
Investigating the Role of Use Cases in the Construction of Class Diagrams

Bente Anda and Dag I.K. Sjøberg
Simula Research Laboratory

P.O. Box 134
NO-1325 Lysaker

NORWAY
Tel.: +47 67828306

{bentea,dagsj@simula.no}

Abstract

Several approaches have been proposed for the transition from functional requirements to object-oriented
design. In a use case-driven development process, the use cases are important input for the identification
of classes and their methods. There is, however, no established, empirically validated technique for the
transition from use cases to class diagrams. One recommended technique is to derive classes by analyzing
the use cases. It has, nevertheless, been reported that this technique leads to problems, such as the
developers missing requirements and mistaking requirements for design. An alternative technique is to
identify classes from a textual requirements specification and subsequently apply the use case model to
validate the resulting class diagram. This paper describes two controlled experiments conducted to
investigate these two approaches to applying use case models in an object-oriented design process. The
first experiment was conducted with 53 students as subjects. Half of the subjects used a professional
modelling tool; the other half used pen and paper. The second experiment was conducted with 22
professional software developers as subjects, all of whom used one of several modelling tools. The first
experiment showed that applying use cases to validate class diagrams constructed from textual
requirements led to more complete class diagrams than did the derivation of classes from a use case
model. In the second experiment, however, we found no such difference between the two techniques. In
both experiments, deriving class diagrams from the use cases led to a better structure of the class
diagrams. The results of the experiments therefore show that the technique chosen for the transition from
use cases to class diagrams affects the quality of the class diagrams, but also that the effects of the
techniques depend on the categories of developer applying it and on the tool with which the technique is
applied.

Keywords: UML, Use cases, Object-oriented design, Modelling tool, Controlled experiment, Replicated
experiment

1. Introduction

The functional requirements of a software system can be captured and documented in use cases,
which determine the functional scope of the objects in the system. A use case driven process in
which the use case model is a primary artefact in the identification of system classes, is
frequently recommended together with UML [3,6,7,15,16,18,19,25]. Nevertheless, there is no
established technique for the transition from use cases to class diagrams. One technique is to
derive class diagrams directly from the use cases [7,15]. We call this the derivation technique. It
is claimed that such a development process may lead to missing classes because the use case
model is insufficient for deriving all necessary classes, and to the developers mistaking
requirements for design [11,31]. Alternatively, an initial class diagram can be created
independently of the use case model, for example using grammatical analysis of textual
requirements documents as a mechanism for identifying classes [30]. Subsequently, the use case
model can be applied as a means of validating and improving the class diagram [22,24,28]. We
call this technique the validation technique.

Even though use cases are important in the creation of a class diagram, there is, to our
knowledge, little empirical research on how to extract class diagrams effectively from use case
models. Our goal was therefore to investigate empirically advantages and disadvantages of the
two alternative ways of applying a use case model in an object-oriented design process.

We previously conducted a pilot experiment with 26 students to compare the derivation
technique with the validation technique [32]. Based on the results, we formulated hypotheses to
test whether the two techniques result in differences in the quality of the resulting class diagrams
with respect to their completeness and structure, and the time required for constructing them.

The hypotheses were tested in an experiment with 53 students (called Experiment 1 in this
paper) and another experiment with 22 professional software developers (called Experiment 2).
The task was to construct a class diagram for a library system.

In the pilot experiment, the subjects used only pen and paper. To increase the realism of the
context [13,28], we introduced the use of professional modelling tools in Experiments 1 and 2.
In Experiment 1 half of the subjects used a modelling tool, in Experiment 2 all the subjects used
such tools. Another way of making experiments more similar to an industrial context is to use
professionals instead of students as subjects. Hence, we replicated the student experiment with
an experiment with professionals as subjects.

The results from Experiment 1 showed that the validation technique led to more complete
class diagrams in that they implemented more of the requirements than did the derivation
technique. In Experiment 2 we found no difference between the two techniques with respect to
completeness. However, the derivation technique resulted in class diagrams with slightly better

structure in both experiments, although the difference was not significant in Experiment 2. There
was no difference with respect to time for the two techniques.

The remainder of this paper is organized as follows. Section 2 gives an overview of different
techniques for the transition from requirements to design models and describes the two
techniques evaluated in this experiment in detail. Section 3 presents the experimental design.
Sections 4 and 5 report the detailed design and results of Experiments 1 and 2, respectively.
Section 6 discusses the results of both experiments. Section 7 discusses some threats to the
validity of the results. Section 8 presents some experiences from organising the experiments.
Section 9 concludes and suggests further work.

2. Transition from Use Case Model to an Object-Oriented Design

There are several approaches to identifying classes from requirements specifications [22]:

1. In grammatical analysis the requirements specification is searched for nouns, which are
candidate classes or attributes of classes, and services to be delivered by the system, which
are candidates for methods. If the emphasis is on searching the requirements specification for
nouns, the approach can be characterized as data-driven [27]; if the emphasis is on services,
however, the approach can be classified as responsibility-driven [34].

2. The approach termed “common class pattern” is based on the identification of various kinds
of classes, of which a system will typically consist [4]. Examples are physical classes,
business classes, logical classes, application classes, computer classes and behavioural
classes.

3. CRC cards are specially prepared for use in brainstorming sessions. Each developer plays one
or more cards. New classes are identified from the message passing between the players. This
is a responsibility-driven approach [34] and requires developers/participants who know the
system requirements well.

4. In the use case-driven approach, the use cases are important in the identification of classes. A
use case specifies the sequences of actions that the use case should be able to perform, that is,
changes of state and communications with the environment. This implies that a use case
contains a state and behaviour from which classes, attributes and methods can be derived, or
against which class diagrams can be validated. Sequence and/or collaboration diagrams,
which detail the requirements, are made for each use case scenario. The objects used in these
diagrams contribute to the discovery of analysis classes. The analysis class diagram is then
elaborated upon to produce a design model, from which code can be developed. A variant of
the use case-driven approach, in which the classes are identified from the goals of each use
case instead of from the scenarios, is suggested in [20].

Our goal was to investigate the two different techniques of approach (4), in which use cases are
applied in the creation of class diagrams; namely (i) the derivation technique, in which class
diagrams are directly derived from the use cases, and (ii) the validation technique, in which the
use cases are applied as a means for validation. The independent variable in the experiments
described in this paper is the technique for applying use cases in the design of class diagrams.
The two techniques were refined in order to compare them in a controlled setting. Figure 1 and
Table 1 describe the steps of the derivation technique, while Figure 2 and Table 2 describe the
steps of the validation technique. There are two main differences between the two techniques:

• The construction of an initial class diagram. In the derivation technique, a domain model is
constructed from the use cases, and this domain model is the basis for a complete class
diagram. In the validation technique, an initial class diagram is constructed from a textual
requirements specification.

• The identification of methods. In the derivation technique, sequence diagrams are used to
identify the message passing between the classes; whereas in the validation technique,
methods are identified from grammatical analysis of the requirements specification, and the
method composition is subsequently validated using sequence diagrams.

Fig. 1. The derivation technique

Fig. 2. The validation technique

Table 1. Steps of the derivation technique

Table 2. Steps of the validation technique

1. Identify the system use cases.
2. Construct a domain model, with classes,

attributes and associations, from the use
case model. Note that no methods are
added at this stage.

3. Construct sequence diagrams for each use
case. Use classes from the domain model
and add new classes where necessary.
Identify the methods necessary for the
realization of the use cases.

4. Extend the domain model to a complete
class diagram by adding the classes and
methods from the sequence diagrams.

 1. Identify the classes in the system using
grammatical analysis of the textual
requirements. Make a list of the
responsibilities of each class.

2. Construct an initial class diagram with classes,
attributes, associations and methods.

3. Identify the system use cases.
4. Construct a sequence diagram for each use

case. Use classes from the initial class
diagram. Identify the methods necessary for
the realization of the use cases.

5. The initial class diagram is validated, and
possibly updated, using sequence diagrams.
The result is the final class diagram.

3. Design of Experiments

This section describes the experimental design of the experiments. Figure 3 shows the
independent variable, the dependent variables and the context variables. The independent
variable was described in the previous section. Here we describe the dependent variables and
how they are evaluated, the context variables, the hypotheses tested and the tools used in the
experiments. This section also gives an overview of the progress through the pilot experiment
and the two experiments.

3.1. Dependent Variables

The goal of the experiments described in this paper is to give recommendations with respect to
which technique is most likely to support the efficient construction of a good object-oriented
design in a specific context. A good design is complete and well-structured, that is, easy to
understand [5]. The evaluation scheme thus includes three scores:

Dependent variablesIndependent variable
(Outcomes) (Technique for applying
• Quality use cases in design)

• Derive classes • Completeness
• Validate classes • Structure

• Time

Context variables
• Subjects
• Task
• Tool

Figure 3. Experimental design

1. Completeness, measured in terms of how much of the functionality described in the
requirements specification was actually implemented in the class diagram. The following
aspects should be satisfied:

1.
2.

3.

All services described in the requirements specification are implemented.
The services are allocated to all and only the correct classes; that is, the class diagram
contains all required correct classes and no superfluous classes.
The classes contain the necessary information in terms of attributes and associations.

Each of these three aspects were given a score between 0 (very poor) and 5 (very good), and
the three scores were combined into one according to the following formula

(Aspect 1 * 2 + Aspect 2 + Aspect 3)/4.
The formula reflects that we consider the first aspect to be the most important.

2. Structure, measured in terms of cohesion and coupling. Cohesion and coupling were measured
subjectively because the class diagrams were too small to apply established metrics, such as
the high-level design metrics described in [8,9]. Each class diagram was given a score between
0 (very poor) and 5 (very good) on structure.

3. Time spent on obtaining class diagrams of acceptable quality, measured in minutes. The time
was compared only for those subjects who produced satisfactory solutions, that is, those who
obtained a score of at least 3 on both completeness and structure.

Three people were involved in determining what would be a correct solution to the experimental
task. One of them was the first author of this paper, and one was an independent consultant from
another research institute. The consultant marked the class diagrams based on that solution. He
was not involved in the design or conduct of the experiments, and did not know the research
questions. He was not involved in the teaching of the students in Experiment 1, and he did not
know any of the professionals who participated in Experiment 2. He could see which class
diagrams in Experiment 1 were made with pen and paper and which were made using a
modelling tool, but he could not distinguish between class diagrams made with different tools
because he received the class diagrams as pdf-documents. He knew that the subjects of
Experiment 1 were students, and that the subjects of Experiment 2 were professionals.
Approximately 20% of the class diagrams were also scored by the first author, and it was
verified that these scores were consistent with those made by the consultant.

An example of how one class diagram was marked is shown in Appendix B. The X’s mark the
elements that were correct in that specific class diagram.

3.2. Context Variables

The effects of a specific technique will depend on the context in which it is used. The important
context variables in these experiments are subjects, task and tool.

3.2.1. Subjects
In our opinion, students and junior professionals, with only basic knowledge of object-oriented
modelling with UML, are more in need of support from a technique than are professionals with
much experience from object-oriented modelling. These groups of subjects consequently
represent our target population. The subjects in Experiment 1 were students; the subjects in
Experiment 2 were professional consultants. The background of the subjects is described in
detail in Sections 4 and 5.

3.2.2. Task
The task of these experiments was to construct a class diagram for a simple library system that
contains functionality for borrowing and returning books and videos. This task was chosen
because the application domain is simple and well-known. This system is described in many
books on UML, for example [24,31]. The task was clearly smaller than most software
development projects, but since larger development projects typically are broken down into
smaller parts, and individual parts are often modelled by different teams [1], the task of the
experiment may be representative for small tasks in industrial development projects. The class
diagrams created by the subjects of the experiments contained between four and thirteen classes.

The subjects received a textual requirements document and a use case model with the
following use cases:

• borrow an item
• hand in an item
• check the status of an item

The use cases were described using a template format based on those given in [10]. The subjects
were given detailed guidelines on the two techniques to apply. The guidelines are shown in
Appendix A.

3.2.3. Tool
UML class diagrams are most often made using a modelling tool, although UML can be used
with simple drawing tools or even with pen and paper. We do not believe that the tools used in
this experiment differ much with respect to the approaches evaluated in the reported
experiments, but some influence is likely. For example, modelling tools that assume that the
classes are shared by all the diagrams in the model may to some extent contradict the validation
technique. Such tools facilitate the use of already defined classes in the sequence diagrams, and
do not encourage the development of sequence diagrams independently of the existing class
diagram. A consequence of the classes being shared by all the diagrams in the model is that
classes are updated when the sequence diagrams are developed. An explicit activity on updating
the class diagrams, as prescribed in the validation process, may thus appear superfluous.

In Experiment 1 half of the subjects used the modelling tool Tau UML Suite from Telelogic
[33], and the other half used pen and paper. Consequently, we blocked on tool in the analysis of
that experiment. In Experiment 2 all the subjects used one out of the three different modelling
tools Visio [36], Rational Rose [14] and MagicDraw [35]. These tools are described in more
detail in Sections 4 and 5.

3.3. Hypotheses

The results from the pilot experiment [32] showed a difference, both in the quality of the
resulting class diagrams and in the time spent on design for the two techniques. To compare the
two techniques, we tested the following hypotheses in Experiments 1 and 2:

H10: There is no difference in the completeness of the class diagrams.
H20: There is no difference in the structure of the class diagrams.
H30: There is no difference in the time spent constructing the class diagrams.

3.4. Supporting Tool

All the subjects used a Web-based tool for experiment support, the Simula Experiment Support
Environment (SESE) [2], which has the following functionality:

It distributes experimental material. •
•

•

It uploads documents produced by the subjects. In our two experiments the UML documents
created using the various modelling tools were uploaded to SESE when they were completed.
It records the time on each task of an experiment for each subject.

SESE also includes a feedback collection tool, which was used in Experiment 1 [17]. This tool
was used to check whether the subjects actually followed the guidelines describing the
techniques. This tool contains a screen that pops up at pre-specified intervals. The subjects used
the screen to comment on what they were doing every 15 minutes during the experiment.
Examples of comments for one subject are given in Appendix C.

3.5. The Series of Experiments

Pilot Experiment 1 Experiment 2

Subjects: 53 Students Subjects: 22 consultants from
8 companies

Subjects: 26 students
Tools: 26 pen and paper Tool: Pen and paper
 27 Tau UML Tools: 8 Rational Rose Location: One lab.
Experimental environment: 11 Visio

3 MagicDraw SESE with feedback
collection Experimental environment: SESE

Location: One lab. Location: Different for different companies

Figure 4. Progress through the experiments

Figure 4 shows the progress through the pilot experiment and the two subsequent experiments.
The differences between the pilot experiment and Experiment 1 were that the experimental
material and the evaluation scheme were modified slightly, realism was increased by introducing
a modelling tool and feedback collection was used to ensure internal validity.

Experiment 2 is a differentiated replication of Experiment 1 with professional consultants as
subjects using their usual modelling tool. A differentiated replication involves variations in
essential aspects of the experimental conditions [21]. In Experiment 2 we decided not to use the
feedback collection tool. A maximum of seven consultants were present at one time, and we
therefore expected to be able without the tool to check that the guidelines were followed.

4. Experiment 1

The first experiment was run with students. In addition to comparing the derivation technique
with the validation technique, we compared the use of pen and paper with the use of a
commercially available modelling tool regarding the two techniques. This section describes the
subjects, setting, assignment, analysis model and the results of Experiment 1. The last subsection
discusses the explanatory power of the analysis model.

4.1. Subjects and Setting

The subjects were 53 students taking an undergraduate course in software engineering. The
students were in their 3rd or 4th year of study. They had learned the basics of object-oriented
programming and UML through this and previous courses in computer science. They had also
used the Tau UML Suite in this and one previous course. Table 3 shows the background of the
students regarding total study credits (20 credits equal one year of study), credits in courses that
included UML and years of work experience. Four of the students had used UML in industry for
1-2 months.

Table 3. Background of subjects in Experiment 1

 Min Average Max
Credits 32 63 135
UML Credits 0 (6 subjects) 7 15
Work experience (years) 0 (41 subjects) 2 13

The students were present in the same laboratory during the experiment. They worked until they
were finished, the time taken varying from 2.5 to 4.5 hours. In addition to the authors of this
paper, two more persons were present during the experiment to help the subjects with both
understanding the experiment and the tools.

The experiment was voluntary, but the students were informed that it was relevant for their
course. They were also paid for their participation.

4.2. Assignment

A randomized block experimental design was used; each subject was assigned to one of two
techniques by means of randomization and blocking. The two techniques were derivation and
validation. The blocks were pen and paper and Tau UML Suite. Table 4 shows the distribution
of the categories of subject in the different groups. The design is uneven because five of the
students who had registered did not present themselves for the experiment.

Table 4. Distribution of subjects in Experiment 1

Technique\Tool Pen and paper Tau Total
Derivation 14 15 29
Validation 12 12 24
Total 26 27 53

Six of the subjects had major problems during the experiment; they either had misunderstood the
experiment or possessed too little knowledge of UML to perform the required tasks. This was
revealed based on their comments in the feedback collection tool. Those six subjects were
removed from the analysis. Three of them had been assigned to the derivation technique; the
other three to the validation technique.

4.3. Analysis Model

To test the hypotheses, a regression-based approach was used on the unbalanced experiment
design. The dependent variables were completeness, structure and time, as defined in Section
3.1. The independent variable was technique (the main treatments of this experiment were the
two techniques). The blocking factor was tool. The model is summarised in Table 5.

Table 5. Specification of analysis model

Model Response Model Term Primary use of model term
Technique Test H10
Tool Assess the effect of tool on completeness

(1)

Completeness

Technique* Tool Assess the interaction of the technique and effect of tool on
completeness

Technique Test H20
Tool Assess the effect of tool on structure

(2) Structure

Technique* Tool Assess the interaction of the technique and effect of tool on structure
Technique Test H30 for subjects with score 3 or higher on both completeness

and structure
Tool Assess the effect of tool on time

(3) Time

Technique* Tool Assess the interaction of the technique and effect of tool on time

4.4. Descriptive Statistics and Tests of Hypotheses

The hypotheses were tested using an unbalanced analysis of variance (ANOVA) by means of
the GLM (General Linear Model) procedure of the SAS statistical analysis system [26]. This
section describes the results of the experiment in terms of descriptive statistics and tests of

hypotheses, using the GLM model in Table 5 for the three scores completeness, structure and
time, respectively. A significance level of 5% (α=0.05) is chosen as the level of significance.
Type III sums of squares are used in the GLM model. They are preferred in testing effects in
unbalanced cases because they test a function of the underlying parameters that is independent
of the number of observations per treatment combination, see discussion in [12].

To produce exactly valid p-values, GLM assumes that the dependent variable(s) are
continuous and that the true residual errors are independent and identically normally distributed.
In our model, time is obviously continuous. Completeness and structure are measured on a scale
from 0 to 5, and we consider a step from (say) 0 to 1 on the measurement scale to indicate the
same difference as a step from (say) 4 to 5. We will, in this context, treat completeness and
structure as continuous variables. Residual analyses of the model indicate that the assumption of
normality is not violated.

4.4.1. Completeness
Table 6 shows higher median and mean scores for the validation technique than for the
derivation technique for those who used pen and paper. The mean for the validation technique is
only slightly higher for those who used Tau UML Suite.

The Technique*Tool interaction is not significant, although it is very close to (F=3.77,
p=0.0586). (As described above, most of the difference between the two techniques occurred for
those who used pen and paper.) Therefore, the tests for the individual effects may be considered
valid, and show a significant Technique effect (F=9.26, p=0.0040) but no significant Tool effect
(F=0.60, p=0.4414). Hence, the validation technique gave a significantly higher score on
completeness than did the derivation technique, so hypothesis H10 is rejected.

4.4.2. Structure
For structure, the results point in the opposite direction. The derivation technique gave a higher
median and mean for both those who used pen and paper, and for those who used Tau UML
Suite. Table 7 shows a low Technique*Tool interaction (F=3.60, p=0.4415). Hence, the
individual effects are valid. The difference between the techniques is significant (F=4.24,
p=0.0455), so hypothesis H20 is also rejected.

4.4.3. Time
The time spent on performing the tasks was compared only for those subjects who produced
satisfactory solutions, that is, those who obtained a score of at least 3 on both completeness and
structure. Sixteen of the subjects who applied the derivation technique, and nine of those who
applied the validation technique, obtained such a score.

Both in the pen-and-paper group and in the tool group, the descriptive statistics for time show
very little difference between the two techniques. There is no Technique*Tool interaction. The

test of difference between the two techniques gave F=0.28 and p=0.6037, so hypothesis H30 is
not rejected.

However, there is a relatively large difference between those who used pen and paper
(median 172 minutes) and those who used Tau UML Suite (median 224 minutes). The
difference is significant (F=6.77, p=0.0167).

Table 6. Descriptive statistics for Experiment 1

Score Block Technique N Min Q1 Median Mean Q3 Max
Completeness Pen and paper Derivation 12 1.0 1.0 2.5 2.5 3.5 5.0
 Validation 9 3.0 3.0 5.0 4.3 5.0 5.0
 Total 21 1.0 2.0 3.0 3.3 5.0 5.0
 Tau UML Suite Derivation 14 0.0 3.0 3.0 2.9 3.0 5.0
 Validation 12 2.0 2.5 3.0 3.3 4.5 5.0
 Total 26 0.0 3.0 3.0 3.1 4.0 5.0
 Total Derivation 26 0.0 2.0 3.0 2.7 3.0 5.0
 Validation 21 2.0 3.0 3.0 3.8 5.0 5.0
Structure Pen and paper Derivation 12 1.0 2.5 4.0 3.3 4.0 5.0
 Validation 9 1.0 2.0 2.0 2.3 3.0 3.0
 Total 21 1.0 2.0 3.0 2.9 4.0 5.0
 Tau UML Suite Derivation 14 0.0 2.0 3.5 3.3 4.0 5.0
 Validation 12 1.0 2.0 2.5 2.8 4.0 5.0
 Total 26 0.0 2.0 3.0 3.1 4.0 5.0
 Total Derivation 26 0.0 2.0 4.0 3.3 4.0 5.0
 Validation 21 1.0 2.0 2.0 2.6 3.0 5.0
Time Pen and paper Derivation 6 124 137 175 174 204 226
 Validation 4 161 165 171 182 200 227
 Total 10 124 161 172 177 204 227
 Tau UML Suite Derivation 10 136 202 220 216 247 263
 Validation 5 180 185 231 224 262 264
 Total 15 136 185 224 219 258 264
 Total Derivation 16 124 171 207 200 231 263
 Validation 9 161 172 185 206 231 264

Table 7. Hypotheses testing in Experiment 1

 Dependent Variable: Completeness

 R-Square Coeff Var Root MSE Completeness Mean
 0.219068 38.99366 1.244478 3.191489

 Source DF Type III SS Mean Square F Value Pr > F
 Technique 1 14.34415584 14.34415584 9.26 0.0040
 Tool 1 0.93506494 0.93506494 0.60 0.4414
 Technique*Tool 1 5.84415584 5.84415584 3.77 0.0586

 Dependent Variable: Structure

 R-Square Coeff Var Root MSE Structure Mean
 0.100140 39.76367 1.192910 3.000000

 Source DF Type III SS Mean Square F Value Pr > F
 Technique 1 6.04058442 6.04058442 4.24 0.0455
 Tool 1 0.58603896 0.58603896 0.41 0.5245
 Technique*Tool 1 0.85876623 0.85876623 0.60 0.4415

 Dependent Variable: Time

 R-Square Coeff Var Root MSE Time Mean
 0.260015 19.02129 38.43823 202.0800

 Source DF Type III SS Mean Square F Value Pr > F
 Technique 1 410.403488 410.403488 0.28 0.6037
 Tool 1 9998.543023 9998.543023 6.77 0.0167
 Technique*Tool 1 0.170930 0.170930 0.00 0.9915

4.5. Explanatory Power of the Model

R2 is usually defined as the proportion of variance of the response that can be explained by the
regressor (independent) variables of a regression model. Note that, in this context, we use R2 to
explain the existing results, not to forecast future results. Table 7 shows R2 values of 0.22, 0.10
and 0.26 for completeness, structure and time, respectively. Given the few regressor variables
(only Tool and Technique) and a narrow range of the regressor values (only two values each),
the R2 values of 0.22 and 0.26 are reasonable, while 0.10 is low. Quoting from [26]: “Whether a
given R2 value is considered to be large or small depends on the context of the particular study.
A social scientist might consider an R2 of 0.30 to be large, while a physicist might consider 0.98
to be small.” Few of the authors who report controlled software engineering experiments with
humans as subjects discuss the explanatory power of their statistical models. Hence, there are no
conventions for low/high R2 (or related measures) in our area. Nevertheless, in addition to
reporting p-values one should also discuss the explanatory power of the studied variables. For
example, in the study reported here, there are, of course, factors other than technique and tool
that may explain the results, such as the subjects’ competence and motivation. This is an issue
for future work.

5. Experiment 2

Experiment 2 was a replication of Experiment 1, with two differences: (i) students were replaced
with professionals and (ii) all the participants used a professional modelling tool.

5.1. Subjects, Setting and Assignment

The subjects were 22 consultants from eight companies (one to seven persons from each
company). All of them had used UML on software development projects. More than half of
them had also studied UML as part of their education. We believe that they represent a typical
sample of UML consultants. Table 8 shows the background of the consultants.

Table 8. Background of subjects in Experiment 2

 Min Average Max
Credits 50 94 140
UML Credits 0 (9 subjects) 10 30
Work experience (years) 1 5 12
UML experience (months) 1 13 50

The companies were paid normal consultancy fees corresponding to four hours for each
consultant, independently of how long the consultants actually spent on the experimental tasks.
As in the student experiment, they worked until they were finished.

During the experiment, the consultants from three of the companies were placed at Simula
Research Laboratory, while those from the other five companies stayed in their usual work
offices. All of the experiment sessions were run in an open concept office. As in the student
experiment, this experiment was conducted using the Simula Experiment Support Environment.
Two people were present during the experiments to help the consultants with understanding
SESE and the experimental material. The experiments were conducted on five days within a
one-month period.

The consultants were randomly assigned to one of the two techniques; 11 to the derivation
technique and 11 to the validation technique. The consultants were asked to use the UML tool
with which they were familiar. In this experiment, there was no blocking on tool. Table 9 shows
the distribution of subjects on tool, technique and company.

Table 9. Distribution of subjects in Experiment 2

 Technique Company No. of subjects
A 2
C 3

Derive

D 2

Visio

Validate C 4
Derive B 2 MagicDraw
Validate D 1

F 1 Derive
G 1
E 1
F 1
G 3

Rational Rose

Validate

H 1

The project manager of two of the subjects had, just before the experiment, installed a new
version of Rational Rose with which the subjects were not acquainted. This resulted in too much
time spent on fumbling with the tool, so they gave up the experiment, and were removed from
the analysis. One of them had been assigned to the derivation technique; the other to the
validation technique.

5.2. Descriptive Statistics and Tests of Hypotheses

Table 10 shows the descriptive statistics and the hypothesis testing for this experiment. For
completeness, both the median and the lower and upper quartiles are the same for both
techniques. For structure, all of these measures are lower for the validation technique. Also for
time, they are lower for the validation technique. The corresponding hypotheses (Section 3.3)
were tested using a two-sample Kruskal-Wallis non-parametric test, but none of them was
rejected (α=0.05).

Table 10. Descriptive statistics and hypothesis tests for Experiment 2

Score Technique N Min Q1 Median Q3 Max P-value Reject
Completeness Derivation 10 0.0 3.0 4.5 5.0 5.0
 Validation 10 1.0 3.0 4.5 5.0 5.0
 Total 20 0.0 3.0 4.5 5.0 5.0 0.9675 No
Structure Derivation 10 2.0 2.0 3.0 4.0 5.0
 Validation 10 1.0 1.0 2.5 3.0 4.0
 Total 20 1.0 2.0 3.0 3.5 5.0 0.1841 No
Time Derivation 6 144 194 243 269 271
 Validation 4 163 164 197 246 263
 Total 10 144 164 226 263 271 0.5224 No

6. Discussion

The results from Experiment 1 showed that the class diagrams constructed with the validation
technique implemented more of the requirements. The difference between the two techniques
was, however, larger for the subjects using pen and paper than for those who used the modelling
tool (Tau UML). The hypothesis testing also indicated an interaction effect, although not
significant, between technique and tool regarding completeness.

The class diagrams constructed with the derivation technique were structured better in both
experiments, but the difference between the two techniques was larger for the subjects using pen
and paper also in this case.

In our opinion, the use of a tool reduced the effects of the design techniques because the tool
itself imposes a process on its users to a certain extent. In this case it may have been more
difficult to follow the validation process than the derivation process when using a modelling tool
because the tools facilitate the use of already defined classes and methods. Using such a tool, the
changes in the classes in one diagram may propagate to other diagrams. (This feature is
supported to a varying extent in different tools.)

The authors have found no other controlled experiment in the field of object-oriented design
in which the subjects used professional modelling tools to support the design process. Hence,
another goal of these experiments was to gain experience of conducting controlled experiments
with such tools, including comparing the performance when using a tool with that when using
pen and paper.

The subjects who used a modelling tool spent more time than did those who used pen and
paper on obtaining similar quality. We believe that the subjects who used a tool instead of pen
and paper spent some extra time on understanding how to perform the tasks with it, even though
they were familiar with the tool used. Those who used the tool probably also spent more time on
getting the syntax correct to avoid error messages. In Experiment 1, the subjects may also have

been hindered by some minor bugs in the Tau UML Suite, and by the fact that it was very slow
in some periods due to the heavy load of 26 people working simultaneously.

The results from Experiments 1 and 2 differ to some extent, in particular regarding
completeness. The professional subjects spent more time than did the students and obtained a
higher score on completeness. A possible explanation is that as professionals representing
companies, they may have been more motivated than the students to produce diagrams of high
quality. However, the average performance, time taken into account, of the professional was not
better than that of the students. This shows that experience of using UML on actual software
projects does not necessarily lead to better performance than does the training received in
university courses on UML, at least not for smaller tasks.

Spending more time on the experiment may in itself have led to the detection of more of the
possible classes, and thus to reducing the effect of the techniques with respect to completeness.

The results showed that the use of a modelling tool required more effort from the subjects
than did the use of pen and paper, and that the effects of the two techniques were smaller for the
subjects who used a modelling tool.

7. Threats to Validity

This section discusses threats to the validity of the results of the two experiments.

7.1. Experimental Material

Use cases can be described with many different formats and with varying level of detail. The
format of the use cases will affect how they can be applied. The format used in these
experiments, “The fully dressed use case template” described in [10], is frequently used and
rather detailed. Using another format or level of detail in the use cases may have an impact on
the results from this experiment.
 The same, small task, in which development was done from scratch, was used in the pilot
experiment and the two experiments. This task may influence the results. In particular, the
results may be different on a larger system, and if development is based on existing systems [1].

7.2. Tools Used in the Experiment

The subjects used different modelling tools in the two experiments, and as discussed in Sections
3.2.3 and 6, the choice of tools may influence the results. However, we were unable to get
professional subjects who used Tau UML in their daily work. It was also infeasible to get a high

enough number of professional subjects using each of the different tools to compensate for
possible differences between the tools.

7.3. Measuring Quality

It is difficult to define, and consequently to measure, the quality of a class diagram. The quality
in terms of completeness is subjective, but the domain of the experiments was, in this case,
based on a well-known example from textbooks. Moreover, three persons were involved in
determining what would be a correct solution.

Well-defined metrics for measuring coupling and cohesion exist, for example, those described
in [8,9], but since the class diagrams produced in these experiments were quite small and simple,
these metrics could not be applied easily. Therefore, coupling and cohesion were also measured
subjectively.

8. Lessons Learned from Organising the Experiments

An important motivation for using professional modelling tools was to gain experience of
conducting experiments with such tools, because in our opinion traditional pen-and-paper based
exercises are hardly realistic for dealing with relevant problems of the size and complexity of
most contemporary software systems. We have found that it is a challenge to configure an
experimental environment with an infrastructure of supporting technology (processes, methods,
tools, etc.) that resembles an industrial development environment. Our experience from
replicating several experiments with the use of professional tools is that the use of system
development tools requires proper preparation [30]:

•
•

•

Licences, installations, access rights, etc. must be checked.
The tools must be checked to demonstrate acceptable performance and stability when many
subjects are working simultaneously.
The subjects must be, or become, familiar with the tools.

Hiring consultants as subjects may make these aspects simpler, because one can then agree with
the companies that they should be responsible for the tool environment. This was the case in
Experiment 2. However, in spite of part of the contract that the consultants should know UML
and use a tool with which they were familiar, two of the of the consultants informed us that they
were given a version of Rational Rose they did not know, and consequently had to give up the
experiment.

9. Conclusions and Future Work

Several approaches have been proposed for moving from functional requirements to a design
model, but these approaches have been subject to little empirical validation. A use case-driven
development process, in which the use case model is the principal basis for a class diagram, is
recommended together with UML, but no established, empirically validated technique for the
transition from use case models to the construction of class diagrams exists. This paper
identified two alternative approaches to this transition; the classes are either derived directly
from the use cases (called the derivation technique), or the use case model are applied as a
means of validating a class diagram constructed using another approach, for example,
grammatical analysis of requirements documents (called the validation technique).

We conducted a pilot experiment with 26 students as subjects, an experiment with 53 students
as subjects and finally an experiment with 22 professional software developers as subjects to
compare these two techniques. The aim of the experiments was to investigate differences
between the two approaches with respect to the quality of the resulting class diagrams in terms
of completeness and structure, and with respect to the differences in time spent on obtaining a
good design.

The results from the pilot experiment were confirmed in the first experiment, which showed
that the validation technique resulted in class diagrams that implemented more of the
requirements. The derivation technique resulted in class diagrams with a significantly better
structure than did the validation technique in the student experiment and slightly better structure
in the experiment with the professionals. There was no difference in time spent between the two
techniques.

The results support the claims that deriving classes directly from a use case model may lead
the developers to miss some requirements, but it does not support the claim that it leads them to
mistake requirements for design. We also believe that, based on these results, it may be
beneficial to derive classes directly from the use cases when the use case model contains many
details and there is a strong need for good structure, but that otherwise it is better to apply the
use case model in validation.

In the experiments, the use of the tool did have an effect on the results. Hence, there may be a
threat to the external validity of the results of experiments on object-oriented design that are
conducted using pen and paper only. Note, however, that the use of tools requires more effort
from the subjects, but, on the other hand, in our experiments the subjects using the tool seemed
more motivated.

We intend to conduct further studies to investigate how to apply a use case model in an
object-oriented design process. In particular, we intend to
•
•

increase the size and complexity of the task,
use different use case formats,

• compare different tools by having a larger number of subjects using each tool,
•

•

improve the collection of background data, as well as process information during the
experiment, to study which process attributes and skills actually affect the quality of the
object-oriented design, and
extend the evaluation of the quality of the resulting class diagrams by combining several
aspects.

Acknowledgements

We acknowledge the students at the University of Oslo and the consultants from the companies
Bekk, Genera, Halogen, Machina, ObjectNet, Software Innovation, TietoEnator and Unified
Consulting who participated in the experiment. We also acknowledge Eskild Bush for support
on the use of the Tau UML Suite and Kjell Jahr from Telelogic for technical assistance with this
tool; Gunnar J. Carelius for adapting the experiments for use with the Simula Experiment
Support Environment (SESE) and for support during the experiments; Dag Solvoll, Yngve
Lindsjørn and Wiggo Bowitz from KompetanseWeb for implementing the necessary changes to
SESE; Per Thomas Jahr from the Norwegian Computing Center for analysing the class
diagrams; Terje Knudsen from the Department of Informatics, University of Oslo and Arne
Laukholm, Director of the Computer Centre, University of Oslo, for technical support; and
Tanja Grutshke, Christian Herzog, Tor Even Ramberg and Sinan Tanilkan for debugging the
experimental material. We would also like to thank Erik Arisholm, Chris Wright and the
anonymous referees for their valuable contributions to this paper.

References

1. Anda, B., Hansen, K., Gullesen, I. and Thorsen, H.K. Experiences from Introducing UML-based
Development in a Large Development Project. Submitted to Empirical Software Engineering, 2004.

2. Arisholm, E., Sjøberg, D.I.K., Carelius, G.J. and Lindsjørn, Y. A Web-based Support Environment for
Software Engineering Experiments. Nordic Journal of Computing, 9: 231-247, 2002.

3. Arlow, J. and Neustadt I. UML and the Unified Process. Practical Object-Oriented Analysis and
Design. Addison-Wesley, 2002.

4. Bahrami, A. Object Oriented Systems Development. McGraw-Hill, 1999.
5. Batra, D., Hoffer, J.A. and Bostrom, R.P. Comparing Representations with Relational and EER

Models. Communications of the ACM, 33(2): 126-139, 1990.
6. Bennett, S., McRobb, S. and Farmer, R. Object-Oriented Systems Analysis and Design using UML.

McGraw-Hill, New York, 1999.
7. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User Guide. Addison-

Wesley, 1999.

8. Briand, L.C., Daly, J. and Wüst, J. A Unified Framework for Cohesion Measurement in Object-
Oriented Systems. Empirical Software Engineering, 3(1): 65-117, 1998.

9. Briand, L.C, Daly, J.W. and Wüst, J. A Unified Framework for Coupling Measurement in Object-
Oriented Systems. IEEE Transactions on Software Engineering, 25(1): 91-121, 1999.

10. Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2000.
11. Dobing, B. and Parsons, J. Understanding the Role of Use Cases in UML: A Review and Research

Agenda. Journal of Database Management, 11(4): 28-36, Oct-Dec 2000.
12. Freund, R.J., Littell, R.C., and Spector, P.C., SAS System for Linear Models, Cary, NC: SAS Institute

Inc., 1991.
13. Harrison, W. N=1: An Alternative for Software Engineering Research? Beg, Borrow, or Steal: Using

Multidisciplinary Approaches in Empirical Software Engineering Research, Workshop, 5 June, 2000
at 22nd Int. Conf. on Softw. Eng. (ICSE), Limerick, Ireland, pp. 39-44, 2000.

14. IBM Rational XDE Developer Plus, V2003.06.00, http://www-306.ibm.com/software/awdtools/
developer/rosexde/, 2003.

15. Jacobson, I., Christerson, M., Jonsson P. and Overgaard, G. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.

16. Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software Development Process. Addison-
Wesley, 1999.

17. Karahasanovic, A., Anda, B., Arisholm, E, Howe, S.E., Jørgensen, M., Sjøberg, D.I.K. and Welland,
R. Collecting Feedback during Software Engineering Experiments. Accepted for publication in
Empirical Software Engineering.

18. Larman, C. Applying UML and Patterns––an Introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice-Hall, Englewood Cliffs, NJ, 2002.

19. Lethbridge, T.C. and Laganiere, R. Object-Oriented Software Engineering: Practical Software
Development Using UML and Java. McGraw-Hill, New York, 2001.

20. Liang, Y. From Use Cases to Classes: A Way of Building Object Model with UML. Information and
Software Technology, 45(2): 83-93, 2003.

21. Lindsay, R.M. and Ehrenberg, A.S.C. The Design of Replicated Studies. The American Statistician,
47(3): 217-228, August 1993.

22. Maciaszek, L. Requirements Design and System Analysis. Addison-Wesley, 2001.
23. Meyer, B. Object-Oriented Software Construction. Prentice-Hall, 1997.
24. Richter, C. Designing Flexible Object-Oriented Systems with UML. Macmillan Technical Publishing,

1999.
25. Rosenberg, D. and Scott, K. Applying Use Case Driven Object Modeling with UML. An Annotated E-

commerce Example. Addison-Wesley, 2001.
26. SAS Institute Inc., SAS Version 8, Cary, NC, USA, 1999.
27. Sharble, R.C. and Cohen, S.S. The Object-Oriented Brewery: A Comparison of Two Object-Oriented

Development Methods. Software Engineering Notes, 18(2): 60-73. 1993.
28. Shull, F., Travassos, G., Carver, J. & Basili, V. Evolving a Set of Techniques for OO Inspections.

University of Maryland Technical Report CS-TR-4070, October 1999.
29. Sjøberg, D.I.K, Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic, A., Koren, E.F. and

Vokác, M. Conducting Realistic Experiments in Software Engineering. ISESE’2002 (First

Dag Sjøberg
Lindsay, R. and A. Ehrenberg: 1993, `The Design of Replicated Studies'. The American
Statistician 47(3), 217{228.
McCullagh, P. and J. Nelder: 1989, G

http://www-306.ibm.com/software/awdtools/ developer/rosexde/
http://www-306.ibm.com/software/awdtools/ developer/rosexde/

International Symposium on Empirical Software Engineering), Nara, Japan, October 3-4, pp. 17-26,
IEEE Computer Society, 2002.

30. Sjøberg, D.I.K., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic, A. and Vokác, M.
Challenges and Recommendations when Increasing the Realism of Controlled Software Engineering
Experiments, R. Conradi and A. I. Wang (Eds.): Empirical methods and studies in software
engineering, ESERNET 2001-2002, LNCS 2765, pp. 24-38, Springer-Verlag, 2003.

31. Stevens, P. and Pooley, R. Using UML. Software Engineering with Objects and Components.
Addison-Wesley, 2000.

32. Syversen, E., Anda, B. and Sjøberg, D.I.K. An Evaluation of Applying Use Cases to Construct Design
versus Validate Design, Hawaii International Conference on System Sciences (HICSS-36), Big Island,
Hawaii, January 6-9, 2003.

33. http://www.telelogic.com/products/tau/uml/
34. Wirfs-Brock, R., Wilkerson, B. and Wiener, L. Designing Object-Oriented Software. Prentice Hall,

1990.
35. http://www.magicdraw.com
36. http://www.microsoft.com/office/visio/

http://www.telelogic.com/products/tau/uml/

Appendix A. The exercise guidelines

Guidelines for the derivation technique Guidelines for the validation technique
Exercise 1: Domain model
1. Underline each noun phrase in the use case descriptions.

Decide for each noun phrase whether it is a concept that
should be represented by a class candidate in the domain
model.

2. For the noun phrases that do not represent class candidates,
decide whether these concepts should be represented as
attributes in a domain model instead. (Not all attributes are
necessarily found this way.)

Exercise 1: Initial lass diagram
1. Underline all noun phrases in the requirements document.

Decide for each noun phrase whether it is a concept that
should be represented by a class in the class diagram.

2. For the noun phrases that do not represent classes, decide
whether these concepts should be represented as attributes in
the class diagram instead. (Not all attributes are necessarily
found this way.)

3. Find the verbs or other sentences that represent actions
performed by the system or system classes. Decide whether
these actions should be represented by one ore more methods
in the class diagram. (Not all methods needed are necessarily
identified this way.)

Exercise 2: Sequence diagrams
1 Create one sequence diagram for each use case.
2. Study each use case description carefully, and underline the

verbs or sentences describing an action. Decide for each
action whether it should be represented by one or more
messages in the sequence diagrams. (Not all methods needed
are necessarily identified this way)

Exercise 2: Sequence diagrams
1. Create one sequence diagram for each use case.
2. Study each use case description carefully, and underline the

verbs or sentences describing an action. Decide for each action
whether it should be represented by one or more methods in
the sequence diagrams.

(Note! Not all methods needed are necessarily identified this way)
Exercise 3: Class diagram
1. Transfer the domain model from exercise 1 into a class

diagram.
2. Use the three sequence diagrams from exercise 2 to identify

methods and associations. For each method in the sequence
diagram:
o If an object of class A receives a method call M, the class

A should contain the method M in the class diagram.
o If an object of class A calls a method of class B, there

should be an association between the classes A and B.

Exercise 3: Validation of the class diagram
1. Consider each method in the sequence diagram. If several

methods together form a system service, treat them as one
service.

2. For each method or service:
o Confirm that the class that receives the method call

contains the same or matching functionality.
o If an object of class A calls a method of class B, there

should be an association between the classes A and B in
the class diagram. If the class diagram contains any
hierarchies, remember that it may be necessary to trace the
hierarchy upwards when validating it.

If the validation in the previous steps failed, make the
necessary updates.

Appendix B. Example of evaluation of one class diagram

ID 49
Completeness - All services described in the requirements specification are implemented (Aspect 1) Score: 5
Lending item X
Hand in item X
Search for item based on id X
Search for book based or title or author X
Search for video based on title X
Show status for an item X
Completeness – The services are allocated to all and only the correct classes (Aspect 2) Score: 3
Library
 Lend item X
 Hand in item X
 Search X
Loan
 Binding between item and loaner X
 Time period for loan X
Item
 Information about title, author and id X
 List of copies
Copy
 Loan status
Loaner
 Information about loaner
Video
 Loan period for video
Book
 Loan period for book
Completeness - The classes contain the necessary information in terms of attributes and associations (Aspect 3) Score: 3
Library
 All items X
 All loaners X
 All loans X
Loan
 Period (start and end date) X
 Loaner X
 Copy X
Item
 All it’s copies
 Item id X
 Title X
Copy

 It’s item
 It’s loan
 Copy id
 Status
Loaner
 Loans X
 Loaner Id X
Video
Book
 Author
Completeness – Total score Score: 4
Structure – Coupling and cohesion Score: 4
Is one class dependent on many other classes?
How well do the methods in the classes correspond with the distribution of responsibilities identified above?
How simple and focused are the methods?

Appendix C. Examples of feedback comments for one subject in
Experiment 1

Min. Task Comment
21.30 1 I have read through the specifications, and underlined the nouns.
35.68 1 I have almost finished the domain model, and I consider which associations and attributes should

be included.
51.42 1 I consider the possibility of dividing the inheritance between article, book and film with respect

to article number in articles and copy number in copies.
70.63 2 I look for verbs, etc. that can help me identify methods. At the same time I think about the

calling structure between the classes that was identified in the domain model.
82.35 2 I draw sequence diagrams on paper, it is difficult to anticipate in advance so that I don’t have to

make too much clutter on the paper. This would have been much quicker with a modelling tool.
97.15 2 I am a bit uncertain about how to organize the information. Should I model a register or not

regarding how to extract data?
112.02 2 Use case 2: Draw the sequence diagram according to the description.
126.17 2 Finished use case 3, it was easy according to the description. Started on task 3.
141.43 3 Draw the class diagram and add methods and attributes. Consider the validity of the methods.
158.00 3 Add variables to the methods and insert associations.

	4.4.1.Completeness
	4.4.2.Structure
	4.4.3.Time

