
Software Effort Estimation Terminology:
The Tower of Babel

Stein Grimstad, Magne Jørgensen, Kjetil Moløkken-Østvold
Simula Research Laboratory

{steingr,magnej,kjetilmo}@simula.no

Abstract

This paper provides a review of how software
development effort estimation terms are used in software
engineering textbooks and research papers. We found that
the term ‘effort estimate’ frequently is applied without any
clarification of its meaning. It is therefore difficult to
determine whether the authors’ intended interpretation is
an estimate of ‘most likely effort’, ‘planned effort’,
‘budgeted effort’, or something else. This is problematic
as these terms are not equivalent and are used for
different purposes. The lack of clarity of ‘effort estimate’
lowers the quality and interpretability of surveys on
software effort estimation accuracy, i.e., it is not clear
what the estimation accuracy results really mean. This
reduces the estimation evaluation and learning
possibilities. We suggest guidelines on how to reduce this
terminology ambiguity. To the authors’ knowledge, this is
the first published review of software cost estimation
terminology.

1. Introduction

The following two case stories illustrate the
importance of precise communication of estimation
related information, and motivated the review and
recommendations presented in this paper.

Case story 1: In 2003, two of the authors performed a
survey on project estimation in Norwegian software
companies[1]. The goal was to get an in-depth
understanding on estimation practice and to examine
factors with impact on effort estimation accuracy. The
basis for the estimation accuracy measurement was a
comparison of the actual use of effort with the estimated
most likely effort provided in the planning stage of the
project, i.e., how much effort does the contractor believe
that the project will require, regardless of the price to the
customer or the budget. An interesting result was the
observation that governmental projects on average had
significantly higher deviations between estimated most
likely efforts and actual efforts than private projects[2].
This observation made the headlines in Norway’s largest
morning newspaper. The day after the results were

presented, the front page of the newspaper stated ‘Yearly
overruns of 6 billions [Norwegian Kroner] in
governmental IT-projects’[3]. The debate that followed
was heated, and culminated with the research results
being discussed in the Norwegian parliament. In
particular, there were members of parliament that applied
our results as evidence of a governmental waste of money
on IT-projects. Our results, however, did not say anything
about the customers’ budget overruns or losses. Neither
had we studied the software providers’ budget overruns or
losses. What we had studied was the overruns related to
what the software providers believed was the most likely
effort of a project. The newspaper article, which was the
basis for the debate, did not point out this. Budgeted costs
typically include a risk buffer added to the most likely
effort. The cost overrun we found may therefore have
been much higher than the software organizations’ and
the customers’ budget overrun. A consequence of
misinterpretation of the term ‘most likely estimate’ was
that the public discussion mainly focused on whether one
should believe the high cost overrun number or not, and
much less on how governmental projects could be better
managed, i.e., on improvement of their role as software
customers.

Case story 2: Some time ago, one of the authors was
hired as a solution architect of a software project. It was a
high risk project for a number of reasons; the
functionality to be developed was complex, several
stakeholders with conflicting goals were involved and a
non-extendable deadline was set. The initial analysis
suggested that the project would involve about 40 people
and changes had to be made to five systems, all in
operation. Our time and effort estimates suggested that it
was probable that we could deliver before the deadline,
but with small margins. Not surprisingly, during
development we ran into trouble and the changes of one
of the systems were two weeks delayed. The changes of
this system were on the project’s critical path and the
entire project was therefore two weeks delayed. Moving
the deadline was, of course, unacceptable to the customer
because this would ruin the announced launch. However.
what happened was that we delivered all functionality on
time and on budget. How did we manage that? We did it
the same way that many other software development
teams do in similar situations, i.e., we reduced the amount

of testing. The project went into operations, and luckily
only minor failures occurred. How accurate were our
estimates? From the outside, i.e., as would have been
observed in most estimation surveys, we had only minor
effort estimation error and no schedule overrun. In reality,
however, the project would have had larger estimation
error and a time overrun if it had completed the testing
process as planned, i.e., with the promised level of
quality. This case story shows that common measurement
of effort estimation accuracy may give a misleading
picture of the real estimation accuracy and hence a
misleading picture of the need for estimation process and
project management improvement.

The two case stories indicate that proper
communication, interpretation and improvement of
estimation accuracy measurements may be a problem
when there is no precise use of estimation related terms.
That problem motivates the review and guidelines
provided in this paper.

Related work is presented in section 2 of this paper.
Section 3 further elaborates on the consequences of
imprecise use of effort estimation terms. The
consequences are illustrated by observations of software
projects in a Norwegian software development
organization. In Section 4 we review the actual use of
effort estimation terminology in popular software
engineering textbooks, research papers suggesting
estimation guidelines and in estimation surveys. Based on
the discussion in Section 3 and the review in Section 4 we
provide, in Section 5, recommendations aimed at
improvement of use of software effort estimation
terminology and hence enabling estimation process
improvement. Finally, Section 6 concludes the paper.

2. Related work

The problems of the imprecise software cost
estimation terminology have been addressed by several
leading software engineering researchers.

Kitchenham[4] advises that before you improve
estimation processes, you should make sure that you do
not have a management problem. The lack of sufficiently
precise effort estimation terminology, e.g., to reduce the
probability of interpreting an estimate of most likely
effort as a budget, is clearly a management problem.

In Waltzing with bears [5], a book about managing risk
in software projects, DeMarco and Lister list ‘schedule
flaw’ as the largest risk of software projects. Schedule
flaw means to make no distinction between the most
optimistic estimate (with virtually no probability of
achieving), the goal (that the project aims for), the
estimate (the most likely outcome) and the schedule (what
the project commits for).

In ‘Software Estimation Perspectives’ [6], Boehm and
Fairley state two important points about software
estimation: 1) It is best to understand the background of

an estimate before you use it and, 2) It is best to orient
your estimation approach to the use that you are going to
make of the estimate.

Edwards and Moore [7] raise the question whether an
estimate is ‘a rough guide’ to the cost of a project or
‘applying numbers to the detailed project plan’. They
conclude that both are estimates, although these meanings
of estimates are different with respect to uncertainty,
usage and motivation. They later argue that the lack of
clear distinction between these two types of estimates in
estimation tools explains why estimation tools are not
commonly used in the industry.

The ‘Parametric Cost Estimating Handbook’ [8] points
at the importance of the relationship between the estimate
and the product being estimated: This definition [of
parametric estimating] establishes the clear linkage
between cost and a product’s (or end item) technical
parameters. Without this linkage, a product cost cannot
be effectively defined.’

In ‘Software Engineering’ [9], one of the most widely
used books in Software Engineering courses,
Sommerville addresses the problem of comparing
outcomes of different quality when discussing
productivity rates in projects. He argues that produced
quality as well as functionality must be considered, and
concludes that comparison of productivity rate is not
meaningful when solutions with different attributes
(quality) are produced.

In [10], we explain through comparison with vacation
cost estimation and by an industrial case study why
similar estimates with similar accuracy can have huge
differences in estimation performance. In that paper we
exemplify the conflicting goals of different types of
estimates; ‘most-likely software development cost’, ‘risk-
minded planned development cost’ and ‘cost-reducing
planned development costs’.

3. The Importance of Precise Effort
Estimation Terminology

Software development effort estimates are the basis for
project bidding and planning, both critical practices in the
software industry. The consequences of poor budgets and
plans can be dramatic. If budgets and plans are too
pessimistic, business opportunities can be lost, while
over-optimism may be followed by significant losses. The
importance of accurate estimates is supported by the
Standish Group [11] that, based on their CHAOS reports,
concludes that ‘reliable estimates’ is one of the top ten
most important success factors in software projects. It is
therefore unfortunate that a comparison of estimation
surveys [12] indicates that there has not been much
improvement in software cost estimation accuracy over
the last 20 years. We believe that one reason for this lack
of improvement, on a topic as important as effort

estimation, is the imprecise use of effort estimation
terminology. Obviously, most of the inherent problems
with effort estimation are not solved with more precise or
standardized terminology. We believe, however, that a
necessary condition for sustainable improvement is a
precise use of important terms, because lack of precise
estimation terminology easily leads to:
• A mix of values with different purposes, e.g., a mix

of values with focus on realism (most likely effort),
incentives leading to efficient development work
(planned effort), avoidance of budget overrun
(budgeted effort), and winning a bid (price-to-win).
The lack of separation between these purposes have
been found to reduce the realism of estimates [13-
15].

• A mix of related values based on different outcomes,
e.g., the solution that the estimator assumes is going
to be made (the basis for the most likely effort
estimates) might differ from the solution actually
produced (the basis for the actual results) with
respect to functionality (functional parameters) or the
level of quality (technical parameters). The
relationship between effort and functional and
technical parameters is widely acknowledged.

• Improper evaluation, comparison and reporting of
effort estimation performance, including lower ability
to learn from experience [16, 17].

Recent observations of software projects in a

Norwegian software development organization illustrate
this. Over a period of two years we logged estimation
information of 32 software projects in that company (the
logging is part of an on-going study on reasons for
estimation errors). As a part of the logging we requested
that the person responsible for the estimation documented
the estimate of ‘most likely effort’. An analysis of the
description of how the estimate of ‘most likely effort’ was
derived showed, however, a wide variety of interpretation.
In most cases, the estimate was not of most likely effort,
as we had required. Instead, the effort estimate was
typically described as most likely effort added a risk
buffer of varying size, i.e., it was interpreted as the
planned or the budgeted effort, or it was described as the
effort (derived from the price) agreed with the customer.
We have logged similar estimation information in other
organizations and believe that this is a common pattern
[18]. The term ‘effort estimate’ seems to be used, within
the same company, to denote as different values as ‘most
likely effort’, ‘planned effort’, ‘budgeted effort’ and
‘price-to-customer’. The decisions on ‘bid’, ‘planned
effort’ and ‘most likely effort’, however, have conflicting
goals. A bid should, optimally, be low enough to get the
job and high enough to maximize profit, the planned
effort should enable a successful project and motivate to
efficient work, and the estimate of the most likely effort

should represent the most realistic use of effort. Mixing
these goals may be dangerous.

A consequence of the imprecise use of ‘effort estimate’
in the studied organization is that the estimation accuracy
of different projects was hard to compare and evaluate.
We compared the subset of projects that we assessed to be
effort estimates of ‘most likely effort’ (n=6) with those
we assessed to be more of type price-to-customer or
planned effort (n=17), i.e., where a risk buffer typically
was added to the most likely effort. The remaining
projects (n=9) were left out of the comparison because
they were difficult to classify. The estimates of most
likely effort had on average an effort overrun of 11%,
while the estimates including a risk buffer had an average
effort underrun of 8%. From the description of the
estimation process it seems as if a common risk buffer
was 10-20% of most likely effort. When removing the
specified risk buffer from the estimates with risk buffers
(n=17) we found that they had, on average, almost the
same estimation accuracy (about 10% overrun) as the
estimates described as ‘most likely effort’ (n=6). Finding
the average estimation accuracy of all projects, without
adjustments, would be like adding ‘apples and oranges’.

In the studied organization we also found it necessary
to adjust the actual effort for the decreases and increases
in delivered functionality to enable a proper
interpretation. Seven out of the 32 projects had increases
or decreased in functionality of more than 10%. In most
cases this adjustment led to better estimation accuracy,
i.e., many estimates of most likely effort was accurate, but
looked inaccurate because of added or removed
functionality. For example, a project went from 50%
effort overrun to 10% overrun when we adjust for the
increase in functionality. Again, without this adjustment a
comparison of estimation accuracy would not give a
correct picture of the estimation performance of many of
the projects.

These results are supported by the survey described in
the first section of this paper. For instance, the survey
indicates that the separation between price and most likely
effort is blurred in many organizations.

The discussion in this section suggests that a precise
estimation terminology is important and may hinder
estimation process improvements. So, what is the practice
in software engineering textbooks? and, what is the
practice in the research on software effort estimation? Is a
precise estimation terminology used? If not, this may be a
possible reason for the lack of precise estimation
terminology in the software industry. We could not find
any review on the use of estimation terminology in
software textbooks and research. The review in the next
section may therefore be the first review of this type.

4. The Review of Textbooks and Research

4.1. Design of Review Process

The review investigates the use of software effort

estimation terminology in software engineering textbooks,
estimation surveys and in research papers proposing
estimation guidelines. Different approaches were used for
selection of study material. We have selected what we
believe are the most popular textbooks in software
engineering lecturing. As we are only aware of a limited
number of software cost estimation surveys, we have
included all of them. For research papers proposing
estimation guidelines, we searched our own
comprehensive online estimation literature library (The
BESTWeb Library).

The review focused on the questions (Q1-Q3) listed
below. The questions are derived from the software cost
estimation terminology problems discussed in Section 3.

• Q1: Is the term ‘estimate’ precisely defined?
• Q2: Is there a clear and consistent distinction

made between estimates of ‘most likely effort’,
‘plan’, ‘budget’ and ‘price-to-customer’?

• Q3: When evaluating estimation accuracy, are
the estimates and the actual effort comparable?
(This may be achieved either through
adjustments of actual effort or removal of
projects in cases where estimated and actual
effort are not comparable.)

If we were unable to answer the question from the text
in the books and papers, we provide the value
‘Unknown’. When a question is not a topic in a textbook
or a paper, we provide the value ‘N/A’ (not applicable).
The review was conducted by two of the authors,
independently of each other. Disagreements were
discussed. There were only minor disagreements to be
resolved.

4.2. Review of Software Engineering Textbooks

In the FASE newsletter’s rating of the top ten
contributions to the Software Engineering Education,
Training, and Profession (SEET&P) community[19] the
software engineering textbooks by Sommerville [9] and
Pressmann [20] are included. In addition to these two, we
included another widely used book ‘Software Engineering
– theory and practice’ by Pfleeger [21] in the review. The
result of the review is presented in Table 1.

Table 1 Software engineering textbooks

Author/Question Q1 Q2 Q3
Pressmann No No Unknown
Sommerville No No Unknown
Pfleeger No No Unknown

In our opinion, none of the software engineering
textbooks provide a precise definition of what they mean

by effort estimate. Pressman writes that an estimate is: …
your attempt to determine how much money, effort,
resources and time it will take to build a specific
software-based system or product (p.642). Sommerville
writes that: Software estimation is a related activity [to
planning] that is concerned with estimating the resources
required to accomplish the project plan (p. 47). Similarly,
Pfleeger writes that: For most projects the biggest
component of cost is effort. We must determine how many
staff-days of effort will be required to complete the
project (p. 99). None of these descriptions of estimation
make a clear distinction between effort estimates and
budgets, plans and price. We were unable to find better
definitions/descriptions of effort estimates in their books,
which each include a separate section on software cost
estimation.

The lack of definitions means that when terms like
‘effort estimate’ and ‘estimate’ are used, it is difficult to
be sure whether estimate refers to the most likely effort,
most likely effort added a risk buffer, planned effort, or
something else. An example of this difficulty is the
following guideline for estimating by Sommerville: …
estimate as if nothing will go wrong then increase that
estimate to cover anticipated problems. A further
contingency factor to cover unanticipated problems may
also be added to the estimate (p. 53).

Both Pressmann and Sommerville state that technical
as well as functional parameters have a large impact on
estimates. Pressmann argues that quality is an important
factor in estimation, and claims that deadlines can be met
by reducing on quality: but understand that this will
increase risk of poor quality due to the tight deadline (p.
676). Sommerville states that technical parameters are
important in estimation: What we really want to estimate
is the cost of deriving a particular system with given
functionality, quality, performance, maintainability and
so on (p. 595). He also touches the topic of incomparable
solutions when productivity rates are discussed: One
solution may execute more efficiently while another may
be more readable. When solutions with different attributes
are produced, comparing their production rate is not
really meaningful (p. 592). However, neither of the
software engineering textbooks reviewed discusses the
challenges on how to assert estimation accuracy implied
by differences in scope and quality between estimated and
actual effort. No guidelines are given on how the accuracy
should be computed, how to ensure that the estimated
results and the actual result are comparable or how
estimates can be adjusted to achieve comparability.

4.3. Review of Estimation Surveys

The surveys reviewed and our evaluations of their
estimation terminology are presented in Table 2.

Table 2 Estimation surveys

Author / Question Q1 Q2 Q3
Jenkins [22] No No No
Heemstra[23] No No No
Lederer [24] No Unknown No
Moores [25] No Unknown N/A
Bergeron [26] No Unknown No
Wyndenbach [27] No Unknown N/A
Standish [28] No No No
Standish [29] No No No
Moløkken [1] Yes Yes No
Phan [30] No Unknown No
Addison [31] No Unknown N/A

Only one of the estimation surveys attempts to define
what they mean by an effort estimate (Q1). Four surveys
clearly mix estimates and other project values, and six of
the surveys used such a terminology that we were unable
to evaluate if effort estimates were separated from plans
and budgets (Q2). Only one of the surveys used a precise
terminology. But even if a precise terminology is used in
the surveys, this is not enough to ensure that surveys
collect the intended values. If no explicit actions are taken
to ensure that the participants in the surveys differentiate
between the terms, the results of this review indicate that
respondents are likely to mix the terms, and hence the
surveys will collect different values than intended.
Moløkken et al. address this problem by applying
interviews instead of questionnaires to improve the
consistency in use of estimation terms.

None of the surveys measure estimation accuracy in a
way that we find satisfactory (Q3), even if several of the
studies partly address the problem. The Standish Group,
for example, considers implemented versus estimated
functionality and features as a parameter when assessing
project success. None of the surveys report that they have
adjusted the effort estimates relative to risk buffer added
or other factors that lead to incomparability of estimated
and actual effort. Lederer and Prasad is one of the few
that discuss, among other variables, the impact of reduced
quality on estimation accuracy, but the information about
reduced quality is not used to improve the meaningfulness
of the estimation accuracy measurement.

4.4. Review of estimation guideline papers

The estimation guideline papers reviewed were
identified by searching for ‘guidelines’ in the BESTWeb
library. The BEST library is an online database that
contains abstracts of and references to papers on software
effort estimation. It also includes a number of papers that
are closely related to software effort estimation. The
paper by Armstrong [32] is an example of a paper that
does not directly address software cost estimation.
However, as the paper suggests generally applicable

estimation guidelines, it was included in this review. The
result of the review is presented in Table 3.

Table 3 Estimation guideline papers

Author / Question Q1 Q2 Q3
Armstrong [32] No Yes N/A
Lederer [33] No Unkown N/A
Jørgensen[16] Yes Yes N/A

One of the research papers proposing estimation
guidelines defines what is meant by an effort estimate
(Q1), and two out of three clearly separate effort estimates
from budgets, plans and price (Q2). This is apparent when
we among Jørgensen’s guidelines find ‘avoid confliction
goals’ which addresses the difference in goals of different
estimate types. A similar guideline is stated by
Armstrong: ‘Make sure forecasts are independent of
politics’ which is elaborated to mean that the estimation
process should be separated from the planning process. In
the remaining paper, we were not able to determine
whether effort estimates are mixed with budgets, plans
and price.

Neither of the papers reports estimation accuracy (Q3),
but Armstrong as well as Lederer and Prasad provide
guidelines that are directly relevant for estimation
accuracy assessment. When discussing the guideline
‘Anticipate and control user changes’, Lederer and Prasad
say that if changes to scope are large enough, they will
invalidate the estimates. Armstrong suggests several
guidelines relevant for estimation accuracy assessment.
Among those are ‘clean the data’ that addresses
adjustments and ‘use objective tests of assumptions’ that
addresses the validity of the assumptions made when
forecasting.

4.5. Discussion of Results

Our reviews suggest that a reason for the lack of
precise use of estimation terminology in software
organizations is the lack of precise terminology in
software textbooks and research papers. The relationships
may, however, also be in the opposite direction. It is
difficult to survey estimation practice when important
estimation terms are vague, undefined and used
inconsistently by software organizations. Consequently,
improvements should start in both camps. The motivation
for the improvements may be different.

Software organizations should improve their use of
estimation terminology to avoid misunderstandings, to
increase the realism in the estimates, and to improve
learning from experience. Software researchers need a
precise terminology to increase the validity of their
research results, e.g., when comparing two formal
estimation models.

Possible reasons for the current imprecise terminology
and unadjusted estimation accuracy measurement are:

• Authors of estimation literature take a
“deterministic” instead of a “probabilistic” view
on effort estimation. A probabilistic view means
here that ‘most likely effort’, ‘planned effort’,
‘budgeted effort’, etc. are values (with different
probability of being exceeded by actual effort)
on an effort probability distribution. Without a
probabilistic basis of effort estimation
terminology a precise differentiating between
most likely, planned, and budgeted effort may be
difficult to achieve.

• Software organizations do not regard estimation
as a separate activity, but regard it as an
integrated part of project scheduling, project
pricing and project budgeting. As pointed out
earlier, mixing processes may mean mixing
terminology.

• Authors of estimation literature are impacted by
improper analogies (mental models) when
discussing estimation accuracy. The lack of
adjustments in actual effort for changes in
functionality and quality suggests that improper
estimation analogies are applied, e.g., analogies
from forecasting of weather or economic growth.

• Software organizations do typically not collect
the data necessary to validate and adjust the
actual effort. Our experience is that most
organizations have an immature view on how to
measure estimation accuracy measurements and
no resources allocated to in-depth analysis of
estimation accuracy data across projects.

5. Guidelines for Estimation Terminology

Software cost estimation terminology is a large topic
and it is beyond the scope of this paper to provide
suggestions for a complete terminology. We propose two
simple guidelines that we believe, if adopted, will
contribute to improved use of software cost estimation
terminology and act as a basis for improved software
estimation processes. The guidelines are aimed at all users
of software cost estimation terminology including
authors, practitioners, researchers and reviewers. The two
guidelines that we believe are the most important are:

Do not mix estimation of most likely effort with
planning, budgeting or pricing.

Implication of guideline for researchers:

• Use different terms for different concepts. In
particular, separate between estimated ‘most
likely effort’, ‘planned effort’ and ‘budgeted
effort’.

• When conducting surveys or logging estimation
information, do not assume that your
terminology is understood even if you define it.
In-depth studies and triangulation may be needed
to ensure that all you data are based on the same
understanding of your estimation terminology.

Implication of guideline for practitioners:

• Use different terms for different concepts. In
particular, separate between estimated ‘most
likely effort’, ‘planned effort’ and ‘budgeted
effort’.

• Perform estimation of most likely effort as an
independent activity and do not mix it with
planning, budgeting and pricing. People in
charge of bidding should for example not be in
charge of the estimation of most likely effort, to
ensure that pricing and realism are not mixed.
Planning tools should not be used as estimation
tools, or with great care to avoid mix of
concerns.

This guideline contributes, we believe, to increased
realism, better communication, and better learning from
experience.

When assessing estimation accuracy, make sure that
the estimate and the actual effort are comparable.

Implication of guideline for researchers:

• Adjust the actual efforts so that they are
comparable to the estimated effort with respect
to technical and functional parameters before
calculating estimation accuracy. If functional
and quality requirements are not available,
investigate the project plan and use interviews to
find any changes in scope and/or quality. If
estimates are of other types than most likely
effort estimates, transform them to most likely
estimates before calculating the accuracy.

• When estimates cannot be reliably transformed
to values that are comparable to the actual result,
take great care when using these results or
remove the projects from the data set.

Implication of guideline for practitioners:

• Record the scope and other assumptions of the
estimate of most likely effort, e.g., by including
quantifiable quality requirements in the
requirement specification. Specify the version of
the requirement specification and other
documents that estimate of most likely effort is
based on.

• Record deviation from estimated scope, quality,
and development process.

This guideline contributes, we believe, to better
evaluations, valid comparisons and better reporting of
estimation performance.

More estimation guidelines are found in [16, 32].

6. Summary

Effort and schedule overruns are among the most
serious problems in the software industry. In this paper
we argue that the lack of a precise software effort
estimation terminology is an important obstacle for
estimation accuracy improvement. We reviewed
industrial practice, software engineering textbooks,
estimation surveys and estimation research papers
proposing guidelines for effort estimation. We found that
estimates of most likely effort are frequently mixed with
planned effort, budgets and price-to-customer. In
addition, effort estimation accuracy is frequently
measured without adjustments for differences in scope
and/or quality assumed when estimating the effort and the
system actually implemented.

In order to improve effort estimation accuracy, a more
precise software effort estimation terminology is needed.
We provide two guidelines for this purpose: 1) Do not
mix estimation of most likely effort with planning,
budgeting or pricing, and 2) When assessing estimation
accuracy, make sure that the estimate and the actual effort
are comparable.

7. Acknowledgement

Thanks to Barbara Kitchenham for useful comments
on an early draft of this paper. Also, thanks to the
Norwegian Research Council who sponsored this work
through the SPIKE project.

References

1. Moløkken, K. A Survey on Effort Estimation in
Norwegian Software Industry. Accepted for METRICS
2004. 2004. Chicago, USA.

2. Moløkken, K., et al., Project Estimation in the
Norwegian Software Industry – A Summary, in Simula
Report 2004-03. 2004, Simula.

3. Haugnes, G.M., Offentlig IT-sprekk for 6 mrd. hvert
år, in Aftenposten. 2004: Oslo.

4. Kitchenham, B., Software Metrics: Measurement for
Software Process Improvement. 1996: Blackwell
Publishers.

5. DeMarco, T. and T. Listener, Waltzing with bears :
managing risk on software projects. 2003: Dorset
House.

6. Boehm, B. and R. Fairley, Software estimation
perspectives. IEEE Software, 2000. 17(6): p. 22-26.

7. Edwards, J.S. and T.T. Moores, A conflict between the
use of estimating and planning tools in the
management of information systems. European Journal
of Information Systems, 1994. 3(2): p. 139-147.

8. Abran, A. and P.N. Robillard, Function points
analysis: an empirical study of its measurement
processes. IEEE Transactions on Software
Engineering, 1996. 22(12): p. 895-910.

9. Sommerville, Software Engineering. 5. ed. 1996:
Addison Wesley.

10. Jørgensen, M., How much does a vacation cost?
Software Engineering Notes, 2003. 28(6): p. 30.

11. Johnson, J., et al., The Criteria for Success - Industry
Trend or Event, in Software Magazine. 2001.

12. Moløkken, K. and M. Jorgensen. A review of software
surveys on software effort estimation. in International
Symposium on Empirical Software Engineering. 2003.
Rome, Italy: Simula Res. Lab. Lysaker Norway.

13. Cosier, R.A. and G.L. Rose, Cognitive conflict and
goal conflict effects on task performance.
Organizational Behaviour and Human Performance,
1977. 19(2): p. 378-391.

14. Keen, P.G.W., Information systems and
organizational change. Social Impacts of Computing,
1981. 24(1): p. 24-33.

15. Buehler, R., D. Griffin, and H. MacDonald, The role
of motivated reasoning in optimistic time predictions.
Personality and Social Psychology Bulletin, 1997.
23(3): p. 238-247.

16. Jørgensen, M., A review of studies on expert
estimation of software development effort. Journal of
Systems and Software, 2004. 70(1-2): p. 37-60.

17. Jørgensen, M., L. Moen, and N. Løvstad. Combining
Quantitative Software Development Cost Estimation
Precision Data with Qualitative Data from Project
Experience Reports at Ericsson Design Center in
Norway. in Conference on Empirical Assessment in
Software Engineering. 2002. Keele, England: Keele
University.

18. Jørgensen, M. and D.I.K. Sjøberg, Impact of effort
estimates on software project work. Information and
Software Technology, 2001. 43(15): p. 939-948.

19. FASE, Top Ten Contributions. FASE Newsletter,
1999. 9(12).

20. Pressman, R.S., Software engineering - a
practitioner's approach. 6. ed. 2001: McGraw-Hill.

21. Pfleeger, S.L., Software Engineering - theory and
practice. 1998: Prentice Hall.

22. Jenkins, A.M., J.D. Naumann, and J.C. Wetherbe,
Empirical investigation of systems development
practices and results. Information and Management,
1984. 7(2): p. 73-82.

23. Heemstra, F.J. and R.J. Kusters. Controlling Software
Development Costs: A Field Study. in International
Conference on Organisation and Information Systems.
1989. Bled, Yugoslavia.

24. Lederer, A.L. and J. Prasad, Information systems
software cost estimating: a current assessment.
Journal of Information Technology, 1993. 8(1): p. 22-
33.

25. Moores, T.T. and J.S. Edwards, Could Large UK
Corporations and Computing Companies Use

Software Cost Estimating Tools? - A Survey. European
Journal of Information Systems, 1992. 1(5): p. 311-
319.

26. Bergeron, F. and J.Y. St-Arnaud, Estimation of
information systems development efforts: a pilot study.
Information and Management, 1992. 22(4): p. 239-
254.

27. Wydenbach, G. and J. Paynter, Software Project
Estimation: a Survey of Practices in New Zealand.
New Zealand Journal of Computing, 1995. 6(1B): p.
317-327.

28. The CHAOS Report. 1994, The Standish Group.
29. Chaos Chronicles Version 3.0. 2003, The Standish

Group: West Yarmouth, MA.
30. Phan, D., D. Vogel, and Nunamaker, The Search for

Perfect Project Management. Computerworld, 1988:
p. 95-100.

31. Addison, T. and S. Vallabh. Controlling Software
Project Risks - an Empirical Study of Methods used by
Experienced Project Managers. in SAICSIT 2002.
2002. Port Elizabeth, South Africa.

32. Armstrong, J.S., Standards and practices for
forecasting, in Principles of forecasting:A handbook
for researchers and practitioners. 2001, Kluwer
Academic Publishers: Boston.

33. Lederer, A.L. and J. Prasad, Nine management
guidelines for better cost estimating. Communications
of the ACM, 1992. 35(2): p. 51-59.

