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Abstract— Resilient Packet Ring (RPR) is a new standard,
designated IEEE standard number 802.17, for MAN and WAN
dual ring topologies. RPR uses the buffer insertion principle as
a basis for its medium access control protocol. In this paper,
we analyze parts of the aggressive mode of the RPR fairness
protocol. We look at a congested node, and utilize control systems
theory to analyze the stability of the associated fairness algorithm.
In particular, we discuss how the settings of the two important
parameters ageCoef and lpCoef influence the stability of an RPR-
network. At the end of the paper we present simulated scenarios
in order to illustrate our results.
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I. INTRODUCTION

In a ring network, when nodes transmit more data than the
ring bandwidth can sustain, we have a resource allocation
problem. The solution to the problem is twofold: i) a fair
distribution of the bandwidth must be defined, and ii) a policy
for this fair distribution of bandwidth must be implemented
and enforced.

A recent addition to the protocol family for ring topologies
is the IEEE standard for Resilient Packet Rings (RPR), IEEE
standard 802.17 [1]. RPR uses the RIAS principle for fair
allocation of bandwidth [2]. This means that when a link is
congested, the available bandwidth should be fairly (according
to the RIAS definition) distributed between all nodes that
transmit data over this link.

RPR belongs to the class of ring networks based on the
buffer insertion principle [3], [4]. Legacy ring technologies
based on the same principle include SCI [5], CRMA-II [6],
[7] and MetaRing [8]. Other classes of ring technologies are
slotted medium access control protocols (Cambridge Ring [9],
ATMR [10]) and token based protocols (IEEE 802.5 Token
Ring [11] and FDDI [12]).

RPR’s policy for fair division of ring bandwidth is enforced
by the fairness algorithm. There are two modes of operation
for this algorithm. These two modes are respectively the
conservative mode of operation, discussed in [13], and the
aggressive mode of operation, discussed in [13], [14]. The

conservative mode of operation, uses a form of rate control,
where the congested node (i.e. the node immediately upstream
of a congested link) issues a rate change command (back-
pressure message, also called a fairness message) and then
waits to the see the resulting effect. When the estimated
waiting period has elapsed, if the resulting effect is not the
RIAS fair division of bandwidth, a new rate value is calculated
and distributed to upstream nodes. The estimation of the
waiting period is based on periodic measurements, and is
denoted the Fairness Round Trip Time (FRTT).

For the aggressive mode of operation, a waiting period is
not estimated. Instead the congested node periodically sends
fairness messages upstream, containing the congested station’s
estimate of the fair rate. This estimate is calculated based
on measurements of the congested node’s own send rate and
statically configured parameters. These statically configured
parameters will typically be set based on heuristic guidelines
or expert knowledge/simulation results. Obvious weaknesses
with this approach is the risk of mis-configurations that may
result in instabilities and/or underutilization of the network.

In this paper, we show analytically how these parameters
should be set in a system. By this, we reduce the risk of
network instability as well as easing the task of configuring a
Resilient Packet Ring network.

In section II we give a short introduction to the RPR fairness
algorithm and the vocabulary used in the rest of the paper.
In section III, our main analysis of the aggressive fairness
algorithm is developed. Then, in section IV, we will present
and discuss simulation scenarios and associated simulation
results we use to verify our analytical results. Finally in
sections V and VI, we refer to related work, conclude and
give some directions to further work.

II. THE RPR FAIRNESS ALGORITHM

RPR defines three data packet service classes: high priority
(class A), medium priority (class B) and low priority (class
C). The high and a configured portion of the medium-priority



traffic is sent using reserved bandwidth1, while the rest of the
medium and the low-priority traffic uses the remaining (un-
reserved) bandwidth. In a congested situation, the unreserved
bandwidth is divided between the contending nodes by the
fairness algorithm. Traffic sent using the unreserved bandwidth
is referred to as fairness eligible, since the fair send rate for
this traffic is governed by the fairness algorithm.

An RPR node may contain two separate insertion buffers,
known in RPR as transit queues. With such a design, transit
traffic of class A is assigned to the Primary Transit Queue
(PTQ), while transit traffic of classes B and C use the
Secondary Transit Queue (STQ). In this paper we assume that
all nodes have two transit queues. The high-level architecture
of an RPR node is shown in Fig. 1.
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Fig. 1. Generic RPR node design, showing a node’s attachment to the
ring for transferral of data in the east direction and transferral of fairness
messages (rate info) in the west direction. The solid lines indicates the
flow of data through the node. The dotted lines indicates the exchange of
control/configuration information between node internal function blocks.

When the demand for bandwidth over a link is higher than
the available capacity, the link becomes congested. We also
say that the node upstream from this link is congested. In
a congested node, the STQ is filling up, because the node
itself adds traffic at the same time as class B or C traffic is
transiting the node. As long as the STQ is only partially filled,
the bandwidth on the out-link is equally divided between the
local add traffic and the transit traffic, and the node is still
in the uncongested state. However, when the STQ-occupancy
exceeds a threshold, denoted low, the node is by definition
congested [1], and actions (described in section III) will be
taken to alleviate congestion. If the STQ continues to fill and
the STQ-occupancy exceeds a high-threshold, the scheduling
rules of RPR causes the local (fairness eligible) add traffic to
stop.

A congested node constitutes the head of a so called
congestion domain. The node furthest away, and upstream
from the congested node, that contributes to the congestion, is

1Actually, some of the bandwidth called reserved in this paper may dynami-
cally be allocated to fairness eligible traffic. This simplification, however, does
not influence the results presented.

defined as tail of the congestion domain. Hence a congestion
domain contains all nodes that contribute to the congestion of
a certain link, including any nodes in between, even if these
nodes are not contributing to the congestion. Fig. 2 shows an
example of a congestion domain.
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Fig. 2. Nodes N, N-1,..., N-k all send traffic to node D. Thus node N
becomes the most congested node in the segment. Node N then becomes head
of the congestion domain while node N-k, which is the node furthest away,
contributing to the congestion, becomes the tail of the congestion domain.

It is the responsibility of the head to alleviate congestion
by dividing the available bandwidth of the congested link
between all contending nodes, so that each gets its fair share
of the capacity of the congested link. The head does this
by calculating a so called fair rate, and advertises this rate
upstream to all nodes in the congestion domain. No node,
having received this rate message, is then allowed to send at a
rate higher than the (received) fair rate, over the congested
link. As mentioned above, there are two versions of this
fairness algorithm. In this paper we analyze the so called
aggressive version.

III. AGGRESSIVE MODE RATE CONTROL CONFIGURATION

In general, in feedback control systems not using predictive
methods, a rule of thumb for design of the control system is
that the time constant for the controller part of the system,
should not be faster than the time constant of the system
itself. Thus, given the time constant of the controller, this
introduces a constraint with respect to which systems can be
safely controlled. In an RPR-network, the time constant of the
system (a congestion domain with its associated nodes) will
change dynamically, depending on the load situation on the
ring. The time-constant of the system consists of a fixed part
and a dynamic part.

The fixed part is the propagation delay from the head of
the congestion domain to the tail and back. Also, the per
node processing of fairness messages can be considered fixed.
However, the processing delay, is so small that it has no
significance for the scenarios considered in this paper.

The dynamic part consists of two sub-parts: i) the queuing
delay, experienced by a fairness message, when propagating
from the head to the tail, and ii) the time required to empty
the transit queues in the path between tail and the head before
the rate change at the tail is observable at the head.

In this section, we show how the setting of two parameters,
named ageCoef and lpCoef , relates to the steady-state and
transient-response behavior of the rate control algorithm for a
congestion domain head.

On an RPR-network, the head of a congestion domain
calculates the fair division of send rates for traffic traversing



the congested link. The calculation is done at periodic intervals
(every aging interval). According to the standard, the aging
interval is 100µs (for line rates ≥ 622Mbit/s). In the RPR stan-
dard, the calculation of the rate is specified as two cascaded
low-pass filters, also referred to as rate-counters. The first filter,
takes the weighted sum of locally added traffic, denoted x(n),
during the current aging-interval, n, and the previous filter
output-value, addRate(n − 1). The resulting sum is the new
output-value of the filter, addRate(n). This value is then fed
into the 2nd low-pass filter, which takes the weighted sum
of its input, addRate(n), and the previous output-value of
the filter, lpAddRate(n − 1). The resulting sum is the new
output-value of the filter, lpAddRate(n).

The calculated value, lpAddRate(n), becomes the head’s
new estimate of the fair rate, and is distributed in the form of a
rate change command, in RPR known as a fairness message, to
the upstream neighbors. The filtering process described above
can be formulated in terms of a discrete-time 2nd-order low-
pass filter, with a sampling period which equals the aging
interval. The filtering processes is described formally below.

Let the amount of locally added traffic during aging interval
n be denoted x(n), and let:

p1 = ageCoef−1
ageCoef

, where

ageCoef ∈ {1, 2, 4, 8, 16}
(1)

Then, from the standard, we have:

addRate(n) = addRate(n − 1) · p1 + x(n) (2)

lpAddRate(n) =
1

lpCoef
(lpAddRate(n − 1) · (lpCoef − 1) + addRate(n))

Where: lpCoef ∈ {16, 32, 64, 128, 256, 512}
(3)

This can be modeled as a 2nd order digital low-pass filter
as shown in Fig. 3. In the figure, the box with the marking
z−1 denotes that the value on the output of the box is delayed
one sampling period (i.e. one aging interval) as compared to
the value on the input of the box. The filter input and output-
values, denoted respectively X(z) and Y (z) is the Z-domain
representations of the discrete time-domain signals x(n) and
y(n), where y(n) = lpAddRate(n).

lpCoef
1

X(z)

z z−1 −1

addRate(z) Y(z)=lpAddRate(z)

lpCoef−11
p

Fig. 3. Block Diagram of the two Cascaded First-Order Low-Pass Filters
Yielding the Fair Rate Based on the Congestion Head’s Own Send Rate x(n)

Let:

p2 =
lpCoef − 1

lpCoef
(4)

Then the transfer function, H(z), of the 2nd order low-pass
filter shown in Fig. 3 can be written as shown in (5) below.

H(z) =
Y (z)

X(z)
=

1

lpCoef
· z2

(z − p1)(z − p2)
(5)

Given this model of the aggressive fairness algorithm’s rate
control mechanism, using discrete control systems’ analysis
techniques, we can deduce some of its basic properties. For
the purpose of this paper, the most important system properties
are the transient response and stability. In this paper, we use a
simplistic approach, where we from the properties of the rate
control part of the system, i.e. the 2nd order low-pass filter,
deduce some properties, and then we utilize the findings to
determine some boundary operating conditions for a system.
Specifically, we determine the time-constant of the filter when
applied to a step input and use this time-constant to determine
the boundary conditions of the system.

If a node, transiting traffic from upstream nodes, has sent
no traffic on the ring lately, the value of its lpAddRate
rate-counter will be equal or close to zero. Assume that the
node is currently uncongested. Also assume that both the
aggregate demand of upstream nodes and the local demand for
bandwidth, over the link connected to the node’s downstream
neighbor, exceed half of the available bandwidth. Then the
scheduling rules of RPR will result in equal division of
bandwidth between local and transit traffic. With the sum of
demands being greater than the available bandwidth, this will
result in the secondary transit queue (STQ) starting to fill. As
long as the STQ-occupancy stays below the high threshold,
the local add-rate, denoted x(n), will be constant and equal
to half of the available bandwidth. Once the STQ-occupancy
exceeds the high threshold, the scheduling rules of RPR causes
the local add-rate, x(n), to be 0, to avoid overflow of the STQ.
The value of x(n) will remain 0 until the STQ-occupancy falls
below the high threshold.

The scheduling rules described above, are summarized in
(6) below:

x(n) =




bandwidth , STQ-occupancy = 0
bandwidth

2 , 0 < STQ-occupancy < high
0 , otherwise

(6)

These scheduling rules, controlling the value of the node’s
local add-rate, x(n), together with the configuration of the
2nd order low-pass filter shown in Fig. 3, control the behavior
of the lpAddRate(n) rate-counter in the congestion domain
head. Now, let us consider the scenario where a node’s
lpAddRate = 0 and the STQ-occupancy is close or equal
to 0. The node is currently transiting data from upstream
nodes at the available bandwidth of the link connected to the
downstream neighbor. Next, the node starts sending local (add)
traffic over the same link, which at some point in the near
future will make the node head of a congestion domain. From
the time where the node starts transmitting and onwards, the
behavior of its lpAddRate rate-counter is characterized by a
set of cycles. A cycle consist of two consecutive periods. In
the first period, x(n) = bandwidth

2 , and thus lpAddRate(n)
monotonically increases until the STQ-occupancy exceeds the
high threshold. At that point, the second period starts. In
the second period, x(n) = 0, and thus lpAddRate(n) starts
monotonically decreasing. The second period ends when STQ-
occupancy falls below the high threshold. Thus the cycle is



concluded.
The behavior of the rate control algorithm for a congestion

domain head, resembles that of the step response of a second
order continuous-time system. In (7) below, G(s) is the
Laplace transform of the general 2nd-order continuous-time
system function, g(t) :

G(s) = L(g(t)) =
ω2

n

s2 + 2ζωns + ω2
n

(7)
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Fig. 4. Unit step response for 2nd order continuous-time system.

For an unstable second order continuous-time system, the
system output value, in response to a step input, represented
in Fig. 4 above, with the plot where ζ = 0, oscillates between
the max and min values determined by the system’s inherent
boundaries, with a frequency as determined by the system’s
natural frequency, ωn. For a corresponding stable system,
represented by the plots in Fig. 4 where ζ ∈ {0.4, 0.5, 1, 2},
the system output in response to the same input, converges
to the same steady-state value. The speed of convergence and
the presence and magnitude of oscillations during convergence
however, depends on the setting of ζ.

Given the cyclic behavior of lpAddRate(n), the stability of
the aggressive mode fairness algorithm, can be studied in terms
of the step-response of the rate-control (fairness) algorithm
executing in the head-node. To determine whether an RPR-
network will stabilize or not, it is sufficient to analyze the
first period of a cycle (described above) that will result from a
given configuration of the ageCoef and lpCoef parameters.
The analysis consists of determining the time-constant, τ , for a
given configuration. Once this time-constant has been decided,
this represents an upper bound for the time-constant of a
system to be safely controlled using this configuration. Below,
an analytical expression for the value of τ is derived.

As discussed above, it is safe to assume that the input to
the system, x(n), during the first half of the initial cycle, can
be described in terms of a step function:

x(n) =

{
0, n < 0
∆, otherwise, where ∆ = bandwidth

2

(8)

Then, the corresponding Z-transform, X(z), of the input
signal, x(n), is:

X(z) = Z{x(n)} =
∆ · z
z − 1

(9)

If we evaluate the output of the system, Y (z), in response to
the input, X(z), we have (from (5) and (9)) the relationship:

Y (z) =
∆

lpCoef
· z3

(z − 1)(z − p1)(z − p2)
(10)

If we perform a partial fraction expansion on (10) above before
performing the inverse Z-transform on the signal Y (z), we get
the (discrete) time domain representation of the output signal:

y(n) = Z−1{Y (z)} = (11)

∆
lpCoef ·

(
1

(1−p1)(1−p2) +
p

n+2
1

(p1−1)(p1−p2)
+

p
n+2
2

(p2−1)(p2−p1)

)

This function resembles an exponential ramp function,
consisting of a constant part and two parallel first order-filter
functions with a steady-state value:

yss = lim
n→∞

(yn) =
∆

lpCoef · (1 − p1)(1 − p2)
= ageCoef ·∆

(12)

As the ratio p2
p1

, from the configuration of parameters ageCoef
and lpCoef , becomes larger than 1, the transient behavior, and
thus the function’s time-constant, is determined more by the
last fraction, denoted y2(n), where:

y2(n) =
∆

lpCoef
· pn+2

2

(p2 − 1)(p2 − p1)
(13)

Thus in these cases, it is sufficient to study y2(n) to
determine the transient response of the 2nd order filter. y2(n)
together with the first fraction from (11), represents a first
order filter system. Given that the input to the filter, x(n), is
constant during the observation interval, the value of y2(n),
evaluated at discrete points n ∈ {0, 1, 2, ..., N}, will match
exactly the corresponding points on a continuous-time filter
with the same output-function as shown in (13). In the case
of the continuous-time filter, however, the output-values is
defined for all values of t ≥ 0 (not only at discrete times,
as is the case of y(n)). To find the time-constant of the digital
filter, we analyze the filter in terms of output-function for
an equivalent continuous-time filter-function (we replace the
discrete variable n in (11) with the continuous variable t).

For a first order continuous-time (filter) system, the system
time-constant, τ , in response to a step function applied to the
system input, is defined as shown in (14) [15].

y2ss
τ

= d
dt

(y2(t)) |t=0 (14)

= d
dt

(
∆

lpCoef
· pt+2

2
(p2−1)(p2−p1)

)∣∣∣∣
t=0

= ∆
lpCoef

· ln(p2)·p2
2

(p2−1)(p2−p1)

⇒ τ =
(

y2ss ·lpCoef(p2−1)(p2−p1)

∆·ln(p2)·p2
2

)
(15)

In (14), y2ss
represents the steady-state value of y2 as

t → ∞. In the case of an exponential increasing function
with a non-zero start value (y2(0) �= 0), the y2ss

factor in
the numerator on the left hand side can be replaced with the
expression y2ss

− y2(0). Evaluating y2 at 0 and ∞ gives:



y2ss
= limt→∞(y2(t)) = 0 (16)

y2(0) = ∆
lpCoef · p2

2
(p2−1)(p2−p1)

(17)

Substituting (y2ss
− y2(0)) for y222 in (14), we get:

τ =
−1

ln(p2)
=

−1
ln( lpCoef−1

lpCoef )
≈ lpCoef (18)

The final simplification is obtained when using a power-
series expansion of the ln( lpCoef−1

lpCoef ) expression in the de-
nominator.

Note that in (18) above, the time-constant is specified in
units of t, which for the discrete filter corresponds to the
number of sampling-periods. As noted at the start of the
chapter, the sampling period equals one aging interval.

As an example, given a system with ageCoef = 4 and
lpCoef = 64, the resulting value of τ from (18) above
becomes τ ≈ 64 [aging intervals] = 6.4ms. This means
that in a scenario with a node connected upstream of a
congested link, having the configuration shown above, the
maximum system time-constant (as discussed at the start of
this chapter) equals 6.4ms. Failure to operate within these
boundary conditions may result in an unstable system, i.e. the
system fails to converge to the fair division of send rates over
the congested link.

In an RPR-network, when the time-constant of the rate-
controlling (fairness) algorithm executing in the head node is
too fast compared to the system’s time-constant, the system
will be unstable. The symptoms of an unstable RPR-network,
like that shown in Fig. 6 b), resembles those of a 2nd order
continuous-time system shown in Fig. 4 above with ζ = 0.
In the case of an unstable RPR-network, the output of the
contending stations will oscillate between a max and a min
value, where the max value is limited to the value of the
available bandwidth and the min value is limited to 0. When
the time-constant of the rate controlling (fairness) algorithm
equals or exceeds the system’s time-constant, the system
will be stable. When this is the case, the throughput of the
contending stations converges to the (RIAS) fair division of
bandwidth. This behavior is shown in Fig. 6 a). Depending
on the ζ “equivalent” setting of the RPR-network, the speed
of convergence and presence and magnitude of oscillations is
decided.

In this chapter, we have discussed how the setting of the two
parameters, named ageCoef and lpCoef , relate to the steady-
state and transient-response behavior of the fairness algorithm
for a congestion domain head, executing the aggressive mode
of the RPR fairness algorithm. In the next chapter, we will
illustrate the findings using our RPR simulator model imple-
mented within the OPNET Modeler framework [16].

IV. SIMULATION RESULTS

In this section, we describe the simulation scenario used to
illustrate and evaluate the analytical results described above.

For the scenario used, often referred to as a "hot"-receiver
scenario, we aim to show the relation between the link length

(propagation delay) and the system settling time. With system
settling time, we mean the time used from congestion occurs,
until a fair division of send rates has been established by the
fairness algorithm. For an unstable configuration, the settling
time will be infinite, as the fairness algorithm never converges
to the fair division of send rates.

Our simulation scenario is illustrated in Fig. 5. Node 4 is
the “hot” receiver, receiving traffic from nodes 0 - 3. These
nodes all try to send at their maximum allowed rate, making
the link between nodes 3 and 4 the most congested link. We
use a fixed packet size of 500B, and the STQ buffer thresholds
full, high and low are set to: 254400, 63625 and 31812 bytes.

0 1 2 3 4

Fig. 5. In this hot receiver scenario, nodes 0, 1, 2 and 3 send at their
maximum allowed rate to the “hot” receiver – node 4.

A. Fairness Convergence as a Function of Link Delay

In this simulation experiment, we want to illustrate the simi-
larity between the system response of an RPR-network and the
step-response of a second-order continuous time system with
various values for the ζ variable shown in (7) above. We show
two sets of output-curves, one (Fig. 6 a)) where the aggregate
link-delay (system time-constant) is within the stability bounds
of the RPR-network and thus, the RPR-network converges
to the fair division of link bandwidth. The other set (Fig.
6 b)) shows the throughput-curves for a scenario where the
system time-constant exceeds the stability bounds of the RPR-
network. Correspondingly, for this scenario, the RPR-network
does not converge to the fair division of link bandwidth. For
both sets, lpCoef = 64 and ageCoef = 4.

As noted above, Fig. 6 a) shows a scenario where the
configuration of the lpCoef parameter is set to a value causing
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Fig. 6. Throughput of traffic received by station 4 in hot receiver scenario.



the fairness algorithm to converge to the fair division of
send rates. The link-delay in this scenario is 500µs, thus
the aggregate link-propagation delay (from node 3 to node 0
and back) is 3ms. The corresponding analytical system time-
constant is given by (18) and gives a bound of 64 aging
intervals (i.e. 6.4 ms). When we compare the throughput
convergence of the RPR-network with the convergence of the
continuous-time system shown in Fig. 4 we can observe the
similarity. For a continuous-time system, with a value of ζ <
1, the convergence to the steady-state value is characterized by
exponential (decreasing) oscillations. The lower the value of
ζ, the higher the oscillations will be. Finally, when ζ becomes
zero, the system will never converge and the oscillations are
bounded by the physical boundaries of the system.

Similarly, for our RPR-network, if the time-constant, τ ,
of the rate-controller, is large compared to the system time-
constant, the convergence towards fair rate will proceed slowly
and surely without oscillations. If τ is in the (lower) proximity
of the time-constant of the RPR-network (as the one showed
in Fig. 6 a)), the RPR-network converges to the fair division
of rates with exponential decreasing oscillations. Finally, as
illustrated in Fig. 6 b), when the link delay is increased to
750µs, the value of τ clearly becomes too low compared to
the system time-constant. As shown, for this configuration,
the throughput of the contending nodes experience oscillations
that are approximately constant in amplitude and the system
does not converge to a steady-state (fair rate) value.

Given the analytical results presented in section III, the
observant reader may find the behavior plotted in Fig. 6
b) unexpected. The analytical results indicate that given a
configuration where lpCoef is set to 64, the rate-controller
should be able to handle networks where the system-delay
is bounded upwards to 6.4ms. In the case of 750µs link-
delays, the aggregate propagation delay from node 3 to node 0
and back is 4.5ms. Additionally fairness messages may incur
more than 100µs processing delay per node traversed, when
propagating from the head to the tail, resulting in a delay close
to 5ms. Finally, queueing and scheduling delays experienced
in both the upstream path (experienced by rate messages sent
from head to tail) and the downstream path adds to the total
delay. Thus in total, the system time-constant becomes too
large compared to the value of τ .

B. Fairness Convergence as a Function of Total Link Delay

By varying the link length of each link, we can control the
aggregate propagation delay from the head to the tail and back
in the congestion domain. For each of the allowed values of
lpCoef (shown in (3)), while keeping the value of ageCoef
constant at the RPR default setting of 4, we run a sequence
of simulations, increasing the link-delay for each iteration.
The obtained throughput-data are subsequently processed to
find the time it takes for the fairness algorithm to reach a
stable state. Based on [15], we define a state as stable when
no observed values deviate more than 5% from the mean value
over a 50 ms time interval. Formally, we define our system
to be stable at time t0, if all values sampled in the interval

〈t0, t0 + ts〉 (ts = 50ms) are within ±5% of the mean value
in the same interval:

max(X(t)) < X(t) ∗ 1.05, t0 < t < t0 + ts

min(X(t)) > X(t) ∗ 0.95, t0 < t < t0 + ts (19)

We use the "hot"-receiver scenario described above, and
measure the time it takes from a link (the link between nodes
3 and 4 in Fig. 5 above) becomes congested, to the system has
stabilized at the fair division of sending rate for each source.

For each allowed value of the lpCoef parameter, we plot the
convergence-time required to reach the stable state as defined
in (19) above. The variable in the plot is the aggregate of link
propagation-delays between the head and tail node and back.
The results are shown in Fig. 7 below. The abscissa value when
the stabilization time becomes infinite is the point where, for
the corresponding system time-constant and lpCoef setting,
the system no longer satisfies the stability criterion of (19)
above.
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Fig. 7. The time it takes before the fairness algorithm stabilizes at the fair
rate for each node sending over a congested link for varying link lengths and
lpCoef settings.

As seen in the figure, the point where the system (for the
various lpCoef ) settings no longer converges are lower than
those of the analytical expression in (18) (lpCoef=16: 1.6ms,
lpCoef=32: 3.2ms, lpCoef=64: 6.4ms, lpCoef=128: 12.8ms,
lpCoef=256: 25.6ms, lpCoef=512: 51.2ms). As discussed for
the previous simulation experiment, we believe that the major
cause of this is the scheduling and queuing delays on the path
between head and tail.

V. RELATED WORK

Analytical performance evaluation of a complex system like
an RPR-network is extremely hard to perform precisely. Sev-
eral papers are published for buffer insertion rings presenting
analytical performance evaluation based on queueing theory



[17], [18], [19]. Similarly, we can find analytical studies of
RPR based on queueing theory [20]. Other relevant work in
the area of buffer insertion rings is the work presented in
[21]. In this paper, Scott et al. studied the performance of
the buffer insertion ring SCI analytically, but did not include
the Fairness protocol. For RPR in general, several papers
have been published, studying different performance aspects.
In [22], Huang et al. present a thorough analysis of ring
access delays for RPR-networks with nodes that contain a
single transit queue. In [2], Gambiroza et al. focus on the
operation of the RPR fairness algorithm and their alternative
proposal, DVSR, and its ability, for some given load scenarios
to converge at the fair division of rates according to their RIAS
fairness reference model. More general fairness in insertion
buffer rings have been studied by several [23], [24], [25], [26].

VI. CONCLUSION

When the demand for bandwidth in a Resilient Packet Ring
is higher than the supply, the fairness algorithm running in
the most congested node (the head of a congestion domain) is
responsible for calculating the fair rate that all nodes sending
over the congested link, must adhere to. In this paper we have
developed a discrete control system model of RPR’s aggressive
mode fairness algorithm rate control mechanism running in
congestion domain heads. We are not aware of any other
contribution that evaluate the performance of RPR-networks
using control systems theoretic approaches. We have discussed
the model and deduced some of its basic properties. We have
argued that the time-constant, τ , of the rate-controller must
not be larger than the time-constant of the system it controls,
which consists of all nodes contributing to the congestion (the
congestion domain). Based on this we have shown that the
setting of some important system parameters, ageCoef and
lpCoef , can be analytically estimated based on the size of
the controlled system (the size of the congestion domain).
This new insight makes the configuration of an RPR-network
sounder, and less prone to configuration errors. Finally, we
have supported our analytical findings by simulations that indi-
cate that our analytical model yields a reasonable upper bound
for the convergence of the Resilient Packet Ring aggressive
mode fairness algorithm.

In future work, it would be interesting to extend our control
system model to include all the nodes that contribute to the
congestion. It would also be interesting to model the fairness
algorithm even more precisely, in order to find even closer
correspondence between the model and the simulated results.
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