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Abstract—A total of 295 junior, intermediate, and senior professional Java consultants (99 individuals and 98 pairs) from

29 international consultancy companies in Norway, Sweden, and the UK were hired for one day to participate in a controlled

experiment on pair programming. The subjects used professional Java tools to perform several change tasks on two alternative

Java systems with different degrees of complexity. The results of this experiment do not support the hypotheses that pair

programming in general reduces the time required to solve the tasks correctly or increases the proportion of correct solutions. On the

other hand, there is a significant 84 percent increase in effort to perform the tasks correctly. However, on the more complex system, the

pair programmers had a 48 percent increase in the proportion of correct solutions but no significant differences in the time taken to

solve the tasks correctly. For the simpler system, there was a 20 percent decrease in time taken but no significant differences in

correctness. However, the moderating effect of system complexity depends on the programmer expertise of the subjects. The

observed benefits of pair programming in terms of correctness on the complex system apply mainly to juniors, whereas the reductions

in duration to perform the tasks correctly on the simple system apply mainly to intermediates and seniors. It is possible that the

benefits of pair programming will exceed the results obtained in this experiment for larger, more complex tasks and if the pair

programmers have a chance to work together over a longer period of time.

Index Terms—Empirical software engineering, pair programming, extreme programming, design principles, control styles, object-

oriented programming, software maintainability, quasi-experiment.
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1 INTRODUCTION

THE concepts underlying pair programming (PP) are not
new [13], [15], [17], [40], but PP itself has only recently

attracted significant attention and interest within the soft-
ware industry and academia. Much of the focus on PP is
due to the introduction of extreme programming (XP), in
which PP is one of 12 key practices [4], [5].

Basically, in PP, two programmers work on the same
task using one computer and one keyboard [4], [5], [44],
[46]. There are two distinct roles that contribute to a synergy
of the individuals in the pair: 1) a driver, who types at the
keyboard and focuses on the details of the coding, and 2) a
navigator, who actively observes the work of the driver,
looking for tactical and strategic defects, thinking of
alternatives, writing down “things-to-do,” and looking up
references. In addition to coding, PP also involves other
phases of the software development process, such as design
and testing.

Several previous controlled experiments have concluded
that PP has many benefits over individual programming,
including significant improvements in functional correct-
ness and various other measures of quality of the programs

being developed, and reduced duration (a measure of time
to market), with only minor additional overhead in terms of
total programmer hours (a measure of cost or effort) [25],
[30], [32], [44], [46]. One exception is an experiment that
showed no positive effects of PP with respect to time taken
and no improved functional correctness of the software
product compared with individual development [31],
which essentially doubled the cost of development. How-
ever, the results of that experiment also suggested that the
standard deviation of the development times and program
sizes of the PP group was lower, suggesting that PP might
be more predictable than individual programming.

Most of the existing studies cannot be compared directly,

due to differences in sample populations (e.g., students or

professionals), study settings (e.g., amount of training in

PP), lack of power (e.g., few subjects), and different ways of

treating the dependent variables (e.g., how correctness was

measured and whether measures of development time also

included rework) [19], [30], [31]. However, a common

feature of the existing studies is that they have not

accounted for the moderating effect of the complexity of

the programming tasks, which, in turn, may depend on the

complexity of the system being developed or maintained

and the expertise of the programmers. In light of existing

research in software engineering [2], [22], [35] and social

psychology [6], [7], [18], [23], [50], we expected that system

complexity and programmer expertise would have a

significant impact on when and how PP is beneficial

compared with individual programming [19]. To investi-

gate these issues empirically, we conducted a quasi-

experiment that addressed the following research question:
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What is the effect regarding duration, effort, and correctness of
pair programming for various levels of system complexity and
programmer expertise when performing change tasks?

The dependent variables duration, effort, and correctness

represent, respectively, one dimension of more general

concepts such as time to market, costs, and quality.

Previous experiments on PP have been conducted with

students [30], [31], [44] or with a few professionals [25], [32]

(both experiments with five pairs and five individuals). To

have sufficient power to investigate our research question

and to obtain a relatively representative sample of Java

programmers, we conducted a two-phase experiment with

a total sample of 295 Java consultants (98 pairs and

99 individuals) from 29 consultancy companies in Norway,

Sweden, and the UK, including international companies

such as Accenture, Cap Gemini, CIBER, Oracle, Steria, and

TietoEnator. The first phase of the experiment was con-

ducted on individual developers in 2001 [2]; the second

phase was conducted on developer pairs in the second half

of 2004 and the first half of 2005. First, all subjects

performed a pretest task, the results of which were used

to adjust for skill differences between these two groups, e.g.,

due to the time gap. Subsequently, the subjects performed

change tasks on two alternative Java systems based on a

centralized or delegated control style, respectively [47].

The remainder of this paper is organized as follows:

Section 2 describes the research model of the experiment and

the hypotheses. Section 3 gives details of the experimental

design and its execution. Section 4 reports the results of

testing the study’s hypotheses. Section 5 discusses possible

threats to validity. Section 6 relates the results to existing

research on PP, while Section 7 provides concluding

remarks and suggestions for further research.

2 CONCEPTUAL MODEL AND HYPOTHESES

Existing research in software engineering has illustrated

clearly how the complexity of a programming task may

depend on the expertise of the subjects who perform it [2],

[22], [35]. For example, the study reported in [35] revealed

substantial differences in how novices, intermediates, and

experts perceive the difficulties of object-orienteddevelop;-

ment. These results were confirmed by a controlled

experiment that identified a strong interaction between the

expertise of the subjects and the type of task during object-

oriented program comprehension [8]. Similar results were

found in controlled experiments to assess the effects of design

patterns [39] and control styles [2] on maintainability.

Results from social psychology suggest that similar

moderating effects may apply to PP. For example, the

performance of groups depend on, among other things, the

complexity of the tasks [6], [7], [18], [23], [50]. For simple

tasks, individuals might perform better than groups. For

complex tasks, groups might benefit from the competence

of their peers, thus resulting in increased performance

compared with individuals.

The conceptual model tested in this study is shown in

Fig. 1. In the model, the effects (in our case given by

duration, effort, and correctness of the maintained program) of

PP (versus individual programming) will depend on the

moderating variables system complexity and programmer

expertise, both of which will have an impact on the

perceived complexity of programming tasks. The concep-

tual model is motivated by our initial framework for

research on pair programming [19]. An overview of the

study’s hypotheses is presented in Table 1.
The existing experiments on the effect of PP on duration,

effort, and quality were conducted on initial development

tasks with both students and professionals [25], [30], [31],

[32], [44], [46]. In this experiment, we address change tasks

and professional developers, and propose the null hypoth-

eses H01, H04 and H07 (Table 1) to test the main effect of PP

on, respectively, duration, effort, and correctness.

To our knowledge, no existing studies on PP have been

designed to assess directly how the complexity of the

systems and the programmers’ expertise affect the relative

performance of pairs versus individuals. To test the

moderating effect of system complexity on PP, we propose

the null hypotheses H02, H05, and H08 (Table 1). To test the

moderating effect of programmer expertise on PP, we

propose the null hypotheses H03, H06, and H09 (Table 1).

3 DESIGN OF THE EXPERIMENT

The conceptual research model discussed in Section 2 was

implemented by means of a two-phase controlled experi-

ment. In the first phase, conducted in 2001 and reported as a

separate experiment [2], we evaluated the effect of a

centralized versus delegated control style in a Java applica-

tion for different categories of developer. A total of

158 subjects took part, divided into 59 students (under-

graduate and graduate) and 99 professional Java consul-

tants (junior, intermediate, and senior). To compare the

performance of pairs with that of individuals, we conducted

phase two of the experiment in the second half of 2004 and

the first half of 2005 with pairs only (196 Java consultants

constituting 98 pairs), using the exact same experimental

procedure and material as in the first phase.
The design of the experiment is shown in Fig. 2. Since the

subjects were assigned randomly only to the two control
style treatments, not to the two pair programming treat-
ments, this is a quasi-experiment [14]. To address threats
generated by the nonrandom assignment to the pair
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programming treatments, the experiment included a com-

mon pretest programming task. The results of this test were

used to adjust for differences between all treatment groups

in an Analysis of Covariance (ANCOVA) model [14], [28].

The combined experiment was a 2� 2� 3 factorial design

[49] with the following factors:

Pair Programming: The pairs in this experiment con-

sisted of two individuals with a similar level of programmer

expertise (junior and junior, intermediate and intermediate,

and senior and senior). This choice was motivated by

previous studies on PP that reported that pairs consisting of

individuals with similar competence levels collaborated

more successfully than those with different competence

levels [9], [19], [42]. Most of the subjects in this experiment

had no experience with PP. Furthermore, they performed

maintenance change tasks on a program of which they had

no prior knowledge.

System Complexity: The first phase of the experiment

showed that the delegated control-style design of the given

application was, on average, more difficult to change than

was the alternative, centralized control-style implementa-

tion [2]. Thus, the control styles of the application being

changed were used to discriminate between two levels of

system complexity. However, note that, as discussed in [2],

system complexity should not be viewed in absolute terms;

it is relative to the expertise of the subjects.

Programmer Expertise: We used two alternative indica-

tors of programmer expertise. One was programmer

category (junior, intermediate, and senior professional Java

consultants), as determined by the project managers in the

consultancy companies. The other indicator attempted to

measure programming skill more directly on the basis of

the results of the pretest programming task.

The dependent variables were defined as follows:

Duration: Duration was defined as the elapsed time

taken to perform a set of change tasks. Since it is not

meaningful to compare duration for programs that require

rework with programs that do not, we only considered

duration for subjects whose work was correct.

Effort: Effort was defined as the total number of

programmer hours taken to develop a correct program.

Thus, effort equals duration for the individuals and twice

the duration for the pair programmers. Note that the effort

and duration measures are clearly not independent, but we

considered both measures to be important as they provide

complementary insights of the costs and benefits of pair

programming.

Correctness: Correctness was defined in terms of

whether or not the final, maintained program possessed

the required functionality, i.e., a binary score.

Further details on how the dependent variables were

measured are provided in Section 3.6.

3.1 Power Analysis

Prior to the second phase of the experiment, a power

analysis was performed to calculate how many subjects in

total (N) were needed in the sample. SamplePower 2.0 from
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SPSS1 was used for the power analysis. The alpha level was

set to 0.05.
We performed a power analysis for a logistic regression-

based test on the basis of the dependent variable correctness

and the assumption that there was an equal number of

subjects in each category of the main treatment (individuals

and pairs). Based on the results from the first phase and

previous experiments on PP, the event rate of getting a

correct solution was set to 0.6 for the individual developers

and 0.8 for the developer pairs. That is, we expected

33 percent more correct solutions for developer pairs than

for individual developers. The estimated total number of

experimental subjects required (the sum of individuals and

pairs), based on a power of 0.8 as suggested by Cohen [11],

[12], was N ¼ 170. (If there is a difference between the effect

of PP and individual programming, the difference will be

revealed in 8 out of 10 replications.)

We also performed a power analysis for a 2� 2� 3 fixed-

effect analysis of covariance (ANCOVA) with one covariate.

The analysis was based on three variables: PP (2 levels),

control style (2 levels) and programmer category (3 levels),

resulting in 12 levels (or groups). The planned covariate was

the pretest of programming skill level. We did not calculate

the effect size f from the first phase of this experiment

(because the experiment used a different main treatment) but

based it on a medium effect size f ¼ 0:25 (as suggested by

Dybå et al. [16]) for all the three variables and interactions.

The power analysis showed that we neededN ¼ 14 observa-

tions in each of the 12 groups, for a total N ¼ 168, to get a

minimum power of 0.8 for all three main effects and

interactions. This is almost identical to the result from the

logistic regression-based power analysis (N ¼ 170). How-

ever, in order to attain a power of 0.8 for the two two-level

variables, PP and control style, and their interaction, it would

suffice to haveN ¼ 72 observations per level, corresponding

toN ¼ 12 observations in each group, and a total sample size

of N ¼ 144.

3.2 Population and Sampling Procedure

The target population of the experiment was professional

Java consultants. To obtain a broad sample of this

population, subjects were hired from a total of 29 software

consultancy companies in Norway, Sweden, and the UK.

Since students were not part of the target population, the

student subjects from the first phase were removed from the

final sample, which left a total sample of 295 professional

junior, intermediate, and senior Java consultants constitut-

ing 197 experimental subjects (99 individuals and 98 pairs).

An overview of the subjects’ education and experience is

given in Appendix A.

To recruit professional developers, several Java consul-

tancy companies were contacted through their formal sales

channels. A contract for payment and a time schedule were

agreed upon. As in ordinary programming projects, the

companies were paid normal consultancy fees for the time

spent on the experiment by the consultants (from 5 to

8 hours each, depending on the time spent by the

consultant). Seniors were paid more than intermediates,

who, in turn, were paid more than juniors. For a few

companies, a fixed honorarium (the same payment) for all

three developer categories was agreed upon. The partici-

pating developers did not receive any information regard-

ing the categorization or actual payment.

A project manager in each company selected the subjects

from the company’s pool of consultants and rated them

according to their Java programming experience (junior,

intermediate, and senior), corresponding to how they

would rate them for similar kinds of “real” projects.

Consequently, a few consultants with ample general work

or programming experience (but very little OO or Java

experience) could still be rated as “junior” by the

companies. In phase two of the experiment, the project

manager also provided information about the developers’

PP experience (in general and with specific subjects from

the same company).

3.3 Group Assignment and Pair Constitution

The pairs were formed based on the individuals’ program-

mer category and their PP experience. Only 10 subjects

claimed to have PP experience, which constituted five of the

98 pairs. The consultants did not know in advance who

their partner would be during the experiment.

Within a given programmer category, each subject

(individual or pair) was assigned randomly to one of the

two control style treatments. Since the individuals and the

pairs participated in this experiment with a three-year time

difference, the subjects were assigned to the pair program-

ming treatments in a nonrandomized way. The pairs were

constituted from two programmers within the same

company, with the additional requirement that they

should belong to the same programmer category. Thus,

if there was an uneven number of developers within a

programmer category, the last person in the programmer

category was removed from the experiment, and the

project manager of the given company was notified that

person would not be hired after all.
Fig. 2 shows the distribution of the subjects in the

different groups. All groups consisted of more than

14 subjects (i.e., the number required, according to the

power analysis) except for the junior pair category (12 sub-

jects in the centralized control style group and 13 in the

delegated control style group). The power was, thus,

slightly reduced in these two groups when still assuming

a medium effect size f ¼ 0:25. However, the power analysis

also showed that we only needed 12 subjects in each cell for

a power of 0.8 for the main effects of PP and control style

and their interaction. Thus, the risk of a slightly reduced

power for the two junior pair groups was accepted due to

the experimental budget and time constraints. In the second

phase of the experiment (2004/2005), it was difficult to

recruit junior developers, probably because the companies

employed few new graduates after the decline in the IT

market in 2001/2002.
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3.4 Tasks

The experiment included the programming of six change

tasks: a training task, a pretest task (t1), and four

(incremental) main experimental tasks (t2, t3, t4, and t5).

Individual Training Task: All the subjects were asked to

change a small program so that it could read numbers from

the keyboard and print them out in reverse order. The

purpose of this task was to familiarize the subjects with the

experimental environment.

Individual Pretest Task (Task 1: ATM): For the pretest

task (t1), all the subjects implemented the same change on

the same design individually. The initial system (before

modifications) consisted of seven classes and 354 lines of

code. The change consisted of adding transaction log

functionality and printing an account statement for a bank

teller machine and was not related to the main experiment

tasks. This pretest task provided a common baseline for

comparing the programming skill level of the subjects.
Main Experiment Tasks (Tasks 2-5: Coffee Machine):

These tasks were based on two alternative Java systems that

were designed and implemented with a centralized and

delegated control design strategy, respectively [47]. In a

centralized control style, a few large ”control classes”

coordinate a set of simple classes [47]. Alternatively, in a

delegated control design, a well-defined set of responsibilities

are distributed among a number of classes [47]. The classes

play specific roles and occupy well-known positions in the

application architecture [47], [48]. The centralized control

style consisted of seven classes, the delegated control style

of 12. Further details are provided in Appendix D. The two

design alternatives were coded using similar coding styles,

naming conventions, and amounts of comments. Names of

identifiers (e.g., variables and methods) were long and

reasonably descriptive. UML sequence diagrams of the

main scenario for the two designs were given to help clarify

the designs. The tasks consisted of four incremental changes

to the coffee machine:

t2. Implement a coin return button.
t3. Introduce bouillon as a new drink choice.
t4. Check whether all ingredients are available for the selected

drink.
t5. Make one’s own drink by selecting from the available

ingredients.

Special Last Task (the Time Sink Task): The final

change task in an experiment needs special attention as a

result of potential “ceiling effects.” If the last task is

included in the analyses, it is difficult to discriminate

between the performance of the subjects regarding effort

and correctness. Subjects who work fast may spend

relatively more time on the last task than they would on

the earlier tasks. Similarly, subjects who work slowly may

have insufficient time to perform the last task correctly.

Consequently, the final change task (t5) in this experiment

was not included in the analysis. Thus, the analysis of

duration and effort is not threatened by whether the

subjects actually managed to complete the last task, while

at the same time, the presence of the last task helped to put

time pressure on the subjects during the experiment. Pilot

experiments were conducted to ensure that it would be very

likely that all subjects would complete tasks t1-t4 within a

maximum time span of eight hours. All pairs and all but

two individuals completed t1-t4.

3.5 Execution and Practical Considerations

The experiment was conducted incrementally in 27 separate

sessions on separate days (for the 29 companies); 10 sessions

for the individual programming phase and 17 sessions for

the PP phase. The experiment was conducted in the

subjects’ own offices, where each developer would nor-

mally work, or in offices at Simula Research Laboratory.

Work at Simula was similar to working at a client’s site. In

both work environments, the subjects had access to the

Internet, printers, libraries, coffee, and so on, as in any other

project they might be working on. Each subject also used a

Java development tool of their own choice, e.g., JBuilder,

Eclipse, IntelliJ, NetBeans, or Emacs and Javac. The

researchers decided where the pairs should be located to

ensure that they did not disturb each other or listen to each

others’ conversations during the experiment. To ensure

accurate duration and effort data, the subjects were also told

to only take breaks between the tasks. We also instructed the

consultants not to answer telephone calls or talk to

colleagues (other than the partner for the pair program-

mers) during the experiment. During each of the 27 sessions,

one or several researchers were present on site at all times

to assist in case of technical problems and ensure that the

subjects followed the prescribed procedure.

The experiment lasted one day and was divided into four

sessions (see Fig. 2). First, the participants were given an

introduction to the experiment by the first two authors of

this paper. The presentation included general information

about practical matters pertaining to the experiment (e.g.,

time to perform the tasks, breaks, lunch, and how to

complete the tasks and the questionnaires). In the second

phase of the experiment, the subjects were also introduced

to the concept of PP during the presentation, which focused

on the active collaboration in PP and involved a short

description of the two roles (driver and navigator). The

developers were told that they could decide themselves

how often and when to switch roles, but they had to try

both roles (even if only for five minutes). The main message

was that they should focus on making the collaboration as

efficient as possible. The information provided regarding

PP included no results from prior empirical studies. At the

end of the presentation, the subjects were informed of the

name of their pair programming partner, in addition to

usernames and passwords to the Web-based Simula

Experiment Support Environment (SESE) [3]; see below.

After the presentation, the participants answered a

prequestionnaire about their education and experience

before they started performing the training task and the

pretest task (t1) individually. After they had finished the

pretest task, the subjects started to perform the main

experiment tasks (t2-t5) individually or in pairs.
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To support the logistics of the experiment, the subjects

used SESE [3] to answer questionnaires, download code

and documents, and to upload task solutions. Except for the

Java source code, which contained class, method, and

variable names and comments in English, all subjects

received the experimental material in their first language

(Norwegian, Swedish, or English). Each task consisted of

the following steps:

1. Download and unpack a compressed directory

containing the Java code to be modified. This step

was performed only prior to task t2 for the coffee

machine design change tasks because tasks t3-t5

were based on the solution of the previous task.
2. Download task descriptions (details are provided in

[1]). Each task description contained a test case that
each subject used to test the solution.

3. Solve the programming task using the chosen
development tool.

4. Pack the modified Java code and upload it to SESE.
5. Complete a task questionnaire (details are provided

in [1]).

We wanted the subjects to perform the tasks with

satisfactory quality in as short a time as possible because

most software engineering jobs impose relatively severe

time constraints on the tasks to be performed. However, if

the time pressure placed on the participating subjects is too

high, the quality of the task solutions may be reduced to the

point where it becomes meaningless to use the correspond-

ing task times in subsequent statistical analyses. The

challenge is, therefore, to impose realistic time pressure

on the subjects. What constitutes the best way to meet this

challenge depends, to some extent, on the size, duration,

and location of an experiment [36]. In this experiment, we

used the following strategy:

. Instead of offering an hourly rate, we offered a

”fixed” honorarium based on an estimate that the

work would take five hours to complete. We told the

subjects that they would be paid for those five hours,

regardless of how much time they would actually
need. Hence, those subjects who finished early (e.g.,

in two hours) were still paid for five hours. We

employed this strategy to encourage the subjects to

finish as quickly as possible and to discourage them

from working slowly in order to receive higher

payment. However, to maintain motivation, once the

five hours had passed, we told those subjects who

had not finished that they would be paid for
additional hours if they attempted to complete their

tasks.
. We introduced a special last, time-sink task (see

Section 3.4)
. The subjects were allowed to leave when they

finished. Those who did not finish had to leave

after eight hours.
. The researchers guaranteed strict confidentiality

regarding information about the subjects’ perfor-

mance. In particular, no information would be given

to the company or to the individuals themselves
about their own performance. Furthermore, the

subjects signed a confidentiality agreement where

they agreed not to reveal any information about the

experiment to their peers.

3.6 Variables and Analysis Model

This section defines in more precise terms the variables of

the experiment, how data was collected for these variables,

and the models for analysis used to test the hypotheses.

3.6.1 Dependent Variables

Duration: The elapsed time in minutes to complete change

tasks t2-t4. Before starting on a task, the subjects wrote

down the current time. When they had completed the task,

they reported the total time (in minutes) for that task.

Nonproductive time between the tasks was not included.

For the duration measure to be meaningful, we considered

duration only for subjects with correct solutions.

Effort: The total change effort in person-minutes to

complete change tasks t2-t4. The total effort for the pairs

was thus the duration for the pair multiplied by two. As for

duration, we considered effort only for subjects with correct

solutions.

Correctness: A binary, functional correctness score with

value “1” if all change tasks t2-t4 were implemented

correctly and “0” if at least one of these tasks contained

serious logical errors. The change task solutions were

reviewed by two independent senior consultants who were

not among the experimental subjects and were not informed

about the hypotheses of the experiment. To perform the

correctness analysis, one of the consultants first developed a

tool that automatically unpacked and built the source code

corresponding to each task solution. In total, this corre-

sponded to almost 900 different Java programs (one pretest

task by 295 individuals and three main experiment tasks by

99 individuals and 98 pairs). Then, each solution was tested

using an automated test script. For each test run, the

difference between the expected output of the test case (this

test output was given to the subjects as part of the task

specifications) and the actual output generated by each

program was computed. The tool also showed the complete

source code, as well as the differences in source code between

each version of the program delivered by each subject, to

identify exactly how they had changed the program to

complete the change task. To perform the final grading of the

task solutions, a Web-based grading tool was developed that

enabled the consultants to view the source code, the

difference in source code, the expected and actual test case

output, and the difference between the two. The score correct

was given if there were no, or only cosmetic, differences in

the test case output and no additional serious logical errors

were revealed by manual inspection of the source code;

otherwise, the score incorrect was given. Each time a mistake

was identified, the reason for giving correct ¼ 0 was

recorded. One consultant was responsible for phase 1, the

other for phase 2, but, essentially, the correctness scores of

both phases were based on a consensus between the two
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consultants, not two separate “scores”: To ensure consistent

scoring, the second consultant adopted the same, explicit

decision criteria as the first consultant had recorded for the

phase 1 solutions. Furthermore, to ensure proper use of the

criteria, the second consultant first redid one-third of the

evaluations performed by the first consultant as an exercise

and discussed those evaluations in the second phase with the

first consultant when in doubt. The consultants performed

their analysis twice to avoid inconsistencies in the way they

had graded the task solutions. Completing this work took

approximately 200 person-hours in total, including both

phases of the experiment.

3.6.2 Controlled Factors

Pair Programming (PP): Whether the subjects worked in

pairs (Pair) or individually (Ind).

Control Style (CS): The two alternative Java imple-

mentations of the coffee machine; centralized (CC) or

delegated (DC).

Programmer Category (ProgCat): Junior, Intermediate, or

Senior Java consultants.

3.6.3 Covariates

Pretest Duration (pre_dur): The time taken (in minutes) to

complete the pretest task (t1). The individual pretest result

was used as a covariate that modeled the variation in the

dependent variables that could be explained by individual

skill differences. Such an approach is known as Analysis of

Covariance (ANCOVA) and is commonly used to adjust for

differences between groups in quasi-experiments [14]. In

this experiment, differences could be expected due to the

time gap between the two phases. It was necessary to

decide which of the two pretests (one for each individual in

the pair) should be used in the ANCOVA model, and this

we did by flipping a coin to randomly select one of the two

pretests of each pair. In this way, the pretest of a randomly

selected individual who worked in a pair was compared

with the pretest of a randomly selected individual who

worked individually on the same experiment tasks. Several

alternatives to this random selection procedure were

discussed, such as taking the average duration of the two

pretests in a pair or running two separate analyses using the

“fastest” and “slowest” pretest of each pair. However,

ANCOVA presumes that an identical pretest measure is

used for all subjects. Using the “fastest,” “slowest,” or

“average” pretest values would result in different pretest

measures for the pairs and individuals. For example, using

the “fastest” pretest from the pairs would bias the results in

that, on average, ANCOVA overcompensates for the skills

of the pairs in favor of the individual programmers.

Similarly, using the “slowest” pretest from the pairs would

bias the results in favor of the pair programmers. Finally, by

taking the “average” of the two pretests, the variance of the

resulting measure would be much smaller than for the

individuals (the intrapair difference might be large for some

pairs and small for others, while still having the same

average pretest value). Thus, overall, the random selection

of a pretest within a pair seemed most appropriate. In

addition, the ANCOVA requirement of identical pretest

measures prevented us from allowing the PP subjects to

solve the pretest task in pairs, which would lead to different

pretest measures (individuals versus pairs).

3.6.4 Model Specifications

A generalized linear model (GLM) approach [28] was used

to perform an ANCOVA to test the hypotheses specified in

Section 2. The GENMOD procedure provided in the

statistical software package SAS was used to fit the models.

A justification for the specifications of the model follows.
Since this experiment was a quasi-experiment, the

models needed to account for differences between the

groups due to a lack of random assignment. The pretest

measure pre_dur was used to specify ANCOVA models that

adjust the observed responses for the effect of the covariate,

as recommended in [14]. The covariate is log-transformed

to, among other things, reduce the potential negative effect

that outliers can have on the model fit.

Furthermore, the time (duration, effort) and correctness

data was not normally distributed, which also affected the

model specifications. GLM is the preferred approach to

analyzing experiments with nonnormal data [49]. In GLMs,

one specifies the distribution of the response y and a link

function g. The link function defines the scale on which the

effects of the explanatory variables are assumed to

combine additively. The time data was modeled by

specifying a Gamma distribution and the log link function.

The Gamma distribution is suitable for observations that

take only positive values and are skewed to the right,

which is the case for time data that has zero as a lower

limit and no clear upper limit (though it cannot be longer

than eight hours in this experiment). Note that an

alternative approach would be to simply log-transform

the variable by computing the log of each response logðyÞ
as the dependent variable and using a log-linear model to

analyze the data on the assumption that logðyÞ would be

approximately normally distributed. However, unlike such

an approach, GLM takes advantage of the natural distribu-

tion of the response y, in our case, Gamma for the time data.

Furthermore, the expected mean � ¼ EðyÞ, rather than the

response y, is transformed to achieve linearity. As elabo-

rated on in [28], [49], these properties of GLM have many

theoretical and practical advantages over transformation-

based approaches.

The correctness measure is fitted by specifying a Binomial

distribution and the logit link function in the GENMOD

procedure. This special case of GLM is also known as a

logistic regression model and is a common choice for

modeling binary responses.

Given that the underlying assumptions of the models are

not violated,2 the presence of a significant model term

corresponds to rejecting the related null hypothesis. The

following terms are used to test the hypotheses:
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. The Pair Programming (PP) variable models the main

effect of pairs versus individuals on duration, effort, and

correctness (to test hypotheses H01, H04, and H07).

. The Control Style (CS) variable models the main

effect of the control-style DC versus CC on duration,

effort, and correctness as an indicator of system

complexity. The interaction term between PP and
CS, PPxCS, models the moderating effect of the

control style on the effect of PP (to test hypotheses

H02, H05, and H08).

. While the log-transformed covariate Log(pre_dur) is

primarily needed to adjust for individual skill

differences, recall that it may also be viewed as a

measure of programmer expertise. Thus, the inter-
action term between the log-transformed pretest

duration and PP, Log(pre_dur)xPP models the mod-

erating effect of programmer expertise on PP by

using the Log(pre_dur) as a measure of expertise (to

test hypotheses H03, H06, and H09).

. The Programmer Category (ProgCat) is not used directly

in the models because the PP subjects had, on average,

more programming experience than the subjects who
participated as individuals (Appendix A). Thus, it is

necessary to include a pretest in the model, and the

pretest score is correlated with ProgCat (e.g., seniors

are faster than juniors). This, in turn, means that it is

not possible to interpret a model that includes both

Log(pre_dur) and ProgCat as model terms. However,

ProgCat is still used as a moderating variable of

programmer expertise on PP by performing separate
analyses for each level (junior, intermediate, and

senior) and comparing the differences between the

levels (to test hypotheses H03, H06, and H09).

Table 2 specifies the unreduced models, i.e., all possible

interaction terms are included. The unreduced models

include the covariate Log(pre_dur), the model terms PP and

CS, and all possible interactions between these model terms.

If interaction terms involving the covariate (pretest result)

were not significant at � ¼ 0:05, they were removed in the

final (reduced) model. In the model reduction process,

insignificant interaction effects (on the basis of the type III

adjusted sums of squares) were removed one at a time,

starting with the highest-order and least significant inter-

action, as in backward elimination.

Note that the nine statistical tests were not completely

independent. In particular, since Effort ¼ 2 �Duration for

the pairs and Effort ¼ Duration for the individuals, H01 is

very much related to H04. Furthermore, H02 equals H05

and H03 equals H06 because they investigate interaction

effects that do not change by setting Effort ¼ 2 �Duration
for the pairs. Thus, from a technical perspective, this

experiment has seven distinct hypotheses tests. Still, we

believe that it was useful to perform statistical tests of both

Duration and Effort because they offer complementary

insights on the costs and benefits of pair programming.

3.6.5 Effect Size Calculations

Based on the reduced GLM models, we also calculated the

adjusted least square means [28] and the difference in

adjusted means for the PP and PPxCS model terms to assess

and visualize the effect sizes for the two levels of PP (Ind

and Pair) and for the two levels of PP for either the

centralized (CC) or delegated (DC) control style. These

calculations were performed for all 12 models (duration,

effort, and correctness models for the all subjects and for

juniors, intermediates, and seniors).
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Since the GLM models for the dependent variables

Duration and Effort use the log link function, the least square

means estimates produced by the GENMOD procedure

were first transformed back to the original time scale (in

minutes) by taking the exponential of the adjusted least

square means estimates. Similarly, the least square means of

the logit, i.e., � ¼ logðp=ð1� pÞÞ, was transformed back to

the expected probability that the solution would be correct

(p ¼ expð�Þ=ðexpð�Þ þ 1).

The adjusted least square means estimates can be

compared to the unadjusted sample means, the difference

being that the former were adjusted for the effect of the

covariate on the responses. Finally, to assess the effect size,

the contrasts or differences in least square means and

95 percent confidence intervals on the differences were

computed. For the dependent variables Duration and Effort,

the difference was reported as the relative time differences

(as percentages) for Pair versus Ind, Pair (CC) versus Ind

(CC) and Pair (DC) versus Ind (DC). For Correctness, the

difference was calculated as the relative difference in

proportions of subjects with correct solutions as well as

odds-ratios [28] for Pair versus Ind, Pair(CC) versus Ind (CC)

and Pair (DC) versus Ind (DC).

4 RESULTS

This section presents the results of the experiment in terms

of descriptive statistics, hypotheses tests, and effect sizes.

4.1 Overall Results

To test the hypotheses, GLM models for the dependent

variables Duration, Effort, and Correctness were first fitted on

the complete data set, including all categories of developer.

Recall that, to provide meaningful measures of duration

and effort, only correct solutions were considered in the

analyses, with the result that 139 observations (59 indivi-

duals and 80 pairs) were used to build the duration and

effort models. For correctness, all 197 observations (99 in-

dividuals and 98 pairs) were used.

A summary of the three resulting models are given in

Table 3, including both the initial, unreduced models

(including all interaction terms) and the final models. Due

to space constraints, we have not shown the intermediate

models, but the results are consistent with those reported in

Table 3. In all models, the covariate Logðpre durÞwas highly

significant. This means that the ANCOVA models did

adjust the observed responses for the effect of the covariate.

More detailed assessments of the underlying ANCOVA and

GLM model assumptions are provided in Section 5.1.

Detailed model summaries for the individual program-

mer categories Junior, Intermediate, and Senior are given in

Appendix B.

Appendix C provides the unadjusted and adjusted

means and differences in means, respectively, for duration,

effort, and correctness of pairs versus individuals, following

the procedure described in Section 3.6.5. Also indicated are

95 percent confidence intervals and p-values for all pairwise

differences. Fig. 3 visualizes the relative differences of pairs

(versus individuals) for the different treatment combina-

tions CS and ProgCat on the basis of the adjusted means

provided in Appendix C.

At this point, we will discuss informally the effects of PP

on the basis of the differences of pairs versus individuals
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shown in Fig. 3. Overall, the pairs had an insignificant

8 percent decrease in the time taken to perform the tasks

correctly (p ¼ 0:2235), corresponding to an 84 percent

increase in effort (p < 0:0001). The effect of PP on effort

was consistently negative across all treatment groups. There

was only a 7 percent increase in the proportion of correct

solutions of the pairs compared with the individuals

(odds ratio ¼ 1:28, p ¼ 0:5628).

However, the main effects of PP are masked by the

moderating effect of system complexity in the control

style (CS). More specifically, for the CC design, the pairs

had a significant 20 percent decrease in duration

(p ¼ 0:0092), but an insignificant 16 percent decrease in

correctness (odds ratio ¼ 0:46, p ¼ 0:2261). For the DC

design, the pairs had an insignificant 6 percent increase

in duration (p ¼ 0:5472), but a significant 48 percent

increase in correctness (odds ratio ¼ 3:56, p ¼ 0:0194). Thus,

the statistically significant effects of PP are decreased

duration on the simpler CC design and increased correct-

ness on the more complex DC design.
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Furthermore, when considering the moderating effect of

programmer expertise (ProgCat), junior pairs had an insig-

nificant 5 percent increase in duration (p ¼ 0:7106) but a

significant 73 percent increase in correctness (odds ratio

¼ 5:46, p ¼ 0:0344). Thus, the juniors benefited from PP in

terms of increased correctness. Intermediate pairs had a

significant 28 percent decrease in duration (p ¼ 0:0072) and

an insignificant 4 percent increase in correctness (odds ratio

¼ 1:15, p ¼ 0:8536). Thus, intermediates also seemed to

benefit from PP, but mainly in terms of decreased duration.

Senior pairs had an insignificant 9 percent decrease in

duration (p ¼ 0:3015) and an insignificant 8 percent decrease

in correctness (odds ratio ¼ 0:65, p ¼ 0:5579). Thus, there

were no significant overall benefits of PP for seniors.
However, when considering the combined moderating

effect of system complexity (CS) and programmer ex-
pertise (ProgCat) on PP, there appears to be an interaction
effect: Among the different treatment combinations, only
juniors assigned to the DC design had a significant effect
of PP on correctness, with a remarkable 149 percent
increase (odds ratio ¼ 10:48, p ¼ 0:0234) compared with
individuals. Furthermore, only intermediates and seniors
experienced a significant effect of PP on duration, and
that only on the CC design, with a 39 percent (p ¼ 0:0006)
and 23 percent (p ¼ 0:0255) decrease, respectively. Note,
however, that in this experiment, it was not feasible to
test such interactions formally, e.g., by including a model
term PP � ProgCat� CS, since we had to include the
covariate Log(Pre_dur) to adjust for group differences due
to nonrandom assignment to the PP groups. Log(Pre_dur)
is confounded with ProgCat (seniors performed better on
the pretest than did the intermediates, who in turn
performed better than the juniors). It would thus have been
impossible to interpret a model that included both ProgCat

and Log(Pre_dur). Consequently, we had no choice but to
assess this apparent interaction on the basis of the pairwise
differences as depicted in Fig. 3.

4.2 Formal Tests of Hypotheses

The formal tests of the hypotheses and the related effect size

estimates (as specified in Section 3.6) are summarized in

Table 4.

4.2.1 The Effect of Pair Programming on Duration

H01H01 (The duration to perform change tasks is equal for

individuals and pairs): The model term PP in model 1 is not

significant with p ¼ 0:2239. Thus, there is insufficient

support for the hypothesis that pair programmers perform

change tasks faster than individual programmers.

H02H02 (The difference in the duration to perform change

tasks for pairs versus individuals does not depend on

system complexity): The model term PP*CS in model 1 in

Table 3 is significant with p ¼ 0:0181. Hence, we accept the

alternative hypothesis that the effect of PP on duration

depends on system complexity.

H03H03 (The difference in the duration to perform change

tasks for pairs versus individuals does not depend on the

programmer expertise): The model term Log(pre_dur)xPP in

model 1) is not significant with p ¼ 0:30. There is insuffi-

cient support for the alternative hypothesis that the effect of

PP on duration depends on expertise as measured by the

pretest duration.

When considering Programmer Category (ProgCat) as

the moderating variable instead of the pretest Log(pre_dur),

H03 is still not rejected at � ¼ 0:05. To see this, we consider

the confidence intervals of the adjusted difference in least

square means for the model term PP (Table 9 in

Appendix C): The 95 percent confidence intervals of the
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adjusted difference in least square means for the model

term PP are (�20 percent, þ38 percent), (�44 percent,

�9 percent), and (�23 percent, þ9 percent) for juniors,

intermediates, and seniors, respectively. Since they all

overlap, H03 is not rejected when using the moderating

variable ProgCat.

4.2.2 The Effect of Pair Programming on Effort

H04H04 (The effort spent to perform change tasks is equal for

individuals and pairs): The model term PP in model 2 is

significant with p < 0:0001. Hence, we accept the alternative

hypothesis that pair programmers require more effort to

perform change tasks than individual programmers.

H05H05 (The difference in the effort spent to perform change

tasks for individuals and pairs does not depend on system

complexity): The model term PP*CS in model 2 in Table 3 is

significant with p ¼ 0:0181. Hence, we accept the alternative

hypothesis that the effect of PP on effort depends on system

complexity.

H06H06 (The difference in the effort spent to perform change

tasks for pairs versus individuals does not depend on

programmer expertise): The model term Log(pre_dur)xPP in

model (2) is not significant with p ¼ 0:7210. Hence, there is

insufficient support for the alternative hypothesis that the

effect of PP on effort depends on expertise as measured by

the pretest duration.

When considering Programmer Category (ProgCat) as

the moderating variable instead of the pretest Log(pre_dur),

H06 is still not rejected at � ¼ 0:05: From Table 10 in

Appendix C, we see that the 95 percent confidence intervals

of the adjusted difference in least square means for the

model term PP are (þ61 percent, þ176 percent), (þ12 per-

cent, þ83 percent), and (þ53 percent, þ117 percent) for

juniors, intermediates, and seniors, respectively. Since they

all overlap, H06 is not rejected when using the moderating

variable ProgCat.

4.2.3 The Effect of Pair Programming on Correctness

H07H07 (The correctness of the maintained programs is equal

for individuals and pairs): The model term PP in model 3 is

not significant with p ¼ 0:5641. There is insufficient support

for the hypothesis that pair programmers produce more

correct programs than do individuals.

H08H08 (The difference in the correctness of the maintained

programs for pairs versus individuals does not depend on

system complexity): The model term PP*CS in model 3 in

Table 3 is significant with p ¼ 0:0128. Hence, we accept the

alternative hypothesis that the effect of PP on correctness

depends on system complexity.

H09H09 (The difference in the correctness of the maintained

programs for pairs versus individuals does not depend on

programmer expertise): The model term Log(pre_dur)xPP in

model 3 is not significant with p ¼ 0:8567. Hence, there is

insufficient support for the alternative hypothesis that the

effect of PP on correctness depends on expertise as

measured by the pretest duration.

When considering Programmer Category (ProgCat) as

the moderating variable instead of the pretest Log(pre_dur),

H0_9 is still not rejected at � ¼ 0:05: From Table 11 in

Appendix C, we see that the 95 percent confidence intervals

of the adjusted odds ratios for PP (Pair versus Ind) are

ð1:13; 26:33Þ, ð0:25; 5:23Þ, and ð0:15; 2:75Þ for juniors, inter-

mediates, and seniors, respectively. Since they all overlap,

H09 is not rejected when using the moderating variable

ProgCat.

5 THREATS TO VALIDITY

The reported experiment is very realistic compared with

previously reported experiments on PP. The hypotheses

were formulated in such a way that the results obtained

could be generalized to a target population of professional

Java consultants performing real programming tasks with

professional development tools in a realistic work setting.

However, this is an ambitious goal; one that is difficult to

achieve. For example, there is a trade-off between ensuring

realism (to reduce threats to external validity) and ensuring

control (to reduce threats to internal validity). This section

discusses what we consider to be the most important threats

to the validity of this experiment and offers suggestions for

improvements in future experiments.

5.1 Validity of Statistical Conclusions

Validity of statistical conclusions concerns 1) whether the

presumed cause and effect covary and 2) how strongly they

covary. For the first of these inferences, one may incorrectly

conclude that cause and effect covary when, in fact, they do

not (a Type I error) or incorrectly conclude that they do not

covary when, in fact, they do (a Type II error). For the

second inference, one may overestimate or underestimate

the magnitude of covariation, as well as the degree of

confidence that the estimate warrants [34].
The individual level of significance for the hypotheses

tests were set to � ¼ 0:05. It is difficult to provide

arguments for a specific predetermined significance level

for tests of the hypotheses. Setting the alpha-level ulti-

mately involves a subjective assessment of the severities of

committing Type I versus Type II errors. In this experiment,

we performed a power analysis that showed that we

needed almost 300 subjects (100 individuals and 100 pairs)

to test the hypotheses at a 0.05 level of significance (for

individual hypotheses). However, since we performed

multiple tests, there was an increased probability (above

0.05) of falsely rejecting one or more of the null hypotheses.

In our case, the nine hypotheses were carefully formulated

before any analysis was performed, and, as discussed in

[24], most statisticians would, in such cases, nevertheless

consider it appropriate to test at an individual 0.05 level,

that is, without any adjustments of the alpha-level. Some

readers might still prefer a stricter and even more

conservative interpretation of the results, by adjusting for

the multiplicity of tests. In our case, adjusting the

significance level using Holm’s procedure would be more

appropriate than using the even more conservative Bonfer-

roni adjustment, since the Bonferroni adjustment ignores

the correlation between tests [21]. We performed a post hoc
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assessment at the overall level of significance of our

hypotheses, adjusted for test multiplicity, using Holm’s

procedure on the basis of the p-values reported in Table 3

(note again that we had seven distinct tests in this

experiment). The results of applying this procedure

suggested that the probability of falsely rejecting at least

one out of the seven distinct null hypotheses was less than

0.10; that is, the results reported in Table 4 had an overall

level of significance equal to � ¼ 0:10. We considered this to

be an acceptable trade-off between committing Type I and

Type II errors.

An important assumption of Analysis of Covariance is

that the slope of the covariate can be considered equal

across all treatment combinations [14]. For the duration and

effort models (Table 3), no interaction terms involving the

covariate Log(pre_dur) were significant, indicating that the

homogeneity in the slopes assumption was not violated.

However, for the correctness model, the model term

Log(pre_dur)xCS was significant (p ¼ 0:0269). This term

was thus included in the reduced model of correctness. A

similar interaction effect was found for the correctness

model that considered only intermediates (Table 7,

Appendix B). This implies that the difference in correctness

of the two control styles (CC versus DC) varies for different

values of Log(pre_dur), and, hence, there is no meaningful

overall interpretation of the effect of CS on correctness.

Fortunately, no interaction terms involving our main model

term PP and Log(pre_dur) were significant, so it does not

complicate the interpretation of the hypotheses tests: Since

the odds (p=ð1� pÞ) in a logistic model can be expressed in a

multiplicative model [28], e.g.,

p=ð1�pÞ ¼ expð�0Þ � expð�1x1Þ � expð�2x2Þ � . . . � expð�nxnÞ;

the effect of the interaction term Log(pre_dur)xCS in the

correctness model will cancel out in the affected hypotheses

tests (H07 and H08), which only need to consider the relative

ratio in odds (expressed as an odds ratio [28]) of Pair versus

Ind, Pair(CC) versus Ind(CC), and Pair(DC) versus Ind(DC),

respectively.

The GLM model assumptions were checked by assessing

the deviance residuals [28]. For the logistic model, a plot of

the deviance residuals indicated no potentially overinfluen-

tial observations. We also performed a Hosmer and

Lemeshow Goodness-of-Fit test, which did not indicate a

lack of fit (p ¼ 0:64). For the duration and effort models, the

plot of the deviance residuals indicated that two observa-

tions could have been treated as outliers; otherwise, there

was no indication of model inadequacy. Removing the two

observations from the data set had only very minor effects

on parameter estimates and p-values. Thus, we do not

consider model misspecification a major threat to validity.

Simulations have shown that quasi-experiments with

nonequivalent groups usually have less power than

randomized block designs with the same number of

subjects, despite the ANCOVA adjustments [14]. There is

no simple way to estimate power in quasi-experiments [14].

Thus, despite the large number of subjects, the possibility

cannot be ruled out that our results suffer from lack of

power. In particular, it is possible that the “nonsignificant”

results with regard to the hypotheses on interaction effects

between PP and programmer category are due to lack of

power because, in this case, the observations were parti-

tioned into tree subsets consisting of only juniors, inter-

mediates, and seniors, respectively. This, of course,

increases the error term and, hence, the confidence intervals

on the parameter estimates on the effect of PP.

Our decision to conduct a quasi-experiment was guided

by practical considerations and costs. In particular, we had

already performed the first phase of the experiment with

individuals [2]. An alternative would have been to perform

a completely new, but smaller, randomized block experi-

ment with, say, 50 individuals and 50 pairs. The pretest

could, of course, be used in a randomized block design as

well. In such a case, the pretest covariate would serve

mainly to reduce the error term of the model, resulting in

narrower confidence intervals of the parameter estimates,

but would not adjust the estimated population means [14].

In summary, there is a nontrivial trade-off between having

fewer subjects in a randomized block design or more

subjects in a nonequivalent group design. It is not obvious

which is better from the point of view of validity.

5.2 Internal Validity

The internal validity of an experiment is “the validity of

inferences about whether observed covariation between A

(the presumed treatment) and B (the presumed outcome)

reflects a causal relationship from A to B as those variables

were manipulated or measured” [34]. If changes in B have

causes other than the manipulation of A, there is a threat to

the internal validity.

The main threat to internal validity in this experiment

was the lack of random assignment to the two treatment

groups: individual programming and pair programming. The

first phase of this experiment was conducted on individual

developers. The second phase was conducted on developer

pairs three years later. This might lead to differences in skill

between the individuals and the pairs. Different subjects

also used different development tools and were from

different countries with different cultures. Such differences

may also bias the results. It was to assess this threat that we

included a pretest task in the experiment. The results

suggested that the PP group did possess greater skill, as

indicated by their spending less time on performing the

pretest task. Consequently, the time spent on the pretest

was used to adjust for differences between groups in an

ANCOVA model, which is a recommended practice in

quasi-experiments [14].

Another related issue is that, for the analyses of duration

and effort, we removed subjects with incorrect solutions,

thereby introducing a potential bias, particularly since we

removed a larger proportion of individuals than pairs.

Following the same arguments as above, the inclusion of the

pretest in the ANCOVA models will adjust for skill

differences, even if the differences were caused by remov-

ing subjects with incorrect solutions.
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However, for the ANCOVA approach to be effective, the

pretest must reflect the expected performance on the main

tasks of the experiment, but it is unlikely that it is a

“perfect” predictor. For example, and for technical reasons

explained in Section 3.6.3, we had to choose only one out of

two pretests (at random) to reflect the skills of the two

individuals subsequently formed into pairs, and that pretest

may not adequately reflect the expected performance of the

pairs. Still, in our case, the pretest was consistently a very

good predictor of all three dependent variables, and, as seen

in Appendix C, it resulted in considerable adjustments in

the mean square estimates. We also considered a number of

other candidate covariates, such as the correctness of the

pretest, number of lines of code written in various

programming languages, developer tool, country, and

programmer category. None of these alternative covariates

were significant when the Log(pre_dur) term was included

in the models, which indicates that the pretest duration was

the best measure among those available to us, and the only

measure needed to perform the necessary adjustments.

5.3 Construct Validity

Construct validity concerns the degree to which infer-

ences are warranted, from 1) the observed persons,

settings, and cause and effect operations included in a

study to 2) the constructs that these instances might

represent. The question, therefore, is whether the sam-

pling particulars of a study can be defended as measures

of general constructs [34].

5.3.1 Pair Programming

PP has many facets regarding how the pairs are constituted,

which tasks are performed, and how the pairs work. Our

PP construct is limited in scope to situations where

“homogenous” pairs (pairs of programmers with similar

competence levels, as indicated by the programmer

categorization provided by their common project manager)

perform small maintenance tasks on systems of which they

had no prior knowledge. The rationale for homogenous

pairs was that previous studies on PP have reported that

pairs consisting of individuals with similar competence

levels in the programming language used (e.g., high-high

and low-low) collaborated more successfully than did pairs

consisting of individuals with different competence levels

in the programming language used (e.g., low-high and low-

medium) [9], [19], [43]. Using “heterogeneous” pairs might

have been more suitable if the goal had been to study the

effect of PP on training and knowledge transfer [19],

[26], [42].

A majority of the subjects had little or no experience with

PP before the experiment and, in most cases, had not pair

programmed with their assigned partners before. Conse-

quently, the results of this study might be a quite

conservative measure of the effects of PP, since the pairs

had probably not reached their maximum level of combined

efficiency during the experiment: Anecdotal evidence

suggests that it takes developers from a few hours to a

few days to make the transition from individual program-

ming to efficient pair programming [43]. Let this concept of

a pair having reached its maximum level of efficiency

henceforth be designated “pair jelling.”

To address these threats to construct validity, future

experiments should consider using heterogeneous pairs

and programmers that have already reached their max-

imum level of combined efficiency.

5.3.2 Programmer Expertise

In this experiment, the concept programmer expertise was

operationally defined by two variables: 1) the pretest

duration in Log(minutes) to solve an individual pretest task

and 2) the categorization of developers as Junior, Inter-

mediate, and Senior consultants. The pretest measure is a

quite direct measure of programmer expertise but clearly

does not cover all aspects of expertise that can influence the

performance of programmers. However, the extent to which

it affects their performance on the particular set of

experimental tasks was assessed by including the pretest

performance as a covariate in the statistical models. It was

consistently a very good predictor of their performance on

the subsequent experimental tasks. The developer cate-

gories reflect a more overall measure of programmer

expertise in the sense that senior programmers in a company

are considered to have greater programmer expertise than

junior or intermediate programmers, although someone who

is considered as an intermediate consultant in one company

might be considered as a senior in another company. Hence,

the reliability of the categorization is questionable. Never-

theless, as is evident from Appendix C, seniors worked

faster (with more correct task solutions) than did inter-

mediates, who, in turn, worked faster (with more correct

task solutions) than did juniors.

5.3.3 System Complexity

An important threat to construct validity is the extent to

which the actual Java systems represent the concept

studied, that is, a simple system on the basis of having to

perform changes on a program with a centralized control

style and a complex system on the basis of having to perform

changes on a program with a delegated control style. A

complication is that system complexity probably cannot be

expressed in absolute terms because it may depend on the

skill of programmers, development processes, etc. From the

previous study with individuals, it was clear that juniors

found the delegated control style more difficult to change

than seniors did. Although the difference in complexity of

the two control styles was sufficiently large to demonstrate

a moderating effect for system complexity, the effects might

have been greater if the systems had had a greater

difference in complexity.

5.3.4 Correctness

The concept of correctness was operationally defined by the

binary dependent variable Correctness, which indicated

whether the subjects produced functionally correct solu-

tions on all the change tasks (t2-t4), thus producing a

working final program. As described in Section 3.6.1, a
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significant amount of effort was expended on ensuring that

the correctness scores were valid. Of course, correctness can

be measured in many ways, e.g., number of passed test

cases, correctness per task or aggregated across tasks, and

number of correctly implemented tasks. It is possible that

the results would have been different had we used more

fine-grained measures of correctness, but such measures

would also complicate the analyses even further. Further-

more, functional correctness represents only one dimension

of the more general concept of quality, but we do consider

functional correctness to be, at least, a very important

dimension of quality, and the first candidate as a dependent

variable. In a sense, if a program does not deliver the

required functionality, it may not be meaningful to consider

other aspects of quality. Functional correctness is also more

objective than, say, extensibility.

5.4 External Validity

The issue of external validity concerns whether a causal

relationship holds 1) over variations in persons, settings,

treatments, and outcomes that were in the experiment and

2) for persons, settings, treatments, and outcomes that were

not in the experiment [34].
Clearly, the experimental systems in this experiment

were very small compared with industrial object-oriented

software systems. Furthermore, the change tasks were also

relatively small in size and duration. However, the change

task questionnaires received from the participants after they

had completed the change tasks indicate that the complexity

of the tasks was quite high. Note also that change tasks can

be small in industry as well. Nevertheless, we cannot rule

out the possibility that the observed effects would have

been different if the systems and tasks had been larger.

The scope of this study is limited to situations in which

the developers have no prior knowledge of the system to be

changed. It is possible that the results do not apply to

situations in which the developers are also the original

designers. A related issue is whether the short-term effects

observed in this experiment are representative of long-term

development, in particular, due to pair jelling, as already

discussed in Section 5.3.1.

6 DISCUSSION

Anecdotal and empirical evidence reported in the literature

suggest several organizational and personal benefits of PP

over individual programming, such as reduced time to

market [10], [25], [26], [32], [44], [46], reduced development

costs [10], [20], [25], [26], [33], [44], [46], improved quality of

the software [10], [17], [27], [30], [32], [44], [46], reduced

costs of training new personnel [43], and enhanced trust,

motivation, and information and knowledge transfer

among developers [5], [10], [13], [17], [27], [29], [41], [42],

[44], [45], [46]. However, in what follows, we focus on

comparing and discussing the results of our experiment in

relation to other, controlled experiments that have assessed

the effect of PP on duration, effort, and correctness. In

addition, we draw out some implications of these results for

both research and practice.

6.1 Duration

In previous experiments, the differences in the time taken to
perform programming tasks varied from no difference [31],
an insignificant (at � ¼ 0:05) 29 percent decrease [32], a
42.5 percent decrease [44], [46], a 46.6 percent decrease [30],
and a 52 percent decrease in favor of PP [25]. Note that,
except for the study reported in [32], the differences in
duration were not statistically tested. In contrast, the results
reported in this paper suggest an overall insignificant
decrease in duration of 8 percent. When considering the
moderating effects of system complexity, the results suggest
an overall significant 20 percent decrease in duration in
favor of PP for the CC design and an insignificant increase
of 6 percent in favor of individual programming for the DC
design. When also accounting for different levels of
programmer expertise, the difference in duration ranged
from a decrease of up to 39 percent in favor of PP (for
intermediates on the CC design) to a slight increase of
8 percent in favor of individual programming (for seniors
on the DC design).

6.2 Effort

In this context, effort is simply the same as the duration for
the individuals and the duration multiplied by two for the
pairs. The differences in the existing studies range from
doubled effort [31], a 42 percent increase [32], an insignif-
icant 15 percent increase [44], [46], an insignificant 7 percent
increase (13 percent excluding rework) [30], and a 4.2 per-
cent decrease [25]. Note that, except for the studies reported
in [44], [46], [30], the differences in effort were not
statistically tested. In contrast, the results reported in this
paper suggest an overall significant 84 percent increase in
effort. When considering the moderating effects of both
system complexity and programmer expertise, the differ-
ence in effort ranged from an insignificant 22 percent
increase (for intermediates on the CC design) to a
significant 115 percent increase (for seniors on the DC
design), both in favor of individual programming.

6.3 Correctness

The results vary from apparently no increase in correctness

when using PP (measured in terms of number of resubmis-

sions required to produce a correct program) [31], a

significant 15 percent increase in program correctness [44],

[46], an insignificant 29 percent increase [30], and a

significant 33 percent increase [32]. Note that [31] did not

test for significance and [25] did not report any correctness

measure. In contrast, the results reported in this paper

suggest an overall 7 percent insignificant increase in

correctness (72 percent and 76 percent correct solutions

for, respectively, individuals and pairs). When considering

the moderating effects of system complexity and expertise,

our results suggest a significant, overall 48 percent increase

in correctness for the DC design (55 percent and 81 percent

correct solutions for, respectively, individuals and pairs),

but this effect was mostly due to the observations for junior

pair programmers, who had a 149 percent increase in
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correctness for the DC design (34 percent and 84 percent

correct solutions for, respectively, individuals and pairs).

6.4 Potential Explanations for the Different Results

There are several differences between the studies that

complicate the above attempt to directly compare the

results. For example, our duration and effort measures are

not directly comparable to those reported in [32] and [44]

because we only considered time and effort data for subjects

with correct programs, whereas [32] and [44] considered

duration and effort regardless of program correctness.

Furthermore, in [30], the time spent on a peer review was

also included, so an exact comparison of the duration and

effort data is difficult.
There are also important differences in the study

settings. For example, to properly account for pair jelling,

the first assignment was excluded when assessing the

benefits of PP in [46], and, as discussed in Section 5.3.1, it is

possible that the tasks in other experiments (including ours)

were too short for pair jelling to have an optimal, positive

effect.

The size and complexity of the programming tasks were

also different, and even more importantly, the previous

experiments all considered initial development tasks,

whereas we considered maintenance tasks on systems of

which the programmers had no prior knowledge. Note also

that in one of the experiments [25], the tasks were not

programming tasks, but multiple choice “deduction pro-

blems” on procedural algorithms. Hence, it is unclear how

the results may apply to PP.

Finally, the subject sample sizes and sample populations

differed among the experiments. The difference in power

and in the subjects’ ability, education, experience, training,

etc., in general, and in PP in particular, may be a major

cause of the different results.

6.5 Implications for Research and Practice

The existing body of empirical evidence indicates that PP

affects duration, effort, and correctness, and we are

reasonably sure that these effects are not simply due to

chance. Thus, we believe that the existing results constitute

necessary and useful steps toward being able to predict
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when PP might be beneficial. For example, our results

warrant the prediction that PP is mainly useful for junior

programmers when solving maintenance tasks that they

would perceive to be too complex if they attempted to solve

them individually. In this case, junior pair programmers

might be able to achieve approximately the same level of

correctness in about the same amount of time as senior

individuals. Since seniors are more costly (and probably

also in shorter supply) than juniors, the effort overhead

incurred by pairing two juniors might be acceptable. By

performing more experiments with different systems, tasks,

and developers, we might eventually be able to provide a

fairly comprehensive set of such guidelines for when PP

might be beneficial.

However, we are still far from being able to explain why

we observe the given effects. One area of research that

might provide the necessary scientific foundation is social

psychology [6], [7], [18], [23], [50]. For example, social

facilitation, i.e., improvements in performance due to the

presence of others, is said to increase on tasks that require

simple repetitive or fast responses (simple tasks) but

disappear with activities that need more careful or thought-

ful actions (complex tasks) [50]. We may speculate that, for

the intermediate and senior pairs, the change tasks on the

CC design were sufficiently simple to significantly reduce

the duration by means of coactive, social facilitation.

Results from social psychology also suggest that, when,

including more complex and involving tasks, social laboring

is possible, i.e., increased performance in a group compared

with an individual performance baseline [7]. For the junior

pairs, we may speculate that the DC system was sufficiently

complex to facilitate collective social laboring. For the

intermediate and senior developers, the systems used in

this experiment (both CC and DC) might have been too

simple to benefit (in terms of correctness) from the effects of

social laboring. The above attempt at explaining parts of our

results on the basis of research in social psychology is

superficial at best and much more research is required. For

example, complicating the above discussion is the impact of

pair jelling [46], which has its counterpart in more general

models of the possible stages of group development that

might be required before a group becomes supportive of

task performance [38]. The construction of theories on the

effects of PP would certainly benefit from collaboration

with researchers from other research disciplines, such as

social psychology and group dynamics.

7 CONCLUSIONS AND FURTHER WORK

A quasi-experiment was conducted to evaluate the effects of

PP on the duration of and effort expended on maintenance

tasks performed on Java code, and the correctness of the

task solutions. The experimental subjects constituted almost

300 professional Java consultants from many companies in

several countries, who used their usual tool environment.

Compared with previous experiments on PP, the use of

such a body of consultants made the experimental setting

more realistic. Furthermore, unlike previous experiments,

the effect of PP was investigated in the context of

performing maintenance tasks. Another unique aspect

was that this experiment included the first ever assessment

of the moderating effects of system complexity and

programmer expertise. The results show that the effects of

PP depend on a combination of system complexity and the

expertise of the subjects. To a certain degree, these

moderating factors may explain the differences in results

of previous experiments on the effect of PP on duration,

effort, and correctness.
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The results suggest several practical ways to increase the

benefits of PP. In particular, the experiment showed that

junior individuals may lack the necessary skills to perform

maintenance tasks with acceptable quality, in particular, on

more complex systems. Junior pair programmers achieved a

significant increase in correctness compared with the

individuals and achieved approximately the same degree

of correctness as senior individuals. Maintenance is often

viewed as requiring less skill than initial system develop-

ment and is thus often allocated to the more junior staff.

Our results suggest that, if juniors are assigned to complex

maintenance tasks, they should perform the tasks in pairs.
Future studies on PP should extend the scope of the

present study in two important ways. First, our results

suggest that the benefits of PP depend on system complex-

ity. Still, our experimental tasks were relatively small and

simple, and our results might therefore represent a

conservative estimate of the benefits of PP. Future experi-
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ments should, ideally, include larger systems and more

complex tasks.
Second, most of our subjects had no experience in PP

with their assigned partner. Thus, our results are con-

servative in the sense that our experimental setting did not

allow the potential effects of pair jelling to reach maturity (a

prerequisite for what is known as social laboring in social

psychology). To assess the pair jelling effect, future

experiments should thus include a mix of pairs with

different degrees of pair cohesiveness.

APPENDIX A

DESCRIPTIVE STATISTICS OF SUBJECTS

See Table 5.

APPENDIX B

DETAILED MODEL SUMMARIES FOR JUNIOR,

INTERMEDIATE, AND SENIOR CONSULTANTS

See Table 6, Table 7, and Table 8.

APPENDIX C

EFFECT SIZE ESTIMATES, INCLUDING 95 PERCENT

CONFIDENCE INTERVALS

See Table 9, Table 10, and Table 11.

APPENDIX D

STRUCTURAL ATTRIBUTES OF THE DESIGN

ALTERNATIVES

Table 12 shows the values of coupling (OMMIC_N,

OMMIC_L, and OMMEC) and size (MC and CS) for the

two designs. The CC design has larger classes and fewer

methods per class than the DC design. At the system level,

however, Table 12 (the “Sum” column) shows that the

overall nonlibrary coupling is about identical, whereas the

coupling to library classes, the total number of methods,

and the total system size are larger for the DC design. Given

these numbers, it is perhaps not evident why many

developers (in particular inexperienced developers) find

the DC design more “complex” than the CC design, as

clearly demonstrated by empirical results [2]. A plausible
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explanation is that the DC design has many more methods,

each of which do less work and delegate more, resulting in

“delocalized plans” [37] that are difficult to comprehend for

less experienced developers.
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