
Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

1

The Impact of UML Documentation on Software
Maintenance: An Experimental Evaluation

Erik Arisholm§, Lionel C. Briand‡§, Siw Elisabeth Hove§, Yvan Labiche‡
‡ Carleton University
Department of Systems and Computer Engineering
Software Quality Engineering Laboratory
1125 Colonel By Drive
Ottawa, ON K1S5B6, Canada
{briand, labiche}@sce.carleton.ca

§ Simula Research Laboratory
Department of Software Engineering
Martin Linges v 17, Fornebu
P.O.Box 134,
1325 Lysaker, Norway
{erika,siweh}@simula.no

ABSTRACT

The Unified Modeling Language (UML) is becoming the de-facto standard for software

analysis and design modeling. However, there is still a significant resistance to model-

driven development in many software organizations as it is perceived to be expensive and

not necessarily cost-effective. It is therefore important to investigate the benefits obtained

through modeling. As a first step in this direction, this paper reports on controlled

experiments, spanning across two locations, which investigate the impact of UML

documentation on software maintenance. Results show that, for complex tasks and past a

certain learning curve, the availability of UML documentation may result in significant

improvements of the functional correctness of changes as well as their design quality. On

the other hand, there does not seem to be any resulting time saving. For simpler tasks,

the time needed to update the UML documentation may be substantial compared with the

potential benefits, thus motivating the need for UML tools with better support for

software maintenance.

1 INTRODUCTION

Software maintenance is often performed by individuals who were not involved in the

original design of the system being changed. This is why documenting software

specifications and designs often has been advocated as a necessity to help software

engineers remain in intellectual control while changing complex systems [7, 11]. Indeed,

it is expected that many aspects of a software system need to be understood in order to

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

2

properly change it, including its functionality, architecture, and a myriad of design

details.

However, documentation entails a significant cost and it must be maintained along with

the software system it describes. The question that arises is then what should be the

content and level of detail required to help software maintenance [9]? The proponents of

agile methods usually advocate to keep documentation to a minimum and to focus on test

cases as a source of system requirements [6]. On the other hand, model-driven

development views software development as a series of modeling steps, each of them

refining the models of the previous step [18]. The transition from analysis, to high-level

design, low-level design, and then code is supported by tools facilitating and automating

parts of the work. Modeling is seen as a way to better handle the growing complexity of

software development by helping engineers work at higher levels of abstraction. Model-

driven development is supported by the Unified Modeling Language (UML) [7], an

evolving standard which is now widespread across the software industry. Despite a

growing popularity, there is little reported evaluation of the use of UML-based

development methods [1], and many perceive the documentation of analysis and design

models in UML to be a wasteful activity [6]. Such practices are therefore viewed as

difficult to apply in development projects where resources and time are tight.

It is then important, if not crucial, to investigate whether the use of UML documentation

can make a practically significant difference that would justify the costs. This is

particularly true in the context of software maintenance which consumes most of

software development resources [28] and entails the comprehension of large, complex

systems under constant change.

This paper attempts to evaluate the impact of using UML modeling on the correctness

and effort of performing changes. This is done through two controlled experiments taking

place in two distinct geographical locations. Both involve students with substantial

training in object-oriented programming and UML modeling but coming from two

different education systems. An additional objective is to identify reasons for varying

results and therefore identify plausible and necessary conditions for UML to be effective.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

3

Our decision to answer the above research question with controlled experiments stems

from the many confounding and uncontrollable factors that could blur the results in an

industrial context. It is usually impossible to control for factors such as ability and

learning/fatigue effects, and select specific tasks to assign to individuals in a real project

setting. As a result, the threats to internal validity are such that it is difficult to establish a

causal relationship between independent (e.g., UML) and dependent variables (e.g., time,

correctness). Basili et al. [5] state that “Controlled experiments can generate stronger

statistical confidence in the conclusions.” and Judd et al. [16] write that “ ... we can

confidently infer causality from the relationship between two variables only if people

have been randomly assigned to the levels of the independent variables.”

However, controlled experiments are a compromise as they can only span limited time

and necessarily involve smaller tasks and artifacts. Again, this is a well known threat:

“Unfortunately, since controlled experiments are expensive and difficult to control if the

project is too large, the projects studied tend to be small.” [4] It therefore raises questions

about the extent to which their results can be generalized to realistic tasks, artifacts, and

project settings (external validity). From a pragmatic standpoint, both types of studies are

needed to obtain a credible body of evidence, but during the earlier stages of an

investigation, controlled experiments enable the investigators to better understand the

issues at stake and the factors to be accounted for. Furthermore, one can analyze whether

the results obtained on smaller artifacts and tasks can at least be considered encouraging

and justify further evaluation in more realistic settings.

The rest of the article is structured as follows. Related work is discussed in Section 2.

Section 3 reports on the planning of the two controlled experiments and results are

presented in Section 4. Section 5 analyses threats to validity and conclusions are drawn in

Section 6.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

4

2 RELATED WORKS

In the following we discuss a number of studies that have investigated the impact of

program documentation, specific ways of using UML or compared UML to other

notations in the context of program comprehension and maintenance.

In [36], an experiment was conducted to assess the qualitative efficacy of UML diagrams

in aiding program understanding. The subjects, who the authors rated as UML experts,

had to analyze a series of UML diagrams and answer a detailed questionnaire concerning

a hypothetical software system. Results from the experiment suggest that the UML’s

efficacy in support of program understanding is limited by (1) unclear specifications of

syntax and semantics in some of UML’s more advanced features, (2) spatial layout

problems, e.g., large diagrams are not easy to read, and (3) the UML’s insufficient

support for representing the domain knowledge required to understand a program.

A complementary work, that also investigated the impact of UML documents’ content,

investigated whether making UML models more precise using the Object Constraint

Language (OCL) [37]—which is part of the UML standard [23]—helped with defect

detection, comprehension, and maintenance [10]. The results showed that, once past an

initial learning curve, significant benefits can be obtained by using OCL in combination

with UML analysis diagrams to form a precise UML analysis model. However, this result

was conditioned on providing substantial, thorough training to the experiment

participants.

Other studies have compared UML to other notations in specific contexts: For example,

the experiment reported in [32] compared the comprehension of subjects when provided

with two different types of modeling notations: UML models or OPM (Object-Process

Methodology) models. The results suggest that OPM is better than UML in modeling the

dynamics aspect of Web applications for relatively untrained users. Another experiment,

reported in [26], also evaluated the comprehensibility of the dynamic models in two

standard languages, UML versus OML (OPEN Modeling Language). The results

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

5

suggested that the specification of the dynamic behavior using OML is faster to

comprehend and easier to interpret than using the UML language.

Other works have studied the comprehensibility of alternative UML diagramming

notations, different layout heuristics and syntactic variations of UML-models. For

example, an experiment on the comprehension of sequence versus collaboration diagrams

was presented in [19], and showed no significant differences in the understandability of

the two alternative notations. An experiment reported in [20] showed that the use of

stereotypes had a positive effect on model understandability. Experiments reported in

[29, 30] investigated the impact of semantically identical but syntactically or stylistically

different variations of UML class and collaboration diagrams. Results showed that which

variation was “best” depended on the task for which it was used.

A controlled experiment reported in [2] investigated how access to textual system

documentation (the requirements specification, design document, test report, and user

manual) helped when performing maintenance tasks. The results indicated that having

documentation available during system maintenance reduces the time needed to

understand how to perform maintenance tasks by approximately 20 percent. The results

also suggested that there is an interaction between the maintainer’s skill (as indicated by a

pre-test score) and the potential benefits of the system documentation: the most skilled

maintainers benefited the most from the documentation.

In [3], the authors investigated the impact of the design style of an Object-Oriented (OO)

system on its understandability. The two design styles of interest were a delegated control

style, often advocated by modern OO development methodologies, and a centralized

control style, often regarded as reminiscent of a procedural solution. The results

suggested that the delegated control style was very difficult to understand for novices.

Only senior developers benefited from a delegated control style. One possible

explanation of the results reported in [3] is discussed in [34]: Delocalized plans need to

be explicitly documented in higher level representations of the code to aid in program

understanding and maintenance. The authors question whether it is even reasonable to

look at the details of program code in order to understand a (delocalized) program [34]:

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

6

“why should programmers look at program text? That is, we do not need to look at the

compiled version of a program because the details are overwhelming.”

One investigation evaluating whether using UML is cost-effective in a realistic context,

for a large project, has been recently conducted under the form of a qualitative case study

[2]. The participants in the case study acknowledged that, despite some difficulties (e.g.,

need for adequate training), there are clear benefits from using UML (e.g., traceability

from functional requirements to code).

However, to the best of the authors’ knowledge, none of the existing works investigated

by means of a controlled experiment the fundamental question of whether UML

documentation yields practical benefits when changing systems. This is however crucial

if we want to see widespread adoption of model-driven development in industry and

convince software managers and engineers that UML modeling is really worth the effort.

Furthermore, most of the experiments above did not involve actual changes to UML

models, and none of them involved changes to code. Their experimental tasks mostly

involved responding to comprehension questions. The current paper investigates the

impact of UML in the specific context of software maintenance tasks while performing

actual changes to two systems. The current experiment complements the results of

qualitative case studies such as those reported in [2].

3 EXPERIMENT PLANNING

In this section we report two distinct controlled experiments, following the template

proposed in [38]. Though the research question they pose is identical, they differ in terms

of their design, their size, and their focus. The first experiment took place in Oslo,

Norway and the second one in Ottawa, Canada. We will refer to them as the Oslo and

Ottawa experiments, respectively. The Oslo experiment involved less participants and

because it was the first one, it was more exploratory and therefore relied more heavily on

subject interviews and qualitative analysis [33]. The Ottawa experiment involved a larger

number of participants and was designed to make standard statistical analyses possible.

Further details on the differences between the two experiments are reported below.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

7

3.1 Experiment Definition

The UML documentation used here corresponds to what you would typically expect at

the end of design, in terms of content and level of detail [11], as further described in

Section 3.5.1. We first want to assess whether the provided UML documentation helps

shorten the effort required to change the source code. In other words, we are interested in

whether UML documents can help reduce the costs related to code changes and, in order

to perform such an analysis, we must measure the time required to complete the

maintenance tasks of our experiment. Two different measures of time are considered as

we may choose to include or not the time taken for modifying UML models. Though it is

only fair to account for the time required to modify models to assess whether time is

saved, the time spent on modifying the models is probably strongly dependent on the

modeling tool used and the subject’s training in that particular tool. This is highly

context-dependent and we therefore wanted to distinguish the time people spent

understanding and modifying the code (with the help of UML diagrams) from the time

spent on modifying the UML diagrams. Both measures of time are expected to provide

interesting, complementary insights. The time spent excluding diagram modifications

provides a useful baseline of comparison where the reader is free to consider an effort

overhead for model modification that is suitable to her context. The time spent including

diagram modifications reflect the expected impact of UML on time with our specific

modeling tools and given our subjects’ training in that particular tool.

Another interesting dependent variable is the functional correctness of the changes, as

UML documents may also help achieve better change reliability. Furthermore, because a

change can be functionally correct but poorly designed—thus impacting the

maintainability of the changed system— we want to assess the design quality of the

change design and determine whether UML helps achieve better designs through a better

comprehension of the existing system design.

Our experiment therefore has one independent variable (the use of UML documentation)

and two treatments (UML, no-UML). It has four dependent variables on which treatments

are compared: time to perform the change excluding diagram modifications (T), time to

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

8

perform the change including diagram modifications (T’), the correctness of the change

(C), and the quality of the changed design (Q). There are also alternative ways to measure

the C and Q variables and this will be further discussed in Sections 3.6 and 3.7.1.

Another important aspect is to decide what should be the baseline against which to

compare the use of UML. There are of course an infinite number of possibilities as

software development practices are widely varying. But, in our experience, the most

common situation can be defined as follows: (1) Source code is the main artifact used to

understand a system, (2) Source code is commented to define the meaning of the most

complex methods and variables, (3) There exists a high level textual description of the

system objectives and functionality. This is therefore what we will use as a basis of

comparison in order to determine whether the abstract representations captured by UML

helps developers perform their change tasks.

3.2 Experimental Context

Our two experiments took place in significantly different contexts. The Oslo experiment

involves 3rd year informatics students which had previously taken two courses with

significant UML exposure. The Ottawa experiment involved 4th year Computer/Software

engineering students which had previously passed a full term course on UML-based

analysis and design and were registered in a second course focusing on UML-based

development. A precise comparison of the relevant course credits taken by students in

Oslo and Ottawa showed they had comparable programming experience and UML

exposure (Section 3.4).

While in Oslo the participants were financially compensated to take part in the

experiment, the experiment in Ottawa was part of compulsory course laboratories and the

tasks were performed as practical lab exercises. In the latter case we had to ensure that

(1) every student would go through the same learning experience, (2) the labs were a

valuable practical experience supporting the objectives of the course, and (3) the tasks to

perform would be feasible within the scheduled lab hours. These considerations were

paramount in selecting the proper course in which to run the experiment and during the

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

9

definition of our experiment design and material. Furthermore, they did not know what

hypotheses were tested.

3.3 Hypotheses Formulation

The hypotheses for testing the effect of UML documentation on our four dependent

variables are given in Table 1: The alternative hypotheses (Ha) state that using UML

documents improves three of the dependent variables: less time to complete the tasks

when excluding diagram modifications, improved functional correctness, and improved

design quality. Thus Table 1 defines three of the hypotheses as one-tailed as we expect

UML to help people better understand the system design, and hence provide better

solutions faster. It is however difficult to have clear expectations regarding the UML

effect on time when including time spent on diagram modifications (T’), as the time

overhead to modify the diagrams might be larger than the expected time gains. Thus the

hypothesis on time including diagram modifications (T’ in Table 1) is two-tailed.

Table 1 Tested Hypotheses

Dependent variable Null hypothesis Alternative hypothesis
Time excluding diagram modifications H0: T(UML) ≥ T(no- UML) Ha: T(UML) < T(no-UML)
Time including diagram modifications H0: T’(UML) = T’(no- UML) Ha: T’(UML) ≠ T’(no-UML)
Correctness H0: C(UML) ≤ C(no- UML) Ha: C(UML) > C(no-UML)
Quality H0: Q(UML) ≤ Q(no- UML) Ha: Q(UML) > Q(no-UML)

When comparing the time spent on tasks across UML and no-UML groups, one should

naturally account for the overhead involved in modifying UML diagrams. From this

perspective, T’ is a priori a better measure than T when assessing the economic impact of

using UML. However, for reasons previously discussed in Section 3.1, it is still relevant

to look at T as we expect the relative overhead due to model modification to vary a great

deal across environments, depending on the specific tools in use and training.

Furthermore, as tools are improving their support for model change, we expect this

overhead to decrease over time. By reporting results of the impact of UML on T, we thus

intend to provide a basis for the reader to assess the benefits of using UML based on her

own, context-specific estimate regarding the overhead of modifying UML diagrams. In

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

10

addition, such results will provide further evidence regarding whether UML, as a

minimum requirement, really facilitates code understanding and change.

3.4 Selection of Subjects

Oslo students went through different numbers and types of courses, but all of them had

taken at least two OO programming courses and at least two courses where UML was

introduced. Carleton students had taken a minimum of two OO programming courses,

one course on UML modeling, and were taking a second UML modeling course at the

time of the experiment. In both cases, the students were familiar with the tools they had

to use (TAU [35] and Visio [21]). Based on this information (summarized in Table 2), we

deemed that they had the required training to perform the tasks at a proficient level. In

many ways, for the particular tasks involved here, our experience suggests that such

students are better trained than most professionals who often have not been formally

taught OO design and modeling with the UML, at least not nearly to the same extent.

Because students had passed the required courses, we did not perform any selection of

subjects in the Ottawa experiment.

Table 2. Summary of competences

 Oslo Ottawa
OO programming courses
(lecture + laboratory) 2 courses: 120 hours 2 courses: 120 hours

Introduction to UML
course(s) (lecture +
laboratory)

2 software engineering courses
introducing UML as one of several
topics: Approximately 40 hours of
UML-specific training

1 course: 60 hours

Other topics addressed in
previous courses

Operating systems, databases, computer
architecture, data communication,
software engineering

Operating systems, databases,
real-time systems, computer
architecture

3.5 Experimental Design

3.5.1 Experimental tasks

Both experiments involved the same two systems. The first one is a simple ATM system

and the second one is a software system controlling a vending machine serving hot

drinks. Both systems were used in previous experiments [3] and were modified for the

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

11

experiments we report here. Table 3 provides relevant metrics for the two systems. The

systems used were tested before any modifications by devising test suites using the

category-partition method testing technique [25]. This test technique was also reused in

the Ottawa experiment to assess the functional correctness of the subjects’ solutions

(Section 3.6) after changes were implemented. The subjects were given a high level

textual description of the system objectives and functionality. The source code was also

commented to define the meaning of the most complex methods and variables. For all

tasks, the subjects were given a precise functional specification illustrated by a test case

output that exemplified the details of the requested functionality. We did not provide the

subjects with a test harness. They were free to test their changes as they wanted. Note that

this was the case of both UML and no-UML groups, so no bias was introduced. The

UML documents provided information at a level of details that one would expect at the

end of the design phase [11]: a use case diagram, sequence diagrams for each use case,

and a class diagram. These correspond to the most commonly used diagrams in practice

and we wanted our results to be as realistic as possible. For the same reason, all

conditions in sequence diagrams were simply described in English. Example UML

diagrams are provided in Appendix D and Appendix E.

Table 3. Details on the two systems (for the first task of each system)

 ATM Vending Machine
of classes 15 9
of operations 33 32
of attributes 15 7
of use cases 5 9
of messages in sequence diagrams 53 74
LOC 354 297

We defined four tasks in both experiments but they partly differed. The reason is that,

after the Oslo experiment, we felt that we needed more difficult tasks to extend the scope

of the study. For the Ottawa experiment, one more difficult task was therefore created for

each of the ATM and Vending systems. The three most difficult tasks in the Oslo

experiment were reused as the easiest tasks in Ottawa. In the remainder of the paper,

tasks are referred to according to the task names given in Table 4.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

12

Table 4 Systems’ and tasks’ Descriptions

System Tasks Description Oslo Carleton

ATM Task 1 Print out an account transaction statement x x

 Task 2 Transfer money between two accounts not given x

Vending Task 3 Implement a coin return-button x not given, already
implemented

 Task 4 Make bouillon as a new type of drink x not given, already
implemented

 Task 5 Check whether all ingredients are
available for the selected drink

x x

 Task 6 Make your own, customized drink based
on the available ingredients

“Time sink” task x

3.5.2 Time Allocation

Oslo students had 8 hours, all in one day, to complete all the four tasks. In addition to the

four tasks for which the participants were evaluated, there was a fifth task (Task 6 in

Table 4) which was not expected to be completed but was intended to be a “time sink” in

which participants could use the remaining time, if any, after the completion of the first

four tasks (Tasks 1, 3, 4 and 5 in Table 4). The time sink task was thus included to reduce

time ceiling effects: Subjects who work fast may spend more time on the last task than

they would otherwise. Similarly, subjects who work slowly may have insufficient time to

perform the last task correctly, and may therefore prioritize speed over quality.

Consequently, the time-sink task was included as the last change task in this experiment

but it was not accounted for in the analysis. Further discussions of the rationale for the

time sink task is given in [3].

Carleton students had 5 course laboratories (a week apart) of three hours. The first

session was used for exercises and additional training, and each of the four tasks was then

performed in subsequent labs. There was no need for a time sink task as students were

free to leave the lab once their work was completed.

3.5.3 Other factors to be controlled

As for any software engineering experiment, we expected wide variation in terms of

students’ ability. In both experiments we used blocking as a means to ensure comparable

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

13

skills across student groups using and not using UML, respectively. In Oslo, blocking

was based on the number of “passed credits” in computer science specific courses, as this

was found to be a good predictor of their performance based on data from a previous

experiment with the same systems and tasks [3]. Two blocks were then considered

according to whether or not students had passed a minimum of 30 course credits

(corresponding roughly to 6 courses): 11 students in the low-credit (below 30 course

credits) and high-credit blocks, respectively. The 11 students within each block were then

randomly assigned to one of the two treatments. Two students (one from each block, both

assigned to the UML treatment), did not show up for the final experiment. Despite the

subject loss, the mean number of credits in the resulting groups was still very similar

(27.0 for the UML group and 26.5 for the No UML group). In Ottawa, we could use a

more direct measure of students’ ability by using the grade of their previous OO analysis

and design course, which focused on UML modeling. Two blocks were then considered

according to whether or not students had obtained a minimum grade of B- in that

previous course: 38 students in the low-ability block (grade below B-) and 38 students in

the high ability block (grade above or equal to B-).

In Oslo, given the fact that all required technical skills were already acquired in previous

courses, students underwent a specific training for the experimental tasks at hand, to get

familiar with the experiment support system (Section 3.6), the experimental process, and

the development tools. In Ottawa, no experiment support system was used and a very

simple tool (Visio), requiring no further training, was used for UML modeling. The first

lab was used as a refresher about UML modeling though students all had previously

undertaken appropriate courses in OO analysis, design, and programming.

In terms of the systems used, we have indicated that both experiments used the same two

systems. In Oslo, all subjects performed all tasks on both systems in the same order, as

shown in Table 5. In Ottawa, half the participants started with the Vending Machine

whereas the other half worked first on the ATM. The motivation was to make sure that

none of the two systems would somehow benefit from learning effects so that they could

be distinguished from system effects.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

14

Table 5. Oslo Experiment Design

UML (9) No UML (11)

Training Training

ATM Task 1 ATM Task 1

Vending Task 3 Vending Task 3

Vending Task 4 Vending Task 4

Vending Task 5 Vending Task 5

Time Sink (Task 6) Time Sink (Task 6)

In order to differentiate the treatment (UML) from ordering effects, the Ottawa

experiment was designed so that, for each task, groups of (nearly) identical size

performed the task with and without UML. In Oslo, this problem was not relevant as half

the students were assigned to the no-UML treatment (11 as reported in Table 5) for all

tasks and they all performed the same tasks in the same order. The reason why this was

possible is that, the students receiving payment for their involvement, there was no

ethical necessity to ensure that all of them would go through the same learning

experience. In a course lab context, this was of course an absolute requirement.

The exchange of information among students was prevented, both during or in-between

labs. In Oslo, students were paid and were aware this was an experiment for which they

were supposed to work individually. They were also monitored by several researchers

during the experiment. In Ottawa, students were graded based on the resulting quality of

their tasks and were told to work individually. Their work was carefully monitored during

all labs and, since they were not aware beforehand of the precise plans for all five labs,

they had no reason to suspect they would work on identical tasks. Furthermore, the

material necessary for performing the tasks was not available between labs.

The experimental design for the Ottawa experiment is summarized in Table 6, where

each group involves (approximately) the same number of participants (e.g., 22 in group

1) and is randomly assigned students according to the blocking procedure described

above. Table 6 shows what task was performed, on which system, and in which order for

each of the four groups in the Ottawa experiment. We can clearly see that the number of

people performing tasks on the ATM first is equal to the number of people working first

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

15

on the Vending Machine. Similarly, the number of participants working first with UML

and without UML is approximately the same. Hence the effects of individual capabilities,

system differences, and the order in which UML is used are counterbalanced.

The groups are not exactly of the same size due to subject loss (i.e., people missing labs,

being sick, etc.) after subjects were assigned to the groups. However, a one-way analysis

of variance clearly shows that the grade means are not significantly different across

groups.

Table 6 Ottawa Experiment Design

 Group 1 (22) Group 2 (17) Group 3 (21) Group 4 (18)

Lab 1 ATM
Task 1

ATM + UML
Task 1

Vending
Task 5

Vending + UML
Task 5

Lab 2 ATM
Task 2

ATM + UML
Task 2

Vending
Task 6

Vending+ UML
Task 6

Lab 3 Vending + UML
Task 5

Vending
Task 5

ATM + UML
Task 1

ATM
Task 1

Lab 4 Vending+ UML
Task 6

Vending
Task 6

ATM + UML
Task 2

ATM
Task 2

3.6 Instrumentation and Measurement

In Oslo, the data collection and the logistics of the experiment were supported through a

web-based experiment support system (SESE) [4]: systems and task descriptions were

distributed, time was measured, task solutions and a comprehensive set of qualitative data

pertaining to each task were collected through SESE. In Ottawa, since that system could

not be used in ordinary lab settings, students had to download documents from a web site

and were asked to send their solutions by email as soon as they were completed. In

addition, after each task, students were asked to fill a survey questionnaire to collect data

about their perceived difficulty of the task, their experience and familiarity with the tools,

and whether they thought UML was useful (Appendix B).

In Oslo, test cases were devised to perform basic functionality testing of the changes, i.e.,

test the main scenario of the changed function. All task solutions were also inspected

manually to further assess the “degree” of correctness. On the basis of the functional

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

16

testing and the manual inspection, the solution to each change was graded on a 6-point

scale to indicate the amount of work required to fix any deviations from the prescribed

functionality, as shown in Table 7. However, based on the feedback we received from the

rater using this scale, doubts were raised about the reliability of scores below 5. The top

end of the scale (5 and 6) is more reliable (less subjective) because it is mainly based on

the results of the functionality testing: solutions with no or only cosmetic differences

from the expected output were considered correct. As a result, our analysis relied on a

binary classification of correctness where only solutions with scores 5 or 6 were

considered correct as cosmetic variations in the expected output were not considered to

be relevant.

Table 7 Coding scheme of the correctness measure.

Correctness Interpretation
6 Correct solution, passed the test case
5 Cosmetic differences in the output. Trivial to fix
4 Small logical errors that are estimated to be very simple to fix
3 Some errors that are estimated to take some time to fix
2 Incomplete solution that are estimated to take a long time to fix
1 Very incomplete solution or no solution delivered

In addition, through SESE, the students answered a questionnaire after each task, and had

to provide feedback every 15 minutes on what they were doing, thus providing

continuous qualitative insight during the experiment. At the end of the experiment, semi-

structured interviews of the participants took place and were analyzed using the QSR N6

qualitative analysis tool [31], as described in Section 3.7.2.

In Ottawa, because we were dealing with a larger number of subjects than in the Oslo

experiment, we had to automate the testing procedure as much as possible. For that

purpose we specified a precise functional test plan for each change, based on a black-box

test technique called Category-partition [25]. Only failed test cases were then inspected

manually in order to determine whether the failure was due to minor cosmetic differences

in the output or a functionally incorrect change. An additional motivation of this test

suite-based strategy was to have a finer granularity and more objective correctness

measurement than the binary correctness evaluation used in the Oslo experiment. This

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

17

was especially important as the emphasis of the Ottawa experiment was more on

quantitative analysis.

We also wanted to assess the design quality of the proposed solution, independently of

the functional correctness of the change. For each change, we performed a precise

analysis of all solutions that could be considered proper based on standard design

strategies for class responsibility assignment [11]1. We then counted the number of

operations, attributes that should be added, modified, or deleted based on each identified

solution. The design quality of a task solution was then assessed on that basis by counting

the number of elements that were correctly and erroneously added, changed, and deleted2.

For the sake of simplification, we combined additions, deletions and changes into a single

count thus yielding two counts Q and Q’ for correct and erroneous changes, respectively.

If we take Task 6 as an example, it involved the addition of two methods, plus the change

of one method and one constructor. For the sake of the example, we label them m1, m2,

m3, and c, respectively. A solution that would correctly add m1 and change m3, but

would forget m2 and the change in c, would result into two correctly added/changed class

elements (Q = 2) out of a maximum of four. Furthermore, if we assume that the evaluated

solution manages to implement the functionality through a substandard design modifying

one method different from c and adding one method different from m2 (e.g., in a different

class), then this would result into two erroneously added/changed class elements (Q’ = 2).

It is even conceivable that solutions modify, add, or delete the right elements but alter

other elements as well. In that case, we would obtain a perfect Q score but a suboptimal

Q’ score (Q’ > 0). Both Q and Q’ counts are deemed relevant as they offer

complementary measurements of design quality, which cannot meaningfully be combined

into one measure. Q quantifies the extent to which a design solution complies with

expected changes in the design and Q’ quantifies the extent to which unnecessary,

suboptimal changes are performed.

1 In practice, there are usually a few such solutions. In our case, there are 2 of them for task 6 and only one
for the other tasks.
2 Note that in general when applying such a strategy, one has to identify the correct solution that is closest
to each evaluated subject solution. However, to obtain comparable measurements, differences in model
elements involved have to be accounted for. This was not an issue in our case since there was only one
proper solution for all tasks except Task 6. Moreover, the two proper solutions for Task 6 involve exactly
the same numbers of classes, operations, and attributes (details are provided in Appendix A).

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

18

3.7 Analysis procedure

3.7.1 Quantitative Analysis

Recall that the experiment has one independent variable (the use of UML documentation)

and two treatments (UML, no-UML). The Oslo experiment has three dependent

variables: the time to perform the change task excluding (T) and including (T’) diagram

modifications, and a binary correctness score (C). The Ottawa experiment considered

four dependent variables: T and T’ again, a ratio scale functional correctness measure

counting the number of passed test cases (denoted C’ to differentiate it from C) and

design quality measured in two distinct and complementary ways: The number of

correctly changed elements (Q), and the number of incorrectly changed elements (Q’).

Analyzing both Q and Q’ will provide complementary insights in terms of the degrees to

which required changes and unnecessary changes were performed. The level of

significance for the hypotheses tests are set to α = 0.05. The reader should however keep

in mind that we perform multiple tests and, in order to allow for a stricter and more

conservative interpretation of the results, we will provide p-values.

In the Oslo experiment, only univariate analyses of the dependent variables are

performed to test the hypotheses, both for each task individually and across all tasks. For

the time dependent variables (T and T’), two-sample t-tests are performed [12].

Additionally, to reduce potential threats to validity resulting from violations of the t-test

assumptions, non-parametric Wilcoxon rank sum tests are also performed [12]. However,

overall the two alternative tests yielded very consistent results and thus only the t-test

results are reported unless inconsistencies are present. A likelihood ratio Chi-Square test

[12] is used to test the difference in proportion of subjects with correct solutions for each

individual task. Furthermore, a one-sided, two-sample t-test is performed to test the

difference in correctness between UML and no-UML subjects across all four tasks, by

first calculating each subject’s percentage of correct solutions based on the binary

correctness score for each task (C).

In the Ottawa experiment, both univariate and multivariate analyses were performed. The

time dependent variables (T and T’), correctness (C’) and design quality (Q and Q’) are

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

19

analyzed for each individual task by comparing the results of the two groups of subjects

that received UML for a given task with the two groups of subjects that did not receive

UML for that same task. As in the Oslo experiment, both two sample t-tests and the non-

parametric equivalent Wilcoxon rank sum tests are used to perform the univariate tests of

the hypotheses.

The Ottawa experiment involved more subjects and a more complex design than had the

Oslo experiment, hence both enabling and motivating the use of more sophisticated

statistical analyses that not only account for UML effects, but also ordering and subject

ability effects at the same time. Thus we performed a 3-way analysis of variance

(ANOVA) [12] to test the simultaneous effect of UML, Task Order (to assess cross-over

effects), Block (to assess ability effects) and the interactions between these factors. The

reason why this 3-way ANOVA is better than, say, a simple two-sample t-test on the

dependent variable is two-fold. First, this allows us to investigate interaction effects

between Block (ability) and the use of UML. Perhaps UML has a different effect on

subjects with different ability. Second, by including Block and Order (and possible

interactions) in the model, the variation they explain in the data is removed and the

analysis of the effect of UML becomes as a result statistically more powerful, e.g., we are

more likely to see any significant effect if there is one. Based on the ANOVA results, we

also calculate the least-square means [13] for the UML factor, to visualize the

corresponding effect size for each dependent variable. Least squares means (LSM) are

predicted values from the ANOVA model across the levels of a categorical independent

variable where the other model factors are controlled by being set to neutral values

(based on predicted values for all levels). The LSM plots show both the means for each

level and 95% confidence intervals.

Note that the 3-way ANOVAs are performed for each individual task. Another possibility

would be to perform one overall, 4-way ANOVA for all subjects and tasks, where Task

thus would be a forth factor in the model. However, given that there are four observations

per subject (one per task), the most critical underlying assumption of ANOVA –

independence between observations – would be violated in this case since within-subject

observations are likely to be correlated [22]. A proper 4-way analysis of the factors

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

20

would thus necessitate the use of statistical techniques that account for this correlation,

such as Generalized Equating Equations (GEE) [22]. However, based on the preliminary,

descriptive statistics it became evident that there are strong interaction effects between

the factors Task and UML. Consequently, the use of GEE or similar methods was not

necessary given our data; the presence of strong interaction effects justify that we

nevertheless should study the effects of UML for each individual task, in which case the

aforementioned 3-way ANOVA is appropriate. Note that the ANOVA procedure is based

on a number of assumptions in addition to the one of independent observations. Each

combination of factor levels (e.g., UML and Block) has to be assigned subjects in a

random fashion and should also have an equal (or similar) number of observations

(subjects). The dependent variable should be, for each level combination, normally

distributed and the variance should be equal. Obviously, the last two assumptions are

usually not met in practice but ANOVA is known to be very robust to departures from

these assumptions [15], especially when the sample sizes are equal or similar for each

level combination.

3.7.2 Qualitative Analysis

In the Oslo experiment, qualitative data were collected from three sources: Change task

questionnaire comments, think-aloud comments, and interviews. The subjects completed

a questionnaire after each task. Amongst others, the questionnaire contained a free-text

field in which the subjects could report anything they thought might be relevant in

explaining the results (e.g., time spent) on each task. 76 out of a total of 120

questionnaire comments were actually filled out and the information stored in a database.

Additionally, the SESE tool polled the subjects for feedback during the experiment

(details on the feedback collection method are provided in [17]). 225 such comments

were collected and stored in a database during the experiment.

Within one week of the main phase of the experiment, semi-structured interviews were

conducted with 19 of the 20 subjects (one subject did not show up for the interview). An

interview guide with relatively open questions was prepared. The interviews were

recorded on tape. Each interview lasted about 12 to 35 minutes, depending on the group

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

21

to which the subjects were assigned and on how talkative the subjects were. During the

interviews, shortcomings in the interview guide were found. When the guide was

designed, the assumption was that those assigned to the UML group used the diagrams in

order to understand the program and several questions were related to this. Consequently,

the interview guide was extended mid-way in the interview schedule, when it became

evident that many subjects did not use the documentation in the expected way. The new

interview guide (Appendix C) made sure that we would not forget to ask questions with

regards to why they did not use the UML diagrams the way we had anticipated. To

increase the accuracy and comprehensiveness of the analysis, the recorded interviews

were carefully transcribed.

The qualitative data coming from three sources (task questionnaires, feedback data and

transcribed interviews) were analyzed using QSR N6 [31], a tool for qualitative data

analysis. Using the tool, the texts were examined, sorted and categorized into different

concepts and a tree structure with concepts and sub-concepts was built on the basis of the

data. The analysis attempted to assess how UML was used and the subjects’ perceptions

of the costs and benefits of using it. It also analyzed how the subjects were working and

what types of problems they were experiencing on the different tasks, to better

understand how the access to UML documentation made a difference. To avoid

introducing a bias in the interpretation of the qualitative data, the initial qualitative

analysis was performed by one of the researchers who at the time had no knowledge of

the quantitative results. After the quantitative data was analyzed, a second round of

qualitative analysis was performed in an attempt to better explain the quantitative results,

as further explained in Section 4.4.

The Ottawa experiment did not involve any sophisticated qualitative analysis like in

Oslo. However, as discussed in Section 3.6, participants filled out questionnaires after

each lab regarding the task and, when relevant, the use of UML. Standard techniques of

phrasing subjective questions and designing survey questionnaires were followed [24], so

as to avoid bias and to increase reliability of responses. A one-way analysis of variance

was used to analyze those data

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

22

4 EXPERIMENTAL RESULTS

Recall that we will test four hypotheses with regards to the effect of UML on (1) the time

to perform the change task excluding diagram modification (using the variable T), (2) the

time to perform the change task including diagram modification (using the variable T’),

(3) functional correctness (using the variable C in the Oslo experiment and C’ in the

Ottawa experiment), and (4) design quality (using the two complementary quality

measures Q and Q’).

4.1 Descriptive Statistics

The descriptive statistics of the Oslo experiment are given in Table 8. The results indicate

that the subjects receiving UML documentation spent on average 25 percent less time (T)

to solve the tasks than did the subjects without UML documentation (e.g., a median of 15

compared to a median of 20 for Task 3). One exception is Task 5, for which subjects

without UML perform the task slightly faster than subjects who received UML

documentation. Furthermore, the variance is much lower for the subjects who received

UML documentation, with much lower maximum values for all tasks (e.g., 95 instead of

150 for Task 5). Overall, a larger portion of subjects produced correct solutions in the

UML group. This is particularly true for Task 5: 46% and 89% of the answers were

correct without UML and with UML, respectively. Overall, when accounting for model

modification (T’), subjects working without UML models spend less time on the tasks.

Again, this is especially true for the last, most complicated one (Task 5).

Table 8 Oslo: Descriptive statistics per task

 Tasks

 Task 1 Task 3 Task 4 Task 5

Dep. Var. Group Min Med Max Min Med Max Min Med Max Min Med Max

No UML 20 75 240 5 20 60 10 22 55 16 54 150 T (excl. model
modification) UML 31 53 95 8 15 23 12 19 35 45 65 95

T’ (incl. model
modification) UML 43 70 105 15 27 41 24 36 85 62 101 132

No UML 46% 91% 91% 46%
C (binary)

UML 56% 89% 100% 89%

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

23

The descriptive statistics of the Ottawa experiment are given in Table 9. The results

indicate that, for the common tasks (1&5), results are consistent with those obtained in

Oslo with respect to time: UML leads to increased time when accounting for the

modification of models (T’). When considering only code modification time (T), the

UML subjects seem to take more time for all tasks but Task 6. However, functional

correctness (C’) does not seem to improve when using UML as opposed to what was

observed in Oslo. Task 2 also shows a significant increase in time for UML subjects,

especially when accounting for model modifications. Correctness does not seem to

increase though. For Task 6, we obtain a very different picture as time does not

significantly increase—even when accounting for model modifications—whereas

functional correctness (C’) clearly increases (the median increases from 0/12 to 5/12).

With respect to design quality (correct changes), UML seems to have a positive impact in

Task 1 (max), Task 2 (min), and Task 6 (min and med), but only a thorough statistical

analysis will tell with certainty. Similarly, for incorrect changes, the statistics of tasks 1

and 6 suggest a difference between UML and no-UML groups. Note that our discussion

at this point is informal and that the effect size of UML will be more precisely discussed

when presenting multivariate analysis results.

Table 9 Ottawa: Descriptive statistics per task

 Tasks

 Task 1 Task 2 Task 5 Task 6

Dep. Var. Group Min Med Max Min Med Max Min Med Max Min Med Max

No UML 22 66.5 159 20 75 154 32 89.5 180 74 166.5 194 T (excl. model
modification) UML 24 82 240 38 87 162 35 99 196 51 141 184

T’ (incl. model
modification) UML 40 128 261 74 149.5 180 58 141 223 75 168 184

No UML 2/8 8/8 8/8 0/8 5/8 8/8 0/8 5/5 5/5 0/12 0/12 12/12
C’ (ratio)

UML 2/8 8/8 8/8 2/8 5/8 7/8 1/8 5/5 5/5 0/12 5/12 12/12

No UML 1/9 4/9 4/9 0/8 8/8 8/8 1/4 4/4 4/4 0/4 1/4 4/4 Q (Correct
changes) UML 1/9 4/9 9/9 4/8 8/8 8/8 1/4 4/4 4/4 1/4 3/4 4/4

No UML 0 0 7 0 0 1 0 0 1 0 0 10 Q’ (Incorrect
changes) UML 0 0 3 0 0 0 0 0 2 0 0 1

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

24

4.2 Univariate Analysis

4.2.1 Oslo Experiment

For the Oslo experiment, univariate results for time are illustrated in Figure 1(a) and 1(b).

Figure 1(a) shows means diamonds3 of the total time spent on all four tasks when

including diagram modification (T’) and we can see that UML subjects spent, on average,

more time than their no-UML counterpart but the difference is not statistically

significant. If we do not account for the time spent modifying the diagram (Figure 1(b)),

then the difference is larger, and in the opposite direction, but still not significant. The

lack of significance may be partly due to the relatively small number of participants. In

any case, it suggests that when including the modification of models (diagrams) UML

does not seem to have provided an advantage in Oslo. A more detailed analysis for each

task (which is not reported here) yields similar results: no significant difference. In terms

of correctness, Figure 2 shows that no practically significant difference is visible for the

first three tasks. For Task 5, however, the percentage of no-UML subjects correctly

implementing the task is nearly half that of UML subjects. A Likelihood Ratio Chi-

Square test confirms that the difference in proportion is significant at α = 0.05 (p-value =

0.034). This result is likely due to the fact that Task 5 is much more difficult than the

other three ones. Furthermore, Figure 3 shows the percentage of correct solutions across

all 4 tasks and we can clearly see UML subjects perform better. However, because of the

small sample at hand, a two-sample t-test yields a p-value slightly above 0.05.

3 This was explained in Section 3.7

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

25

(a) Including diagram modification (b) Excluding diagram modification

Figure 1 Oslo: Time to complete all four tasks (including or excluding diagram

modification)

0

10
20
30
40
50
60
70
80
90

100

Task1 Task3 Task4 Task5

%
 s

ub
je

ct
s

w
ith

 c
or

re
ct

 ta
sk

No-UML
UML

Figure 2 Oslo: Percent of subjects with correct solutions

50
100

150

200

250

300

350

400

No UML UML
UML Usage

Ti
m

e
(T

’)
 in

cl
ud

in
g

m
od

el
 m

od
ifi

ca
tio

n

Ti
m

e
(T

)
ex

cl
ud

in
g

m
od

el
 m

od
ifi

ca
tio

n

50

100

150

200

250

300

350

400

No UML UML
UML Usage

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

26

P
er

ce
nt

ag
e

C
or

re
ct

 S
ol

ut
io

ns

0.4

0.5

0.6

0.7

0.8

0.9

1

No-UML UML
UML Usage

Figure 3 Oslo: Percentage of correct solutions

4.2.2 Ottawa Experiment

In the Ottawa experiment, in order to make the time comparisons more meaningful, we

decided not to account for solutions that did not compile. We thought this was a minimal

quality requirement for the time data to be comparable. Figure 4 shows the time (T)

distributions for each of the four tasks, clearly suggesting that tasks are increasingly more

difficult, especially Task 64. In this experiment we look at each of the tasks individually

since, as we will see, different results will be observed due in part to the variation in

complexity. When not accounting for model modification time (T), though UML subjects

take on average more time for the first three tasks and less time for the fourth task than

their no-UML counterpart, none of the differences are significant at a α = 0.05. The

results, as suggested in the previous section, are very different when accounting for

model modification (T’): for the first three tasks the UML subjects show significantly

higher time values with p-values equal or below to 0.003 (two-tailed t-test and non-

parametric Wilcoxon (rank sums) test5).

During our monitoring of the labs, we noticed that some people were not using the UML

models though they were provided to them. Furthermore, some people never returned the

4 Recall that, due to our design, this is not an ordering effect.
5 From now on, when mentioning a t-test result, the reader will assume that the equivalent, non-parametric
Wilcoxon (rank sums) test yields an equivalent result unless otherwise mentioned.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

27

modified UML models. We considered these cases suspicious as once you have used the

model to determine the changes to be performed, it is then easy to modify the diagrams.

We therefore thought that not returning the modified UML diagrams was an indication

that these diagrams were probably not used to a great extent or not at all. Further

interviews with the concerned students confirmed that they mostly reverted to their old

reflexes of relying on code.

Because there was no practically significant difference between UML and no-UML

groups for the first three tasks, we focus here on the results of Task 6 after removing the

11 students who did not return their modified UML diagrams. In order to check whether

we had introduced a new threat to internal validity (removing subjects may not be an

entirely random process), we checked whether after removing these 11 students, the

grade distributions were still comparable across UML and no-UML subjects. Figure 5(b)

confirms this is the case.

We can see from Figure 5(a), that the average time spent by UML subjects on Task 6 is

significantly lower than non-UML subjects: an average difference of over 20 minutes (on

an average time of 145 minutes). A t-test clearly shows the difference is statistically

significant (p-value = 0.0018). In other words, when participants actually used the UML

models for change impact analysis, this resulted in saving time when changing the code.

Figure 4 Ottawa: Time (T) to complete each of the four tasks

Ti
m

e
(T

)

100

200

Task1

Task2

Task5

Task6
 Task

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

28

(a) Time (T) to complete the task (excluding
time to modify UML diagrams)

(b) Grade distribution

Figure 5 Task 6 – excluding cases where no modified diagrams were returned

But if we add the time required to change the UML model to the time required to perform

the code change, then, even for Task 6 (Vending machine), there is no time difference

between the UML and no-UML subjects (Figure 6).

Figure 6 Total time to complete Task 6 – including time to modify the UML

diagrams

Let us now turn our attention to correctness. We first measured correctness as the number

of successful test cases for each change. These test cases, as mentioned in Section 3.6, are

functional test cases derived in a systematic way using the Category-Partition strategy

[25], one of the most well-known black-box test techniques. For each change, we tried to

devise the best test suites possible. But since the changes are not that extensive, those test

Ti
m

e
(T

’)
 in

cl
ud

in
g

U
M

L
m

od
ifi

ca
tio

ns

70
90

110

130

150

170

190

No UML

UML
 UML Usage

Ti

m
e

(T
)

50
70

110

130

150

170

190

No UML UML
UML Usage

90

G
ra

de

40

50

60

70

80

90

No UML UML
UML Usage

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

29

suites remain rather small (ranging from 5 to 12 test cases). One issue though was to

decide how to handle solutions that were not compiling and therefore not testable. We

decided that such solutions should be assigned the lowest score, that is, zero, since no test

case could be run successfully. As for time analysis, and for the same reasons, we

decided to leave out the cases where no modified model was provided. Results showed

that there was no significant difference between UML and no-UML subjects for all tasks

but Task 6. Figure 7 clearly shows a practically significant difference in the correctness

distributions: an average difference of 2.25 between the two treatments. A one-tailed t-

test shows this difference is significant at α = 0.05 (p-value = 0.041).

Figure 7. Correctness for Task 6

Another dependent variable we considered in the Ottawa experiment was the design

quality of solutions. As described in Section 3.6, we identified, for each change,

alternative proper design solutions according to standard ways to distribute responsibility

across classes [11]. For each solution, recall we identified the class features that needed

to be changed, deleted, and added. Design quality was then measured as a percentage of

correctly changed, deleted, and added features. When comparing design quality of UML

and no-UML solutions, once again, a significant difference was observed only for Task 6.

All the features concerned by the change for Task 6 can be found in Appendix A, where

two alternative acceptable solutions are considered. For each provided solution, the

authors went through the code and compared it with either of the two alternative

solutions, whichever was closest. Figure 8 (a) shows clearly that UML solutions have a

1

3

5

7

9

11

13

No UML

UML
 UML Usage

C
or

re
ct

ne
ss

 (C
’)

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

30

better design quality in terms of correctly changed elements (the average difference is

0.50 on a 5 point scale). This difference is statistically significant (p-value = 0.032) when

running a one-tailed t-test. When looking this time at the number of incorrectly changed

elements, which is the other relevant design quality measure, we also see (Figure 8 (b)) a

practically (average difference of 1.34) and statistically significance difference (p-value =

0.0043). Even if we look at it in a binary way by analyzing proportions, we see that when

not using UML, roughly 41% of the solutions contain at least one incorrect change

whereas none of the UML solutions do. A likelihood ratio chi-square test for proportions

shows this is statistically significant (p-value < 0.001).

C
or

re
ct

ly
 c

ha
ng

ed
 m

od
el

 e
le

m
en

ts
 (Q

)

0

1

2

3

4

No - UML UML UML Usage

In
co

rre
ct

ly
 c

ha
ng

ed
 m

od
el

 e
le

m
en

ts
 (Q

’)

0

1

2

3

4

5

6

7

8

9

10

11

No UML UML
UML Usage

Figure 8 Design quality for Task 6

4.2.3 Summary

As far as time is concerned, UML does not seem to provide an advantage when

accounting for the additional time needed to modify models. Even when we do not

account for the modification of models, UML subjects do not appear to be faster for the

first three tasks of the Ottawa experiment. Tool support for model-code consistency

could, however, be improved by providing functionalities to keep models and code in

sync. Certain tools, such as Together from Borland [8], have already started to do so and

we expect this trend to continue in the future.

In terms of correctness—though the two experiments use different correctness

measurement (section 3.6)—both experiments show that, for the most complex task,

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

31

UML subjects perform significantly better than no-UML subjects. There are two main

plausible ways to interpret these results. Because of learning effects, subjects really

benefit from using UML after they performed the first three tasks (this is only true for

half the subjects in the Ottawa experiment). Another possibility is that they only benefit

for the most complex task, i.e., Task 5 and Task 6 for the Oslo and Ottawa experiments,

respectively. However, recall that the most complex Oslo task is the second most

complex Ottawa one. If our latter hypothesis is true, why do we not obtain consistent

results in the Ottawa experiment for Task 5? It is therefore plausible that what we

observe is the compounded result of high task complexity and learning effects.

A similar comment can be made for our measures of the design quality of subjects’

solutions. UML subjects provide significantly better quality designs for the most complex

task (Task 6) of the Ottawa experiment and this is likely to be due to the fact that UML

models help better understand the existing design and therefore help the subjects making

appropriate design decisions for the most complex task. For the simpler task, UML is

probably not necessary.

4.3 Multivariate Analysis

In Oslo, because of the limited size of the data set, only a univariate analysis was

possible. The advantage of multivariate analysis is that we can account for not only UML

effects, but also ordering and subject ability effects at the same time. This may lead to

more significant results and help assess how strong the UML effects are relative to the

other factors.

The ANOVA results for code change time (T) for Task 6 are presented in Table 10.

Recall, for reasons explained in Section 4.2, that we have removed non-compiling

solutions as well as cases where no modified UML model was provided. We can see that

both UML (consistent with univariate analysis) and the order in which the tasks were

performed (Order) are significant but that people’s ability as measured by the block

(Block) they were assigned to (based on the previous modeling course grades) is not

statistically significant. Both Order and UML show a similar level of significance (p-

value) and, based on their estimated parameter, the effect of UML is equivalent to that of

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

32

Order, which captures learning effects. Based on the Least-squares means (see Section

3.7) of the ANOVA model (Figure 9), UML helps save about 25 minutes on average.

Note that if we include model modification time (T’), then UML has no significant effect

again. This confirms that without better tool support to change models, UML does not

yield time savings.

Table 10 ANOVA Results for Time (T), Task 6

Source DF Parameter estimate Sum of Squares F Ratio Prob > F
UML 1 13.96 9587.85 13.14 0.0007
Order 1 12.56 7891.12 10.81 0.0019
Block 1 -5.23 1342.21 1.84 0.1814
Residual 47 34284.95
Total 50 52076.15

Figure 9 Least-square means for ANOVA time analysis, UML usage

In terms of correctness (C’), ANOVA results (Table 11) show that both UML and Block

are statistically significant. There seems to be no ordering effects though for correctness.

Recall that we left out solutions for which no modified UML model was provided. Based

on parameter estimates we see that UML effects are similar to Block effects, that is, the

impact of student ability on correctness. The Least-squares means plot (Figure 10) show

that, on average, UML helps increase correctness by nearly 3 test cases (2.7), which

represent close to 25% of the total number of test cases.

Ti
m

e
(T

)

50

80

110

140

170

200

No UML UML
UML Usage

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

33

Table 11 ANOVA Results for Correctness (C’), Task 6

Source DF Parameter estimate Sum of Squares F Ratio Prob > F
UML 1 -1.33 94.89 4.49 0.0388
Order 1 -0.26 3.90 0.18 0.6691
Block 1 1.31 93.91 4.44 0.0398
Residual 48 989.03
Total 52 1098.40

Figure 10 Least-square means for ANOVA correctness analysis, UML usage

We now turn our attention to design quality. The first analysis performs a three-way

ANOVA using UML, Block, and Order as factors and the number of incorrectly changed

model elements (Q’) as dependent variable. Results in Table 12 show that both UML and

Order are significant at α = 0.05, as for the time (T) dependent variable in Table 10.

However, note that Order has a negative effect: participants introduced more incorrect

changes when Task 6 was performed in lab 4. This might be explained by a loss of

motivation as people perform their fourth lab and reach the end of the academic term.

The Least-squares means plot (Figure 11) shows that, on average, UML helps reduce

incorrect changes by 1.

C
or

re
ct

ne
ss

 (C
’)

2

5

7

10

13

No UML UML
UML Usage

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

34

Table 12 ANOVA Results for Incorrectly changed model elements (Q’), Task 6

Source DF Parameter estimate Sum of Squares F Ratio Prob > F
UML 1 0.67 23.57 2.60 0.01
Order 1 -0.51 14.89 -2.07 0.04
Block 1 -0.04 0.10 0.17 0.86
Residual 48 169.55
Total 52 180.86

Figure 11 Least-square means for ANOVA design quality analysis (Incorrectly

changed elements), UML usage

When using the number of correctly changed element (Q) as a design quality measure,

none of the three factors are significant at α = 0.05. Since univariate analysis also showed

a borderline level of significance, this result is no fully surprising.

The analysis above only looks at the main effects of independent variables on four

dependent variables. Though we have also analyzed possible interaction effects between

UML and the two other variables, no such effect appeared to be significant.

In terms of the usual ANOVA assumptions:

• Usual statistical tests for unequal variance [15] have shown, for all three factors

and all dependent variables, that the variance is not significantly difference across

levels.

• The distributions of time, correctness, and quality are not normal. However, the

dependent variable distributions do not show extreme outliers or multi-modal

1

3

5

7

9

11

No UML UML
UML Usage

In
co

r.
ch

an
ge

d
el

em
en

ts
 (Q

’)

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

35

distributions and as discussed in Section 3.7, ANOVA is known to be very robust

to departures from the normality assumption [15] when the samples sizes are

equal or similar for each level combination, which is the case in our experimental

design.

4.4 Qualitative Analysis

In Oslo, based on interviews, the questionnaire comments, and the “think aloud”

feedback comments (Section 3.7.2), the qualitative analysis yielded the results presented

in Table 13 (one subject in the UML group did not participate in the interview). The

results suggest that the extent of use of the UML documentation and its impact varied

among the UML subjects. The experiment required that all subjects update the diagrams

before they moved on to the next task. However, the extent to which they used the UML

models to identify change locations prior to performing code modifications greatly varied

among subjects. Seven of the nine subjects assigned to the UML group updated the UML

documentation after they completed the coding. Only two subjects used the UML

documents actively during the development, e.g., to identify change locations. Some

complained about the updating of the diagrams because the diagrams were very large and

difficult to update, in particular the sequence diagrams. Several expressed dissatisfaction

with TAU, despite having extensive training in that tool. This led us in the Ottawa

experiment to use a simpler tool (Visio). A general consensus among the subjects was

that the diagrams were more useful on more complex tasks and that they often were

superfluous on easier tasks. This observation in the Oslo experiment was what made us

be suspicious of solutions without modified diagrams in the Ottawa experiment and led to

our decision above to leave such observations out of the analysis. Since the education

system in both locations is rather similar in terms of courses and the order according to

which they are delivered (i.e., emphasis on coding, modeling mostly coming in later

years), we can therefore expect the issues regarding the usage of UML diagrams in Oslo

to be also relevant for the Ottawa experiment.

The subjects who claimed not to have used UML models when they could have (but

instead just updated them after coding) provided the following justifications:

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

36

• They were more used to look at the code than diagrams. This is not surprising

given typical computer science curricula where people start learning how to code

far before they see a first model.

• They felt that analyzing the documentation required too much time. This is a

typical problem in many development organizations where developers and

managers perceive (consciously or not) any non-coding task as wasteful.

• The tasks were relatively small; therefore it was sufficient to rely on the code.

Table 13 Summary of qualitative results (the numbers in parentheses indicate the

proportion of subjects for which the statement applies).

Topics UML No UML
The use of

UML
documentation

• The UML documentation was used to
locate code changes (2/9)

• The documentation was used a little
prior to code changes (3/9)

• The documentation was ignored prior to
code changes (4/9)

• The documentation was updated after
the code changes (7/9)

• UML diagrams were drawn by hand to
help solving the most difficult tasks
(4/10)

The benefit of
UML

documentation

• UML useful for solving the tasks by
providing overview and structure (2/9)

• UML useful for control of code changes
and overview to some degree (3/9)

• UML not useful for the task solving
(4/9)

• UML would have been useful to locate
the code changes (8/10)

• UML would have been helpful with
how to do the code changes (4/10)

• UML would not have been useful on
the easiest tasks (15/20*)

• UML documentation would have
improved the solution (3/10)

Time • Time pressure at the end of the
experiment (8/9)

• Time pressure at the end of the
experiment (4/10)

• There was sufficient time for task
solving (6/10)

Problems • It was bothersome and difficult to
update the UML diagrams (3/9)

• Dissatisfaction with Tau_UML (6/9)
• Java-related problems in the beginning

of the experiment (2/4***)
• Problems with getting an overview of

the last task (4/9)
• Out of practice with Java programming

(2/9)

• Java-related problems in the beginning
of the experiment (4/6***)

• Out of practice with Java programming
(7/10)

• Problems with getting an overview of
the program (10/10**)

(* = the statement is a combination of two questions
 ** = the statement is based on questionnaire comments
 *** = the statement is based on think aloud comments)

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

37

Nevertheless, half of the UML subjects considered UML useful for obtaining an

overview of the code, although there was a wide variation in terms of perceived benefits.

Four of the UML subjects still thought it was difficult to get a sufficient overview of the

program to perform the last, most difficult task. On the other hand, a common statement

by the no-UML subjects was that it was difficult to get an overview of the programs, not

only for the most difficult task, but in general. This was especially evident in the

questionnaire comments, but also to a certain extent in the interviews and the think aloud

comments. Some no-UML subjects even drew their own diagrams when they solved the

more difficult tasks, in particular Vending Task 5. Several thought that UML diagrams

would have helped them to locate code changes, and additionally, some claimed that it

would have helped them with how to solve the tasks. Furthermore, some mentioned that

UML documentation would have helped them to make better solutions. UML was

considered to be most useful on complex tasks.

Another striking result that we believe is related to the above is that seven out of ten no-

UML subjects said that they were out of practice with programming/Java, whereas only

two out of nine UML subjects did. Counter to this, due to the randomized blocking

scheme, the subjects in the two groups had passed about the same amount of

programming courses. Furthermore, the pre-test questionnaire answered by the subjects

showed that the no-UML subjects on average had slightly MORE Java experience than

had the UML subjects (in total estimated lines of Java code written). We thus interpret

the statement regarding “being out of practice with Java programming” as an indication

of frustration over finding it difficult to get an overview of the program and not being

able to solve the tasks correctly. Recall that this problem was more prevalent among no-

UML subjects.

In the questionnaire and think aloud comments, no-UML subjects wrote more often than

UML subjects that they did not successfully complete the tasks.

The qualitative results from the Oslo experiment suggest that there are three possible

explanations for why there appears to be a significant effect of UML for the last and most

complex task (Task 5) and not for the others: The effect of UML mainly seems to depend

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

38

on task complexity, but there are also UML learning effects and motivational effect at

play.

Task 1 – No Learning effects: Most subjects updated the UML diagrams for the ATM

machine after coding, and did not actively use the diagrams during coding. No further

tasks were performed on the ATM.

Tasks 3 & 4 – Low Task Complexity: The no-UML subjects stated that UML diagrams

would not have helped them for the low complexity tasks. The UML subjects stated that

the UML diagrams did not help them solve these tasks.

Task 5 – High Task Complexity & Positive Learning Effects: Compared with the other

tasks, Task 5 was quite complex, as it required a detailed understanding of the control

flow in the delegated control-style of the vending machine in order to perform the change

correctly [3]. The no-UML subjects report that it was very difficult to get the required

overview of the code. None of the UML subjects report similar problems. The subjects

had already performed two tasks on the vending machine and updated the UML diagrams

twice. By updating the UML documentation, the subjects had a better opportunity to

learn details about the design from updating the UML diagrams for the vending machine

than the no-UML group. Five subjects reported that once they started on Task 5, they

realized that the UML diagrams would be useful to understand how to solve the task.

From the above discussion, we see that qualitative analysis therefore confirms that UML

is overall useful. However, that statement must be qualified as it appears to have a

significant effect for the more complex tasks and only for certain people, who perhaps are

more comfortable with abstraction and modeling. This is consistent with the quantitative

results that show a significant improvement in correctness only for the last, most complex

task. It is also clear that, due in part to the education system, coding is still perceived by

some participants as the most crucial task, modeling being considered at best a

secondary, somewhat wasteful activity.

The Ottawa experiment did not involve any sophisticated qualitative analysis like in

Oslo. However, as discussed in Section 3.6, participants filled out questionnaires after

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

39

each lab regarding the task and, when relevant, the use of UML (Appendix B). Regarding

the tasks, the results can be summarized as follows:

• The lab instructions were perceived as clear. This is an important point for the

validity of our results.

• Task 6 was perceived as being more difficult than the other tasks, as expected.

Task 1 was perceived as being the easiest.

With respect to UML usage, participants perceived that:

• UML diagrams were fairly easy to understand. This is important as it suggests the

participants’ training and modeling skills were sufficient.

• Most people spent less than 25% of the lab time understanding UML diagrams,

over all tasks. For the reasons discussed above in the Oslo experiment, this result

may suggest that UML diagrams were not used to a sufficient extent by a large

proportion of participants. This would then tend to minimize the effects of UML

we observe in our quantitative analysis.

• Results about whether UML diagrams made the system easier to understand,

cleared up ambiguities, or helped complete the tasks are unclear. It is probably

difficult for students to answer this question as it requires introspection in their

own work.

4.5 Inconsistency

One inconsistency between the two experiments is related to Task 5. In the Oslo

experiment, improvements in correctness are significant for Task 5 (the last task in Oslo),

but not in the Ottawa experiment. In Ottawa, improvements in correctness were

significant only for Task 6 (the last task in Ottawa). If the complexity of a task were to

determine whether it is significant or not, then we would expect consistent results on the

same tasks across experiments. One potential explanation could be varying capabilities

between Oslo and Ottawa students. However we have seen they have a similar

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

40

education/training and there was no convincing evidence of other differences that would

impact their capability. Another possibility is that learning effects play a major role and,

as a result, UML effects only become visible on the last task. The question is now

whether there is convincing evidence of learning effects to determine whether this is a

plausible explanation. In the Oslo experiment, learning effects, if any, are confounded

with the tasks and cannot be determined from the quantitative results. However, as

already discussed, the qualitative results do indeed indicate learning effects that explain,

in part, why Task 5 was significant in the Oslo experiment: when the Oslo subjects

reached Task 5 (at which point they had already performed three change tasks using

UML), they saw the potential benefits of UML more clearly and hence used UML more

actively at that point. For Task 6 in the Ottawa experiment, we have seen in Section 4.3

that Order was a significant ANOVA factor for both the time (T) and design quality (Q’)

dependent variables, thus showing some evidence of learning effects. Such a trend is

however not clearly visible on simpler tasks in the Ottawa experiment. Though this

remains to be investigated, it seems plausible that the trends we observe result from the

compounded effect of learning effects and task complexity.

5 VALIDITY

The construct validity of our dependent variables has already been discussed in Section

3.6. We do not think there is any serious threat in terms of internal validity as the design,

through blocking and counterbalancing (in the Ottawa experiment), has attempted to

remove any bias from any known extraneous factor. However, we faced a usual problem

with experiments involving human subjects: even when they are properly trained, they

may not follow the prescribed process and instructions, either due to fatigue or

motivational problems. As a result and for reasons discussed in Section 4, we had to

leave out a number of observations that were considered not valid as far as the

hypotheses under investigation were concerned. Though we showed that the capability of

UML and no-UML groups remained unaffected, future experiments should investigate

efficient ways to capture precise data about the level of subject compliance to instructions

and strategies to increase compliance.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

41

The main weakness of such controlled experiments lies in their external validity. As it is

usually the case for controlled experiments in academic, artificial settings, the

participants are students and the systems being changed very small. However, those

students are well-trained for the tasks: they are good programmers and have thorough

knowledge of UML modeling. Though the change tasks are probably much easier than

average change tasks on actual systems, we would then expect the impact of UML to be

strengthened on larger tasks and systems since both our qualitative and quantitative

results suggest that UML is more useful for complex tasks. This further strengthen our

conjecture that our results are probably conservative in the sense that we underestimate

the impact of UML.

6 CONCLUSIONS

This paper presents the results of two consecutive experiments, which have taken place in

two different locations. The goal was to shed some light on the cost effectiveness of

model-driven development with the UML. Because this is a very large realm of

investigation, we focus here on whether models help performing quicker, better changes

on existing systems. It is very common in practice to have software engineers performing

changes to systems they have not developed, and maintenance consumes a large share of

resources in typical software organizations. This is why we thought this was an important

first question to investigate, though we realize that model-driven development can be

useful in many other ways (e.g., code generation).

The results of our two experiments are mostly consistent. When only considering the time

required to make code changes, UML does overall help save effort. On the other hand,

when including the time necessary to modify the diagrams, no effort savings are visible.

However, in terms of the functional correctness of the changes, both experiments seem to

indicate UML has a significant, positive impact on the most complex tasks. In the Ottawa

experiment—which investigated the design of the changes as well—UML helped to

achieve higher design quality changes, which would then be expected to help future,

subsequent changes. However, the above statements must be qualified. One is not likely

to benefit below a certain change complexity threshold or before a certain learning curve

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

42

regarding the use of UML models for change impact analysis has been completed. Note

that this comes in addition to substantial training in UML modeling. Furthermore, current

tools still need substantial improvements in the way they support changes to models and

consistency checking.

In terms of experimental methodology, we have found it very useful to start with a

smaller experiment and dwell on qualitative analysis at first. This has allowed us to better

understand what issues might come up in subsequent, larger experiments. Based on the

first experiment we decided, for example, to use more complex change tasks in the

second experiment. It was also clear that, to change diagrams, a complex UML tool was

not required and sometimes hindered the good performance of subjects’ tasks. As a

result, we ended up using Visio for the second experiment, which is a much simpler

diagramming tool. Furthermore, qualitative analysis is very time-consuming [14]6 and

could only be used on a small-scale experiment. It was however useful to identify

plausible explanations for what we observed in the second experiment. For example, we

realized that the extent to which UML diagrams were used to analyze changes varied a

great deal among participants.

There is a lot to be done in terms of future work. Though we do not intend to provide a

detailed research plan here, it is obvious that there are many ways in which UML can be

employed in the context of model-driven development. There are furthermore many

profiles specializing the UML notation [27] and their impact on software engineering

activities is worth investigating. The experiments we have presented here can provide

practical guidelines on how to proceed to evaluate alternatives in an experimental

fashion.

ACKNOWLEDGEMENTS

We thank Magne Jørgensen, Vigdis By Kampenes and Dag Sjøberg for providing

valuable comments on this paper.

6 The qualitative analysis of the Oslo experiment (conducting the interviews, transcribing the recorded
interviews and performing the analysis) took several months to complete.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

43

REFERENCES

[1] B. Anda, K. Hansen, I. Gullesen and H. K. Thorsen, “Experiences from Using a
UML-Based Development Method in a Large Organization,” Simula Research
Laboratory, Technical Report 2005-05, 2005.

[2] B. Anda, K. Hansen, I. Gullesen and H. K. Thorsen, “Experiences from Using a
UML-Based Development Method in a Large Organization,” (forthcoming)
Empirical Software Engineering Journal, 2006.

[3] E. Arisholm and D. Sjøberg, “Evaluating the Effect of a Delegated versus
Centralized Control Style on the Maintainability of Object-Oriented Software,”
IEEE Transactions of Software Engineering, vol. 30 (8), pp. 521-534, 2004.

[4] E. Arisholm, D. Sjøberg, G. J. Carelius and Y. Lindsjørn, “A Web-Based Support
Environment for Software Engineering Experiments,” Nordic Journal of
Computing, vol. 9 (4), pp. 231-247, 2002.

[5] V. Basili, F. Shull and F. Lanubile, “Building Knowledge through Families of
Experiments,” IEEE Transactions on Software Engineering, vol. 25 (4), pp. 456-
473, 1999.

[6] K. Beck, Extreme Programming Explained, Addison Wesley, 2001.

[7] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User
Guide, Addison Wesley, 1999.

[8] Borland: Together, 2003. www.borland.com/together.

[9] L. C. Briand, “Software Documentation: How Much is Enough?,” Invited Keynote
Address, Proc. IEEE European Conference on Software Maintenance and
Reengineering, pp. 13-15, 2003.

[10] L. C. Briand, Y. Labiche, M. Di Penta and H.-D. Yan-Bondoc, “An Experimental
Investigation of Formality in UML-based Development,” IEEE Transactions on
Software Engineering, vol. 31 (10), pp. 833-849, 2005.

[11] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using UML,
Patterns, and Java, Prentice Hall, 2nd Edition, 2004.

[12] J. L. Devore and N. Farnum, Applied Statistics for Engineers and Scientists,
Duxbury, 1999.

[13] R. J. Freund and W. J. Wilson, Regression Analysis: statistical modeling of a
response variable, Academic Press, 1998.

[14] S. E. Hove and B. Anda, “Experiences from Conducting Semi-Structured
Interviews in Empirical Software Engineering Research,” Proc. IEEE International
Symposium on Software Metrics, pp. 23-32, 2005.

[15] G. Iversen and H. Norpoth, Analysis of Variance, Sage Publications, second
Edition, 1987.

[16] C. M. Judd and E. R. Smith, Kidder, L.H., Research methods in social relations,
Holt, Rinehart and Winston, Inc., 6th Edition, 1991.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

44

[17] A. Karahasanovic, B. Anda, E. Arisholm, S. E. Hove, M. Jørgensen, D. Sjøberg and
R. Welland, “Collecting Feedback during Software Engineering Experiments,”
Empirical Software Engineering - An International Journal, vol. 10 (2), pp. 113-
147, 2005.

[18] A. Kleppe, J. Warmer and W. Bast, MDA Explained - The Model Driven
Architecture: Practice and Promise, Addison-Wesley, 2003.

[19] M. Kutar, C. Britton and T. Barker, “A Comparison of Empirical Study and
Cognitive Dimensions Analysis in the Evaluation of UML Diagrams,” Proc. 14th
Psychology of Programming Interest Group, 2002.

[20] L. Kuzniarz, M. Staron and C. Wohlin, “An Empirical Study on Using Stereotypes
to Improve Understanding of UML Models,” Proc. 12th IEEE International
Workshop on Program Comprehension, 2004.

[21] Microsoft: Visio, Version 2002, 2003. www.microsoft.com.

[22] R. H. Myers, D. C. Montgomery and G. G. Vining, Generalized Linear Models with
Applications in Engineering and the Sciences, Wiley, 2002.

[23] OMG, “UML 1.5 Specification,” Object Management Group, Complete
Specification formal/03-03-01, 2003.

[24] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude Measurement,
Pinter Publishers, 1992.

[25] T. J. Ostrand and M. J. Balcer, “The Category-Partition Method for Specifying and
Generating Functional Test,” Communications of the ACM, vol. 31 (6), pp. 676-
686, 1988.

[26] M. C. Otero and J. J. Dolado, “An empirical comparison of the dynamic modeling
in OML and UML,” Journal of Systems and Software, vol. 77 (2), pp. 91-102,
2005.

[27] T. Pender, UML Bible, Wiley, 2003.

[28] R. S. Pressman, Software Engineering - A Practitioner's Approach, McGraw Hill,
7th Edition, 2005.

[29] H. C. Purchase, L. Colpoys, M. McGill and D. Carrington, “UML collaboration
diagram syntax: an empirical study of comprehension,” Proc. 1st International
Workshop on Visualizing Software for Understanding and Analysis, 2002.

[30] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington and C. Britton, “UML class
diagram syntax: an empirical study of comprehension,” Proc. Australian
Symposium on Information Visualisation, 2001.

[31] QSR: N6, 2004. http://www.qsrinternational.com/.

[32] I. Reinhartz-Berger and D. Dori, “OPM vs. UML-Experimenting with
Comprehension and Construction of Web Application Models,” Empirical Software
Engineering - An International Journal, vol. 10 (1), pp. 57-79, 2005.

[33] C. B. Seaman, “Qualitative methods in empirical studies of software engineering,”
IEEE Transactions on Software Engineering, vol. 25 (4), pp. 557-572, 1999.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

45

[34] E. Soloway, R. Lampert, S. Letowski, D. Littman and J. Pinto, “Designing
documentation to compensate for delocalized plans,” Communications of the ACM,
vol. 31 (11), pp. 1259-1267, 1988.

[35] Telelogic: TAU, 2003. http://www.telelogic.com/products/tau.

[36] S. Tilley and S. Huang, “A Qualitative Assessment of the Efficacy of UML
Diagrams as a Form of Graphical Documentation in Aiding Program
Understanding,” Proc. 21st Annual International Conference on Systems
Documentation, pp. 184-191, 2003.

[37] J. Warmer and A. Kleppe, The Object Constraint Language, Addison Wesley, 2nd
Edition, 2003.

[38] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell and A. Wesslen,
Experimentation in Software Engineering - An Introduction, Kluwer, 2000.

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

46

Appendix A Features concerned by changed Task 6 (Ottawa

Experiment)

Ottawa Task 6: There are two similar design solutions for this task. They both

involve two changes and two additions.

Solution 1:

1. Change the constructor in CoffeeMachine

2. Change the doAction() in CoffeeMachine

3. Add setRecipe() in Product

4. Add setPrice() in Product

Solution 2:

1. Change the constructor in CoffeeMachine

2. Change select() in FrontPanel

3. Add setRecipe() in Product

4. Add setPrice() in Product

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

47

Appendix B Questionnaires for the Ottawa experiment

The questionnaires that were distributed to participants are provided below.

Questionnaires differed depending on whether the lab was the first one and whether it

involved UML models.

Survey Questionnaire
Levels of agreement:
1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

Questions about the task 1 2 3 4 5
1. It took me a lot of time to understand the system, before I could perform the task.
2. I did not have any problems to understand what the system is doing.
3. I had no difficulties to complete the task.
4. I hope there could have been more time for me to complete the task.
5. The task was not easy to complete.
6. The lab instructions were clear and easy to follow.

Questions about tools: 1 2 3 4 5
7. I am an expert in using Visio.
8. I am an expert in using JBuilder.
9. I have used Visio often before the Training period.
10. I have used JBuiler often before.

Figure 12. Survey Questionnaire for Lab1 (UML not provided)

Survey Questionnaire
Levels of agreement:
1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

Questions about the task 1 2 3 4 5
1. It took me a lot of time to understand the system, before I could perform the task.
2. I did not have any problems to understand what the system is doing.
3. I had no difficulties to complete the task.
4. I hope there could have been more time for me to complete the task.
5. The task was not easy to complete.
6. The lab instructions were clear and easy to follow.

Figure 13. Survey Questionnaire for Lab2, Lab3 and Lab4 (UML not provided)

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

48

Survey Questionnaire

Levels of agreement:
1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

Questions about the task 1 2 3 4 5
1. It took me a lot of time to understand the system, before I could perform the task.
2. I did not have any problems to understand what the system is doing.
3. I had no difficulties to complete the task.
4. I hope there could have been more time for me to complete the task.
5. The task was not easy to complete.
6. The lab instructions were clear and easy to follow.

Questions about UML: 1 2 3 4 5
7. The UML diagrams in the document were easy to understand.
8. The UML diagrams in the document made the system easier to understand.
9. The UML diagrams in the document helped to clear up some ambiguities.
10. The UML diagrams in the document helped me to complete the task.
11. I hope there could have been more time for me to modify the UML diagrams.
12. How much time did you spend in understanding the UML diagrams during this lab?

A. <25% B. >=25% and <50% C. >=50% and <75% D: >=75%
13. How much time did you spend in modifying the UML diagrams during this lab?

A. <25% B. >=25% and <50% C. >=50% and <75% D: >=75%

Questions about tools: 1 2 3 4 5
14. I am an expert in using Visio.
15. I am an expert in using JBuilder.
16. I have used Visio often before the Training period.
17. I have used JBuiler often before.

Figure 14. Survey Questionnaire for Lab1 (UML provided)

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

49

Survey Questionnaire
Levels of agreement:
1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

Questions about the task 1 2 3 4 5
1. It took me a lot of time to understand the system, before I could perform the task.
2. I did not have any problems to understand what the system is doing.
3. I had no difficulties to complete the task.
4. I hope there could have been more time for me to complete the task.
5. The task was not easy to complete.
6. The lab instructions were clear and easy to follow.

Questions about UML: 1 2 3 4 5
7. The UML diagrams in the document were easy to understand.
8. The UML diagrams in the document made the system easier to understand.
9. The UML diagrams in the document helped to clear up some ambiguities.
10. The UML diagrams in the document helped me to complete the task.
11. I hope there could have been more time for me to modify the UML diagrams.
12. How much time did you spend in understanding the UML diagrams during this lab?

A. <25% B. >=25% and <50% C. >=50% and <75% D: >=75%
13. How much time did you spend in modifying the UML diagrams during this lab?

A. <25% B. >=25% and <50% C. >=50% and <75% D: >=75%

Figure 15. Figure 4 Survey Questionnaire for Lab2, Lab3 and Lab4 (UML

provided)

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

50

Appendix C Interview guide for Oslo Experiment
The information in brackets indicates which subjects were asked the given question, as follows.

[ALL] – All subjects in the experiment.
[UML] – subjects in the UML group
[NO UML] – subjects in the No-UML group

1. [ALL] What do you think of the experiment in general? (Explain briefly how it was to
participate in the experiment, time pressure, stress etc)

2. [ALL] What do you think of the information that was provided (Printed information sheets,
the information in SESE etc. Any confusions)?

3. [ALL] What do you think of the task formulations?

4. [ALL] Were you sometimes uncertain of what to do? Would it have helped with better
instructions?

5. [ALL] How was it to use the tools TAU and SESE (Did you get problems because of the
tools and what consequences did this have for you?)

6. [ALL] What do you think of the tasks’ degree of difficulty?

7. [ALL] Have you solved similar tasks before?

8. [ALL] Did you work differently with the experiment tasks compared to how you normally
work?

9. [ALL] Was it easy to understand the Coffee Machine program?

10. [ALL] Were any of the tasks particularly easy to solve?
1. [ALL] Which task?
2. [ALL] What made the task easy to solve?
3. [ALL] How were you thinking when you made changes to the task?

11. [ALL] Were any of the tasks particularly difficult to solve?
1. [ALL] Which task?
2. [ALL] What made the task difficult to solve?
3. [ALL] How were you thinking when you made changes to the task?

12. For the most difficult task [UML]:
1. What was it like to understand the UML documentation that was provided?
2. How useful was the UML documentation for you in order to solve the task? In which

was it useful?
3. How did you use the UML documentation in the task solving process?
4. Have you used UML in this way before?
5. What was the most difficult; to find out WHERE the changes should be done or

HOW to do the changes?
6. What was the most difficult; to find out WHERE/HOW to do the changes or to write

the Java code?
7. What was the most complicated; to update the UML diagrams or to write the Java

code?
8. To what degree do you think that the UML documentation helped you to understand

WHERE to do the changes?

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

51

9. To what degree do you think that the UML documentation helped you understand
HOW to do the changes?

13. For the most difficult task [NOT UML]:
1. What was the most complicated; to find out WHERE you should do the changes or

HOW to make the changes?
2. What was the most complicated; to find out WHERE/HOW to do the changes or to

write the Java code?
3. To what degree do you think UML diagrams would have made it easier to understand

WHERE to do the changes (Class and sequence diagrams)?
4. To what degree do you think UML diagrams would have made it easier to understand

HOW to do the changes (Class and sequence diagrams)?

14. For the easiest task [UML]:
1. To what degree was the UML documentation useful for you in order to solve the

task? How was it useful?
2. What was the most difficult; to find out WHERE the changes should be done or

HOW to do the changes?
3. What was the most difficult; to find out WHERE/HOW to do the changes or to write

the Java code?
4. What was the most complicated; to update the UML diagrams or to write the Java

code?
5. To what degree do you think that the UML documentation helped you to understand

WHERE to do the changes?
6. To what degree do you think that the UML documentation helped you understand

HOW to do the changes?

15. For the easiest task [NOT UML]:
1. What was the most difficult; to find out WHERE the changes should be done or

HOW to do the changes?
2. What was the most complicated; to find out WHERE/HOW to do the changes or to

write the Java code?
3. To what degree do you think UML diagrams would have made it easier to understand

WHERE to do the changes (Class and sequence diagrams)?
4. To what degree do you think UML diagrams would have made it easier to understand

HOW to do the changes (Class and sequence diagrams)?

16. For those who had UML diagrams available, but did not use them [UML]:
1. What was the reason for not using the UML documentation when you solved the

tasks?
2. Do you think that you would have made a better solution if you have used the UML

diagrams?
3. If you used the UML documentation to some extent: what information did you use,

which diagrams did you look at?

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

52

Appendix D Example UML diagrams of the Coffee Machine

Customer

Select

Insert

Coffee Machine Use Case Diagram

Make Drink
<<include>>

Find Dispenser
<<include>>

Return

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

53

Customer cm : CoffeeMachine InputOutput

choice:=readString()

 : CoffeeMain

* [quit = false]: quit:=doOneAction()

"Menu: I=Insert, S=Select, R=Return, Q=Quit>"

Customer selects "S"

[choice = "S"]: print("Select Drink: 1=Black Coffee, 2=...")

"Select Drink: 1=Black Coffee, 2=..."

Customer selects drink

selection:=readInt()

frontPanel : FrontPanel

select(selection, cashBox, productReg, dispenserReg)

productReg : ProductRegister

product:=productFromIndex(selection)

cashBox : CashBoxproduct : Product

price:=price()

creditOK:=haveYou(price)

[creditOK = true]: makeDrink(dispenserReg)

deduct(price)

returnCoins()

print("Returning " + credit)

"Returning <credit>"

Select (Normal flow of events)

products : java.util.Vector

product:=elementAt(selection - 1)

For details see sequence diagram "Make Drink"

print("Menu: I=Insert, S=Select, R=Return, Q=Quit>")

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

54

Appendix E Example UML diagrams of the ATM

Simula Technical Report 2005-14 and Carleton Technical Report SCE-05-11, Version 2

55

Customer

miniBank : MiniBank Output Input

acc : Account

Details are provided in
sequence diagram "Find Account"

print("Enter a new account number>")

"Enter a new account number>"

accountReg : AccountRegister

Customer enters account number

New Account (normal flow of events)
Variation of ”Perform Transaction”, included in ”Do Transaction”

accNum:=readString()

existingAcc:=findAccount(accNum)

[existingAcc = null]: print("Enter a personal pin code>")

"Enter a personal pin code>"

pinCode:=readInt()

Customer enters pin code

acc:=addAccount(accNum, pinCode)

createAccount(accNum, pinCode)

new()

allAccounts : java.util.Vector

addElement(acc)

[acc <> null] : print("New account has been created.")

"New account has been created."

newAccount()

Find Account
Included in use cases Authenticate and New Account

accountReg nextAcc : Account

foundAccount:=hasAccountNumber(accNum)

*[i:= 0 .. allAccounts->size()-1 and while foundAccount = false]

acc:=findAccount(accNum)

allAccounts : java.util.Vector

nextAcc:=elementAt(i)

returns null if foundAccount = false, otherwise returns reference to nextAcc

