while Figure 2 and Table 2 describe the 
steps of the validation technique. There are two main differences between the two techniques: 

• The construction of an initial class diagram. In the derivation technique, a domain model is 
constructed from the use cases, and this domain model is the basis for a complete class 
diagram. In the validation technique, an initial class diagram is constructed from a textual 
requirements specification. 

• The identification of methods. In the derivation technique, sequence diagrams are used to 
identify the message passing between the classes; whereas in the validation technique, 
methods are identified from grammatical analysis of the requirements specification, and the 
method composition is subsequently validated using sequence diagrams. 

 
 

 
Fig. 1. The derivation technique 

 
Fig. 2. The validation technique 

 



Table 1. Steps of the derivation technique 
 

Table 2. Steps of the validation technique 

1. Identify the system use cases. 
2. Construct a domain model, with classes, 

attributes and associations, from the use 
case model. Note that no methods are 
added at this stage. 

3. Construct sequence diagrams for each use 
case. Use classes from the domain model 
and add new classes where necessary. 
Identify the methods necessary for the 
realization of the use cases. 

4. Extend the domain model to a complete 
class diagram by adding the classes and 
methods from the sequence diagrams.  

 

 1. Identify the classes in the system using 
grammatical analysis of the textual 
requirements. Make a list of the 
responsibilities of each class. 

2. Construct an initial class diagram with classes, 
attributes, associations and methods. 

3. Identify the system use cases. 
4. Construct a sequence diagram for each use 

case. Use classes from the initial class 
diagram. Identify the methods necessary for 
the realization of the use cases. 

5. The initial class diagram is validated, and 
possibly updated, using sequence diagrams. 
The result is the final class diagram. 

 

3. Design of Experiments 

This section describes the experimental design of the experiments. Figure 3 shows the 
independent variable, the dependent variables and the context variables. The independent 
variable was described in the previous section. Here we describe the dependent variables and 
how they are evaluated, the context variables, the hypotheses tested and the tools used in the 
experiments. This section also gives an overview of the progress through the pilot experiment 
and the two experiments. 

3.1. Dependent Variables 

The goal of the experiments described in this paper is to give recommendations with respect to 
which technique is most likely to support the efficient construction of a good object-oriented 
design in a specific context. A good design is complete and well-structured, that is, easy to 
understand [5]. The evaluation scheme thus includes three scores: 

 



Dependent variablesIndependent variable 
(Outcomes) (Technique for applying 
• Quality use cases in design) 

• Derive classes • Completeness
• Validate classes • Structure 

• Time 

Context variables
• Subjects 
• Task 
• Tool 

 
Figure 3. Experimental design 

 

1. Completeness, measured in terms of how much of the functionality described in the 
requirements specification was actually implemented in the class diagram. The following 
aspects should be satisfied: 

1. 
2. 

3. 

All services described in the requirements specification are implemented. 
The services are allocated to all and only the correct classes; that is, the class diagram 
contains all required correct classes and no superfluous classes.  
The classes contain the necessary information in terms of attributes and associations. 

Each of these three aspects were given a score between 0 (very poor) and 5 (very good), and 
the three scores were combined into one according to the following formula  

(Aspect 1 * 2 + Aspect 2 + Aspect 3)/4. 
The formula reflects that we consider the first aspect to be the most important. 
 

2. Structure, measured in terms of cohesion and coupling. Cohesion and coupling were measured 
subjectively because the class diagrams were too small to apply established metrics, such as 
the high-level design metrics described in [8,9]. Each class diagram was given a score between 
0 (very poor) and 5 (very good) on structure. 

3. Time spent on obtaining class diagrams of acceptable quality, measured in minutes. The time 
was compared only for those subjects who produced satisfactory solutions, that is, those who 
obtained a score of at least 3 on both completeness and structure. 



Three people were involved in determining what would be a correct solution to the experimental 
task. One of them was the first author of this paper, and one was an independent consultant from 
another research institute. The consultant marked the class diagrams based on that solution. He 
was not involved in the design or conduct of the experiments, and did not know the research 
questions. He was not involved in the teaching of the students in Experiment 1, and he did not 
know any of the professionals who participated in Experiment 2. He could see which class 
diagrams in Experiment 1 were made with pen and paper and which were made using a 
modelling tool, but he could not distinguish between class diagrams made with different tools 
because he received the class diagrams as pdf-documents. He knew that the subjects of 
Experiment 1 were students, and that the subjects of Experiment 2 were professionals. 
Approximately 20% of the class diagrams were also scored by the first author, and it was 
verified that these scores were consistent with those made by the consultant.  

An example of how one class diagram was marked is shown in Appendix B. The X’s mark the 
elements that were correct in that specific class diagram. 

3.2. Context Variables 

The effects of a specific technique will depend on the context in which it is used. The important 
context variables in these experiments are subjects, task and tool. 

3.2.1. Subjects 
In our opinion, students and junior professionals, with only basic knowledge of object-oriented 
modelling with UML, are more in need of support from a technique than are professionals with 
much experience from object-oriented modelling. These groups of subjects consequently 
represent our target population. The subjects in Experiment 1 were students; the subjects in 
Experiment 2 were professional consultants. The background of the subjects is described in 
detail in Sections 4 and 5. 

3.2.2. Task 
The task of these experiments was to construct a class diagram for a simple library system that 
contains functionality for borrowing and returning books and videos. This task was chosen 
because the application domain is simple and well-known. This system is described in many 
books on UML, for example [24,31]. The task was clearly smaller than most software 
development projects, but since larger development projects typically are broken down into 
smaller parts, and individual parts are often modelled by different teams [1], the task of the 
experiment may be representative for small tasks in industrial development projects. The class 
diagrams created by the subjects of the experiments contained between four and thirteen classes.  



The subjects received a textual requirements document and a use case model with the 
following use cases: 

• borrow an item 
• hand in an item 
• check the status of an item 

The use cases were described using a template format based on those given in [10]. The subjects 
were given detailed guidelines on the two techniques to apply. The guidelines are shown in 
Appendix A. 

3.2.3. Tool 
UML class diagrams are most often made using a modelling tool, although UML can be used 
with simple drawing tools or even with pen and paper. We do not believe that the tools used in 
this experiment differ much with respect to the approaches evaluated in the reported 
experiments, but some influence is likely. For example, modelling tools that assume that the 
classes are shared by all the diagrams in the model may to some extent contradict the validation 
technique. Such tools facilitate the use of already defined classes in the sequence diagrams, and 
do not encourage the development of sequence diagrams independently of the existing class 
diagram. A consequence of the classes being shared by all the diagrams in the model is that 
classes are updated when the sequence diagrams are developed. An explicit activity on updating 
the class diagrams, as prescribed in the validation process, may thus appear superfluous. 

In Experiment 1 half of the subjects used the modelling tool Tau UML Suite from Telelogic 
[33], and the other half used pen and paper. Consequently, we blocked on tool in the analysis of 
that experiment. In Experiment 2 all the subjects used one out of the three different modelling 
tools Visio [36], Rational Rose [14] and MagicDraw [35]. These tools are described in more 
detail in Sections 4 and 5.  

3.3. Hypotheses 

The results from the pilot experiment [32] showed a difference, both in the quality of the 
resulting class diagrams and in the time spent on design for the two techniques. To compare the 
two techniques, we tested the following hypotheses in Experiments 1 and 2: 

H10: There is no difference in the completeness of the class diagrams. 
H20: There is no difference in the structure of the class diagrams. 
H30: There is no difference in the time spent constructing the class diagrams. 



3.4. Supporting Tool 

All the subjects used a Web-based tool for experiment support, the Simula Experiment Support 
Environment (SESE) [2], which has the following functionality: 

It distributes experimental material. • 
• 

• 

It uploads documents produced by the subjects. In our two experiments the UML documents 
created using the various modelling tools were uploaded to SESE when they were completed.  
It records the time on each task of an experiment for each subject.  

SESE also includes a feedback collection tool, which was used in Experiment 1 [17]. This tool 
was used to check whether the subjects actually followed the guidelines describing the 
techniques. This tool contains a screen that pops up at pre-specified intervals. The subjects used 
the screen to comment on what they were doing every 15 minutes during the experiment. 
Examples of comments for one subject are given in Appendix C. 

3.5. The Series of Experiments 

Pilot Experiment 1 Experiment 2

Subjects: 53 Students Subjects: 22 consultants from  
8 companies 

Subjects: 26 students  
Tools:  26 pen and paper Tool: Pen and paper 
             27 Tau UML Tools:  8 Rational Rose  Location: One lab. 
Experimental environment:      11 Visio 

3 MagicDraw   SESE with feedback 
collection Experimental environment: SESE 

Location: One lab. Location: Different for different companies 

Figure 4. Progress through the experiments 

Figure 4 shows the progress through the pilot experiment and the two subsequent experiments. 
The differences between the pilot experiment and Experiment 1 were that the experimental 
material and the evaluation scheme were modified slightly, realism was increased by introducing 
a modelling tool and feedback collection was used to ensure internal validity.  

Experiment 2 is a differentiated replication of Experiment 1 with professional consultants as 
subjects using their usual modelling tool. A differentiated replication involves variations in 
essential aspects of the experimental conditions [21]. In Experiment 2 we decided not to use the 
feedback collection tool. A maximum of seven consultants were present at one time, and we 
therefore expected to be able without the tool to check that the guidelines were followed. 



4. Experiment 1 

The first experiment was run with students. In addition to comparing the derivation technique 
with the validation technique, we compared the use of pen and paper with the use of a 
commercially available modelling tool regarding the two techniques. This section describes the 
subjects, setting, assignment, analysis model and the results of Experiment 1. The last subsection 
discusses the explanatory power of the analysis model. 

4.1. Subjects and Setting 

The subjects were 53 students taking an undergraduate course in software engineering. The 
students were in their 3rd or 4th year of study. They had learned the basics of object-oriented 
programming and UML through this and previous courses in computer science. They had also 
used the Tau UML Suite in this and one previous course. Table 3 shows the background of the 
students regarding total study credits (20 credits equal one year of study), credits in courses that 
included UML and years of work experience. Four of the students had used UML in industry for 
1-2 months. 

 

Table 3. Background of subjects in Experiment 1 

 Min Average Max 
Credits 32 63 135 
UML Credits 0 (6 subjects) 7 15 
Work experience (years) 0 (41 subjects) 2 13 

 
The students were present in the same laboratory during the experiment. They worked until they 
were finished, the time taken varying from 2.5 to 4.5 hours. In addition to the authors of this 
paper, two more persons were present during the experiment to help the subjects with both 
understanding the experiment and the tools. 

The experiment was voluntary, but the students were informed that it was relevant for their 
course. They were also paid for their participation. 

4.2. Assignment 

A randomized block experimental design was used; each subject was assigned to one of two 
techniques by means of randomization and blocking. The two techniques were derivation and 
validation. The blocks were pen and paper and Tau UML Suite. Table 4 shows the distribution 
of the categories of subject in the different groups. The design is uneven because five of the 
students who had registered did not present themselves for the experiment. 



 
Table 4. Distribution of subjects in Experiment 1 

Technique\Tool Pen and paper Tau Total 
Derivation 14 15 29 
Validation 12 12 24 
Total 26 27 53 

 
Six of the subjects had major problems during the experiment; they either had misunderstood the 
experiment or possessed too little knowledge of UML to perform the required tasks. This was 
revealed based on their comments in the feedback collection tool. Those six subjects were 
removed from the analysis. Three of them had been assigned to the derivation technique; the 
other three to the validation technique. 

4.3. Analysis Model 

To test the hypotheses, a regression-based approach was used on the unbalanced experiment 
design. The dependent variables were completeness, structure and time, as defined in Section 
3.1. The independent variable was technique (the main treatments of this experiment were the 
two techniques). The blocking factor was tool. The model is summarised in Table 5. 
 

Table 5. Specification of analysis model 

Model Response Model Term Primary use of model term 
Technique Test H10 
Tool Assess the effect of tool on completeness 

(1) 
 

Completeness 

Technique* Tool Assess the interaction of the technique and effect of tool on 
completeness 

Technique Test H20 
Tool Assess the effect of tool on structure 

(2) Structure 

Technique* Tool Assess the interaction of the technique and effect of tool on structure 
Technique Test H30 for subjects with score 3 or higher on both completeness 

and structure 
Tool Assess the effect of tool on time 

(3) Time 

Technique* Tool Assess the interaction of the technique and effect of tool on time 
 

4.4. Descriptive Statistics and Tests of Hypotheses 

The hypotheses were tested using an unbalanced analysis of variance (ANOVA) by means of 
the GLM (General Linear Model) procedure of the SAS statistical analysis system [26]. This 
section describes the results of the experiment in terms of descriptive statistics and tests of 



hypotheses, using the GLM model in Table 5 for the three scores completeness, structure and 
time, respectively. A significance level of 5% (α=0.05) is chosen as the level of significance. 
Type III sums of squares are used in the GLM model. They are preferred in testing effects in 
unbalanced cases because they test a function of the underlying parameters that is independent 
of the number of observations per treatment combination, see discussion in [12].  

To produce exactly valid p-values, GLM assumes that the dependent variable(s) are 
continuous and that the true residual errors are independent and identically normally distributed. 
In our model, time is obviously continuous. Completeness and structure are measured on a scale 
from 0 to 5, and we consider a step from (say) 0 to 1 on the measurement scale to indicate the 
same difference as a step from (say) 4 to 5. We will, in this context, treat completeness and 
structure as continuous variables. Residual analyses of the model indicate that the assumption of 
normality is not violated.  

4.4.1. Completeness 
Table 6 shows higher median and mean scores for the validation technique than for the 
derivation technique for those who used pen and paper. The mean for the validation technique is 
only slightly higher for those who used Tau UML Suite. 

The Technique*Tool interaction is not significant, although it is very close to (F=3.77, 
p=0.0586). (As described above, most of the difference between the two techniques occurred for 
those who used pen and paper.) Therefore, the tests for the individual effects may be considered 
valid, and show a significant Technique effect (F=9.26, p=0.0040) but no significant Tool effect 
(F=0.60, p=0.4414). Hence, the validation technique gave a significantly higher score on 
completeness than did the derivation technique, so hypothesis H10 is rejected. 

4.4.2. Structure 
For structure, the results point in the opposite direction. The derivation technique gave a higher 
median and mean for both those who used pen and paper, and for those who used Tau UML 
Suite. Table 7 shows a low Technique*Tool interaction (F=3.60, p=0.4415). Hence, the 
individual effects are valid. The difference between the techniques is significant (F=4.24, 
p=0.0455), so hypothesis H20 is also rejected.  

4.4.3. Time 
The time spent on performing the tasks was compared only for those subjects who produced 
satisfactory solutions, that is, those who obtained a score of at least 3 on both completeness and 
structure. Sixteen of the subjects who applied the derivation technique, and nine of those who 
applied the validation technique, obtained such a score. 

Both in the pen-and-paper group and in the tool group, the descriptive statistics for time show 
very little difference between the two techniques. There is no Technique*Tool interaction. The 



test of difference between the two techniques gave F=0.28 and p=0.6037, so hypothesis H30 is 
not rejected. 

However, there is a relatively large difference between those who used pen and paper 
(median 172 minutes) and those who used Tau UML Suite (median 224 minutes). The 
difference is significant (F=6.77, p=0.0167). 
 

 
Table 6. Descriptive statistics for Experiment 1 

Score Block Technique N Min Q1 Median Mean Q3 Max 
Completeness Pen and paper Derivation 12 1.0 1.0 2.5 2.5 3.5 5.0 
  Validation 9 3.0 3.0 5.0 4.3 5.0 5.0 
  Total 21 1.0 2.0 3.0 3.3 5.0 5.0 
 Tau UML Suite Derivation 14 0.0 3.0 3.0 2.9 3.0 5.0 
  Validation 12 2.0 2.5 3.0 3.3 4.5 5.0 
  Total 26 0.0 3.0 3.0 3.1 4.0 5.0 
 Total Derivation 26 0.0 2.0 3.0 2.7 3.0 5.0 
  Validation 21 2.0 3.0 3.0 3.8 5.0 5.0 
Structure Pen and paper Derivation 12 1.0 2.5 4.0 3.3 4.0 5.0 
  Validation 9 1.0 2.0 2.0 2.3 3.0 3.0 
  Total 21 1.0 2.0 3.0 2.9 4.0 5.0 
 Tau UML Suite Derivation 14 0.0 2.0 3.5 3.3 4.0 5.0 
  Validation 12 1.0 2.0 2.5 2.8 4.0 5.0 
  Total 26 0.0 2.0 3.0 3.1 4.0 5.0 
 Total Derivation 26 0.0 2.0 4.0 3.3 4.0 5.0 
  Validation 21 1.0 2.0 2.0 2.6 3.0 5.0 
Time Pen and paper Derivation 6 124 137 175 174 204 226 
  Validation 4 161 165 171 182 200 227 
  Total 10 124 161 172 177 204 227 
 Tau UML Suite Derivation 10 136 202 220 216 247 263 
  Validation 5 180 185 231 224 262 264 
  Total 15 136 185 224 219 258 264 
 Total Derivation 16 124 171 207 200 231 263 
  Validation 9 161 172 185 206 231 264 



Table 7. Hypotheses testing in Experiment 1 

 Dependent Variable: Completeness 
 
             R-Square     Coeff Var      Root MSE    Completeness Mean 
             0.219068      38.99366      1.244478             3.191489 
 
 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 Technique                    1     14.34415584     14.34415584       9.26    0.0040 
 Tool                         1      0.93506494      0.93506494       0.60    0.4414 
 Technique*Tool               1      5.84415584      5.84415584       3.77    0.0586 
 
 Dependent Variable: Structure 
 
             R-Square     Coeff Var      Root MSE    Structure Mean 
             0.100140      39.76367      1.192910          3.000000 
 
 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 Technique                    1      6.04058442      6.04058442       4.24    0.0455 
 Tool                         1      0.58603896      0.58603896       0.41    0.5245 
 Technique*Tool               1      0.85876623      0.85876623       0.60    0.4415 
 
 Dependent Variable: Time 
 
             R-Square     Coeff Var      Root MSE     Time Mean 
             0.260015      19.02129      38.43823      202.0800 
 
 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 Technique                    1      410.403488      410.403488       0.28    0.6037 
 Tool                         1     9998.543023     9998.543023       6.77    0.0167 
 Technique*Tool               1        0.170930        0.170930       0.00    0.9915 

4.5. Explanatory Power of the Model 

R2 is usually defined as the proportion of variance of the response that can be explained by the 
regressor (independent) variables of a regression model. Note that, in this context, we use R2 to 
explain the existing results, not to forecast future results. Table 7 shows R2 values of 0.22, 0.10 
and 0.26 for completeness, structure and time, respectively. Given the few regressor variables 
(only Tool and Technique) and a narrow range of the regressor values (only two values each), 
the R2 values of 0.22 and 0.26 are reasonable, while 0.10 is low. Quoting from [26]: “Whether a 
given R2 value is considered to be large or small depends on the context of the particular study. 
A social scientist might consider an R2 of 0.30 to be large, while a physicist might consider 0.98 
to be small.” Few of the authors who report controlled software engineering experiments with 
humans as subjects discuss the explanatory power of their statistical models. Hence, there are no 
conventions for low/high R2 (or related measures) in our area. Nevertheless, in addition to 
reporting p-values one should also discuss the explanatory power of the studied variables. For 
example, in the study reported here, there are, of course, factors other than technique and tool 
that may explain the results, such as the subjects’ competence and motivation. This is an issue 
for future work. 



5. Experiment 2 

Experiment 2 was a replication of Experiment 1, with two differences: (i) students were replaced 
with professionals and (ii) all the participants used a professional modelling tool. 

5.1. Subjects, Setting and Assignment 

The subjects were 22 consultants from eight companies (one to seven persons from each 
company). All of them had used UML on software development projects. More than half of 
them had also studied UML as part of their education. We believe that they represent a typical 
sample of UML consultants. Table 8 shows the background of the consultants. 

 
Table 8. Background of subjects in Experiment 2 

 Min Average Max 
Credits 50 94 140 
UML Credits 0 (9 subjects) 10 30 
Work experience (years) 1 5 12 
UML experience (months) 1 13 50 

 
The companies were paid normal consultancy fees corresponding to four hours for each 
consultant, independently of how long the consultants actually spent on the experimental tasks. 
As in the student experiment, they worked until they were finished. 

During the experiment, the consultants from three of the companies were placed at Simula 
Research Laboratory, while those from the other five companies stayed in their usual work 
offices. All of the experiment sessions were run in an open concept office. As in the student 
experiment, this experiment was conducted using the Simula Experiment Support Environment. 
Two people were present during the experiments to help the consultants with understanding 
SESE and the experimental material. The experiments were conducted on five days within a 
one-month period.  

The consultants were randomly assigned to one of the two techniques; 11 to the derivation 
technique and 11 to the validation technique. The consultants were asked to use the UML tool 
with which they were familiar. In this experiment, there was no blocking on tool. Table 9 shows 
the distribution of subjects on tool, technique and company. 

 



Table 9. Distribution of subjects in Experiment 2 

 Technique Company No. of subjects 
A 2 
C 3 

Derive 

D 2 

Visio 

Validate C 4 
Derive B 2 MagicDraw 
Validate D 1 

F 1 Derive 
G 1 
E 1 
F 1 
G 3 

Rational Rose 

Validate 

H 1 
 

The project manager of two of the subjects had, just before the experiment, installed a new 
version of Rational Rose with which the subjects were not acquainted. This resulted in too much 
time spent on fumbling with the tool, so they gave up the experiment, and were removed from 
the analysis. One of them had been assigned to the derivation technique; the other to the 
validation technique. 

5.2. Descriptive Statistics and Tests of Hypotheses 

Table 10 shows the descriptive statistics and the hypothesis testing for this experiment. For 
completeness, both the median and the lower and upper quartiles are the same for both 
techniques. For structure, all of these measures are lower for the validation technique. Also for 
time, they are lower for the validation technique. The corresponding hypotheses (Section 3.3) 
were tested using a two-sample Kruskal-Wallis non-parametric test, but none of them was 
rejected (α=0.05). 
 



Table 10. Descriptive statistics and hypothesis tests for Experiment 2 

Score Technique N Min Q1 Median Q3 Max P-value Reject 
Completeness Derivation 10 0.0 3.0 4.5 5.0 5.0   
 Validation 10 1.0 3.0 4.5 5.0 5.0   
 Total 20 0.0 3.0 4.5 5.0 5.0 0.9675 No 
Structure Derivation 10 2.0 2.0 3.0 4.0 5.0   
 Validation 10 1.0 1.0 2.5 3.0 4.0   
 Total 20 1.0 2.0 3.0 3.5 5.0 0.1841 No 
Time Derivation 6 144 194 243 269 271   
 Validation 4 163 164 197 246 263   
 Total 10 144 164 226 263 271 0.5224 No 

6. Discussion 

The results from Experiment 1 showed that the class diagrams constructed with the validation 
technique implemented more of the requirements. The difference between the two techniques 
was, however, larger for the subjects using pen and paper than for those who used the modelling 
tool (Tau UML). The hypothesis testing also indicated an interaction effect, although not 
significant, between technique and tool regarding completeness.  

The class diagrams constructed with the derivation technique were structured better in both 
experiments, but the difference between the two techniques was larger for the subjects using pen 
and paper also in this case. 

In our opinion, the use of a tool reduced the effects of the design techniques because the tool 
itself imposes a process on its users to a certain extent. In this case it may have been more 
difficult to follow the validation process than the derivation process when using a modelling tool 
because the tools facilitate the use of already defined classes and methods. Using such a tool, the 
changes in the classes in one diagram may propagate to other diagrams. (This feature is 
supported to a varying extent in different tools.) 

The authors have found no other controlled experiment in the field of object-oriented design 
in which the subjects used professional modelling tools to support the design process. Hence, 
another goal of these experiments was to gain experience of conducting controlled experiments 
with such tools, including comparing the performance when using a tool with that when using 
pen and paper.  

The subjects who used a modelling tool spent more time than did those who used pen and 
paper on obtaining similar quality. We believe that the subjects who used a tool instead of pen 
and paper spent some extra time on understanding how to perform the tasks with it, even though 
they were familiar with the tool used. Those who used the tool probably also spent more time on 
getting the syntax correct to avoid error messages. In Experiment 1, the subjects may also have 



been hindered by some minor bugs in the Tau UML Suite, and by the fact that it was very slow 
in some periods due to the heavy load of 26 people working simultaneously. 

The results from Experiments 1 and 2 differ to some extent, in particular regarding 
completeness. The professional subjects spent more time than did the students and obtained a 
higher score on completeness. A possible explanation is that as professionals representing 
companies, they may have been more motivated than the students to produce diagrams of high 
quality. However, the average performance, time taken into account, of the professional was not 
better than that of the students. This shows that experience of using UML on actual software 
projects does not necessarily lead to better performance than does the training received in 
university courses on UML, at least not for smaller tasks. 

Spending more time on the experiment may in itself have led to the detection of more of the 
possible classes, and thus to reducing the effect of the techniques with respect to completeness. 

The results showed that the use of a modelling tool required more effort from the subjects 
than did the use of pen and paper, and that the effects of the two techniques were smaller for the 
subjects who used a modelling tool.  

7. Threats to Validity 

This section discusses threats to the validity of the results of the two experiments. 

7.1. Experimental Material 

Use cases can be described with many different formats and with varying level of detail. The 
format of the use cases will affect how they can be applied. The format used in these 
experiments, “The fully dressed use case template” described in [10], is frequently used and 
rather detailed. Using another format or level of detail in the use cases may have an impact on 
the results from this experiment. 
 The same, small task, in which development was done from scratch, was used in the pilot 
experiment and the two experiments. This task may influence the results. In particular, the 
results may be different on a larger system, and if development is based on existing systems [1].  

7.2. Tools Used in the Experiment 

The subjects used different modelling tools in the two experiments, and as discussed in Sections 
3.2.3 and 6, the choice of tools may influence the results. However, we were unable to get 
professional subjects who used Tau UML in their daily work. It was also infeasible to get a high 



enough number of professional subjects using each of the different tools to compensate for 
possible differences between the tools. 

7.3. Measuring Quality 

It is difficult to define, and consequently to measure, the quality of a class diagram. The quality 
in terms of completeness is subjective, but the domain of the experiments was, in this case, 
based on a well-known example from textbooks. Moreover, three persons were involved in 
determining what would be a correct solution.  

Well-defined metrics for measuring coupling and cohesion exist, for example, those described 
in [8,9], but since the class diagrams produced in these experiments were quite small and simple, 
these metrics could not be applied easily. Therefore, coupling and cohesion were also measured 
subjectively.  

8. Lessons Learned from Organising the Experiments 

An important motivation for using professional modelling tools was to gain experience of 
conducting experiments with such tools, because in our opinion traditional pen-and-paper based 
exercises are hardly realistic for dealing with relevant problems of the size and complexity of 
most contemporary software systems. We have found that it is a challenge to configure an 
experimental environment with an infrastructure of supporting technology (processes, methods, 
tools, etc.) that resembles an industrial development environment. Our experience from 
replicating several experiments with the use of professional tools is that the use of system 
development tools requires proper preparation [30]: 

• 
• 

• 

Licences, installations, access rights, etc. must be checked. 
The tools must be checked to demonstrate acceptable performance and stability when many 
subjects are working simultaneously.  
The subjects must be, or become, familiar with the tools. 

 
Hiring consultants as subjects may make these aspects simpler, because one can then agree with 
the companies that they should be responsible for the tool environment. This was the case in 
Experiment 2. However, in spite of part of the contract that the consultants should know UML 
and use a tool with which they were familiar, two of the of the consultants informed us that they 
were given a version of Rational Rose they did not know, and consequently had to give up the 
experiment.  



9. Conclusions and Future Work 

Several approaches have been proposed for moving from functional requirements to a design 
model, but these approaches have been subject to little empirical validation. A use case-driven 
development process, in which the use case model is the principal basis for a class diagram, is 
recommended together with UML, but no established, empirically validated technique for the 
transition from use case models to the construction of class diagrams exists. This paper 
identified two alternative approaches to this transition; the classes are either derived directly 
from the use cases (called the derivation technique), or the use case model are applied as a 
means of validating a class diagram constructed using another approach, for example, 
grammatical analysis of requirements documents (called the validation technique). 

We conducted a pilot experiment with 26 students as subjects, an experiment with 53 students 
as subjects and finally an experiment with 22 professional software developers as subjects to 
compare these two techniques. The aim of the experiments was to investigate differences 
between the two approaches with respect to the quality of the resulting class diagrams in terms 
of completeness and structure, and with respect to the differences in time spent on obtaining a 
good design.  

The results from the pilot experiment were confirmed in the first experiment, which showed 
that the validation technique resulted in class diagrams that implemented more of the 
requirements. The derivation technique resulted in class diagrams with a significantly better 
structure than did the validation technique in the student experiment and slightly better structure 
in the experiment with the professionals. There was no difference in time spent between the two 
techniques.  

The results support the claims that deriving classes directly from a use case model may lead 
the developers to miss some requirements, but it does not support the claim that it leads them to 
mistake requirements for design. We also believe that, based on these results, it may be 
beneficial to derive classes directly from the use cases when the use case model contains many 
details and there is a strong need for good structure, but that otherwise it is better to apply the 
use case model in validation.  

In the experiments, the use of the tool did have an effect on the results. Hence, there may be a 
threat to the external validity of the results of experiments on object-oriented design that are 
conducted using pen and paper only. Note, however, that the use of tools requires more effort 
from the subjects, but, on the other hand, in our experiments the subjects using the tool seemed 
more motivated. 

We intend to conduct further studies to investigate how to apply a use case model in an 
object-oriented design process. In particular, we intend to 
• 
• 

increase the size and complexity of the task, 
use different use case formats, 



• compare different tools by having a larger number of subjects using each tool, 
• 

• 

improve the collection of background data, as well as process information during the 
experiment, to study which process attributes and skills actually affect the quality of the 
object-oriented design, and 
extend the evaluation of the quality of the resulting class diagrams by combining several 
aspects. 
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Appendix A. The exercise guidelines 

 
Guidelines for the derivation technique Guidelines for the validation technique 
Exercise 1: Domain model 
1.  Underline each noun phrase in the use case descriptions. 

Decide for each noun phrase whether it is a concept that 
should be represented by a class candidate in the domain 
model.  

2.  For the noun phrases that do not represent class candidates, 
decide whether these concepts should be represented as 
attributes in a domain model instead. (Not all attributes are 
necessarily found this way.) 

 

Exercise 1: Initial lass diagram 
1.  Underline all noun phrases in the requirements document. 

Decide for each noun phrase whether it is a concept that 
should be represented by a class in the class diagram. 

2.  For the noun phrases that do not represent classes, decide 
whether these concepts should be represented as attributes in 
the class diagram instead. (Not all attributes are necessarily 
found this way.)  

3.  Find the verbs or other sentences that represent actions 
performed by the system or system classes. Decide whether 
these actions should be represented by one ore more methods 
in the class diagram. (Not all methods needed are necessarily 
identified this way.) 

Exercise 2: Sequence diagrams 
1  Create one sequence diagram for each use case. 
2.  Study each use case description carefully, and underline the 

verbs or sentences describing an action. Decide for each 
action whether it should be represented by one or more 
messages in the sequence diagrams. (Not all methods needed 
are necessarily identified this way) 

Exercise 2: Sequence diagrams 
1.  Create one sequence diagram for each use case. 
2.  Study each use case description carefully, and underline the 

verbs or sentences describing an action. Decide for each action 
whether it should be represented by one or more methods in 
the sequence diagrams.  

(Note! Not all methods needed are necessarily identified this way) 
Exercise 3: Class diagram 
1.  Transfer the domain model from exercise 1 into a class 

diagram. 
2.  Use the three sequence diagrams from exercise 2 to identify 

methods and associations. For each method in the sequence 
diagram: 
o If an object of class A receives a method call M, the class 

A should contain the method M in the class diagram. 
o If an object of class A calls a method of class B, there 

should be an association between the classes A and B. 
 

Exercise 3: Validation of the class diagram 
1.  Consider each method in the sequence diagram. If several 

methods together form a system service, treat them as one 
service.  

2.  For each method or service: 
o Confirm that the class that receives the method call 

contains the same or matching functionality. 
o If an object of class A calls a method of class B, there 

should be an association between the classes A and B in 
the class diagram. If the class diagram contains any 
hierarchies, remember that it may be necessary to trace the 
hierarchy upwards when validating it. 

If the validation in the previous steps failed, make the 
necessary updates. 

 



Appendix B. Example of evaluation of one class diagram 

ID 49 
Completeness - All services described in the requirements specification are implemented (Aspect 1) Score: 5 
Lending item X 
Hand in item  X 
Search for item based on id X 
Search for book based or title or author  X 
Search for video based on title X 
Show status for an item X 
Completeness – The services are allocated to all and only the correct classes (Aspect 2) Score: 3 
Library  
  Lend item X 
 Hand in item X 
 Search X 
Loan   
 Binding between item and loaner X 
 Time period for loan X 
Item  
 Information about title, author and id X 
 List of copies  
Copy  
 Loan status  
Loaner  
 Information about loaner  
Video  
 Loan period for video  
Book   
 Loan period for book  
Completeness - The classes contain the  necessary information in terms of attributes and associations (Aspect 3)  Score: 3 
Library  
 All items X 
 All loaners X  
 All loans  X 
Loan  
 Period (start and end date) X 
 Loaner X 
 Copy  X 
Item  
 All it’s copies  
 Item id X 
 Title X 
Copy  



 It’s item  
 It’s loan  
 Copy id  
 Status  
Loaner  
 Loans X 
 Loaner Id X 
Video  
Book  
 Author   
Completeness – Total score Score: 4 
Structure – Coupling and cohesion Score: 4 
Is one class dependent on many other classes?  
How well do the methods in the classes correspond with the distribution of responsibilities identified above?  
How simple and focused are the methods?  

 



Appendix C. Examples of feedback comments for one subject in 
Experiment 1 

Min. Task Comment 
21.30 1 I have read through the specifications, and underlined the nouns.  
35.68 1 I have almost finished the domain model, and I consider which associations and attributes should 

be included.  
51.42 1 I consider the possibility of dividing the inheritance between article, book and film with respect 

to article number in articles and copy number in copies. 
70.63 2 I look for verbs, etc. that can help me identify methods. At the same time I think about the 

calling structure between the classes that was identified in the domain model. 
82.35 2 I draw sequence diagrams on paper, it is difficult to anticipate in advance so that I don’t have to 

make too much clutter on the paper. This would have been much quicker with a modelling tool.  
97.15 2 I am a bit uncertain about how to organize the information. Should I model a register or not 

regarding how to extract data?  
112.02 2 Use case 2: Draw the sequence diagram according to the description. 
126.17 2 Finished use case 3, it was easy according to the description. Started on task 3. 
141.43 3 Draw the class diagram and add methods and attributes. Consider the validity of the methods. 
158.00 3 Add variables to the methods and insert associations. 
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