Trandating Scalable Video Streams from Wide-Area
to Access Networks

Carsten Griwodz, Steffen Fiksdal, Pal Halvorsen
IF1, University of Oslo, Norway
Email: {griff, steffenf, paalh} @ifi.uio.no

Transmitting video over UDP has been considered advantageous because it allows for dis-
carding of packets in favor of retransmissions, and sender-controlled timing. Using UDP has
been criticized because it allows video streams to consume more than their fair share of band-
width, which is typically associated with the back-off behavior of TCP. TCP-friendly algorithms
are meant as a middle path. However, UDP delivery to end systems may still be prevented by
firewalls or for other reasons, and TCP must be used. This in turn suffers from bandwidth fluc-
tuations. Therefore, we investigate an architecture that separates the transfer of a video stream
over long distances in a TCP-friendly transmission in the backbone and TCP transmission in
access networks.

In this paper, we consider a proxy server to translate the traffic and two straight-forward
approaches for the translation of a layered video stream transmission from the TCP-friendly
transport protocol to TCP. In the first approach, we look at two strictly decoupled transfers with
unlimited buffers at the proxy. In the second approach, we consider a single-threaded proxy
implementation that uses blocking TCP sockets and experiences backpressure for forwarding
the data. We do not expect that one of these two approaches is by itself suited for the task, but
investigating them will provide with insights in their basic functions and help in discovering ap-
propriate modifications. For the investigation, we use an experimental approach where network
behavior and content are emulated.

Keywords

Scalable video, proxy server, TCP-friendliness, experiments

1 Introduction

The amount of streaming media services in the Internet has been increasing in the last years,
and on-demand access to stored content makes up a major share of this. To reduce the increase
in bandwidth demand on their up-link connection to the general Internet, many Internet service
providers (ISPs) make uses of proxy caching at the edge of their network. Since these proxy
caches cannot store all content, there will still be delivery of streams from original servers, but
we propose that the proxy servers should be used to improve also this delivery.



Typically, streaming services in the Internet are envisioned to use UDP for data transfer
because multimedia applications have other demands on bandwidth, reliability and jitter than
offered by TCP. This is in reality impeded by firewalls installations in access networks and
on end systems allowing TCP traffic only. Therefore, a solution that uses streaming of TCP
in access networks is desirable. The transport of streaming media data over several backbone
networks, however, would be hindered by the use of TCP because of its probing behavior,
which leads to rapid reduction and slow recovery of its packet rate. Applications using UDP do
not have to follow this approach and have therefore been criticized because they do not leave
other traffic its fair share of the available bandwidth. Since TCP is considered an appropriate
reference for fairness, protocols and mechanisms that react to congestion in a way that is similar
to TCP are classified TCP-friendly and considered more acceptable. Widmer, Denda & Mauve
(2001) provide a survey of such protocols and mechanisms. One definition of TCP-friendliness
is that the packet rate of a TCP-friendly application should be proportional to the inverse square

root of the packet loss rate (1 /\ﬂp)). TCP-friendly transport achieves the same throughput as
TCP on average but with less throughput variations.

We show considerations for combining the use of TFRC in the backbone with the use of
TCP in access networks. In particular, we identify buffer use on the proxy and rate fluctuations
in the network. We relay on scalable video, which makes it possible for real-time streaming
services to adapt to variations in the packet rate. A variety of approaches exists, and in this
paper, we consider an approach to course-grained scalable video that achieves high quality,
Scalable MPEG (SPEG) (Krasic 2004). Even though Krasic (2004) aims at an approach for
streaming scalable video over TCP, it works with TCP-friendly approaches that have fewer
variations in the packet rate than TCP and lead to reduced buffer use on server and clients. The
rest of this paper is organized as follows: Section 2 looks at some related work. In section 3, we
describe our experiments and our results. Based on our results, we outline different mechanism
combinations in section 4, and finally, we conclude in section 5.

2 Related Work

Proxies have been used for improved delivery of streaming media in several earlier works.
Prefix caching has addressed issues of latency and backbone throughput (Sen, Rexford &
Towsley 1999). In multicast works such as receiver-driven layered multicast (McCanne, Jacob-
son & Vetterli 1996), multicast routers which may also be proxy servers are meant to forward
packets only to those subtrees of the multicast tree that have subscribed to those packets. In
more recent work, proxies have filtered out layers of a scalable format to adapt to end-system
capabilities (Zink 2003). While the idea of using scalable codecs for adaptivity is rather old,
scalable codecs for streaming video that are able to maintain a high quality over a wide range
of bandwidths have been developed only in the last few years. Horn & Girod (1994) and Krasic
(2004) have worked on course-grained scalability, more recently fine-grained scalability and
multiple description coding have attracted interest.

In this paper, we want to draw attention to issues that occur when a proxy is used to trans-
late transport protocols in such a way that TCP-friendly transports mechanisms can be used in
backbone networks and TCP can be used in access networks to deliver streaming video through
firewalls. Krasic (2004) argues that the most natural choice for TCP-friendly traffic is using TCP
itself. While we agree in principle, their priority progress streaming approach requires a large



amount of buffering to hide TCP throughput variations. In particular, this smoothing buffer is
required to hide the rate-halving and recovery time in TCP’s normal approach of probing for
bandwidth which grows proportionally with the round-trip time. To avoid this large buffering
requirement at the proxy, we would prefer an approach that maintains a more stable packet rate
at the original sender. The survey of Widmer, Denda & Mauve (2001) shows that TFRC is
a reasonably good representative of the TCP-friendly mechanisms for unicast communication.
Therefore, we have chosen this mechanism for the following investigation.

3 Experiments

To investigate the effects of translating a video stream from a TCP-friendly protocol in the
backbone to TCP in the access network, we have used emulation. Since the throughput of the
TCP-friendly protocol and TCP will be different, a proxy implementation has four means of
handling congestion in the access network:

1. It can buffer data that it receives from the server until the access network recovers from
congestion.

2. It can create backpressure on the link between proxy and server by refusing to accept
packets.

3. It can adapt the bandwidth between proxy and client by dropping packets from the server
in a controlled manner.

4. A combination of the above.

In this investigation, we have considered the first two options. We expect that the third
option would yield results similar to our investigation for TCP-friendly transport in backbone
and access networks in Zink, Griwodz, Schmitt & Steinmetz (2003). The fourth option requires
understanding the first three and is future work.

3.1 Experimental Setup

In our experimental investigation, we have emulated a real system using the server, proxy and
client implementations of the KOMs Streaming System (komssys) (Zink, Griwodz & Steinmetz
2001), the NistNET network emulator (Carson & Santay 2003) to emulate delay in back-
bone and access network links as well as packet loss in the access network, and the tg traf-
fic generator to model cross traffic in the backbone. The packages used are available from
http://komssys.sourceforge.net, http://snad.ncsl.nist.gov/nistnet and http://www.kom.tu-darm-
stadt.de/rsvp, respectively. For the investigation, an implementation of RTP over TCP was
added to komssys. This option was preferred over the in-band delivery of video-data in the
RTSP control channel in order not to break the separation of control and data flow in komssys.
To support TCP-friendly behavior between server and proxy, we also use the TFRC imple-
mentation in komssys, which is an RTP variation in which we use application-specific RTCP
messages that are used to acknowledge each received packet. Note that TFRC is modelled after
TCP Reno, but as TCP implementation we used the default of Linux 2.4, which is TCP FACK.



The content used consists of dummy videos that are modeled after the SPEG encoding that
is used in priority progress streaming. The dummy videos have 4 layers of constant equal band-
width of 0.25 Mbps. Only the server in our scenario discards packets in a controlled manner
according to their priority. In particular, and in contrast to Zink (2003), the proxy in this sce-
nario uses priority-aware filtering. By considering layered video, we achieve a situation where
controlled packet loss can allow the reduction of bandwidth that is required for transmission of
the video and maintain the videos’ original frame rate. We intend to maintain this frame rate.
We ignore badput at the proxy, i.e. we do not discard high layer packets at the proxy when their
corresponding lower layer packets have gotten lost.

In the following two sections, we show the observations that we made in the case of us-
ing buffering and backpressure, respectively. We use the term packet rate when we refer to
the amount of data that is sent from the server to the proxy. This is appropriate because the
transmission is performed in independent UDP packets, which is an important detail for the
interpretation of section 3.3. We use a constant MTU size of 1500 bytes, and therefore, the
packet rate translates directly to a bandwidth.

In each of the tests shown here we investigate 9 different scenarios. These are combinations
of packet loss in the access network and cross-traffic in the backbone. We consider 0%, 2% and
5% packet loss in the access network, and no, medium or high cross traffic in the backbone.
Both medium and high cross-traffic are modeled by one Pareto source with a Hurst parameter
of 0.5 for the average self-similarity and two greedy TCP sources.

3.2 Buffering

In this investigation, we look at scenarios where the proxy buffers all data received from the
server until it can be forwarded to the client. No data is discarded at the proxy. This implies
that the packet rate between server and proxy is decoupled from the transmission of data from
the proxy to the server. So, in case of congestion that is experienced between proxy and client,
buffer growth at the proxy cannot be avoided. However, the bandwidth between proxy and
client must be sufficient to accommodate the full data rate of the video that is sent from the
server to achieve a stable scenario. If this is not the case, the buffer consumption at the proxy
grows infinitely. This condition must still be fulfilled on average when packet loss between
proxy and client leads to a bandwidth reduction. In these scenarios, two resources are critical,
the buffer size in the proxy and the jitter experienced at the client:

e The buffer size can become large at the proxy even under the condition that the average
data rate that is sent from the server is lower than the average TCP throughput between
proxy and client. Since we perform neither packet dropping or reordering at the proxy,
the latency of packet arrivals at the client grows with the buffer size at the proxy, and it
must be accommodated by pre-buffering the beginning of earlier data at the client. The
user will experience a large startup latency, unless the client implementation ignores these
buffering delays and chooses to break the continuous playback of the video.

e The jitter experienced at the client is near exclusively due to the delays introduced by
the TCP congestion control between proxy and client. In addition to the buffering at the
client that is necessary to overcome the delay that is introduced by the variation in average
throughput on the TCP link, buffering is also necessary to hide jitter from the end user.



Figure 1: Take in Figure 1

The graph in figure 1 compares the latency under various network conditions. It shows
that the cross-traffic between server and proxy, which leads to loss and packet rate reduction
in TFRC, affects the end-to-end latency even though the latency between server and proxy
remains nearly constant. Thus, the change is only due to the development of buffer space at the
proxy. It is noteworthy that the affect on the minimal and average latency is limited, while the
standard deviation and 95-percentile is considerably smaller when the TFRC algorithm reduces
the bandwidth between server and proxy. This implies that the server reduces the bandwidth of
the video at the source by sending only the lower layers of the layered video.

The reason for the limited effect on the average delay is that the buffer at the proxy must be
empty most of the time. Since the average bandwidth between proxy and client is limited to a
bandwidth that can be sustained even in the case of high packet loss between proxy and client,
we have guaranteed that the buffer on the proxy is frequently empty even if no packets are lost
between server and proxy (see figure 2). Thus, the buffer is small in the average case and grows
only under temporary bandwidth reduction due to the TCP congestion control algorithm. Then,
the rate of packet arrival from the server determines how quickly the buffer grows.

Figure 2: Take in Figure 2

3.3 Backpressure

In this section, we consider a single-threaded implementation that uses blocking TCP write for
transmission from the proxy to the client. This variation is advantageous because of its straight-
forward implementation. We can also expect that congestion in the access network affects the
connection between server and proxy. For this scenario, we increase the TFRC bandwidth limit
in such a way that the access network cannot support the maximum data rate that can be sent
from the server. The sending rate of the server must be limited by backpressure from the proxy.
This means for TFRC that the proxy must report loss.

In our experiments, we observe huge fluctuations in the TFRC transmission rate that far
exceed the bandwidth variations of TCP even in the best case, without packet loss in the access
network and no cross traffic in the backbone. Obviously, this means that the server changes
the number of layers that it sends for video frequently. Even though all packets are delivered
to the client, it experiences frequent quality variations. We found that the reason for this is the
TCP implementation, in particular the way in which the kernel notifies the application about
free space in the TCP send buffer. The reason is found in the Linux implementation of Clark’s
algorithm: a sender that blocks in a TCP write operation is woken up only when the send
buffer becomes one third empty. This behavior affects the TFRC algorithm indirectly. While
the proxy blocks in a TCP write operation, UDP packets continue to arrive from the server.
However, UDP packets are not queued in the kernel and since the receiving thread blocks in the
TCP write, the UDP packets are dropped. Consequently, they are reported as lost packets to the



TFRC algorithm which reduces that data rate. Subsequently the lower data rate can be handled
by the TCP send buffer without running full and blocking the proxy thread. No more misses are
reported to the server and TFRC algorithm increases the bandwidth gradually.

An interesting detail of this problem is that it worsens when the average bandwidth is re-
duced. Thus, when the bandwidth of the access network is lower, the server will on average
send no more packets than can be supported by the access network but the intensity of quality
changes that become visible at the client is larger. Figure 3 shows this effect. The difference
in the figure appear because it takes longer to transfer one third of the constant-sized TCP send
buffer on a 128 kbps line than on a 512 kbps line. In the time it takes on a 128 kbps line,
more packets from the server are lost and TFRC reduces the bandwidth much further than in
the 512 kbps case. Subsequently, the same number of packets are successfully copied into the
TCP send buffer (even though of lower video layers), the same low packet loss numbers are
reported to TFRC as in the 512 kbps case, and the sending rate of the server rises in a similar
manner. Another detail is that the situation improves somewhat when some loss occurs in the
access network.

Figure 3: Take in Figure 3

4 Evaluation

We conclude from the buffering experiments in section 3.2 that it would be very beneficial
for the latency at the client to buffer only the lower layers of the video in case of temporary
congestion on the proxy-client link, and to discard the higher layers in a controlled manner. We
can imagine two approaches for reducing the effects of the TCP congestion control mechanism:

e \We can send feedback to server to reduce bandwidth at the server side. However, this may
take too long because the time for sending an entire TCP send buffer of 64 kbytes which
contains between 62.5 ms and 250ms of video data, depending on the number of video
layers transmitted. We assume big round-trip times between server and proxy (200 ms
in our experiments), and we have seen in figure 2 that even in the worst case, the proxy
buffer does not exceed the size of one additional maximum TCP send buffer. Thus, this
would be counter-productive and only prevent higher layers from reaching the client after
the temporary congestion has disappeared. However, reporting to the server the average
rate that is supported between proxy and client would be a good alternative to the fixed
bandwidth limit of our experiments.

e We can filter layers at the proxy. Filtering at the proxy is an alternative for this. By
examining the timestamps and priorities that are associated with the packets that arrive
from the server, packets of the higher layers can be discarded. In this way, lower layers
packets are buffered that have later timestamps, and thus, the effective latency at the time
of arrival at the client is reduced.

As an alternative to this approach which decouples the backbone and access network traffic
completely, we can look at a strict coupling without blocking as well. In Priority-aware drop-
ping, we drop higher layers from the queue in a controlled manner to prevent jitter when the



application level buffer grows. Approaches that could be adapted to this have been presented
by Zink (2003) and by Krasic (2004).

Furthermore, the proxy could filter packets based on a jitter threshold. It requires that the
client informs the proxy about the amount of artificial latency that it introduces to reduce jitter,
and the amount of buffer space that it uses for this. The proxy can use this information to make
decisions about packet forwarding. It can extract the expected playout time of packets arriving
from the server, and discard packets from its send queue if they would have to be discarded at
the client. As shown by Zink (2003), the best solution is not to discard the oldest packet, but the
number of layers that are forwarded should be maintained constant for as long as possible. This
prevents foremost the jitter but also smooths out the layers so that the quality variations can be
kept at a minimum.

From the backpressure experiments in section 3.3 we can conclude that an implicit limita-
tion of the bandwidth between server and proxy is not at all a viable solution without a better
means of reporting availability of TCP send buffer space to the application. One such means
is the TCP Minbuf patch cited in Krasic (2004). Their approach reduces the TCP send buffer
to the congestion window size and applies Clark’s algorithm only to that buffer. Thereby, ap-
plication that perform TCP write are awaken more frequently when the available bandwidth is
low. In our backpressure approach, this would lead to more frequent, but less severe TFRC loss
reports to the server. The server would then determine a less varying packet rate and send more
lower layer and less higher layer packets.

The Priority-aware dropping and Jitter Threshold approaches have the disadvantage that
they decouple backbone and access network like the buffering approach, even though the effect
quality is reduced. But to some extent, packets that are dropped at the proxy could have been
dropped from the transmission of the server in the first place. One possibilty would be the use
of Early Congestion Notification (ECN) extensions to TFRC which makes it possible to reduce
the sending rate without actual losses.

5 Conclusion and Future Wor k

In this paper, we have investigated two straight-forward approaches for the translation a layered
video stream transmission from a TCP-friendly transport protocol in the backbone to TCP in
the access network. As expected, we found that neither of these unmodified approaches are
particularly well suited for the task, but we have gained valuable insight into the reasons for the
failures of these two approaches.

Specifically, we found for the case of strict decoupling of backbone and access network that
unpredictable amounts of buffering are necessary at the proxy. These would force clients to
prefetch large amounts of data before starting playback or to accept interruptions in playout.

For the case of strict coupling of backbone and access network, we traced the problems to
the typical implementation of TCP. We looked at forwarding in a single thread using blocking
TCP write. Typical TCP implementations allow applications to copy data into the TCP send
buffer in burst, which leads to long phases of blocking and long phases of non-blocking in
the proxy thread, which results in inconclusive feedback to the server and frequently quality
variations at the client. We have therefore discussed a set of options that lead to a middle way
and can improve performance. We plan to investigate alternative options like those described in
section 4 in the future.



References

Carson, M. & Santay, D. (2003), ‘NIST Net: a Linux-based network emulation tool’, ACM Computer Communi-
cation Review 33(3), 111-126.

Horn, U. & Girod, B. (1994), Pyramid coding using lattice vector quantization for scalable video applications, in
‘Proceedings of the International Picture Coding Symposium (PCS)’, Sacramento, CA, USA, pp. 183-185.

Krasic, C. (2004), A Framework for Quality Adaptive Media Streaming, PhD thesis, OGI School of Science &
Engineering at OHSU.

McCanne, S., Jacobson, V. & Vetterli, M. (1996), ‘Receiver-driven layered multicast’, ACM Computer Communi-
cation Review 26(4), 117-130.

Sen, S., Rexford, J. & Towsley, D. (1999), Proxy Prefix Caxching for Multimedia Streams, in ‘Proceedings of
the Joint Conference of the IEEE Computer and Communications Societies (INFOCOM)', IEEE Press, New
York, NY, USA, pp. 1310-1319.

Widmer, J., Denda, R. & Mauve, M. (2001), ‘A survey on TCP-friendly congestion control’, Special Issue of the
IEEE Network Magazine ’Control of Best Effort Traffic”” 15, 28-37.

Zink, M. (2003), Scalable Internet Video-on-Demand Systems, PhD thesis, Darmstadt University of Technology,
Darmstadt, Germany.

Zink, M., Griwodz, C., Schmitt, J. & Steinmetz, R. (2003), Scalable TCP-friendly video distribution for het-
erogeneous clients, in ‘Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking
(MMCNY', SPIE, San Jose, CA, USA, pp. 102-113.

Zink, M., Griwodz, C. & Steinmetz, R. (2001), KOM player - a platform for experimental vod research, in ‘IEEE
Symposium on Computers and Communications (ISCC)’, pp. 370-375.



