Experimental Evaluation of Multipath TCP Schedulers

Christoph Paasch', Simone Ferlin?, Ozgii Alay® and Olivier Bonaventure'

'ICTEAM, UCLouvain, Belgium

2Simula Research Laboratory, Fornebu, Norway

ABSTRACT

Today many end hosts are equipped with multiple interfaces.
These interfaces can be utilized simultaneously by multi-
path protocols to pool resources of the links in an efficient
way while also providing resiliency to eventual link failures.
However how to schedule the data segments over multiple
links is a challenging problem, and highly influences the per-
formance of multipath protocols.

In this paper, we focus on different schedulers for Multi-
path TCP. We first design and implement a generic modular
scheduler framework that enables testing of different sched-
ulers for Multipath TCP. We then use this framework to do
an in-depth analysis of different schedulers by running ex-
periments on a emulator and a testbed. We consider bulk
data transfer as well as application limited traffic and iden-
tify metrics to quantify the scheduler’s performance. Our
results shed light on how scheduling decisions can help to
improve multipath transfer.

1. INTRODUCTION

Today’s Internet is radically different from what it was 30
years ago, the time when the building blocks of the Inter-
net (e.g. TCP and IP) have been specified. At that time,
end hosts were connected to a single interface. However, to-
day, end hosts often have multiple interfaces to access the
world wide web. For example, smartphones are equipped
with two interfaces: a WiFi and a mobile broadband (e.g.,
3G/4G). Similarly, servers are multihomed and data centers
present a large redundant infrastructure with many different
paths between any two servers. TCP, however, is not able
to efficiently utilize this multipath infrastructure as it tightly
couples the data stream to the IP addresses used when estab-
lishing the connection.

Multipath TCP closes this gap between the multipath net-
work and the single-path transport. Multipath TCP is a ma-
jor extension to TCP, allowing the use of multiple paths be-
tween two end-hosts for the transmission of a single data
stream [6]. This enables the pooling of resources as the paths
may run across different interfaces with distinct bottlenecks,
effectively increasing the goodput for the end user [13, 3].
Further, Multipath TCP permits vertical handover for mo-
bile nodes, offloading traffic from WiFi to 3G [11]. Multi-

path TCP is best at providing these benefits with long-lasting
flows. These flows may be bulk transfers or rate-limited traf-
fic, like media streaming applications. For the latter, Mul-
tipath TCP might bring a benefit if a single network con-
nection does not provide sufficient bandwidth or reliability.
Here, not only the throughput but also the end-to-end de-
lays, as well as buffer space requirements, become more rel-
evant [2] as these kind of applications require a low delay-
jitter. Examples in this direction are the adoption of Multi-
path TCP in Apple i0S7 for Siri.

There are many factors influencing the performance of
Multipath TCP [15, 12]. One of them is the design of the
scheduler. This scheduler is responsible for the distribution
of data over multiple paths and a wrong scheduling decisions
might introduce head-of-line blocking or receive-window lim-
itation, especially when the paths are heterogeneous. In such
a scenario, the user will observe high delays as well as good-
put degradation for its application, resulting in poor user ex-
perience. Therefore, the scheduler can have a significant im-
pact on the performance of Multipath TCP.

We introduce a modular scheduler framework that allows
to easily change the way data is distributed over the sub-
flow. Further, we evaluate different schedulers for MPTCP
and provide an in-depth performance analysis considering
both bulk data transfers and application-limited flows. We
consider goodput and application delay as metrics. Our ex-
periments include a broad evaluation within an emulated en-
vironment using the Experimental Design-approach [12] and
an evaluation using real WiFi and 3G networks within the
NorNet testbed [10]. We identify the impact of scheduling
decisions on the performance of MPTCP and illustrate the
underlying root cause for the observed behavior. We provide
guidelines on the properties of a good scheduler to achieve a
good performance under different scenarios. The design of
such a scheduler is out of the scope and left for future work.

This paper is structured as follows. Section 2 discusses
the background on MPTCP and the two main constraints that
an MPTCP scheduler needs to take into account. Section 3
describes related work and the schedulers evaluated in this
paper. The measurement setup for our evaluations and the
experimental results are presented in Section 4. Finally, we
conclude our work and discuss the results in Section 5.

Application Layer

standard Socket API

P Transport Layer s

MultiPath TCP

\
’

=
MultiPath TCP Scheduler

TCP
subflow

send-queue)

TCP
subflow

send-queue

Network Layer

Figure 1: The scheduler distributes the segments from
the Multipath TCP level on the different TCP subflows.

2. MULTIPATH TCP

Multipath TCP is a major protocol extension to TCP that
supports the transmission of a single data stream across dif-
ferent interfaces (e.g., WiFi and 3G on a smartphone). Mul-
tipath TCP increases the goodput for the application by effi-
ciently pooling the network’s resources [6]. This pooling is
achieved by presenting a regular stream-socket interface to
the application, however below this interface, TCP subflows
are created for each path. These subflows form together a
Multipath TCP connection, using TCP options to signal the
necessary control information between the end hosts. These
TCP subflows makes Multipath TCP look like regular TCP
for a firewall/middlebox observing one of these subflows on
a path. This makes Multipath TCP deployable on today’s
Internet [15].

2.1 Exchanging Data

The pooling of the subflow’s resources is achieved by mul-
tiplexing individual segments across the different subflows.
TCP options are used to allow the receiver to reorder the seg-
ments and recreate the byte stream to ensure reliable and in-
order delivery. Each subflow is subject to the regular conges-
tion control stages like slow-start and congestion-avoidance.
Specific congestion control schemes are used to allow a bet-
ter load balancing and fairness among the subflows [22, 9].

When multiplexing the individual segments, Multipath TCP

has to decide on which subflow to schedule each segment.
We call the module which takes this decision the scheduler
in the remainder of this paper. Figure 1 illustrates the ar-
chitecture of a Multipath TCP implementation, its subflows
and the role of the scheduler. The scheduler has access to
the state of each TCP subflow, including congestion window
and RTT estimation. In the next two sections we describe
two of the main constraints a Multipath TCP scheduler needs
to consider.

2.2 Head-Of-Line Blocking

The TCP subflows of the Multipath TCP connection may
follow paths with different characteristics. For example, a
subflow going over the smartphone’s WiFi interface experi-
ences a much lower RTT than a subflow being sent over the

phone’s 3G interface.

As packets are multiplexed across the different subflows,
a delay difference among the subflows might cause out-of-
order delivery at the receiver. As Multipath TCP ensures
in-order delivery, the packets that are scheduled on the low-
delay subflow have to “wait” for the high-delay subflow’s
packets to arrive in the out-of-order queue of the receiver.
This phenomenon is known as head-of-line blocking [18].

Head-of-line blocking causes burstiness in the data stream
by delaying the data delivery to the application, which is un-
desirable especially for interactive or streaming traffic. In-
teractive applications will become less reactive, resulting in
poor user-experience. Streaming applications will need to
add a high amount of application-level buffering, stressing
the end systems, to cope with burstiness and provide a con-
tinuous streaming experience to the end user.

2.3 Receive-Window Limitations

A TCP stack reserves a certain amount of memory for
out-of-order data that might be received in the event of in-
network reordering or packet loss. Multipath TCP intro-
duces reordering across the TCP subflows due to the delay
differences, hence the receive buffer has to accommodate
out-of-order data also at the MPTCP level. Thus, the size
of the receive buffer is critical to allow high goodput.

In order to fully utilize the capacity of all paths, a receiver
must provide enough buffer space so that the sender can keep
all subflows fully utilized - even in the event of reordering
due to delay differences. The recommendation for Multipath
TCP’s receive buffer size is defined in [1]:

Buffer = wai X RTT pax X 2

where each subflow will be able to send at full speed (3} bw;)
during the time-interval of the highest round-trip-time (RTT)

among all subflows (RTTy,.),- even if a loss event occurs

(multiply by 2).

Some end hosts, however, are not able to provide the nec-
essary amount of memory to allocate enough buffer to uti-
lize the full capacity [2]. This phenomenon has been studied
in [15, 12], proposing incremental changes to the heuristics
within Multipath TCP by retransmitting segments and penal-
izing subflows, detailed in the following section.

3. SCHEDULERS

A wrong scheduling decision might result in head-of-line
blocking or receive-window limitation, affecting the perfor-
mance of Multipath TCP - as discussed in the previous sec-
tion. Accurately scheduling data across multiple paths while
trying to avoid head-of-line blocking or receive-window lim-
itation has been shown to be a difficult problem, in particu-
lar if the multiple paths are heterogeneous. How to schedule
different SCTP streams across the different SCTP associa-
tions has been analyzed in [19]. However, SCTP design is
different from Multipath TCP. SCTP does not support the

MPTCP: An MPTCP connection, ready to send data.
MPTCP->sched represents a structure containing
the specific callbacks.
subflow = MPTCP->sched->get_subflow();
while subflow != NULL do
data = MPTCP->sched->get_data(subflow);
while data != NULL do
send_data(subflow, data);
data = MPTCP->sched->get_data(subflow);
end while
subflow = MPTCP->sched->get_subflow();
end while

VXN ERN

Figure 2: Pseudocode of the modular scheduler frame-
work, using callbacks to invoke the scheduling functions.

transmission of a single stream across different paths. [17]
tries to achieve ordered delivery at the receiver by taking the
delay of each path into account. While in theory this is a
promising approach, it is unclear how feasible it is in a real-
world kernel implementation where only a rough estimate of
the path’s delay is available to the scheduler.

In this paper, we implemented a modular Multipath TCP
scheduler framework'. Whenever the stack is ready to send
data (e.g., an acknowledgement has freed up space in the
congestion window, or the application pushed data on the
send-queue), the scheduler is invoked to execute two tasks:
first, choose a subflow among the set of TCP subflows and;
second, decide which segment to send considering the prop-
erties of this subflow. We added callbacks from the MPTCP
stack that invoke the functions specific to each scheduler. A
pseudo-code implementation of this behavior can be seen in
Figure 2. This allowed us to design the scheduler in a modu-
lar infrastructure, as it is done with the TCP congestion con-
trol algorithms [21]. A sysctl allows to choose the default
scheduler for all Multipath TCP connections, and further
socket-options allow the user-space application to explicitly
set the scheduler for a particular connection.

Within our modular framework, we consider different sched-

ulers. First, we discuss a simple round-robin scheduler. Then,
considering the heterogeneous networks where significant
delay differences are observed between the subflows, we dis-
cuss delay-based schedulers. A first evaluation of schedulers
has been done in [20]. But only a limited environment has
been used in the evaluation and improvements to the sched-
ulers [15] were not yet part of the Multipath TCP implemen-
tation.

3.1 Round-Robin (RR)

The round-robin scheduler selects one subflow after the
other in round-robin fashion. Such an approach might guar-
antee that the capacity of each path is fully utilized as the
distribution across all subflows is equal. However, in case

!"The code will be publicly available at http://multipath-tcp.org

of bulk data transmission, the scheduling is not really in
a round-robin fashion, since the application is able to fill
the congestion window of all subflows and then packets are
scheduled as soon as space is available in each subflow’s
congestion window. We call this effect ack-clock.

Such a scheduler has already been discussed for concur-
rent multipath transfer SCTP [7]. [5] evaluates how such
a round-robin scheduler behaves in CMT-SCTP for multi-
streaming compared to a scheduler that assigns each stream
to a specific path.

3.2 Lowest-RTT-First (LowRTT)

In heterogeneous networks, scheduling data to the sub-
flow based on the lowest round-trip-time (RTT) is beneficial,
since it improves the user-experience. It reduces the appli-
cation delay, which is critical for interactive applications. In
other words, the RTT-based scheduler first sends data on the
subflow with the lowest RTT estimation, until it has filled the
congestion window (as it has been first described in [15]).
Then, data is sent on the subflow with the next higher round-
trip time.

The same way as the round-robin scheduler, as soon as all
congestion windows are filled, the scheduling becomes ack-
clocked. The acknowledgements on the individual subflows
open space in the congestion window, and thus allow the
scheduler to transmit data on this subflow.

As explained in Section 2, the delay difference triggers
head-of-line blocking and/or receive-window limitation. Next,
we discuss two extensions to the RTT based scheduler. The
first solution reacts upon receive-window limitation, and the
second solution minimizes the delay difference in the pres-
ence of bufferbloat on the individual subflows.

3.3 Retransmission and Penalization (RP)

In order to compensate for delay differences, opportunis-
tic retransmission and penalization for Multipath TCP have
been proposed by [15]. Opportunistic retransmission re-injects
the segment causing the head-of-line blocking on the sub-
flow that has space available in its congestion window (sim-
ilar to chunk rescheduling for CMT-SCTP [4]). This al-
lows to quickly overcome head-of-line blocking situations
and compensate for the RTT differences. Further, the pe-
nalization algorithm reduces the congestion window of the
subflow with the high RTT, hence, reducing the sending rate
and the effect of bufferbloat on the subflow.

Particularly, the goal is not only to improve the goodput,
but also to reduce the delay, jitter and buffer size require-
ments.

3.4 Bufferbloat Mitigation (BM)

Following similar observations from Section 3.3, another
source for high RTTs are large buffers on routers and switches
along the subflow’s path. TCP will try to fill these buffers
creating bufferbloat, resulting in very high RTTs.

The bufferbloat-mitigation algorithm caps the RTTs by

Low BDP High-BDP
_ 10 T T~ = 0= = Al 20 - -
: z S z K
g 05 Hﬂ £1s EB ‘ E§3 &1t o

5 =) - - | =) ‘
£ 00 s1w0f - 510 ! ;

o0 & & : -
5—0.5 g g : i -
<°ﬁn P o S ‘ oS :

-1.0 - - - = N L=

at M RP RTT M 4R TTTRR M ?
Lowkww‘ﬂ«wﬁ T’r% wi{ ‘ﬂ'ﬂ“ 7T rR Low LQWRTTJ(B}Q@N““*R? R LOWRTT ww‘(ﬁ»fﬁ Low““)(g

Figure 3: Mininet: In high-BDP the Figure 4: NorNet: With un- Figure 5: NorNet: With bounded

connection becomes receive-window bounded buffers (16MB), each sched- buffers (2MB), LowRTT+BM and

limited and BM and RP show their ben- uler achieves the goodput.

efits.

limiting the amount of data to be sent on each subflow, hence,
controlling the bufferbloat [16]. The goal here is not to sig-
nificantly improve goodput, but instead, to improve the ap-
plication delay-jitter and reduce buffer size requirements.

The main idea behind the bufferbloat-mitigation algorithm
is to capture bufferbloat by monitoring the difference be-
tween the minimum smoothed RTT (sRTT ,,), and smoothed
RTT (sRTT). Whenever sRTT drifts apart from SRTTp;,
on the same subflow, as a result of sending data, we take
it as an indication of bufferbloat. Therefore, we cap the
congestion window for each subflow by setting an upper
bound cwndy;p;.

cwndjimit = A X (SRTTppin /sSRTT) x cwnd.

where \ determines the tolerance between sSRTT,;, and sSRTT.

Within the remainder of this paper, we fix A to 3, which has
proven to bring the best results, as has been analyzed in [16].

4. EVALUATION

Traffic characteristics and the environment, where the TCP

subflows trespass, influence the schedulers’ performance. This

section evaluates two Multipath TCP metrics, namely good-
put and application delay-jitter in emulated and real-world
experiments.

4.1 Experiment and Emulation Setup

Within Mininet the Experimental Design approach [12]
is used, where we set both low- and high-BDP environments
to evaluate the schedulers. The Multipath TCP implementa-
tion used in all our evaluations is based on release 0.882.

The real-world environment uses the NorNet testbed [10].
We consider the smartphone use case where we utilize both
WLAN and 3G (UMTY) interfaces to evaluate the MPTCP
performance with heterogeneous links. The WiFi connec-
tion uses a public WLAN, connecting ca. 100 people dur-
ing work hours in a large office complex with several other
interfering WLAN networks. On the system level, we con-
tinuously flush all cached TCP metrics to avoid any depen-
dency between experiments. Finally, the Olia congestion

*http://multipath-tcp.org

LowRTT+RP achieve the best perfor-
mance.

control [9] is used in all experiments. Similar results were
obtained with the coupled congestion control scheme [22].

4.2 Bulk-Transfer

One of the goals of Multipath TCP is to increase the appli-
cation goodput [14], which can be measured by transferring
bulky data between two Multipath TCP capable end hosts.

Mininet.

Within Mininet we generate a bulk-transfer using iperf,
where each transfer lasts for 60 seconds. Our measurements
cover 400 different settings, classified as low-BDP and high-
BDP environments. For detailed information about the test
environments as well as the system-level settings, we refer
to [12]. Here, we measure the aggregation benefit, which
is a normalization of the benefit in terms of goodput when
using Multipath TCP. For example, a value of —1 indicates
the achievable minimum, while 0 means that Multipath TCP
achieves the same goodput as regular TCP on the best path,
and 1 means that Multipath TCP perfectly aggregates the
available capacity. More information about the aggregation
benefit metric can be found in [8, 12].

Figure 3 shows the Mininet results. We skip the RR
scheduler since it performs similar to LowRTT. This is be-
cause in bulk-transfers the TCP subflows are saturated and
are thus controlled by the ack-clock. Therefore, available
space in the congestion window controls the way packets are
multiplexed across the subflows rather than the scheduler.

In the low-BDP environment there is no significant dif-
ference between schedulers. Each of them achieves close
to perfect bandwidth aggregation. Only the RP algorithm
improves the worst-case result among the 200 experiments
to achieve an aggregation benefit equal to the best available
path. In the high-BDP environment receive-window limi-
tations may occur. In this case the RP and BM techniques
described in Section 3.3 and 3.4 improves the aggregation
benefit. The RP technique has a higher benefit in the lower
25th percentile and the median. This is thanks to the re-
transmission of the blocking segment as the receive-window
limitation in these cases is not due to bufferbloat but rather
due to a difference in the baseline RTT.

1.0 1.0 : 1.0
LowRTT+RP o LowRTT+RP

038 0.8 LowRTT+BM / 0.8 LowRTT+BM 7
06 06| LowRIT / ; 06l LowRTT
3 LowRTT+RP || 3 RR ; 3 RR

0.4 s . 0.4] 0.4

; E LowRTT+BM
0.2 S ~— LowRTT 02 0.2
0. -) sl \ B
(4 10! 102 100 10° TG L T AT T T T T ST | AT R T O (LI (- TR T
Delay increase wrt lowest possible delay [%] Delay-variation [ms] Delay-variation [ms]

. .. . (a) 500 Kbps (b) 1875 Kbps
Figure 6: Mininet: Using the

lowest-RTT-first scheduler greatly re-
duces the application-delay variance in
Mininet.

NorNet.

Within NorNet Edge we tested bulk-transfers of 16 MB
files in downlink with both bounded (2 MB) and unbounded
(16 MB) buffers. The bounded buffers will make the con-
nection more likely to be limited by the receive window. We
repeat each measurement around 30 times for each config-
uration. All measurements are performed in the same net-
works and at the same locations over a period of 3 weeks.

Figure 4 shows the MPTCP goodput, for all schedulers.
For a bulk-transfer with unbounded buffer sizes (16 MB),
the aggregation benefit of MPTCP across all schedulers is
similar. Each scheduler is able to efficiently aggregate the
bandwidth of WLAN and 3G together within the NorNet
testbed. The unbounded buffers allow for sufficiently large
memory, so that no receive-window limitation occurs.

However, if the receive buffer is bounded (as it is often
the case on a smartphone), the MPTCP connection may be-
come receive-window limited. Figure 5 shows the MPTCP
goodput in this case. Here, one can see that LowRTT+BM
slightly outperforms the other schedulers. In case of the
LowRTT+RP scheduler, the effect of bufferbloat is not opti-
mally reduced by the penalization algorithm, as it does not
manage to bring the congestion window sufficiently down
so that the delay-difference is reduced. This happens, be-
cause the RP algorithm is reactive and does the penaliza-
tion only after a limitation happened. The BM algorithm is
proactive and prevents a high delay-difference beforehand
and thus achieves a higher goodput.

4.3 Application-Limited Flows

This section evaluates the impact of the schedulers on
delay-jitter with rate-limited traffic, i.e., when the applica-
tion is not saturating the connection. In this case, the sched-
uler has available space in all subflows and should select the
one that guarantees the lowest delay for each segment.

In order to evaluate the delay-jitter we created an appli-
cation that sends traffic at a specific rate in blocks of 8 KB.
The receiver tracks the timestamps at which each block has
been received. As the sender transmits at a constant rate, the
receiver is able to detect the delay with respect to the desired
packet-arrival time.

Figure 7: NorNet: 3G and WLAN with unbounded (16 MB) buffers

Mininet.

Within Mininet we ran this application in the high-BDP
environment of the Experimental Design approach, for a to-
tal of 200 experiments. Figure 6 shows the CDF of the worst-
case relative delay increase. The delay increase is expressed
in % compared to the lowest one-way delay. E.g., if the min-
imum one-way delay is 20 ms, but a block of 8 KB has been
received rather after 40 ms the relative delay increase has a
value of 100%. We show the worst delay-increase among
all 8 KB blocks of each experiment as this will affect the
user-experience.

In Figure 6 it is visible that the RR scheduler is particu-
larly bad in terms of application delay. 70% of the experi-
ments using the LowRTT scheduler have a range between 10
and 100% of delay-increase. Using a RR scheduler, roughly
40% of the experiments have a delay-increase between 100
and 1500%. Such delay increases has significant impact on
delay-sensitive applications since they would need to main-
tain large buffers to react upon these delay-spikes.

NorNet.

Within NorNet we evaluate the delay-jitter using rate-
limited applications transmitting at 500 Kbps and 1875 Kbps
in downlink, using unbounded buffers. The values for the
application-limited rates are at approximately 5 and 10% of
the mean goodput of the bulk-transfer. We repeat each mea-
surement around 30 times for each configuration.

Figure 7 shows the variation of the application delay for
all schedulers. One can see that in all application-limited
scenarios, RR performs mostly worse compared to all other
schedulers. More prominent, in Figure 7(a), RR’s delay-

variance shows to be up to 10 times worse compared to LowRTT.

This can be explained as RR simply schedules data based on
congestion-window space, which is not a limiting factor in
this particular scenario. Looking into our dataset, one can
see that both subflows carry similar amount of data, thus in-
crease head-of-line blocking.

For all other schedulers we observe that for very low ap-
plication rates, see Figure 7(a), MPTCP LowRTT utilizes
mainly one subflow, the subflow with lowest RTTs. This is
because the congestion window space is not a limiting factor,

and it has mostly enough space to carry all data available.

By increasing the application rate, see Figure 7(b), MPTCP
LowRTT performs in at least 60% of the cases up to 10
times better compared to RR. The remaining 40% can be
explained as we see that the subflow with the higher RTT
(3G network) contributes more compared to the scenario in
Figure 7(a). This happens, because at a higher sending rate,
occasional congestion on the WiFi network will make the
LowRTT scheduler send traffic on the 3G subflow. This will
introduce head-of-line blocking due to the higher delay over
the 3G network and thus increases the delay-variation.

We also evaluate the delay-jitter when sending at unlim-
ited rate within the NorNet testbed. In this case, both WiFi
and 3G are fully utilized and bufferbloat might happen on
the 3G path. We observe that the LowRTT+BM scheduler
effectively reduces the bufferbloat and keep the application
delay lower compared to other schedulers.

S. DISCUSSION

In this paper, we have proposed and implemented a modu-
lar scheduler selection framework that allows Multipath TCP
to change the way data is multiplexed across the different
TCP subflows. We used this framework to experimentally
evaluate schedulers in a wide variety of environments in both
emulated and real-world experiments. In these environments,
we could quantify the performance of different schedulers,
and scheduler extensions, with respect to goodput as well as
application delay-jitter.

We discovered that a bad scheduling decision triggers two
effects: First, head-of-line blocking if the scheduler sends
data across a high-RTT subflow. Second, receive-window
limitation, which prevents the subflows from being fully uti-
lized. We have shown that a simple strategy to preferentially
schedule data on the subflow with lowest RTT (LowRTT)
helps to reduce the application delay-jitter compared to a
simple round-robin (RR) scheduler.

Furthermore, the RP extension helps to mitigate receive-
window limitation, albeit it is a reactive method, i.e., it tries
to recover from receive-window limitation. We have discov-
ered that in some cases this is not sufficient. If the delay-
difference is very high due to huge bufferbloat, the penaliza-
tion will not manage to bring the congestion window suf-
ficiently down. Also, anecdotal evidence has shown that
the penalization may hurt, if two subflows are unfortunately
sent through the same bottleneck. The bufferbloat mitiga-
tion technique helps in these cases, but cannot overcome
a large difference in the baseline RTT. Further, the delay-
based congestion-window capping may also suffer from the
known limitations of delay-based congestion controls when
the bottleneck is shared with other flows that do not deploy
the same window capping.

Multipath scheduling should ideally be done in a way that
the data is received in-order. This minimizes head-of-line
blocking and receive-window limitation as applications are
able to continuously read data out of the receive queue. How-

ever, it is not trivial to design such a scheduler with rough
estimations on capacity or RTTs of the paths, maintained by
the kernel. In our future work we plan to extend our eval-
uation framework to a larger set of traffic classes (includ-
ing cross-traffic and on/off flows). Our modular scheduler
framework will be made available to enable researchers to
explore and contribute with other new findings.

6. REFERENCES

[1] S. Barre, C. Paasch, and O. Bonaventure. Multipath TCP: From
Theory to Practice. In IFIP Networking, 2011.

[2] X. Chen, R.Jin, K. Suh, B. Wang, and W. Wei. Network
Performance of Smart Mobile Handhelds in a University Campus
WiFi Network. In ACM IMC, 2012.

[3] Y.-C. Chen, Y. Lim, R. Gibbens, E. Nahum, R. Khalili, and

D. Towsley. A Measurement-based Study of Multipath TCP

Performance over Wireless Networks. In ACM IMC, 2013.

T. Dreibholz, M. Becke, E.P. Rathgeb, and M. Tuxen. On the Use of

Concurrent Multipath Transfer over Asymmetric Paths. In JEEE

GLOBECOM, 2010.

T. Dreibholz, R. Seggelmann, M. Tiixen, and E.P. Rathgeb.

Transmission Scheduling Optimizations for Concurrent Multipath

Transfer. In PFLDNeT, 2010.

[6] A.Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP

Extensions for Multipath Operation with Multiple Addresses.

RFC6824, January 2013.

J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath Transfer

using SCTP Multihoming over Independent End-to-End Paths.

IEEE/ACM Transactions on Networking, 2006.

D. Kaspar. Multipath Aggregation of Heterogeneous Access

Networks. PhD thesis, University of Oslo, 2011.

[9] R.Khalili, N. Gast, M. Popovic, U. Upadhyay, and J-Y. Le Boudec.
MPTCP is not Pareto-Optimal: Performance Issues and a Possible
Solution. In ACM CoNEXT, 2012.

[10] A. Kvalbein, D. Baltrinas, K. Evensen, J. Xiang, A. Elmokashfi, and
S. Ferlin-Oliveira. The Nornet Edge Platform for Mobile Broadband
Measurements. Elsevier Computer Networks, 2014.

[11] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure.
Exploring Mobile/WiFi Handover with Multipath TCP. In ACM
SIGCOMM workshop CellNet, 2012.

[12] C. Paasch, R. Khalili, and O. Bonaventure. On the Benefits of
Applying Experimental Design to Improve Multipath TCP. In ACM
CoNEXT, 2013.

[13] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving Datacenter Performance and Robustness
with Multipath TCP. In ACM SIGCOMM, 2001.

[14] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control
for Multipath Transport Protocols. RFC6356, October 2011.

[15] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,

O. Bonaventure, and M. Handley. How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP. In USENIX NSDI,
2012.

[16] Ferlin-Oliveira S., Dreibholz T., and AU Alay. Tackling the
Challenge of Bufferbloat in Multi-Path Transport over Heterogeneous
Wireless Networks. In IEEE/ACM IWQoS - submitted paper, 2014.

[17] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith.
Mitigating Receiver’s Buffer Blocking by Delay Aware Packet
Scheduling in Multipath Data Transfer. In IEEE WAINA, 2013.

[18] M. Scharf and S. Kiesel. Head-of-line Blocking in TCP and SCTP:
Analysis and Measurements. In JEEE GLOBECOM, 2006.

[19] R. Seggelmann, M. Tuxen, and E.P. Rathgeb. Stream Scheduling
Considerations for SCTP. In SoftCOM, 2010.

[20] A. Singh, C. Goerg, A. Timm-Giel, M. Scharf, and T.-R. Banniza.
Performance Comparison of Scheduling Algorithms for Multipath
Transfer. In IEEE GLOBECOM, 2012.

[21] L. Stewart and J. Healy. Light-Weight Modular TCP Congestion
Control for FreeBSD 7. Technical report, CAIA, Tech. Rep, 2007.

[22] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP. In USENIX NSDI, 2011.

[4

=

[5

—

[7

—

[8

[

