
Experiences from Introducing UML-based Development
in a Large Safety-Critical Project

Bente Anda1, Kai Hansen2, Ingolf Gullesen2 and Hanne Kristin Thorsen3

1Simula Research Laboratory,
P.O. Box 134, NO–1325 Lysaker, Norway

bentea@simula.no

2ABB Corporate Research Center,
P.O. Box 90, NO–1361 Billingstad, Norway

{kai.hansen,ingolf.gullesen}@no.abb.com

3Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, NO–0316 Oslo, Norway

hannekt@ifi.uio.no

Abstract. UML and UML-based development methods have become de facto standards
in industry, and there are many claims for the positive effects of modelling object-
oriented systems using methods based on UML. However, there is no reported empirical
evaluation of UML-based development in large, industrial projects. This paper reports a
case study in ABB, a global company with 120 000 employees, conducted to identify
immediate benefits as well as difficulties and their causes when introducing UML-based
development in large projects.

ABB decided to use UML-based development in the company’s system development
projects as part of an effort to enable certification according to the IEC 61508 safety
standard. A UML-based development method was first applied in a large, international
project with 230 system developers, testers and managers. The goal of the project was to
build a new version of a safety-critical process control system. Most of the software was
embedded. The project members were mostly newcomers to the use of UML.

Interviews with 16 system developers and project managers at their sites in Sweden and
Norway were conducted to identify the extent to which the introduction of UML-based
development had improved their development process. The interviewees had experienced
improvements with traceability from requirements to code, design of the code, and
development of test cases as well as in communication and documentation. These results
thus support claims in the literature regarding improvements that may be obtained
through the use of UML. However, the results also show that the positive effects of
UML-based development were reduced due to (1) legacy code that it was not feasible to
reverse engineer into UML, (2) the distribution of requirements to development teams
based on physical units and not on functionality, (3) training that was not particularly
adapted to this project and considered too expensive to give to project members not
directly involved in development with UML, and (4) a choice of modelling tools with
functionality that was not in accordance with the needs of the project.

The results from this study should be useful in enabling other UML adopters to have
more realistic expectations and a better basis for making project management decisions.

 1

mailto:bentea@simula.no

1. Introduction

Companies that adopt UML-based development aim to improve their
development process and gain, for example, easier communication within the
project, improved design of the code, and improved documentation and thus
easier future maintenance. In general, there are high costs involved in
introducing new software development methods and risks of failure if the
method is not adapted. Therefore, there is a need for case studies to increase
knowledge about consequences of project managerial decisions in the context
of UML-based development, and about which improvements are realistic in
different project contexts.

This paper reports a case study conducted on a large development project
in the Swedish-Swiss global company ABB. The goal of the project was to
create a new version of a safety-critical process control system based on
several existing systems. The development took place at four sites in three
countries; and 230 developers, testers and managers were involved, of whom
approximately 100 used a UML-based development method themselves or
read and applied UML documents. Most of them were newcomers to such
development. Most of the software was embedded, while the rest was for the
Windows platform. There were approximately 1000 requirements for this
system. The company decided to adopt UML-based development and a
method was developed in-house to enable certification according to the IEC
61508 safety standard [14]. Previously, there had been no common
methodology for the analysis and design of software in the company.

Despite the widespread adoption of UML, there are few reported empirical
studies on the effects of UML-based development. A survey of 5,453
scientific articles published in 12 leading software engineering journals and
conferences in the decade from 1993 to 2002, identified 113 controlled
experiments in which individuals or teams performed one or more software
engineering [23]. Four of the experiments investigated different aspects of the
use of UML [6,18,19,28]. The first investigates the construction of use case
models, the second and third investigate the comprehension of UML
diagrams, while the fourth compares the concepts of UML with those of two
other formalisms. In addition, the usability of UML-diagrams have been
investigated in the context of a student project [2], and experiences of
applying UML in the development of embedded systems have been reported
in [20]. To the authors’ knowledge this is the only empirical evaluation of
UML adoption in a large-scale industrial project.

Interviews were conducted with 16 project managers and developers in the
project, who represented different sites, different kinds of development and
different roles in the project. The interviews were analyzed according to

 2

principles from grounded theory, [24], to ensure that the interviewees’
opinions were conveyed systematically. The interviews showed that UML-
based development improved traceability, communication, design,
documentation and testing, but it was recognized in this project that the
improvements were not as great as they could have been, due to difficulties
with the use of UML, in particular regarding 1) choice of diagram to use in
specific situations, 2) the interfaces between different models, and 3) the level
of detail in the models. The results further showed that these difficulties were,
at least partially, caused by project decisions with respect to the reverse
engineering of legacy code, distribution of requirements to teams, training and
mentoring, and choice of modelling tools.

Within ABB, the constraints of the safety standard meant that the teams
had to apply the UML-based method rigorously and produce all the required
models. Hence, this project represented a rare opportunity to investigate the
effects of UML-based development. The main contribution of this paper is,
therefore, that it describes improvements and challenges when adopting UML-
based development in an industrial environment. Such information may be
beneficial to other companies adopting UML.

The remainder of this paper is organized as follows. Section 2 describes the
company, the project and the ABB UML method. Section 3 describes the
research method. Section 4 describes the results with respect to improvements.
Section 5 describes the results with respect to challenges in the project.
Section 6 discusses the scope and validity of the results. Section 7 concludes
and describes plans for future work.

1. UML-based Development in the ABB Project

This section describes the company, the project and the UML-based
development method that was applied in the project.

2.1. ABB

ABB is a global company that operates in around 100 countries and employs
approximately 120 000 people. It is a leader in power and automation
technologies, and develops software and hardware for these markets. The
company has a large number of development projects, the majority of which
require the development of embedded software (with special hardware
included).

ABB’s safety products must be certified according to the international
standard IEC 61508 in order to be used in plants or installations where the
processes used can be dangerous to humans or damage the environment. This
standard is becoming a requirement for the process industry and in discrete

 3

manufacturing. It is a life-cycle standard and includes requirements pertaining
to the methodology of software development.

Before the start of the project reported in this paper there was little
common streamlining of software development in the company; a large
number of different methods, programming languages and software tools were
used. ABB hoped that the introduction of UML-based development would
lead to improvements in requirements handling and traceability, improved
design of code, fewer defects in the product and reduced overall costs of
development.

2.2. The Project

The goal of the project was to develop a new version of a safety-critical
system based on several existing systems. The system was to be installed at
several locations. Each installation would program its own logic on top of the
system delivered by ABB, which is not modified at the installations.

The workforce comprised approximately 230 people located at four sites:
two in Sweden, one in Norway and one in Germany. Approximately 100
people were involved in development with UML. The UML-based
development method was used at the first three sites. Some of the developers
and all the product managers were domain experts. ABB relies on having
domain expertise in-house because they sell a complete product to its
customers. Safety certifiers, UML experts, quality managers and peer
developers (also with domain knowledge) reviewed the UML models at
predefined gates in the development process. The development was organized
in teams, while testing was mostly done by specialized testers. The team
members were mostly newcomers to the use of UML, although some were
experienced.

This software project is ABB’s most ambitious project regarding quality
assurance in that it followed the requirements of IEC 61508. To ensure that
the software operates at a certain minimum safety integration level (SIL
level), this standard strongly recommends the use of semi-formal development
methods. Consequently, a UML-based development method (the ABB UML
method), which qualifies as a semi-formal method according to IEC 61508,
was developed by the company [25,26]. In addition, the system components
are SIL certified, which implies that the software parts of the components
must implement (parts of) the safety requirements so that the whole
component can be SIL-certified. These requirements were derived from the
requirements for the safety level before the total set of requirements was
distributed to the development teams. Thus, from the point of view of the
development teams, there was little difference between the safety-related
requirements and the functional requirements.

 4

Pri: 1 SIL ≥ 2

Stability:
Stable

Source:
Technical
Management

Definition:

MEMORY INTEGRITY VERIFICATION

All volatile memory shall be tested cyclically to support the diagnostic
coverage achieved with the used 1oo2 memory architecture.

Req. Type: Safety Function

Req. ID

SR-DGN-034

Motivation:

This is necessary in order to detect dormant failures also in unused areas of the memory. This is one of the
necessary measures to enable use of (limited) dynamic memory allocation.

NOTE: With either “double memory” or “double and inverted” storage in single memory architectures, low
effectiveness will be sufficient (stuck-at faults). In this case, the cycle-time requirement is based on EN 298,
i.e. considered as a second fault that has to be detected within 24 hours.

Pri: 1 SIL ≥ 2

Stability:
Stable

Source:
Product
Management

Definition:

ENHANCED CPU2R PROCESSOR MODULE

There shall be a enhanced CPU2R, PM865, processor module with
necessary functionality for SIL 2 certification, available.

Req. Type: System Architecture,
HW

Req. ID

PR-DLV-033

Motivation:
Market requirement to meet the requirements for SIL 2 with the safety controller. In addition, to reach a SIL 3
classification of the safety system when used together with the SM in a 1oo2 structure, this module must
comply fully with the applicable requirements for SIL 2.
NOTE: This processor module shall be based on the PM864.

Figure 1. Examples of requirements

The existing systems consisted of 3-4 million lines of code and there were
approximately 1000 requirements for this version; one third of which
concerned satisfying safety requirements, while the remainder consisted of
requirements for new functionality from the product management. The size of
the requirements varied from a small design requirement to a communication
protocol. Figure 1 shows one example of a requirement for functionality and
one for safety, respectively. Teams were set up and requirements were
distributed among teams based on physical units, experience with these units
and on which teams had available resources. There was no initial grouping of
requirements to logical units of functionality. Each team was responsible for
producing a set of documents with UML models.

C and C++ were used in the software implementation. UML version 1.3
and Rational Rose were used for modelling. Much of the software was
embedded.

The project consisted of several sub-projects. The three sub-projects that
developed safety software and applied the ABB UML method are described
briefly below.
• Sub-project A, the largest one, developed software based on a

comprehensive existing code base. This includes code running both on a
Windows PC platform and on an embedded 32 bit RISC processor. The
developers on this project were mainly located in Sweden at site 1, but
some work was done in Norway.

• Sub-project B developed hardware and embedded software for a 32 bit
RISC processor. The project was divided into two teams: the hardware

 5

team, which dealt with electronic and mechanical design, and the software
team. This sub-project had no existing systems to relate to. It was mainly
located in Sweden at site 2.

• Sub-project C developed C code in the form of embedded software for a
16 bit processor. This sub-project was the only one that generated code
automatically from their UML models. This sub-project had no existing
systems to relate to. It was located in Norway.

2.3. The ABB UML Method

ABB has an existing methodological framework into which UML-based
development was introduced. The overall ABB development method follows
closely a traditional, and the method is used together with the ABB Gate
model for projects, which defines the milestones for decision making in a
project [1]. The goal of the ABB UML method is to cover the lower part of
the V-model, from requirements analysis to functional testing. The first time
the method was used, emphasis was mostly on analysis and design. The
relations between the V-model, the Gate model and the ABB UML method
are shown in Figure 2. G0 …G6 refers to the gates of the Gate model and
indicate when these are passed.

The ABB UML method was developed internally. It was not based on any
particular method for UML-based development, but those responsible for it
had experience with development based on UML, and were familiar with
basic literature on such development, for example [4,7,10]. The main reason
why UML-based development was chosen as a basis for a semi-formal
development method was the good tool support for modelling with UML. The
ABB UML method is generic and thus had, at its inception, no particular
relevance to the specifics of software development in ABB. The company’s
plan was to start with a basic method and develop it in response to experience
gained from the projects in which it is used.

The ABB Gate Model stipulates that project documents should be
reviewed at specific milestones in the project. As a consequence, the ABB
UML method is document-driven. The development process is centred on two
documents: the description of function (DOF), which describes the results of
the requirements analysis, and the design description (DD). There were
predefined templates for these documents. The UML models were inserted
into these documents automatically, using Rational Rose and Rational SoDA1.
The models are reviewed only as part of the documents.

1 Information about both tools can be found at www.rational.com

 6

System Test10

System
Requirements
Specification

Implementation / Manufacturing5

Design Test6Detailed
Design4

Integration
Test
Description

Design
Description

Design Test
Description

BCRAT
Descriptions

PTT
Descriptions

Functional Test
Description

PTT9

PIT8

Functional
Test / CTT7

Analysis and
Design3

Requirements
Analysis2

Description of
Function

Requirements
Definition1

Customer wish
(MRS)

ABB UML
method

ABB V-model

Requirements
Specifications
(SRS, PRS)

ABB Gate model

Primary information

Development
X Phase number

Output document
from phase

Secondary information

X
- Market Requirement Specification
- Safety Requirement Specification
- Product Requirement Specification
- Component Type Test
- Product Integration Test
- Product Type Test
- Big Configuration Release and

Acceptance Test

MRS
SRS
PRS
CTT
PIT
PTT
BCRAT

G0 G1 G2 G3 G6G5G4

Figure 2. Development in ABB

 7

The ABB UML method prescribes the use of use cases, sequence diagrams,
deployment diagrams and class diagrams. The use of state chart diagrams and
activity diagrams is optional. The method provides guidelines for the
requirements analysis of both software and hardware, guidelines for the
design of software, and guidelines for using Rational Rose. In addition, there
are guidelines aimed specifically at satisfying the safety standard [11].
Iterations are encouraged within each phase, and the phases in the
development project should, to some extent, be conducted in parallel; that is,
the analysis phase does not need to be completed before starting on the design
phase or on the implementation. The ABB UML method (framed in Figure 2)
was the subject of evaluation in this case study, not the complete V model.
The steps of the ABB UML method are shown in Appendix A.

3. Research Method

The overall research method applied here is a case study [27]. Case studies
can be exploratory, descriptive or explanatory. This case study can best be
characterized as exploratory due to the lack of previous case studies on UML-
based development. Case studies are most suitable for investigating research
questions of the types what, how and why. In this study, we investigate how
the company’s development process was improved by adopting UML-based
development, what particular difficulties were encountered with the use of
UML and provide some explanations for why these difficulties occurred.

3.1. Data Collection

ABB wanted the opinions of the project members on the ABB UML method.
Interviews were conducted with 16 people who had experience with the ABB
UML method in the project. The authors selected the interviewees so that all
the sites, subprojects and roles in the project were represented. Table 1 shows
the distribution of the interviewees. Sub-project B was the only one involving
hardware and software development and so we included interviewees
concerned with both aspects of development. ABB did not have sufficiently
detailed historical data from previous projects that could be used in the
assessment of this project and to supplement the interviews.

All the developers interviewed had applied the ABB UML method. Two of
the managers had also done some development and applied the method, while
others had reviewed project documents that contained UML. Some of the
interviewees had had positive experiences when applying UML in previous
projects, but those projects were smaller than the project under study and did
not have the same safety requirements. Most interviewees, however, had no
particular expectations regarding the ABB UML method at the start of the

 8

Table 1. Distribution of interviewees

Project\Site Norway Sweden site 1 Sweden site 2 Total
Sub-
project A

2 developers 1 proj. manager
3 developers

 6

Sub-
project B

 1 proj. manager s/w
1 developer s/w
1 proj. manager h/w
1 developer h/w

4

Sub-
project C

1 proj. manager
1 developer

 2

Overall
project

1 manager
1 quality manager
1 system architect

1 quality manager 4

Total 7 5 4 16

project, but applied it because they had to in order to satisfy the safety
standard. The interviewees’ experience in ABB varied from approximately
two years to more than 25 years.

The interview guide was developed by the authors. The interviews were
semi-structured, based on the interview guide shown in Appendix B, but
adapted to each interviewee. The aim was to encourage the interviewees to
speak freely about the different aspects of the project and the ABB UML
method. Each interview lasted from 30 to 50 minutes, and was conducted by
two researchers not employed by ABB (the first and fourth authors).

3.2. The Analysis Procedure

The interviews were taped and transcribed before analysis. The interviewees
had backgrounds that varied enormously. Consequently, not all of the
questions in the interview guide were answered by all the interviewees. Some
of the questions were open-ended and were answered differently by the
different interviewees. It is, therefore, not feasible to report answers on the
individual questions. Instead, the transcribed interviews were analyzed
according to the principles of grounded theory [24], as well as on advice in
the literature on the analysis of interviews [8,21]. There is no standard way of
analyzing in-depth interviews, and papers seldom describe in detail how such
analysis is done [13]. Consequently, we had to identify for ourselves a
suitable way of doing the analysis in this case. We decided to do it in the
following steps:

 9

1. Identify categories for coding
The categories are shown in Appendix C. There are categories for the
following: interviewees’ expectations, experience and training, possible
improvements, opinions about project characteristics, and difficulties
related to the use of UML. The categories are based on the interview
guide and on experience gained from the actual interviews. The categories
related to improvements are based principally on the expectations that
ABB had when the method was introduced, and the categories related to
project characteristics are the results of project decisions that could cause
problems.

2. Code the interviews
All the relevant sentences in the interviews were coded according to one
or more categories. The interviewees often expressed themselves in many
words, so some of the sentences from the interview were simplified to
facilitate the rest of the analysis.

Several iterations of steps 1 and 2 were performed, in order to identify an
appropriate set of categories.
3. Sort the sentences

All sentences related to possible improvements were sorted into
descriptive (describing the area), positive (supporting an improvement)
and negative (opposing an improvement). With respect to the sentences
about difficulties with UML and problematic project challenges there
were only sentences describing these as problematic.

4. Check background of interviewees
The varying backgrounds of the interviewees meant that not all of them
had experience with each topic. Hence, for improvements within the
specific topics, we examined who of the interviewees had experience that
would enable them to have an opinion. For project characteristics, we
examined who had found each characteristic to be problematic.

5. Identify relationships
Relationships were identified between project characteristics and
difficulties related to the use of UML. A project characteristic was
considered to be one cause of a UML problem if it was explicitly
mentioned as such or the two were mentioned together in the interview in
a way that strongly indicated a relationship.

 10

4. Improvements in the Development Process

We have refined ABB’s expectations for improvement in the different areas:
A1: Traceability, defined as support for the construction of models that

enables traceability from requirements to code.
A2: Communication, defined as ease of discussing design and implementation

both within the development teams and in reviews.
A3: Design, defined as support for design activities as well as perceived

structural properties of the code.
A4: Documentation, defined as documentation of code for the purpose of

passing reviews (gates) as well as expected future maintainability.
A5: Testing, defined as ease of making functional test cases and their

coverage.
A6: Development costs.

The positive and negative sentences related to each of the areas were used to
establish the extent to which there were improvements. Not all the
interviewees mentioned potential improvements in all areas. There are several
reasons for this. One interviewee was the manager for the whole safety project
and did not have opinions on specific aspects of the development process, but
had opinions on documentation and costs. For three of the interviewees, this
was their first project in ABB. Hence, they did not have opinions on whether
there were improvements. The only exception was with respect to
documentation, because they had read the documentation of previous projects.
In addition, one of the interviewees had not been involved in testing, two had
not been deeply involved in development and had no opinions on design and
traceability, and three had worked in small teams that had not been involved
in reviews and could not have opinions about communication.

Table 2 shows the interviewees’ opinions related to A5 about testing. Each
row represents the opinion(s) of one interviewee. Five of the interviewees had
only positive opinions, while six had both positive and negative opinions,
although mostly positive. Table 3 shows the results of the coding of the
interviews with respect to the different areas for improvement. The table
shows how many of the interviewees mentioned each of the areas, how many
had only positive opinions, and how many had only negative opinions. Most
of the interviewees with both positive and negative opinions were, however,
mostly positive as in the example in Table 2. Table 3 shows improvements on
all aspects except development costs, which were considered to have
increased due to the introduction of UML-based development. The
interviewees had, however, also experienced difficulties with all aspects.
Below is a summary of how and the extent to which each aspect was
improved.

 11

Table 2. Opinions on testing
Positive Negative
The analysis and design models are
input to testing and that works quite
well, that is, it has led to a better focus
on completeness

The UML models are too large and
detailed to be used effectively.

It has been easy to make test cases,
and the results of the tests are good.

There were uncertainties about how to
test and how to document the tests.

The test cases were planned already
during analysis. We didn’t do that
before.

Test cases were defined early and in a
structured manner. This job, which
would normally be big, took only one
day. Testing has revealed higher
quality in terms of fewer errors*.

We detect more errors now*.
It is much easier to write the
functional test cases when we have
use cases.

The use cases are often too detailed and
then the test cases get too detailed as
well.

We have used sequence diagrams in
the testing. We have detected errors
that we wouldn’t have detected
otherwise.

The testers should now know how to
write test specifications because they
are based on UML.

I’m not certain that the testers always
apply use cases and sequence diagrams
in testing.

The use of UML has had a positive
effect on the number of defects*.

The testers have not been trained in
UML and consequently do not use the
UML-diagrams as input as much as they
should.

We use the UML models to generate
test cases. It is now a lot easier than
before to identify which test cases
must be run after an update.

Working with UML in a structured
manner provided a better basis for
testing.

I don’t think that this has led to a large
difference with respect to testing since
we did not succeed very well in the
earlier phases.

*The different subprojects had different amounts of defects

 12

Table 3. Results on possible improvements
Improvement Mentioned by Only positive Only negative

A1: Traceability 10 3 2
A2: Communication 9 5 3
A3: Design 10 5 2
A4: Documentation 16 8 3
A5: Testing 11 5 0
A6: Costs 12 0 12

Traceability: The method was considered to give good support for tracing
from requirements to code and vice versa. This represented an improvement
compared with the previous situation with only textual descriptions of
analysis and design, and it helped ensure that all requirements were
implemented. The interviewees had struggled somewhat with the tool to make
it accept external references to the textual requirements. The large amount of
legacy code, of which large parts were not reverse engineered, means that not
all the code in the product can be traced back to the requirements.

Design of the code: The use of the ABB UML method dictated a greater
focus on design than had been the case previously. The interviewees thought
that people had come to realize the importance of designing before coding,
which realization had resulted in an improved design. Previously, a prototype
would often evolve into code, while now the development is more top-down,
and a design framework is available before coding starts. In particular, the
interviewees considered that the use of sequence diagrams forced them to
design thoroughly. Some found, however, that there was not sufficient support
in the method for combining top-down and bottom-up development,
something which was necessary when many building blocks were already
available in the form of hardware components or legacy code.

Documentation: This project was better documented, both in terms of
quantity and quality, than previous software development projects in ABB.
The documents now had a more unified structured with respect to content, and
the interviewees found it easier to read them because of the common structure.
The interviewees thought that more software developers can learn UML than
learn to express themselves well in English. In addition, several of the
interviewees emphasized that the developers found it more fun to make
diagrams than to write textual documentation; hence, they produced more a
comprehensive set of analysis and design documents. The interviewees found
use cases and sequence diagrams to be particularly useful. They had, however,
experienced difficulties with the format of the documents due to problems
with the templates, such as which parts of the UML models were
automatically inserted into the documents and the numbering of the sections

 13

in the documents. The documents were also often very large because the
project members found it difficult to know how much context they should
include in their models in order to describe their own part. Some documents,
for example, contained several hundred pages describing only one piece of
functionality. Some interviewees from sub-projects A and B, the sub-projects
which did not generate code from the UML models, thought that they spent
too much effort on producing documentation during the project that would be
outdated when the product was finished. Those who generated code
automatically also reverse engineered their code to update their models and
did not experience this problem.

Testing: The development of test cases became quicker and easier when the
UML models were available, and the coverage of the test cases had improved.
On the negative side, the large amount of detail in the UML models made
them difficult to use as input to testing. Not all the testers had received
training in UML, which meant that they could not easily apply the UML-
based test cases, and consequently these were used less often in testing than
they could have been.

Costs: There were, of course, costs related to learning a new method. The
introduction of a new method also led to much rework. For example, some of
the interviewees rewrote the description of function several times, due to a
revised understanding of the nature of use cases. The amount of detail in the
analysis models meant that these sometimes had to be updated later in the
project. The interviewees had also expended a great deal of effort on
discussing how to best apply UML, both within the teams and in the reviews.
In addition, the reviews were considered to have taken more time because the
documents were produced with a new method. The interviewees found it
difficult to estimate how much the introduction of UML-based development
had cost in terms of extra effort, but several of them guessed that it had
doubled the effort on the project. The interviewees thought, however, that
there might be improvements with respect to costs on future projects, when
they could benefit from the documentation made on this project and the team
members would be more experienced.

 14

5. Challenges in the Project

The previous section showed that the interviewees had experienced several
improvements to their development process as a consequence of introducing
UML-based development, but also that difficulties with using UML, in
combination with characteristics of the project that were the results of project
management decisions, had caused difficulties and thus had reduced the
possible positive effects of introducing such a development method. This
section describes the difficulties experienced by the interviewees, the project
characteristics that were considered to cause most problems and how these
characteristics affected the use of UML.

5.1. Project Characteristics and their Consequences

The interviewees mentioned four characteristics of the project that contributed
to the difficulties with using UML and that had led to problems with obtaining
the desired improvements. These characteristics were the consequences of
project management decisions made because of budget and timing constraints
in the project: (1) it was considered too costly to reverse engineer into UML
the large amount of legacy code that the project had to modify and integrate
with, (2) the requirements were distributed to the teams based on physical, and
not functional, units of the system, (3) it was considered too costly to provide
thorough training for all people involved in the project, (4) the choice of tools
for the modelling process possessed functionality that was not in accordance
with the needs of the project. Table 4 shows how many of the interviewees
described difficulties with the four project attributes. The table also describes
the interviewees who mentioned the characteristics.

Table 4. Opinions on aspects of the project

Project
characteristics

Mentioned by Comment

Legacy code 6 Mentioned by all people from sub-project A,
which was the project that had to integrate
with legacy code.

Org. of req.
and teams

5

Mentioned by those with the most experience
or interest in UML-based development.

Training and
mentoring

10 Mentioned mostly by those who had received
in-house training and had a positive attitude
to the method.

Tool 10 Mentioned by interviewees from most of the
project

 15

Table 5. Statements related to having legacy code
Those who had to integrate with legacy code had a much tougher job using this
method than had those who developed from scratch, because we have not
succeeded in reverse engineering all of the system; for example, not the parts that
were very C-oriented. This means that we often did not have UML interfaces in the
existing code, and it was necessary with so many adaptations in the code to
integrate the new parts that we felt that we might as well document and test.
The person I worked with implemented new functionality in the existing code and
met bigger problems than I, who developed from scratch, did. He had a new part,
modelled in UML. To realize it, the old code had to be changed almost every
second line. Then it was difficult to view the old system as a black box.
We experienced problems because we added to functionality that was not
functionally documented, and to design properly, for example, using a state
diagram, you need an existing design that builds on a state diagram. For the most
part, the legacy code was not designed in such a way.
The main problem was having existing code that should be modified. It was
necessary to know which parts of the old system should be included in the models
in order to describe the new part correctly. I believe it would have been much
easier if we had developed from scratch. Reverse engineering resulted in very large
design documents where only a small part was useful when modelling the new
functionality.
We added new functionality to an existing, complex software system that was
badly documented. In addition, the templates and guidelines that we used were not
adapted to integration with legacy code.
We modelled against a system that was not object-oriented. There were not, for
example, always classes or interfaces in the old code that we could use, so we had
to simulate that there were interfaces at the points where we needed them.

5.1.1. Legacy code
Reverse engineering of the complete existing code base before the start of the
project was considered too difficult, and consequently too expensive. The
ABB UML method stipulates that the parts of the existing code that will
integrate with the new code should be reverse engineered into UML models.
It also stipulates that interfaces should be identified in these models and that
modelling of the new system should use these interfaces, but there is little
support on how to actually do this in the method. UML-based development
methods mostly assume development from scratch, and to the authors’
knowledge, there is little methodological support for using UML when
modifying existing, non-object-oriented systems, even though it is often
necessary and also recommended to introduce UML into an existing
production environment [22]. The interviewees described the problems related
to the large amount of legacy code that was not reverse engineered, and the
consequences of these problems. An example of statements about integration

 16

Distribution of
requirements

to teams

Badly structured
models, in particular
use case models

Reduces effect of UML
documentation

Individual models
that were difficult to
integrate

Contributed to problems
with interfaces

Difficulties with
getting a complete
overview of (parts of)
the system

Reduces effect of UML
documentation

Difficulties with the
relationship between
requirements and
use cases

Contributed to some
problems with traceability

Focus on realizing
complete components
too early when focus
should be on
functionality

Contributed to problems
with level of detail

It was difficult to
know which other
teams to integrate
with

Contributed to problems
with interfaces

It was often difficult
to see where each
use case fits in

Reduces effect of UML
documentation

It was difficult to
understand and
realize
requirements in
isolation

Contributed to additional
costs

Overlapping
functionality in
different analysis
models

Reduces effects of UML
as a means to improve
design of code

Analysis models that
did not correspond to
a logical part of the
system

Reduces effect of UML
documentation

Figure 3. Consequences of modifying legacy code

with, and modification of, legacy code is given in Table 5. Each row relates
the opinion of one interviewee.

Figure 3 shows the interviewees’ opinions about the consequences of
having to deal with a large amount of legacy code. Each statement from the
interviewees is categorized to clarify the relationships. The main
consequences were the following:
• Difficulties with identifying which parts of the architecture implemented

which parts of the functionality, and how the new requirements related to
the existing functionality. This created difficulties when distributing
requirements to teams.

• Both developers and reviewers had difficulties with abstracting away
from the code in analysis and design when they knew the existing code
well. This contributed to analysis and design models with too much detail.

• Difficulties with identifying clear-cut interfaces to the old code that could
be used in the new models. It was necessary to know the old code well in
order to know how much of it had to be modelled to document the new
part well.

• General problems with obtaining benefits with respect to design when
applying UML because they had to know, and adapt to, the existing code.

 17

Distribution of
requirements

to teams

Badly structured
models, in particular
use case models

Reduces effect of UML
documentation

Individual models
that were difficult to
integrate

Contributed to problems
with interfaces

Difficulties with
getting a complete
overview of (parts of)
the system

Reduces effect of UML
documentation

Difficulties with the
relationship between
requirements and
use cases

Contributed to some
problems with traceability

Focus on realizing
complete components
too early when focus
should be on
functionality

Contributed to problems
with level of detail

It was difficult to
know which other
teams to integrate
with

Contributed to problems
with interfaces

It was often difficult
to see where each
use case fits in

Reduces effect of UML
documentation

It was difficult to
understand and
realize
requirements in
isolation

Contributed to additional
costs

Overlapping
functionality in
different analysis
models

Reduces effects of UML
as a means to improve
design of code

Analysis models that
did not correspond to
a logical part of the
system

Reduces effect of UML
documentation

Figure 4. Consequences of unsystematic distribution of requirements to teams

5.1.2 Organization of Requirements and Teams
The distribution of requirements to teams was mostly done before beginning
to use the ABB UML method. It was done based on physical units, previous
experience and on which teams had available resources. There were
approximately 1000 requirements for the new system, but these were not
organized hierarchically. The ABB UML method states that identical
functionality should be identified and separated out as included use cases, but
there was no organized activity of identifying similar functionality over
several teams; nor was there any activity on integrating the different models
and ensuring unified interfaces. Figure 4 shows the interviewees’ opinions
about the consequences of not organizing and distributing requirements to
teams based on functionality and not organizing cooperation among teams
that were developing functionality that interacted with the functionality being
developed by other teams. The main consequences were the following:
• The focus was often on physical components as such and not on

functionality.
• Related functionality was not always distributed to the same team,

meaning that it was often difficult to map requirements to use cases.
• One analysis model did not necessarily correspond to a logical part of the

system. Hence, it was difficult to integrate different models, and in some
cases there was overlapping functionality in different models.

5.1.3. Training and Mentoring
Most of the developers were novices at modelling with UML when starting to
work on this project. Otherwise, they were well-qualified developers (most
holding the equivalent of an MSc degree) and with several years experience at
ABB. They were familiar with both the V-model and Gate model. At the start

 18

of the project, they attended courses of two to five days that covered UML
syntax, Rational Rose tools and the ABB UML method. A special team, the
UML team, was set up to help the rest of the project with the use of UML,
which included responsibility for developing templates and for reviewing
documents, with particular focus on the correct use of UML. The number of
people in the UML team varied from three to five over the course of the
project.

The interviewees reported that there had been too little training because
managers, reviewers and testers, who did not themselves develop, did not
receive training even though they had to read and understand the models.
Some of them also had roles that required them to motivate and teach others
to use UML correctly. Developers who started on the project after the courses
did not receive the same training as the others.

There were also problems reported with the training they received. The
interviewees said that the courses focused too much on UML syntax and too
little on the ABB UML method and semantics of diagrams and constructs.
There were not enough practical exercises on using the tools and it was not
made clear what should actually be achieved by modelling. It was considered
necessary, but not sufficient, to master the syntax in order to apply UML
successfully. The courses were developed for the project, but not adapted to
the specific context.

The interviewees believed that the UML team was not sufficiently
qualified, and did not have sufficient authority, to guide the total use of UML
in the project because they lacked the necessary experience with both
development and UML. At the beginning of the project there were some
senior developers in the team, but these were considered too important for the
rest of the project to be given time to spend on the UML team. The members
of the UML team did not receive additional training in UML-based
development.

Figure 5 shows the interviewees’ opinions on the consequences of these
problems. The main consequences were these:
• It was not well understood how to apply the concepts of actors and use

cases in the context of embedded development.
• There were large differences in how the different teams applied UML and

the method.
• Those who had attended courses often expected to be able to use the

course material directly in the development, but this caused difficulties
since the material was not adapted to the project context.

• The templates that were used in the project were not sufficiently adapted
to the project context.

 19

Training and
mentoring

Different opinions on
use of UML from
different reviewers

Contributed to higher
costs

Reviewers were
unable to determine
when particular
diagrams were
useful, in particular
with respect to
number of sequence
diagrams

Contributed to problems
with level of detail and
choice of diagram

Large differences
with respect to how
the teams used UML

Contributed to problems
with level of detail and
interfaces

Uncertainties with
respect to how to
apply models in
testing

Reduced the effect of
having UML models as a
basis for testing

Testers didn't
always use the
models in the
testing

Reduced effect of having
UML models as a basis
for testing

Reviewers spent too
much time on UML
details

Contributed to higher
costs

Much rewriting of
models

Contributed to higher
costs

Templates that were
not sufficiently
adapted to the
project

Contributed to higher
costs

Insufficient
motivation for using
the method

Contributed to there being
smaller/fewer perceived
improvements

Difficulties with
respect to which
diagram to apply

Contributed with problems
with respect to choice of
diagram

Much time on
understanding UML
concepts, in
particular the use
case concept

Contributed to higher
costs

Figure 5. Consequences of insufficient training and mentoring

• The project members did not always use UML-models when they could

have used them. UML-models were, for example, not always applied as
input to making test cases.

5.1.4. Tools used in Modelling and Documenting
Some of the interviewees believed that Rational Rose lacked stability, but
they were mostly satisfied with its functionality. Rational Rose SoDA was
used to produce documents automatically from the models in Rational Rose;
that is, the models were inserted into predefined Word-templates. The
interviewees reported that it was difficult to create documents with an
acceptable layout when the models were inserted into documents
automatically. For example, the developers were unable to set the text fonts in
the UML-models in Rational Rose, and they did not succeed in controlling the
numbering of the sections in the documents. Therefore, they had to make
quite a lot of changes to the automatically generated documents, and
consequently it was costly to make changes in the models because this
implied generating new documents.

In addition, the interviewees thought that Rational Rose may also have
contributed somewhat to the low level of detail in the high-level sequence
diagrams because Rational Rose facilitates in the sequence diagrams, the use
of classes and methods that have already been defined in class diagrams.

 20

5.2. Difficulties with using UML

The previous section described project decisions that caused problems with
applying UML and thus reduced the effect of introducing UML-based
development. The interviewees mentioned three main difficulties with
applying UML: (1) the choice of diagram to use in a specific situation, (2) the
interfaces between models, and (3) the level of detail in the models. Table 6
shows how many of the interviewees mentioned problems with each of the
aspects.

Table 6. Results on difficulties with UML
UML aspect Mentioned by
Choice of diagram 6
Interfaces 10
Level of detail 10

5.2.1. Choice of diagrams
Some interviewees reported problems with the choice of diagram to apply.
They found that there was too much focus on use cases and sequence
diagrams in the ABB UML method, and thought that activity diagrams could
be more useful early in analysis when few actual objects have been identified.
More use of activity diagrams could have contributed to deterring the focus
on detailed classes. The interviewees had, however, focused on making the
UML models that were compulsory in the ABB UML method, since they did
not feel that they had a good enough grasp of the goal of applying each of the
models to choose when to apply which. The lack of insight into exactly what
each model should express also meant that the interviewees found it difficult
to know when it was necessary to supplement the models with text and when
the models were self-contained.

5.2.2. Interfaces
The interviewees had experienced large problems with interfaces between
models describing different, but interacting, parts of the system. Well-
described interfaces were considered vital for understanding where each part
fits in and to get an overview of the system, but most of the interviewees
found that the interfaces were either missing or too detailed.

High-level interfaces were in the form of actors. In addition to actors that
were external to the whole system, such as operators and hardware devices,
the ABB UML stipulates that subsystems should be considered as actors for
each other. These subsystems could be legacy code or other subsystems being
developed in parallel. An actor mostly interacts with a subsystem in several
places. In the modelling process, such low-level interfaces were marked with

 21

the symbol ○. Such interfaces were gradually substituted with actual function
calls when these were established. The interviewees had experienced several
problems:
• For interfaces in the form of actors that were not human users it was

more difficult to identify them and how they would interact with the
system than for those actors that represented human users.

• Interfaces in the legacy code posed difficulties because the legacy code
was only partially reverse engineered into UML models. Consequently,
there were often few interfaces in the old code that could be used directly.

• Interfaces in subsystems that were developed in parallel also posed
problems. The ABB UML method stipulates that the people responsible
for the different subsystems should communicate about the exact nature
of the interface. However, this was often difficult because the different
subsystems were developed according to different schedules and some
subsystems were developed mostly bottom-up, based on existing
components, while others were developed top-down. The interviewees
also reported that they did not have a good grasp of how to group use
cases into subsystems, something that also contributed to the interfaces
between the subsystems not being clear-cut.

5.2.3. Level of Detail
Examples of statements about level of detail in the models are given in Table
7. Each row relates the opinion of one interviewee. The main problems were
these:
• The teams had started to think about code when the focus should have

been on functionality. Both the use cases and the high-level sequence
diagrams were considered to be too detailed, because they often included
the same functions as the code.

• It was difficult to decide how to divide functionality into use cases and to
decide how many sequence diagrams should be made for each use case.

• The distinction between analysis and design was not clear. The analysis
models included design details and were consequently often difficult to
use in the design, because they constrained the design models.

 22

Table 7. Problems related to level of detail in the UML models
The embedded software interfaces hardware devices. Hardware developers are used
to starting by specifying a number of registers that bits will be flipped in and out of.
They do not think in terms of functionality to request or provide. This attitude leads
to models that are too detailed; for example, high-level sequence diagrams showing
actual function calls, and design models that were too large and complex and thus
difficult to use.
It was difficult to decide on the level of detail for the use cases. For example, do we
need two or 20 use cases to describe the problem? We found out that it was easier to
pass reviews with fewer use cases.
It was difficult to understand the use case concept and to describe the correct use
cases. We ended up with too much design in our use cases and our high-level
sequence diagrams. This was, to a great extent, because we were describing a
physical component of the system and found it difficult to start at a high level of
abstraction. The difference between analysis and design was not clear.
Use cases can be described in a number of different ways, all of which are correct. In
practice the development, and consequently the descriptions of the models, are
always a mixture of top-down and bottom-up; that is, between describing
functionality and considering the components of which a system will consist.
There were large differences between the level of detail of the use cases of the
different teams. Some made only one large use case for a large function that could
have been split up, while others made a large amount of use cases and a complex use
case model for functions that were quite simple.
We made more sequence diagrams than we actually needed in the analysis because
the reviewers intended there to be a sequence diagram for each use case flow,
regardless of how well that flow was described in the use case. The reviewers were
unable to see when a sequence diagram would be useful and when it wouldn’t.
We thought about code when we were supposed to focus on functionality. I think we
should have made more effort to stay at a higher level of abstraction.
We had large difficulties with our high-level classes. Since we already had
implementation classes in the legacy code, we thought it quite was useless to have to
invent some high-level classes.
Our UML models were often too detailed. During design we were constrained by our
use cases and high-level sequence diagrams, since these were so detailed and
included design.
The design models have become very detailed. There is too much information in
them and they are up to three hundred pages long.

 23

6. Scope and Validity of the Results

This section describes the scope and validity of the case study reported in this
paper.

6.1. Scope of the Results

In the authors’ opinion, most of the experiences gained from this project are
relevant for other large projects that introduce UML-based development.
There are, however, a number of aspects particular to this project.
• Much of the software to be developed was real-time and embedded. The

ABB UML method was not particularly tailored to this kind of
development. Only one of the interviewees stated, however, that he
missed particular real-time features. Object-oriented modelling and UML-
based development may be less suited for development of embedded
software because the concepts of actors and use cases are more difficult to
apply to a system where there is not so much external communication and
because many of the objects are established in advance.

• The ABB UML method was applied within an overall development
process with focus on the acceptance of project documents at predefined
gates in the development project. This meant that the documents with the
UML models, and not the models themselves, were subject to review.
Many of the interviewees had experienced difficulties with the format of
these documents, and that may have overshadowed their opinions on
UML-based development as such.

• The requirements were well-defined before the application of the ABB
UML method. The safety requirements were derived from IEC 61508.
Most of the functional requirements were the result of the system’s
relations to hardware artifacts, while some of them were responses to the
needs of users of the system, such as process operators and engineers.
This meant that the functional requirements were mostly independent of
users’ needs and abilities to define requirements. Use cases are claimed to
be particularly useful for eliciting and elaborating functional
requirements, but such activities were not part of this project, and use case
modelling may, therefore, have been considered less useful than it would
have been if such activities had been included.

• The use cases were constructed solely by developers who were also
domain experts. ABB develops products for sale, and consequently there
were no clients involved in the development process. This probably
contributed to the low level of detail in the use case models.

 24

• The teams had worked in a very vertical way, mostly with one team being
responsible for analysis, design and coding. The benefits of analysis and
design with UML may have been greater if the analysis and/or design
models had been handed over to other teams for further elaboration. In
addition, in practice, not all steps of the ABB UML method were
necessarily followed by all teams. Absolute conformance to a
development method is, however, seldom observed in software
development projects [9], and in this case the safety constraints forced the
developers to produce all the UML-models stipulated by the ABB UML
method.

ABB chose UML-based development because of good tool support. We
believe that the project would have experienced many of the same
improvements and challenges if they had chosen another modelling language
and method as a basis for their improvement initiative. However, we do
believe that there are some matters that are particular to UML-based
development. The use of use case diagrams may lead to a focus on the overall
system rather than on the individual parts. The packages in Rational Rose may
also have contributed to an awareness of each team working on a part of a
larger system. In this case, the system to be constructed was too large and
complex to easily provide an overall picture of its functionality. Many of the
difficulties reported in the interviews were related to problems with describing
models and their interfaces in such a way that they could provide an overview
of the system. These difficulties may have been lessened if a method for
analysis and design had been used that had less focus on overall functionality
and more on detailed design.

6.2. Validity of the Results

The results of this study are based on interviews with the project participants,
and our measures are their perceived improvements and problems. The
interviewees were selected to represent different parts of the project and they
all had experience with using UML on the project. The people present at the
interviews (the first and fourth author) were not employed by ABB, and the
interviewees were guaranteed anonymity. Our impression is that the
interviewees spoke freely. The conduct of interviews and confidentiality
issues are discussed further in [12] which is, among others, based on the
experiences from these interviews.
With respect to validity of results based on interviews there are, in particular,
two aspects of validity to consider [17]:

 25

• Descriptive validity; that is, whether the interviewees’ opinions are
rendered correctly. In this case, the interviews were transcribed, based on
tapes, by the research assistant who had been present at, but not directly
involved in, the interviewing. The analysis was based on these
transcribes.

• Interpretive validity; that is, whether the interviews are correctly
interpreted. In this case, the interviewees spoke very informally, and ten
of the interviewees were Swedish. Consequently, it was necessary to
translate and rewrite the transcriptions somewhat before the coding of the
interviews. It is possible that the meaning of some individual sentences
may have been altered slightly in this process. The categories used in the
analysis are the result of several iterations on coding the interviews, and
previous iterations also included other categories for coding that were
discarded because very few sentences in the interviews were coded
according to them. These categories were requirements analysis, the
method description and the syntax of UML in relation to improvements,
project decisions and difficulties with UML, respectively. Three project
members, who had not been interviewed, also read through and verified a
draft of this paper.

There are few empirical studies on UML-based development with which to
compare our results. Nevertheless, some of our results are supported by the
results reported in a paper with lessons learned from developing embedded
software [20]. That paper also reports improved communication due to the
introduction of UML-based development, as well as challenges with respect
to describing interfaces between UML models. Our results are also supported
by the results from a study on the introduction of object-oriented development
[16]. The experiences reported in that paper also emphasize the need for
sufficient training, reverse engineering of legacy code, and adequate
distribution of subsystems to teams, as well as the economic challenges
involved in these activities. Furthermore, some of our results are supported by
the results from a study on the usability of UML diagrams [2]. That study also
revealed difficulties with understanding the concept of use cases and
describing them with appropriate detail, as well as with modelling interface
objects in class diagrams. Difficulties with level of detail in use case models
have been mentioned, for example in [3,5,15].

 26

7. Conclusions and Future Work

This paper reports the results of a case study on adopting UML and an
associated UML-based development method in a large, international
development project in ABB. Data was collected through interviews with 16
developers and managers. Principles from grounded theory were used in the
analysis of the interviews.

The interviewees had obtained several immediate improvements as a
consequence of introducing a UML-based development method. These were
improved traceability of requirements to code, improved communication
within the development teams (and to some extent in the reviews), improved
design of the code, quicker development of test cases and better coverage of
these, and a product that was better documented than were previous products.
The interviewees also stated that there had been difficulties related to
obtaining these improvements and also that development costs had increased
due to the adoption of UML. When applying UML, the interviewees had
experienced difficulties with choosing an appropriate diagram in a specific
situation, interfaces between different models, and with the level of detail in
the models. There were four decisions made at the start of the project that the
interviewees identified as having caused problems with the use of UML.
These were related to lack of reverse engineering of legacy code, unsystematic
distribution of requirements to teams, insufficient training and mentoring, and
choice of modelling tools.

Despite the widespread use of UML in industry, there has been little
evaluation of UML-based development in industrial projects. In the authors’
opinion, this study thus represents a contribution to the body of knowledge
regarding benefits and challenges involved in adopting UML-based
development that should provide valuable input to the development of a
theory in the field as well as to practitioners. The ABB UML method has also
been changed, partly based on the results from this study.

The following activities are in progress, or are planned, in order to further
evaluate the use of UML-based development in ABB. First, a questionnaire,
with questions based on the results of the interviews, has been distributed to
the participants in the project to investigate specific aspects of the
development process in more detail. Second, project documents from the
project, in the form of UML-documents, review reports and test reports are
being analyzed, to identify what changes were made to the analysis models
and what caused these changes to be made. Third, more case studies on the
adoption, adaptation and use of UML-based development in various types of

 27

projects are needed to better understand how such development should be
applied to improve software development processes.

Acknowledgements

We acknowledge all the employees of ABB in Sweden and Norway who
participated in the interviews and their managers. We thank Lionel Briand for
valuable comments on the case study, and we also thank Hans Christian
Benestad, Vigdis By, Dag Sjøberg, Marek Vokác, Ray Welland, Chris Wright
and the anonymous reviewers for their comments on a previous version of the
paper. The reported work was funded by The Research Council of Norway
through the industry project SPIKE (Software Process Improvement based on
Knowledge and Experience).

References

1. ABB Gate Model for Product Development 1.1 tech. report 9AAD102113,
ABB/GP-PMI, Västerås, Sweden, 2001.

2. Agarwal, R. and Sinha, A.P. Object-Oriented Modeling with UML: A Study of
Developers’ Perceptions. Communications of the ACM, Vol. 46, No. 9, pp. 248–
256, September 2003.

3. Armour, F. and Miller, G. Advanced Use Case Modelling. Addison-Wesley,
2000.

4. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

5. Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2000.
6. Cox, K. and Phalp, K. Replicating the CREWS Use Case Authoring Guidelines

Experiment. Empirical Software Engineering, Vol. 5, No. 3, pp. 245-267, 2000.
7. Douglass, B.P. Real Time UML: Advances in the UML for Real-Time Systems.

3rd Edition, Addison-Wesley, Boston, MA, 2004.
8. Eisenhardt, K.M. Building Theories from Case Study Research. Academy of

Management Review, Vol. 14, No. 4, pp. 532-550, 1989.
9. Fitzgerald, B. The use of systems development methodologies in practice: a field

study. Information Systems Journal, Vol. 7, pp. 201-212, 1997.
10. Fowler, M. UML Distilled. A Brief Guide to the Standard Object Modelling

Language, 3rd edition. Addison-Wesley, 2003.
11. Hansen, K.T. and Gullesen, I. Utilizing UML and patterns for safety critical

systems. In Jürjens et al. (eds.): Critical Systems Development with UML,
number TUM-I 0208 in TUM technical report, UML’02 satellite workshop
proceedings, 2002.

12. Hove, S.E. and Anda, B. Experiences from Conducting Semi-Structured
Interviews in Empirical Software Engineering Research. Accepted for
presentation at Metrics 2005.

 28

13. Huberman, A.M. and Miles, M.B. The Qualitative Researcher’s Companion.
SAGE Publications, Inc., Thousand Oaks, CA, 2002.

14. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. 1998. (http://www.iec.ch/).

15. Kulak, D. & Guiney, E. Use Cases: Requirements in Context. Addison-Wesley,
2000.

16. Malan R., Coleman, D. and Letsinger, R. Lessons from the Experiences of
Leading-Edge Object Technology Projects in Hewlett-Packard. Proceedings
OOPSLA 1995, pp. 33-46.

17. Maxwell, J.A. Understanding and Validity in Qualitative Research. Harvard
Educational Review, Vol. 62, No. 3, pp. 279-300, 1992.

18. Otero, M.C. and Dolado, J.J. An Initial Experimental Assessment of the Dynamic
Modelling in UML. Empirical Software Engineering, Vol. 7, No. 1, pp. 27-47,
2002.

19. Peleg, M. and Dori, D. The Model Multiplicity Problem: Experimenting with
Real-Time Specification Methods. IEEE Transactions on Software Engineering,
Vol. 26, No. 8, pp. 742-759, 2000.

20. Pettit, R.G. Lessons Learned Applying UML in Embedded Software Systems
Designs. Proceedings of the Second IEEE Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (WSTFEUS’04), pp. 75-79,
Vienna, Austria, May 11-12, 2004.

21. Seaman, C.B. Qualitative Methods in Empirical Studies in Software Engineering.
IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 557-572,
July/August 1999.

22. Selic, B. The Pragmatics of Model-Driven Development. IEEE Software, Vol.
20, No. 5, pp. 19-25, September/October 2003.

23. Sjøberg, D.I.K. et al. A Survey of Controlled Experiments in Software
Engineering. To appear in IEEE Transactions on Software Engineering, 2005.

24. Strauss, A. and Corbin, J. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. 2nd ed. SAGE Publications, Inc.,
Thousand Oaks, CA, 1998.

25. The ABB Instruction “Software and Hardware development”, 2001.
26. The ABB Guideline “Guideline for use of semi-formal methods in Software and

Hardware design”, 2003.
27. Yin, R. Case Study Research: Design and Methods. 3rd ed. SAGE Publications,

Inc., Thousand Oaks, CA, 2003.
28. Zendler, A. et al. Experimental comparison of coarse-grained concepts in UML,

OML and TOS. The Journal of Systems and Software, Vol. 56, No. 4, pp. 21-30,
2001.

 29

http://www.iec.ch/

Appendix A – Brief Description of the ABB UML Method

The requirements analysis phase of the ABB UML method:
R1. Identify actors and use cases, and document them
Actors are the system’s external interfaces. Humans, timers, sensors, or anything else
that interacts with the system, can be an actor. For a use case diagram in a subsystem,
other (interacting) subsystems should also be defined as actors.

Use cases:
• Define the system as seen from the actors’ point of view.
• Represent the different usage of the system and system services.
• Capture the requirements.

A use case is always initiated by an actor.
R2. Group use cases and actors into subsystems

There should be strong cohesion within the subsystems and a weak coupling
between the subsystems.
R3. Refine the use cases and identify dependencies

If some use cases show common behaviour at specific points, and this
commonality can be extracted without disturbing the main functionality, it can
be factored out as a separate use case and included in the diagrams from which
they were extracted using the <<include>> stereotype. If some use cases have
behaviour that can be seen as additions to, or variations of, normal behaviour,
such forms of behaviour can be factored out as separate use cases and included
in the use cases from which they were extracted using the <<extend>>
stereotype. The different possible extension points are listed inside the lower
half of the use case, and each <<extend>> is marked with the connecting
extension point.

The analysis phase of the ABB UML method:
A1. Describe flow of events inside the use case (textual)

Describe each use case with the normal flows of events inside the use cases
(each use case has at least one normal flow of events). Then capture the
exceptional flows of events for each use case. This is done in several iterations.

A2. Create high-level sequence diagrams
High-level sequence diagrams should be used to show the dynamics between the
objects involved in the use case and the actors interfacing them, for both normal
and exceptional flows of events. Objects of type inclusionPoint with the names
of the included use cases, and objects of type extensionPoint with the
<<extend>> names take the included and extended sequence diagrams’ roles.
Only objects with ‘focus of control’ or actors may initiate messages. A base use
case transfers ‘focus of control’ to the object to which it sends a synchronous
message, but it keeps the ‘focus of control’ if the message is asynchronous. An
object that receives a message gains “focus of control”. Information contained in
objects must be placed there by another object before it can be extracted, and it
originates in an actor outside the system.

 30

A3. Define interfaces between use cases in different subsystems
There are interfaces between the subsystems. In the use case diagrams there are
dependency arrows from the use cases to their interfaces. The exact messages
included in the interfaces are identified by those responsible for the subsystems
that interact.

A4. Describe the activities in the use case in an activity diagram (Optional)
Activity diagrams should show the different activity states of the use case, for
both normal and exceptional flows of events.

A5. Create high-level class diagrams
Identify high-level classes. A high-level class describes the commonality
between similar objects in the sequence diagrams and defines the structure and
behaviour for each object in the class. Assign objects to the correct classes. The
interactions between the objects in the sequence diagrams help to identify the
operations in the classes. The different messages will identify operations in the
class of the receiving object. Find the information contents necessary to process
each message in the sequence diagrams. This information will end up as
attributes in the class of the receiving object.
The high-level class-diagram should show associations between the classes.

A6. Update sequence diagrams with correct high level class and operation names
When high-level class diagrams are made, the mapping back to the sequence
diagrams must be done. Mark out in which technology the high-level class would
be implemented (SW, VHDL, HW). These distinctions will be used when we
start to build the component view.

The Detailed Design phase of the ABB UML Method (Note that the hardware
developers did no detailed design):
Detail design (SW)
The goal of this phase is to realize the high-level classes with implementation class
diagrams and to group the classes in components. The detailed class diagrams include
relations between classes, operations and attributes. State transition diagrams may be
used in the process of elaborating the class diagrams.
The detailed classes are connected to the high-level classes through a “realize”
association. In this context, it makes sense to expose operation signature details for
the high level classes.
The classes with strong coupling are typically candidates for a component, as are
classes with the same implementation technology. When classes with strong coupling
but different implementation technology are distributed to different components, an
interface must be made to take care of the classes.

 31

Appendix B - Interview guide

1. What is your professional background?
2. Can you describe your role in the project?
3. How well did you know UML and UML-based development at the start of this

project?
4. What were your expectations when starting to use UML and the ABB UML

method; what benefits and costs did you expect?
5. Have you previously worked on similar projects, with or without UML, so that

you can compare experiences from that project with this one?
6. What are your opinions about the training you received?
7. With whom did you cooperate on the use of UML?
8. Did you have to adapt the ABB UML method in any way to the needs of the part

of the system that you were modelling?
9. What is your experience with the different diagrams, use cases, sequence

diagrams, class diagrams etc.?
10. Were there parts of the systems that you had problems modelling using UML?
11. How did you find the reviews?
12. Who are the receivers of the UML-models that you produce, apart from the

reviewers?
13. What kinds of interface did your code have to other UML models or to existing

code and how do you think you succeeded in modelling those interfaces?
14. What were, in your opinion, the costs involved in applying UML and the ABB

UML method and what were the benefits?
15. Do you have any experience with maintenance of systems that are documented

using UML?
16. Is there anything that you would have done differently if you could start all over

again?
17. How would you rate the ease of comprehension of the UML models that you

have read?
18. Do you believe that you can identify good use of UML; do you have any specific

criteria?

 32

Appendix C – Categories for Coding of the Interviews

Background:
Expectations
Experience
Training (which)
Activities (in the project)

Possible improvements:
Traceability
Communication, Reviews
Design
Documentation
Test, Defects
Costs

Project characteristics:
Training, Mentoring (opinions)
UML team
Legacy code
Organization (of requirements and teams)
Tools, Templates

Use of UML:
Interfaces
Level of detail, Abstraction level
Choice of diagrams

 33

	2.2. The Project

