
Assessment of Data Path Implementations for Download and Streaming

Pål Halvorsen1,2, Tom Anders Dalseng1, Carsten Griwodz1,2

1IFI, University of Oslo, Norway 2Simula Research Laboratory, Norway
Email: {paalh, tdalseng, griff}@ifi.uio.no

Abstract
Distributed multimedia streaming systems are increas-

ingly popular due to technological advances, and numerous
streaming services are available today. On servers or proxy
caches, there is a huge scaling challenge in supporting thou-
sands of concurrent users that request delivery of high-rate,
time-dependent data like audio and video, because this re-
quires transfers of large amounts of data through several
sub-systems within a streaming node. Since the speed in-
crease for memory accesses does not follow suite with the
CPU speed, copy operations can be a severe limiting factor
on the streaming performance of off-the-shelf operating sys-
tems, which still have only limited support for data paths
that have been optimized for streaming despite previous re-
search proposals. We observe furthermore that while CPU
speed continues to increase, system call overhead has grown
as well, adding to the cost of data movement. In this paper,
we therefore revisit the data movement problem and provide
a comprehensive evaluation of possible streaming data I/O
paths in Linux 2.6 kernel. We have implemented and evalu-
ated enhanced mechanisms and show how to provide support
for more efficient memory usage and reduction of user/kernel
space switches for streaming applications.

1 Introduction
Improvements in access network connectivity with flat-

rate Internet connections, such as DSL, cable modems and
recently E-PON, and large improvements in machine hard-
ware make distributed multimedia streaming applications
increasingly popular and numerous streaming services are
available today, e.g., movie-on-demand (Broadpark), news-
on-demand (CNN), media content download (iTunes), on-
line radio (BBC), Internet telephony (Skype), etc. At the cli-
ent side, there is usually no problem presenting the streamed
content to the user. On the server side or on intermediate
nodes like proxy caches, however, the increased popularity
and the increasing data rates of access networks make the
scaling challenge even worse when thousands of concurrent
users request delivery of high-rate, time-dependent data like
audio and video.

In such media streaming scenarios (and many others) that
do not require data touching operations, the most expensive

server-side operation is moving data from disk to network
including encapsulating the data in application- and network
packet headers. A proxy cache may additionally forward
data from the origin server, make a cached copy of a data ele-
ment, perform transcoding, etc. Thus, both servers and inter-
mediate nodes that move large amounts of data through sev-
eral sub-systems within the node may experience high loads
as most of the performed operations are both resource and
time consuming. Especially, memory copying and address
space switches consume a lot of resources [1, 2], and since
improvements in memory access speed do not keep up with
the increase in CPU speed, these operations will be a severe
limiting factor on streaming performance of off-the-shelf op-
erating systems having only limited support for optimized
data paths.

In the last 15 years, the area of data transfer overhead
has been a major thread in operating system research. In
this paper, we have made a Linux 2.6 case study to determ-
ine whether more recent hardware and commodity operating
systems like Linux have been able to overcome the prob-
lems and how close to more optimized data paths the exist-
ing solutions are. The reason for this is that a lot of work
has been performed in the area of reducing data movement
overhead, and many mechanisms have been proposed using
virtual memory remapping and shared memory as basic tech-
niques. Off-the-shelf operating systems today frequently in-
clude data path optimizations for common applications, such
as web server functions. They do not, however, add ex-
plicit support for streaming media, and consequently, a lot
of streaming service providers make their own implement-
ations. We investigate therefore to which extent the gen-
eric functions are sufficient and whether dedicated support
for streaming applications can still considerably improve
performance. We revisit this data movement problem and
provide a comprehensive evaluation of different mechanisms
using different data paths in the Linux 2.6 kernel. We have
performed several experiments to see the real performance
retrieving data from disk and sending data as RTP packets
to remote clients. Additionally, we have also implemented
and evaluated enhanced mechanisms and we can show that
they still improve the performance of streaming operations
by providing means for more efficient memory usage and re-
duction of user/kernel space switches. In particular, we are



able to reduce the CPU usage by approximately 27% com-
pared to best existing case removing copy operations and
system calls for a given stream.

The rest of this paper is organized as follows: Section 2
gives a small overview of examples of existing mechanisms.
In section 3, we present the evaluation of existing mechan-
isms in the Linux 2.6 kernel, and section 4 describes and
evaluates some new enhanced system calls improving the
disk-network data path for streaming applications. Section 5
gives a discussion, and finally, in section 6, we conclude the
paper.

2 Related Work

The concept of using buffer management to reduce the
overhead of cross-domain data transfers to improve I/O per-
formance is rather old. It has been a major issue in operat-
ing systems research where variants of this work have been
implemented in various operating systems mainly using vir-
tual memory remapping and shared memory as basic tech-
niques. Already in 1972, Tenex [3] used virtual copying,
i.e., several pointers in virtual memory to one physical page.
Later, several systems have been designed which use virtual
memory remapping techniques to transfer data between pro-
tection domains without requiring several physical data cop-
ies. An interprocess data transfer occurs simply by chan-
ging the ownership of a memory region from one process
to another. Several general purpose mechanisms support-
ing a zero-copy data path between disk and network adapter
have been proposed, including Container Shipping [4], IO-
Lite [1], and UVM virtual memory system [5] which use
some kind of page remapping, data sharing, or a combina-
tion. In addition to mechanisms removing copy operations
in all kinds of I/O, some mechanisms have been designed to
create a fast in-kernel data path from one device to another,
e.g., the disk-to-network data path. These mechanisms do
not transfer data between user and kernel space, but keep the
data within the kernel and only map it between different ker-
nel sub-systems. This means that target applications com-
prise data storage servers for applications that do not manip-
ulate data in any way, i.e., no data touching operations are
performed by the application. Examples of such mechan-
isms are the stream system call [6], the Hi-Tactix system [7],
KStreams [8] and the sendfile system call (for more refer-
ences, see [2]).

Besides memory movement, system calls are expensive
operations, because each call to the kernel requires two
switches. Even though in-kernel data paths remove some
of this overhead, many applications still require application
level code that makes kernel calls. Relevant approaches to
increase performance include batched system calls [9] and
event batching [10].

Although these examples show that an extensive amount
of work has been performed on copy and system call avoid-
ance techniques, the proposed approaches have usually re-

mained research prototypes for various reasons, e.g., they
are implemented in own operating systems (having an im-
possible task of competing with Unix and Windows), small
implementations for testing only, not integrated with the
main source tree, etc. Therefore, only some limited support
is included in the most used operating systems today like the
sendfile system call in UNIX, Linux, AIX and *BSD. In the
next section, we therefore evaluate the I/O pipeline perform-
ance of the new Linux 2.6 kernel.

3 Existing Mechanisms in Linux

Despite all the proposed mechanisms, only a limited sup-
port for various streaming applications is provided in com-
modity operating systems like Linux. The existing solu-
tions for moving data from storage device to network device
usually comprise combinations of the read/write, mmap and
sendfile system calls. Below, we present the results of our
performance tests using combinations of these for content
download operations (adding no application level inform-
ation) and streaming operations (adding application level
RTP header for timing and sequence numbering).

3.1 Test Setup

The experiments were performed using two machines
connected by a point-to-point Ethernet connection. The test
machine has an Intel 845 chipset, 1.70 GHz Intel Pentium4
CPU, 400 MHz front side bus and 1 GB PC133 SDRAM.
The resource usage is measured using the getrusage function
measuring consumed user and kernel time to transfer 1 GB
of data stored using the Reiser file system in Linux 2.6. Be-
low, we have added the user and kernel time values to get the
total resource consumption, and each test is performed 10
times to get more reliable results. However, the differences
between the tests are small.

3.2 Copy and Switching Performance

Before looking at the disk-network data transfer perform-
ance, we first look at the memory copy and system call per-
formance themselves. In figure 1, an overview of the chipset
on our test machine is shown (similar to many other Intel
chipsets). Transfers between device and memory are typ-
ically performed using DMA transfers that move data over
the PCI bus, the I/O controller hub, the hub interface, the
memory controller hub and the RAM interfaces. A memory
copy operation is performed moving data from RAM over
the RAM interfaces, the memory controller hub, the sys-
tem (front side) bus through the CPU and back to another
RAM location with the possible side effect of flushing the
cache(s). Data is (possibly unnecessarily) transferred sev-
eral times through shared components reducing the overall
system performance.



Pentium 4
Processor

registers

cache(s)

I/O
controller

hub

I/O
controller

hub

memory
controller

hub

memory
controller

hub

s
y
s
te

m
 b

u
s

(6
4
-b

it
, 
4
0
0
 M

H
z)

h
u

b
 i

n
te

rf
a

c
e

(f
o
u
r 

 8
-b

it
, 
6
6
 M

H
z)

PCI bus
(32-bit, 33 MHz)

RAM interface
(two 64-bit, 200 MHz)

SDRAM

SDRAM

PCI slots

PCI slots

k
e
y
b
o
a
rd

, 
ID
E
, 

U
S
B
, 
E
th
e
rn
e
t,

 
fl
o
p
p
y
, 
…

A
G
P

Figure 1. Pentium4 processor and 845 chipset

In [11], memory copy performance was measured on
Linux (2.2 and 2.4) and Windows (2000) where the conclu-
sion was that memcpy performs well (compared to other copy
functions/instructions), and Linux is in most cases faster than
Windows depending on data size and used copy instruction.
Furthermore, to see the performance on our test machine, we
tested memcpy using different data sizes. Figure 2a shows
that the overhead is slowly growing with the size of the data
element, but after reaching a certain size (having cache size
effects) the overhead increases more or less linearly with the
size (figure 2b)1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  20  40  60  80  100  120

co
ns

um
ed

 C
PU

 ti
m

e 
(n

s)

data size (bytes)

memcpy

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  20000  40000  60000  80000  100000  120000

co
ns

um
ed

 C
PU

 ti
m

e 
(n

s)

data size (bytes)

memcpy

a) b)

Figure 2. User space memory copy speed

With respect to switching contexts, system call overhead
(and process context switches) are time consuming on Pen-
tium4 [12]. To get an indication of the system call overhead
on our machine, we measured the getpid system call, access-
ing the kernel and only returning the process id. Our exper-
iments show that the average time to access the kernel and
return back is approximately 920 nanoseconds for each call.

Copy and system call performance has also been an is-
sue for hardware producers like Intel, who has added new
instructions, in particular MMX and SIMD extensions use-
ful for copy operations and sysenter and sysexit instructions
particularly for system calls. For example, using SIMD in-
structions, the block copy operation speed was improved by
up to 149% in the Linux 2.0 kernel, but the reduction in CPU
usage was only 2% [13]. Thus, both copy and kernel access
performance still are resource consuming and remain pos-
sible bottlenecks.

1The single high peek in figure 2a at 42 bytes is due to one single test
being interrupted by an external event. Additionally, some strange artifacts
can be seen when the size of the memory address are not 4-byte aligned
with even higher peeks in user space. This is also apparent for larger data
sizes and is probably due to different instructions.

 0

 5

 10

 15

 20

 25

 30

 35

204814721024512256

co
ns

um
ed

 C
PU

 ti
m

e 
(s

ec
on

ds
)

packet payload size (bytes)

read_send
mmap_msend

mmap_send
sendfile
kmsend

ksendfile

 0

 5

 10

 15

 20

 25

 30

 35

TCP
sendfile

204814721024512256

co
ns

um
ed

 C
PU

 ti
m

e 
(s

ec
on

ds
)

packet payload size (bytes)

mmap_send on TCP
read_send on TCP

sendfile on TCP

a) UDP b) TCP

Figure 3. Content download operations

3.3 Disk-Network Path

The functions used for retrieving data from disk into
memory are usually read or mmap. Data is transfered us-
ing DMA from device to memory, and in case of read, we
require an in-memory copy operation to give the application
access to data whereas mmap shares data between kernel and
user space. To send data, send (or similar) can be used where
the payload is copied from the user buffer or the page cache
depending on whether read or mmap is used, respectively,
to the socket buffer (sk_buf ). Then, the data is transfered in
a DMA operation to the network device. Another approach
is to use sendfile sending the whole file in one operation,
i.e., data is sent directly from a kernel buffer to the com-
munication system using an in-kernel data path. Thus, if
gather DMA operations are supported, i.e., needed because
the payload and the generated headers are located in differ-
ent (sk_buf ) buffers, data can be sent from disk to network
without any in-memory copy operations.

3.4 Content Download Experiments

The first test we performed looking at the whole disk-
network data path was in a content download scenario. Here,
data needs only to be read from disk and sent as soon as pos-
sible without application level control. Thus, there is no need
to add application level information. To evaluate the per-
formance, we performed several tests using the different data
paths and system calls described in section 3.3 and table 1-
A using both TCP and UDP. For UDP we also added three
enhanced system calls to be able to test a download scenario
similar to sendfile with TCP.

The results for UDP are shown in figure 3a. We see, as
expected, that removal of copy operations and system calls
both give performance improvements. Furthermore, in fig-
ure 3b, the results using TCP are shown. Again, we see that
a quite a lot of resources can be freed using sendfile com-
pared to the two other approaches making several system
calls and copy operations per data element. Note, however,
that it seems that getrusage is still not fully implemented for
TCP in the 2.6 kernel. Thus, the TCP and UDP experiments
are not directly comparable.

From the results, we can see that the existing sendfile
over TCP performs very well compared to the other tests



A – content download
co s calls to the kernel

read_write 2n 4n n read and n write calls (TCP will probably gather several smaller elements into one larger MTU-sized packet)

mmap_send n 2+2n 1 mmap and n send calls (TCP will gather several smaller elements into one larger MTU-sized packet)

sendfile (UDP) 0 2n n sendfile calls

sendfile (TCP) 0 2 1 sendfile call

mmap_msend† 0 2+2n 1 mmap and n msend calls (msend† sends data over UDP using the virtual address of a mmap’ed file instead of copying the data)

kmsend† 0 2+2n 1 kmsend call (kmsend† combines mmap and msend (see above) in the kernel until the whole file is sent)

ksendfile† 0 2 1 ksendfile call (ksendfile† performs sendfile over UDP in the kernel a la sendfile for TCP)

B – RTP streaming
co s calls to the kernel

read_send_rtp 2n 4n n read and n send calls (RTP header is placed in user buffer in front of payload, i.e., no extra copy operation)

read_writev 3n 4n n read and n writev calls (RTP header is generated in own buffer, writev write data from two buffers)

mmap_send_rtp 2n 2+8n 1 mmap, n cork, n send, n send and n uncork calls (need one send call for both data and RTP header)

mmap_writev 2n 2+2n 1 mmap and n writev calls

rtp_sendfile n 8n n cork, n send, n sendfile and n uncork calls

C – enhanced RTP streaming
co s calls to the kernel

mmap_rtpmsend† n 2+2n 1 mmap and n rtpmsend calls (rtpmsend† copies RTP headers from user space and adds payload from mmap’ed files as payload in the kernel)

mmap_send_msend† n 2+8n 1 mmap, n cork, n send, n msend and n uncork calls (no data copying using msend, but the RTP header must be copied from user space)

rtpsendfile† n 2n n rtpsendfile calls (rtpsendfile† adds the RTP header copy operation to the sendfile system call)

krtpsendfile† 0 2 1 krtpsendfile call (krtpsendfile† adds RTP headers to sendfile in the kernel)

krtpmsend† 0 2 1 krtpmsend call (krtpmsend† adds RTP headers to the mmap/msend combination (see above) in the kernel)

co = number of copy operations, s = number of switches between user and kernel space, n = number of packets, † = new enhanced system call

Table 1. Descriptions of the performed tests

as applications only have to make one single system call to
transfer a whole file. Consequently, if no data touching op-
erations, no application level headers or timing support are
necessary, sendfile seems to be efficiently implemented and
achieves a large performance improvement compared to the
traditional read and write system calls, especially when us-
ing TCP where only one system call is needed to transfer the
whole file.

3.5 Streaming Experiments

Streaming time-dependent data like video to remote cli-
ents typically requires adding per-packet headers, such as
RTP headers for sequence numbers and timing information.
Thus, plain file transfer optimizations are insufficient, be-
cause file data must be interleaved with application gener-
ated headers, i.e., additional operations must be performed.
To evaluate the performance of the existing mechanisms, we
performed several tests using the set of data paths and sys-
tem calls listed in table 1-B. As shown above, the application
payload can be transfered both with and without user space
buffers, but the RTP header must be copied and interleaved
within the kernel. Since TCP may gather several packets into
one segment, i.e., the RTP headers will be useless, we have
only tested UDP. The results of our tests are shown in fig-
ure 4a. Compared to the ftp-like operations in the previous
section, we need many system calls and copy operations. For
example, compared to the sendfile (UDP) and the enhanced
ksendfile tests in figure 3, there are a 21% and a 29% increase

in the measured overhead for the rtp_sendfile using Ethernet
MTU-sized packets, respectively. This is because we now
also need an additional send call for the RTP header. Thus,
the results indicate that there is a potential for improvements.
In the next section, we therefore describe some possible im-
provements and show that already minor enhancements can
achieve large gains in performance.

4 Enhancements for RTP streaming

Looking at the existing mechanisms described and ana-
lyzed in the previous section, we are more or less able to
remove copy operations (except the small RTP header), but
the number of user/kernel boundary crossings is high. We
have therefore implemented a couple of other approaches lis-
ted in table 1-C. With respect to overhead, mmap_rtpmsend,
rtpsendfile, krtpmsend and krtpsendfile look promising:

• mmap_rtpmsend uses mmap to share data between file
system buffer cache and the application. Then, it uses
the enhanced rtpmsend system call to send data copy-
ing a user-level generated RTP header and adding the
mapped file data using a virtual memory pointer instead
of a physical copy. This gives n in-memory data trans-
fers and 1 + n system calls. (A further improvement
would be to use a virtual memory pointer for the RTP
header as well)

• krtpmsend uses mmap to share data between file sys-
tem buffer cache and the application and uses the en-



hanced msend system call to send data using a virtual
memory pointer instead of a physical copy. Then, the
RTP header is added in the kernel by a kernel-level RTP
engine. This gives no in-memory data transfers and
only 1 system call.

• rtpsendfile is a modification of the sendfile system call.
Instead of having an own call for the RTP header trans-
fer, an additional parameter (a pointer to the buffer
holding the header) is added, i.e., the data is copied in
the same call and sent as one packet. This gives only n
in-memory data transfers and n system calls.

• krtpsendfile uses ksendfile to transmit a UDP stream in
the kernel, in contrast to the standard sendfile requiring
one system call per packet for UDP. Additionally, the
RTP header is added in the kernel having an in-kernel
RTP engine. This gives no in-memory data transfers
and only 1 system call.

The two first mechanisms are targeted at applications requir-
ing the possibility to touch data in user-space, e.g., parsing
or sporadic modifications2, whereas the last two mechanisms
aim at data transfers without application-level data touching.
All these enhanced system calls reduce the overhead com-
pared to existing approaches, and to see the real perform-
ance gain, we performed the same tests as above. Our res-
ults, shown in figure 4b, indicate that simple mechanisms
can remove both copy and system call overhead. For ex-
ample, in the case of streaming using RTP, we see an im-
provement of about 27% using krtpsendfile where a kernel
engine generates RTP headers compared to rtp_sendfile in
the scenario with MTU-sized packets. If we need the same
user level control making one call per packet, the rtpsendfile
enhancement gives at least a 10% improvement compared to
existing mechanisms. In another scenario where the applic-
ation requires data touching operations, the existing mech-
anism only have small differences. If comparing the results
for MTU-sized packets, read_send_rtp (already optimized to
read data into the same buffer as the generated RTP header)
performs best in our tests. However, using a mechanism
like krtpmsend gives a performance gain of 36% compared
to read_send_rtp. Similar user level control by making one
call per packet is achieved by mmap_rtpmsend which gives a
24% gain. Additionally, similar results can in general also be
seen for smaller packet sizes (of course with higher overhead
due to a larger number of packets), and when the transport
level packet exceeds the MTU size, additional fragmentation
of the packet introduces additional overhead.

5 Discussion

The enhancements described in this paper to reduce the
number of copy operations and system calls mainly address
application scenarios where data is streamed to the client

2Non-persistant modifications to large parts of the files require a data
copy in user space, voiding the use of the proposed mechanisms.

 0

 5

 10

 15

 20

 25

 30

 35

204814561024512256

co
ns

um
ed

 C
PU

 ti
m

e 
(s

ec
on

ds
)

packet payload size (bytes)

read_send_rtp
read_writev

mmap_writev
mmap_send_rtp

rtp_sendfile

 0

 5

 10

 15

 20

 25

 30

 35

204814561024512256

co
ns

um
ed

 C
PU

 ti
m

e 
(s

ec
on

ds
)

packet payload size (bytes)

rtp_sendfile
mmap_rtpmsend

mmap_send_msend
rtpsendfile
krtpmsend

krtpsendfile

a) Existing mechanisms b) Enhancements

Figure 4. Streaming performance

without any data manipulation at the server side. However,
several of the enhanced system calls also show that the ap-
plication can share a buffer with the kernel and can interleave
other information into the stream. Thus, adding support for
data touching operations, like checksumming, filtering, etc.
without copying, and data modification operations, like en-
cryption, transcoding, etc. with one copy operation, should
be trivial. The in-kernel RTP engine also shows that such
operations can be performed in the kernel (as kernel stream
handlers), reducing copy and system call overhead.

An important issue is whether data copying is still a bot-
tleneck in systems today. The hardware has improved, and
one can easily find other possible bottleneck components.
However, as shown in section 3.2, data transfers through the
CPU are time and resource consuming and have side effects
like cache flushes. The overhead increases approximately
linearly with the amount of data, and as the gap between
memory and CPU speeds increases, so does the problem.
Additionally, in figure 5 (note that the y-axis starts at 0.5), we
show the performance of the different RTP streaming mech-
anisms relative to read_writev, i.e., a straight forward ap-
proach reading data into an application buffer, generating the
RTP header and writing the two buffers to the kernel using
the vector write operation. Looking for example at MTU-
sized packets, we see that a lot of resources can be freed for
other tasks. We can also see that less intuitive but more ef-
ficient solutions than read_writev that do not require kernel
changes exist, for example using sendfile combined with a
send for the RTP header (rtp_sendfile). However, the best
enhanced mechanism, krtpsendfile, removes all copy oper-
ations and makes only one access to the kernel compared

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

204814561024512256

C
PU

 c
on

su
m

pt
io

n 
no

rm
al

iz
ed

 to
 re

ad
_w

ri
te

v

packet payload size (bytes)

mmap_send_rtp
mmap_writev
read_send_rtp

mmap_send_msend
rtp_sendfile

mmap_rtpmsend
rtpsendfile
krtpmsend

krtpsendfile

Figure 5. Relative performance to read_writev



to rtp_sendfile which requires several of both (see table 1).
With respect to consumed processor time, we achieve an av-
erage reduction of 27% using krtpsendfile. Recalculating
this into (theoretical) throughput, rtp_sendfile and krtpsend-
file can achieve 1.55 Gbps and 2.12 Gbps, respectively. As-
suming a high-end 3.60 GHz CPU like Pentium4 660 and
an 800 MHz front side bus, the respective numbers should
be approximately doubled. These and higher rates are also
achievable for network cards (e.g., Force10 Network’s E-
Series), PCI express busses and storage systems (e.g., using
several Seagate Cheetah X15.4 in a RAID). Thus, the trans-
fer and processing overheads are still potential bottlenecks,
and the existing mechanisms should be improved.

Now, having concluded that data transfers and system
calls still are possible bottlenecks and having looked at pos-
sible enhancements, let us look at what a general purpose
operating system like Linux miss. Usually, the commodity
operating systems aim at a generality, and new system calls
are not frequently added. Thus, specialized mechanisms
like krtpsendfile and krtpmsend having application specific,
kernel-level RTP-engines, will hardly ever be integrated into
the main source tree and will have to live as patches for in-
terested parties like streaming providers, e.g., like the Red
Hat Content Accelerator (tux) for web services. However,
support for adding application level information (like RTP
headers) to stored data will be of increasing importance in
the future as streaming services really explode. Simple en-
hancements like mmap_rtpmsend and rtpsendfile might be
general, performance improving mechanisms that could be
of interest in scenarios where the application does or does
not touch the data, respectively.

6 Conclusions

In this paper, we have shown that (streaming) applications
still pay a high (unnecessary) performance penalty in terms
of data copy operations and system calls if those applica-
tions require packetization such as addition of RTP head-
ers. We have therefore implemented several enhancements
to the Linux kernel, and evaluated both existing and the new
mechanisms. Our results indicate that data transfers still are
potential bottlenecks, and simple mechanisms can remove
both copy and system call overhead if a gather DMA op-
eration is supported. In the case of a simple content down-
load scenario, the existing sendfile is by far the most efficient
mechanism, but in the case of streaming using RTP, we see
an improvement of at least 27% over the existing methods
using MTU-sized packets and the krtpsendfile system call
with a kernel engine generating RTP headers. Thus, using
mechanisms for more efficient resource usage, like removing
copy operations and avoiding unnecessary system calls, can
greatly improve a node’s performance. Such enhancements
free resources like memory, CPU cycles, bus cycles, etc.
which now can be utilized by other applications or provid-
ing support for more concurrent streams.

Currently, we also have other kernel activities on-going,
and we hope to be able to integrate our subcomponents. We
will also modify the KOMSSYS video server to use the pro-
posed mechanisms and perform more extensive tests includ-
ing a workload experiment looking at the maximum number
of concurrent clients able to achieve a timely video playout.
Finally, we will optimize our implementation, because most
of the enhancements are implemented as proof-of-concept
removing copy operations and system calls. We have made
no effort in optimizing the code, so the implementations have
large potential for improvement, e.g., moving the send-loop
from the system call layer to the page cache for the krtpsend-
file which will remove several file lookups and function calls
(as for the existing sendfile).

References

[1] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Io-lite: a unified
i/o buffering and caching system. ACM Transactions on Computer
Systems, 18(1):37–66, February 2000.

[2] Pål Halvorsen. Improving I/O Performance of Multimedia Servers.
PhD thesis, Department of Informatics, University of Oslo, Oslo, Nor-
way, August 2001.

[3] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, and Ray-
mond S.Tomlinson Bolt Beranek. Tenex, a paged time sharing system
for the pdp-10. Communications of the ACM, 15(3):135–143, March
1972.

[4] Eric W. Anderson. Container Shipping: A Uniform Interface for Fast,
Efficient, High-Bandwidth I/O. PhD thesis, Computer Science and
Engineering Department, University of California, San Diego, CA,
USA, July 1995.

[5] Charles D. Cranor and Gurudatta M. Parulkar. The UVM virtual
memory system. In Proceedings of the USENIX Annual Technical
Conference, pages 117–130, Monterey, CA, USA, June 1999.

[6] Frank W. Miller and Satish K. Tripathi. An integrated input/output
system for kernel data streaming. In Proceedings of SPIE/ACM Con-
ference on Multimedia Computing and Networking (MMCN), pages
57–68, San Jose, CA, USA, January 1998.

[7] Damien Le Moal, Tadashi Takeuchi, and Tadaaki Bandoh. Cost-
effective streaming server implementation using hi-tactix. In Proceed-
ings of the ACM International Multimedia Conference (ACM MM),
pages 382–391, Juan-les-Pins, France, December 2002.

[8] Jiantao Kong and Karsten Schwan. Kstreams: Kernel support for ef-
ficient end-to-end data streaming. Technical Report GIT-CERCS-04-
04, College of Computing, Georgia Institute of Technology, Atlanta,
GA, USA, 2004.

[9] Charles Coffing. An x86 protected mode virtual machine monitor for
the mit exokernel. Master’s thesis, Paralell & Distributed Operating
System Group, MIT, Cambridge, MA, USA, May 1999.

[10] Christian Poellabauer, Karsten Schwan, Richard West, Ivan Ganev,
Neil Bright, and Gregory Losik. Flexible user/kernel communication
for real-time applications in elinux. In Proceedings of the Workshop
on Real Time Operating Systems and Applications and Second Real
Time Linux Workshop, Orlando, FL, USA, November 2000.

[11] Edward Bradford. Runtime: Block memory copy (part 2) –
high-performance programming techniques on linux and windows.
http://www-106.ibm.com/developerworks/library/l-rt3/, July 1999.

[12] Gregory McGarry. Benchmark comparison of netbsd 2.0 and freebsd
5.3. http://www.feyrer.de/NetBSD/gmcgarry/, January 2005.

[13] Intel Corporation. Block copy using PentiumIII streaming SIMD
extensions (revision 1.9). ftp://download.intel.com/design/servers/-
softdev/copy.pdf, 1999.


