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Abstract

The changeability of software can be viewed as the quality of being capable of change, which among others implies that the task of
changing the software requires little effort. It is hypothesized that structural properties of the software affect changeability, in which case

measures of such properties can be used as changeability indicators.

Ways in which structural properties of the software can be measured are described and empirically validated based on data collected
from an industrial Java development project. The measures are validated by using them as candidate variables in a multivariate regres-
sion model of the actual effort required to make modifications to the evolving software system.

The results suggest that some measures that combine existing structural attribute measures with a weighting factor based on the rel-
ative proportion of change in each class can explain a large amount of the variation in change effort. This constitutes initial, empirical
evidence that the proposed measures are valid changeability indicators. Consequently, they may help designers to identify and correct
design problems during the development and maintenance of object-oriented software.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The object-oriented approach to software development
is becoming mainstream. So are evolutionary and incre-
mental software development processes, such as the unified
process and XP, in which the software requirements and
the software design supporting the requirements are
allowed to evolve towards a final system. Both of these
trends are the result of attention being paid to a variety
of claims about how object-oriented programming and
evolutionary/incremental development processes may
improve the development and quality of software.

In order to help managers and developers achieve such
improvement, a large portion of empirical research in the
OO research arena has been involved with the development
and evaluation of quality models for OO software [14,20].
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Existing results suggest that there are important relation-
ships between the structural properties of object-oriented
and external quality attributes, such as fault proneness
and development effort. The main motivations are to be
able to use structural attribute measures as surrogates for
important external software quality attributes, which often
are difficult to measure directly. Once evaluated, the quality
models can be used to monitor the evolution of a software
system, facilitate design decisions, etc.

According to Webster’s Revised Unabridged Dictio-
nary, changeability is the quality of being capable of change.
From this definition, one may deduce two important
consequences:

¢ Being capable of change implies that the task of chang-
ing the software requires little effort.

¢ Being capable of change implies a capability of avoiding
a gradual decline from a sound or satisfactory state to an
unsatisfactory state, in which case changes require more
effort than they ought to.
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Many factors such as those related to the structural
properties of a system, quality of documentation, tool
support and developer skills may affect changeability.
The primary goal of this paper is to assess the extent
to which a small subset of these factors, related to certain
structural properties of a system, affects changeability.
Two alternative ways to measure the structural properties
are proposed and evaluated on the basis of project data
from a commercial Java development project. Specifically,
this paper investigates whether using historical data avail-
able during the development project can be used to con-
struct better changeability indicators: some of the
proposed measures combine existing, class-level, structur-
al attribute (SA) measures with change data to construct
measures that are called change profile (CP) measures.
CPs measure the structural attributes of all classes in a
software system, but weigh the resulting structural mea-
surements by the proportion of change in each class.
The rationale behind this approach is that the changeabil-
ity of the software is reflected by the effort to perform
actual changes. Consequently, the changeability (as indi-
cated by the CP measures) depends on the structural
properties of the parts of the software where changes
have been made. Unlike the SA measures, the CP mea-
sures thus require access to change history data. This
means that the system must have undergone changes
before CP measurements can be made, which in turn
means that the CP measures cannot be used as ‘early’
indicators of changeability. Instead, their intended use is
to indicate trends in changeability during the evolution-
ary development and maintenance of a software system.

This paper is primarily related to research that has studied
the impact of structural properties on external software
quality attributes, e.g. [2,6,8-11,13,19,21,22,24,25,29,32,
36-38,42,44,46-49]. However, as already discussed, once
an empirical relationship between the structural property
measures and change effort has been established, the
measures can then potentially be used as indicators of
changeability decay, by studying trends in the structural
property measurements as the software evolves. Thus, one
important future application of this research is related to
research that have studied software quality decay and pro-
posed ways to measure such decay, e.g. [3,4,26,31,33—
35,41,43,45].

The remainder of this paper is organized as follows.
Section 2 defines the measures. Section 3 describes the case
study and the results. Section 4 discusses threats to validity.
Section 5 relates the results to existing studies and discusses
implications of the results. Section 6 concludes.

2. Definition of measures

This section describes the proposed measures for assess-
ing the changeability of object-oriented software. Earlier
versions of the measures described in this paper were pub-
lished in [3,4]. Those measures have since improved in pre-

cision as a result of experiences with its use in several
subsequent studies [1].

Two alternative approaches to measuring the structural
properties of object-oriented software are described: Struc-
tural Attribute (SA) measures and Change Profile (CP)
measures. The latter are based on the former. Both SA
and CP measurements can be made at certain points in
time when the software is in a consistent state. In the fol-
lowing discussions, these points in time are denoted as
snapshots that define, in precise terms, when a measurement
is made. The SA measures quantify various dimensions of
the structure of the software at the class level (such as class
size and class-level coupling) at certain points in time, say
snapshots 1,...,n. The class-level measures are then aggre-
gated to the system-level by calculating totals and average
system-level values of each measure. Conversely, the class-
level CP measures are calculated by multiplying class-level
SA measures for a given snapshot j with the proportion of
change in each class since snapshot j—1. The class-level CP
measures are then aggregated to the system level by sum-
ming the measures across all classes.

2.1. Structural attribute (SA) measures

Only a few, and relatively simple, measures that capture
some important and intuitive dimensions of an object-ori-
ented structure have been selected.

It is commonly believed that size is a major contributor to
‘complexity’. Consequently, two dimensions of the overall
system size are measured: System Size (S\S) in non-comment-
ed lines of code and Class Count (CC). Furthermore, two
measures of the class size are measured: Class Size (CS) in
non-commented lines of code and Method Count (MC).

In addition to size, several measures of coupling are
included. As pointed out in [17], each coupling measure
should ideally account for one and only one dimension of
coupling. In this paper, the static, class-level coupling mea-
sures defined in [15] are used, because they (1) cover many
dimensions of coupling, (2) have been shown to be theoret-
ically sound, and (3) have already undergone extensive
empirical testing [13,15,18,19].

Other structural properties related to, for example,
cohesion and inheritance could also be considered. Howev-
er, based on the existing empirical results, size and coupling
seem to be the most consistent indicators of factors related
to changeability. The impact of cohesion is currently less
understood and it is more difficult to measure precisely
[16]. Furthermore, although several studies have shown
that inheritance may pose serious problems for factors
related to changeability, such as fault proneness and main-
tainability [23,29,38], the use of inheritance in many object-
oriented systems is limited [23,30,38]. Consequently, the
investigation focuses on coupling and size measures.
Future extensions should also consider cohesion and inher-
itance measures.

The selected measures distinguish between many dimen-
sions of size and coupling. A precise mathematical
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definition and justification for the measures are given in
[15]. Tables 1 and 2 summarize the measures. The dimen-
sions and the notation of the coupling measures are as
follows:

e Type of class coupling: coupling with Ancestor classes
(Axxxx), coupling with Descendent classes (Dxxxx), or
coupling with classes outside the inheritance hierarchy,
i.e. Other classes (Oxxxx),

e Type of interaction: Method—Method (xMMuxx) or
Method—Attribute (xMAxXx) interactions

e Direction of coupling: Import Coupling (xxxIC) or
Export Coupling (xxxEC)

e Stability of server: distinguishes import coupling to non-
library (xxxIC) and library classes (xxxIC_L)

The method-attribute (xMAXxx) coupling measures are
not described in Briand’s coupling framework. For certain
applications, they may be important because they measure
direct access to class attributes by other classes than the
defining classes, something that is commonly perceived as
poor design practice.

The system-level SA measures are defined in Table 2.
Here, C; is the set of classes in the system at snapshot j.
The term XX in Table 2 denotes any of the measures
defined in Table 1.

2.2. Change profile (CP) measures

Table 3 defines the CP measures, XX CP. For each class
that exists in snapshot j, ¢;€C;, the proportion of change
CP/(c;) is calculated as the lines of code added and deleted

Table 1
Class-level SA measures

in that class since snapshot j—1, divided by the total num-
ber of lines of code added and deleted in all classes existing
in snapshot j (ChangeSize;). Finally, the sum of the struc-
tural attribute measure XX(c;) weighted by the proportion
of change CP/c;) produces the corresponding system-level
change profile measure, XX CP;. There are some impor-
tant and intuitively appealing properties of the CP
measures:

e Classes that have been deleted since snapshot j—1 will
not be included in the measurements for snapshot j.

o If only one class ¢ has changed since snapshot j—1, all
change profile measures will be equal to the correspond-
ing class-level structural attribute measures for that class
in snapshot j, e.g. CS_XP; = CS(c).

o If all classes are changed by an equal amount, all change
profile measures will be equal to the corresponding
system-level averages of the corresponding structural
attribute measure, e.g. CS_CP; = Avg CS;.

3. Case study

This section describes the empirical study conducted to
validate the proposed measures.

3.1. Rationale and objectives

This case study evaluates the extent to which the SA and
CP measures can explain variations in change effort in an
evolutionary development project. The measures were used
as candidate independent variables in a multivariate regres-
sion model of the dependent variable change effort (mea-

Measure name Description

CS(c) Number of non-commented source lines of code (SLOC) for the class ¢
MC(c) Number of implemented methods in a class c.
OMMIC(c) Number of static method invocations from a class ¢ to non-library classes not within the inheritance hierarchy of ¢
OMMEC(c) Number of static method invocations to a class ¢ from non-library classes not within the inheritance hierarchy of ¢
OMMIC L(c¢) Number of static method invocations from a class ¢ to library classes
OMAIC(c) Number of direct accesses by class ¢ to attributes defined in non-library classes not within the inheritance hierarchy of ¢
OMAEC(c) Number of accesses to attributes defined in class ¢ by non-library classes not within the inheritance hierarchy of ¢
OMAIC_L(c) Number of direct accesses by class ¢ to attributes defined in library classes not within the inheritance hierarchy of ¢
AMMIC(c) Number of static method invocations from a class ¢ to non-library ancestor classes of ¢
DMMEC(c) Number of static method invocations to methods implemented in class ¢ from descendants of ¢
AMMIC L(c¢) Number of static method invocations from a class ¢ to library ancestor classes of ¢
AMAIC(c) Number of direct accesses by class ¢ to attributes defined in non-library ancestor classes of ¢
DMAEC(c) Number of accesses to attributes defined in class ¢ by descendants of ¢
AMAIC L(c) Number of direct accesses by class ¢ to attributes defined in library ancestor classes of ¢
Table 2
System-level SA measures
Name Definition Description
CG; |Cl The number of non-library classes C; in the system for snapshot j
cc;
Tot_XX; > XX (cq) The sum of the structural attribute measure XX (Table 1) for snapshot j for the non-library classes C; in the system
i=1
Avg XX; TotXX,;/CC; The average (system-level) structural attribute measure XX (Table 1) for snapshot j for the non-library classes C;

in the system
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Table 3
System-level CP measures

Name Definition Description

cc;
" SLOCAdd(c;) + SLOCDel(c;)

i=1
SLOCAdd(c) + SLOCDel(c) Table 2

ChangeSize;

Change Size;

CPj(c)

cc, snapshot j
; )Q(j(c,-) X CPJ(C,)

XX _CP;

The total amount of change from snapshot j—1 to snapshot j. CC; is the number of classes, defined in

The class-level change profile, defined as the amount of change (in SLOC added and deleted) in class
¢ from snapshot j—1I to snapshot j divided by the total amount of change from snapshot j—/ to

The sum of the class-level structural attribute measure XX, (Table 1) weighted by the class-level
change profile CP{c). CC; is the number of classes, defined in Table 2

sured in person-hours spent on each change). For this pur-
pose, a comprehensive amount of project data from the
case study was collected at the change task level.

The underlying rationale for the validation approach is
that, assuming that the resulting model can explain varia-
tions in an important external quality attribute, it may be
concluded that the measures are indicators of that attri-
bute. Hence the measures are validated in the sense that sta-
tistically significant relationships between the measures and
the external quality attribute under consideration have
been established.

More specifically, in this case study, the external quality
attribute under consideration is the amount of variation in
change effort that can be explained by variations in structural
properties of the software, that is, the changeability of the
software as a function of its structural properties. It is impor-
tant to emphasize that the objective is thus not to build effort
prediction models to be used for effort estimation purposes.
Such models would clearly also need to include many more
factors than just the structural properties of the software.
Here, the objective is to assess the impact of structural prop-
erties on change effort as a means to evaluate whether they
are useful indicators of changeability.

3.2. Project under study

The case study was initiated in conjunction with a prod-
uct development project in the company Genera. The mod-
ule studied was an independent part of the Genova tool and
provided run-time support for automatically generated
source code based on the UML and Dialog Models. Fur-
ther descriptions of the tool can be found in [7]. The devel-
opment of the module was organized as a separate
development project, lasting approximately 5 months and
involving three developers (one assigned to C+ + and
two assigned to Java) in addition to project management.
The project was evolutionary in nature. During the five
months this system was studied, existing, changed and
completely new requirements were incorporated in an
incremental fashion, with iterative analysis, design, code
and test activities. During the course of the development
project, 39 changes were performed. Sixteen of the changes
implemented new requirements, nine were corrections of
design and code faults, seven were restructuring changes,
whereas the remaining changes were related to perfor-

mance improvements, adaptations to reuse and library
adaptations. Further details of the changes are described
in [1]. Two versions (increments) of the module were
released within the five month time span.

3.3. Data collection

3.3.1. Collection of change effort data

Each change to the system was tagged in the configura-
tion management system with a unique change ID number.
Each time a class was ‘checked in’ to the configuration
management system, the change ID was attached to the
comment field of the change record in the configuration
management system. In addition, the developers provided
a short textual description of each change task and reported
the total number of hours spent on each change task
(including analysis, design, coding, testing and documenta-
tion activities that could be allocated to individual changes).
The developers used a simple database application to report
the change and effort data of every change task on a daily
basis and ‘closed’ the task report as soon as the change task
was completed. After a task was closed, the developers were
interviewed to check that the reported data was accurate.
Potential threats are discussed in Section 4.

3.3.2. Collection of structural attribute measures and change
profile measures

The change IDs stored in the configuration management
system were used to reconstruct snapshots of the code as it
appeared just after each change, using the query language
provided in the Clear Case configuration management sys-
tem. More specifically, the snapshot for change ;j was
derived by selecting the latest versions of the each file that
was checked in using a change ID =j. All other files, i.e.
those not modified by change j, were selected based on
the timestamp of the last check-in time for a file changed
in change j. To calculate the CP measures, the class-level
delta (in SLOC added and deleted) of each change was col-
lected. Further details on how these calculations where per-
formed using the ClearCase configuration management
system are provided in [1].

3.3.3. Dead code
Examples of dead code are classes that are no longer in
use or classes that are present for possible future use. Such



1050 E. Arisholm | Information and Software Technology 48 (2006) 1046—1055

dead code has the potential to generate inaccurate values
for the SA measures. Consequently, for each snapshot, files
that were not in use were removed before the measures
were calculated. The developers verified that the files
assumed to be ‘dead’ by the researcher in fact were. Note
that the CP measures are less sensitive to dead files because
only structural attributes of code being changed are
accounted for, and if files are changed, it may be reason-
able to assume that the files are not dead.

3.4. Validation method

To validate the measures, they were used as candidate
explanatory variables in a multiple linear regression model
on change effort. Stepwise, multiple linear regression was
performed to determine a subset of the measures that
explained a large portion of the variance in change effort,
but in such a way that the resulting coefficients of each var-
iable were significantly different from zero. The criterion
for entry into the model was that the coefficient had a p-
value below 0.2. The criterion for staying in the model
was that the coefficient had a p-value below 0.1. Finally,
only coefficients with p-values below 0.05 were included
in the final models. To compare the explanatory power of
the SA and CP measures, the validation was performed
in three steps:

e Including only the (non-zero and non-constant) SA
measures as candidate covariates

e Including only the (non-zero and non-constant) CP
measures as candidate covariates

¢ Including all (non-zero and non-constant) SA and CP
measures as candidate covariates

The goal of this validation procedure was to test the
hypotheses that each candidate variable was a significant
explanatory variable of change effort when also considering
the simultaneous effect of other candidate variables. How-
ever, this procedure automatically ‘snoops’ through many
candidate models. Thus, the model selected may fit the data
‘too well’, in that the procedure can look at many variables
and select those that, by pure chance, happen to fit well. To
lessen this potential threat, the cross-validated R-squared
was calculated to evaluate the explanatory power of the
resulting models. Whereas the usual multiple regression
estimate of R-squared increases whenever more parameters
are added to the model, this problem does not occur with
the cross-validated R-squared. To calculate the cross-vali-
dated estimate of R-squared, the data is split in I subsets.
Fori=1,2,...,1, the least squares fit and the mean are cal-
culated for all cases but the ith subset. The regression mod-
el and the mean are each used to predict the observations in
the ith subset. Note that it is possible for the cross-validat-
ed estimate of R-squared to be negative, especially when
overfitting, because the regression model is competing with
the mean. This would indicate that the mean is a better
model than the regression. In this paper, the cross-validat-

ed R-Squared was calculated in BLSS, using the number of
subsets 7 equal to the number of data-points 7.

For linear regression, the hypothesis tests on the coeffi-
cients are based on a number of conditions:

e The expected error mean must be zero

e Homogeneous error variance

e Uncorrelated errors (e.g. no serial correlation)
e Normally distributed errors

Although linear regression is quite robust with regard to
these requirements, gross violations of the underlying
regression model assumptions should be detected [27].
For the resulting models, these assumptions were checked
through plots of the residual errors.

3.5. Selection of changes

For the validation purposes, only 10 of the available 39
changes reported by the developers could be used. The
other changes were not included for one of the following
reasons:

e they were primarily related to documentation or admin-
istration (e.g. makefiles or configuration management)

e they included changes to C + + code (no C + + pars-
er was implemented)

¢ they had not been tagged correctly (or there were appar-
ent inconsistencies).

e they were mixed with other changes, making it difficult
to derive precise snapshots.

Of the 10 selected changes, the first six occurred during
the first increment. All of these six changes implemented
new functionality and were performed by the same devel-
oper. Four changes occurred during the second increment,
and were performed by a second developer. The first
change in increment two (change number 7) was a large
restructuring change. The remaining three changes were
corrective.

3.6. Results

Table 4 shows the measures for each of the selected 10
changes. The restructuring change (change 7) was consider-
ably larger than the other changes, and was considered as
an outlier in the regression analysis (see Fig. 1). Note that
for the system-level SA measures, the import coupling is
always equal to the corresponding export coupling value.
For example, TotOMMIC equals TotOMMEC. Further-
more, some measures of coupling within inheritance hierar-
chies were constant or zero and were therefore not included
as candidate covariates in the stepwise regression. The final
set of variables is indicated in bold in Table 4.

The results are summarized in Table 5. None of the can-
didate SA measures were included by the stepwise variable
selection procedure, regardless of whether the CP measures
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Table 4
Change effort, Total SA, Avg. SA and CP measures for the selected changes
Change number 1 2 3 4 5 6 7 8 9 10
Effort (hours) 1 2 31 26 7 10 150 18 6 13
Change size 153 42 308 9 209 164 1421 111 106 72
CC 33 35 35 35 35 35 47 47 47 47
TotCS 399 406 531 701 610 662 946 961 932 965
TotMC 118 121 139 168 155 167 200 200 193 203
TotOMMIC, TotOMMEC 30 34 54 78 66 75 66 72 67 76
TotOMMIC_L 67 66 81 102 90 94 162 167 167 174
TotOMAIC, TotOMAEC 66 66 106 168 119 150 178 190 164 199
TotOMAIC_L 5 5 5 5 5 5 15 15 15 15
TotAMMIC, TotDMMEC 2 5 5 15 15 15 0 0 0 0
TotAMMIC_L 1 1 1 1 1 1 1 1 1 1
TotAMAIC, TotDMAEC 0 0 0 0 0 0 0 0 0 0
AvgCS 12.1 11.6 15.2 20.0 17.4 18.9 20.1 20.4 19.8 20.5
AvgMC 3.6 3.5 4.0 4.8 44 4.8 43 4.3 4.1 43
AvgOMMIC, AvgOMMEC 0.9 1.0 1.5 2.2 1.9 2.1 1.4 1.5 1.4 1.6
AvgOMMIC_L 2.0 1.9 2.3 2.9 2.6 2.7 34 3.6 3.6 3.7
AvgOMAIC, AvgOMAEC 2.0 1.9 3.0 4.8 34 4.3 3.8 4.0 3.5 4.2
AvgOMAIC_L 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3
AvgAMMIC, AvgDMMEC 0.1 0.1 0.1 0.4 0.4 0.4 0.0 0.0 0.0 0.0
AvgAMMIC_L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AvgAMAIC, AvgDMAEC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CS_Ccp 443 12.0 96.9 148.3 88.0 153.0 65.3 70.8 50.5 49.7
MC_CP 12.3 2.9 223 35.4 23.7 38.6 11.6 13.2 10.8 7.7
OMMIC_CP 43 2.6 16.6 23.0 16.5 259 5.3 6.7 4.9 3.0
OMMEC_CP 0.3 0.3 1.8 0.4 0.3 0.0 1.8 1.9 1.3 2.1
OMMIC_L_CP 4.0 5.4 11.9 17.0 13.1 17.8 16.1 12.5 9.9 9.6
OMAIC_CP 17.0 0.0 42.7 75.8 34.8 78.0 8.8 31.1 7.0 19.5
OMAEC_CP 0.1 0.0 1.8 0.0 0.0 0.0 0.4 0.6 0.0 1.1
OMAIC_L_CP 0.6 0.0 0.0 0.0 1.1 0.5 1.6 0.0 0.4 0.3
AMMIC_CP 0.3 2.0 0.1 0.0 3.1 1.2 0.0 0.0 0.0 0.0
DMMEC_CP 1.5 0.0 34 11.7 8.0 12.4 0.0 0.0 0.0 0.0
AMMIC_L_CP 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AMAIC_CP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DMAEC_CP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

150 - ° is based only on nine observations, the cross-validated R-
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Fig. 1. Plot of change effort versus change size. The restructuring change
is treated as an outlier in the regression model validation.

were also included as candidates or not. Thus, none of the
SA measures could explain any significant amount of var-
iation in change effort. The final model consisted of
OMAEC _CP and CS_CP. OMAEC _CP and CS_CP are
significant explanatory variables of change effort in the
data set, and explain almost 80% of the variance of the
change effort for the given changes. Since the regression

Sq(cross) provides a more accurate estimate of the predic-
tion ability of the model (i.e. for new observations) than
does the ordinary R-Sq. The cross-validated R-Sg(cross)
indicates that slightly more than 50 percent of the variation
in change effort is explained by the model. Consequently,
changes involving classes with higher attribute export cou-
pling and class size are associated with higher change effort.

The results suggest that the CP measures are better indi-
cators of changeability than are the SA counterparts. It
may also be interesting to note that for the set of changes
investigated, the selected CP measures explain the variance
in change effort considerably better than the number of
lines of code added or deleted (ChangeSize). If larger
changes had been included, ChangeSize would probably
also play an important part in explaining change effort.

Fig. 2 shows the residual model diagnostic for the
regression model including OMAEC_CP and CS_CP as
covariates. No serious violations of the conditions for valid
interpretation of the regression model (Section 3.4) were
found. According to the Anderson-Darling normality test,
there is insufficient support for the hypothesis that the
residuals are not normally distributed (p = 0.45).
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Table 5

Resulting regression models for change effort in the Genera case study
Variables Coefficient Coeflicient p-value R-Sq (%) R-Sq (cross)
Intercept 9.083 0.210 5.7 Negative
ChangeSize 0.027 0.536

Intercept —2.021 0.641 77.5 51.5%
OMAEC_CP 10.546 0.013

CS_CP 0.131 0.022

4. Threats to validity

This section discusses the most important threats to
validity, related to construct validity, internal validity and
external validity.

A potential threat in this study is the construct validity
of the dependent variable ChangeEffort. The effort data
reported by the developers are prone to noise due to non-
productive time during a typical work day, such as lunch-
breaks, telephone calls and other interruptions. To address
this threat, the developers were asked to estimate the actual
change effort in such a way that only the productive time
spent on each task was included. To further increase the
accuracy of the reported data, the developers updated the
effort data related to a given change task at the end of each
day, even in cases where the task was not yet completed.
Furthermore, the developers were asked to only work on
one task at the time, whenever possible. Finally, after a
task was closed, the responsible developer was interviewed

E. Arisholm | Information and Software Technology 48 (2006) 1046—1055

to ensure accuracy of the reported data. These measures
probably reduced the threats to construct validity, but
clearly there might still be inaccuracies due to the some-
what subjective procedure of estimating the productive
time spent on each task.

Using variable selection heuristics such as stepwise
regression, one can often find statistical relationships
between variables. This is not the same as establishing a
cause — effect relationship [40]. The apparent relationships
could just be the result of a common underlying cause. Fur-
thermore, given the relatively large number of candidate
explanatory variables that were allowed to enter the regres-
sion models, there is a possibility that the apparent (statis-
tically significant) relationships between some of the CP
measures and change effort is mainly due to chance, often
referred to as ‘shotgun correlation’ [28]. Furthermore, the
selected changes in this study are similar in size, so the
model obtained may not be valid if one included changes
with large differences in change size. Although care was
taken to ensure statistically valid results, more data points
are required to fully address the abovementioned threats to
internal validity.

With regards to external validity, it is unclear exactly
when and how the results might be applicable in other
development projects, with different developers, different
tools, etc. Thus, the results should be interpreted with cau-
tion. More studies are required to generalize the results.
This is also discussed further in Section 5.

Residual Model Diagnostics
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Fig. 2. Residual diagnostics of the final model.
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5. Discussion and related work

A large portion of empirical research in the OO research
arena has been involved with the development and evalua-
tion of quality models for OO software. The immediate
goal of this research is to relate structural attribute mea-
sures intended to quantify important characteristics of
object-oriented software, such as size, polymorphism,
inheritance, coupling, and cohesion, to external quality
indicators such as fault proneness, change impact, reusabil-
ity, development effort and maintenance effort. There is a
growing body of results that indicates that measures of
structural attributes such as class size, coupling, cohesion
and inheritance depth can be reasonably good indicators
of development effort and product quality [9,13,22,25,
36,42]. See also surveys in [14,20].

The CP measures were first proposed in [3,4], but the
empirical validation was inconclusive due to a lack of prop-
er effort data. An approach similar to the CP measures was
then proposed in [12], the difference being that a scenario-
based approach was used to estimate the expected, future
amount of change in each class instead of using the actual
change history. This approach thus complements the CP
measures, and is likely to be a good alternative when
change history data is not available. No empirical valida-
tion to external quality attributes was performed, however.
In the remainder of this section, we focus our attention on
a selection of studies that have validated coupling and size
measures as indicators of the effort required to develop and
maintain object-oriented software.

One early, frequently cited, paper that investigates how
structural attributes of object-oriented software affect
maintenance effort is [42]. In that study, the number of lines
of code changed per class was the dependent variable,
whereas the ‘CK’ measures defined in [25] were the inde-
pendent variables. Extending the above study, we showed
that static and dynamic coupling can be combined to
improve the accuracy of such prediction models even fur-
ther [6]. However, the above studies used a surrogate mea-
sure (lines of code added and deleted) instead of the actual
change effort as the dependent variable.

Only a few studies have attempted to evaluate the direct
relationships between structural properties and actual
development or maintenance effort [11,13,26,35,44]. The
results in [11] suggest that a significant impediment to
maintenance is the level of interaction (i.e. coupling)
between modules. Modules with low coupling required less
maintenance effort and had fewer maintenance faults and
fewer run-time failures. In [26], an exploratory case study
indicated that high coupling between objects (high value
of CBO) was associated with lower productivity, greater
rework and design effort, after adjusting for size differences
and after controlling for the effects of individual develop-
ers. A model for effort prediction of the adaptive mainte-
nance of object-oriented software was presented in [35].
The validation showed that some object-oriented metrics
might profitably be employed for effort estimation. In

[44], a set of size and complexity measures were found to
be good predictors of development effort at the class level.
These results are supported by the study presented in [13],
which showed that size measures were good predictors of
class-level development effort, whereas only limited
improvements in effort estimation accuracy were obtained
by including coupling measures in addition to size. One
possible explanation for the predominance of size measures
as significant explanatory variables of change effort is that
large classes implement more functionality than do small
classes, and are therefore more difficult to understand
and may break more easily, e.g. when changed by an inex-
perienced developer. Size measures are also surrogates for
many underlying dimensions of the cognitive complexity of
a class [32]. For example, large classes may have higher cou-
pling and lower cohesion than have small classes. The degree
of correlation may vary among the measures [19], and is also
project-specific. This may explain why only size measures
were significant in some studies, whereas coupling measures
were also significant in others. Overall, existing studies sug-
gest that measures of size and coupling are reasonably good
indicators of the cognitive complexity of a class, which in
turn affects the effort required to change the classes.

The results presented in this paper support existing work
in the sense that changes involving large classes and classes
with high coupling require more effort than do changes that
involve smaller classes and classes with low coupling. How-
ever, this relationship was only demonstrated through the
use of the CP measures, which combine existing coupling
and size measures with a weighting factor based on the pro-
portion of change in each class. None of the more tradi-
tional SA measures, which also have been used in
existing validation studies, were significant explanatory
variables of change effort. One reason for this apparent
contradiction is illustrated in controlled experiments on
the relationship between structural properties and main-
tainability [5,46]: the degree to which software properties
affect external quality such as maintainability depend on
other factors, such as programmer ability. It may also
depend on exactly how the dependent and independent
variables are defined (including the granularity of the mea-
sures), as well as on the objective of measurement. For
example, the aim of the study reported in [26] was to assess
whether the proposed structural attribute measures could
be used to identify high effort and low productivity classes,
not to build accurate prediction models. In contrast, the
main goal in [13] was to investigate the extent to which
structural properties could be used as cost drivers in effort
estimation models. These differences had implications for
both statistical analyses techniques being employed and
the selection of measures. Unfortunately, such differences
make it difficult to perform the sort of precise meta-analy-
ses that are required in order to draw more general conclu-
sions beyond single case studies such as the one presented
in this paper.

The above discussion also illustrates a possible reason
for why the industrial use of structural measures as quality
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indicators is very limited [39], despite the extensive research
efforts. Although individual results such as that presented in
this paper demonstrate that measures of structural proper-
ties may be valid quality indicators, they seem to be insuffi-
cient to convince practitioners that the potential benefits of
using the measures outweigh the cost of collecting them.
Future studies should focus, therefore, on enabling meta-
analysis across studies and performing cost-benefit analyses.

6. Conclusions

This paper assessed whether structural properties of
object-oriented software can be used as indicators of the
changeability of the software. Two alternative measure-
ment approaches, termed change profile (CP) and structur-
al attribute (SA) measures, respectively, were proposed and
then evaluated using detailed project data from a commer-
cial development project. The results from the case study
showed that some of the CP measures are statistically sig-
nificant explanatory variables of change effort, whereas
none of the SA measures are. The fact that the CP mea-
sures quantify properties that are likely to affect the effort
required to perform changes suggests that they are valid
changeability indicators. The measures included in the
obtained regression models can thus be used to identify
design problems and evaluate the effect of design modifica-
tions on changeability during the evolutionary develop-
ment of object-oriented software. However, it should be
noted that the results are based on a single case study. Fur-
ther studies are required in order to generalize the results
beyond the scope of this study.
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