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Abstract

Most existing methods for network recovery are often
complex and seldom used by network administrators. In this
paper we present a novel approach for global and local re-
covery named Resilient Routing Layers (RRL). The method
is supported by algorithms, but also simple enough for a
network administrator to implement by hand for reasonably
sized networks. The idea in our approach is that for each
node in the network there is a topology subset called a “safe
layer”, which can handle any traffic affected by a fault in
the node itself, or any of its links.

We demonstrate that our approach performs well com-
pared to other comparable methods in a wide range of dif-
ferent network topologies. Particularly, we demonstrate
RRLs performance for what are assumed to be the weakest
parameters for our method, i.e., backup-path lengths and
state information overhead. We discuss implementation is-
sues of RRL, and demonstrate its applicability to MPLS net-
works.

1 Introduction

Network resilience is an area of growing importance in
communication systems research and engineering. Recent
history of the Internet shows its vulnerability on all levels,
from physical sabotage to failing links and routers. Numer-
ous techniques have been developed to prevent, repair and
repel the damage, and among these, network recovery tech-
niques have received significant attention.

There is, however, a discrepancy between the network
recovery in theory and practice. While the theoretical re-
search has devised schemes of high elegance and perform-
ance like p-cycles [8] and redundant trees [15], many net-

work engineers still use static, manually-laid protection
paths. The problem is that existing sophisticated algorithms
often suffer from high complexity and lack of clear control
and management view for the network operators.

The need for simplicity of deployment has also been sup-
ported empirically. Through extensive network monitoring,
Labovitz and others demonstrated that most communication
outages in IP networks stemmed from software/hardware
bugs and misconfiguration in routers [13], [12]. Complic-
ated deployment are obvious sources of misconfiguration,
thus recovery methods should not add significant complex-
ity to the overall system. These observations have attained
great impact on the design of our recovery approach.

We use recovery as a common term for protection and
restoration. Protection schemes calculate the backup routes
in advance, while restoration schemes calculate the backup
routes upon detection of failures. Thus, protection operates
in a much shorter time-scale than restoration.

Recovery schemes can also be categorized by the scope
of the recovery. Global recovery covers link and node fail-
ures by calculating a new end-to-end path, while with local
recovery faults are handled locally by the neighbors. Point
of repair, i.e., the node initiating protection switching or res-
toration, is the ingress node of a path for global recovery
and the neighbor node detecting the fault for local recovery.
For global recovery, the recovery action is not performed
before the ingress node has been notified about the failure,
and hence global recovery operates on a longer time-scale
than local recovery.

The success of a recovery action depends not only on the
properties of the recovery scheme in use. If the failure of
a node or link physically disconnects the network, traffic
routed over such a node or link can not be recovered. Such
nodes and links are termed articulation points.



In this paper we propose a technique we call “Resilient
Routing Layers” (RRL). RRL differs from other recovery
schemes by that it is designed with the systems engineering
mindset. In other words, it is simple to understand and de-
ploy, and it is made to be used by the network engineers in
practice. One main feature of RRL, as will be thoroughly
described later, is that it provides a network manager with
simple global abstractions of the network that form a basis
for routing traffic in failure situations. The simple global ab-
stractions is what we refer to as routing layers. RRL offers
flexibility in that the abstractions can be built differently to
optimize different parameters, such as backup path lengths,
state amount, and multiple fault protection.

The rest of the paper is organized as follows: In Sec. 2
we give an overview of the most relevant related work. Sec.
3 defines RRL and discusses its features. In Sec. 4 we dis-
cuss the number of layers and backup path lengths and give
a general comparison with other schemes. Sec. 5 demon-
strates the applicability for MPLS networks and finally we
conclude and give some future research directions in Sec. 6.

2 Related work

From a graph-theoretical point of view, methods for fault
tolerance rely on a graph property described by Menger
(Menger’s theorem) [17]: a nontrivial graph G is k-
connected if and only if for each pair (u, v) of distinct ver-
tices there are at least k internally disjoint u−v paths in G.
A bi-connected graph will then provide each u, v pair with
two internally disjoint paths. In general a graph is said to be
k-connected with respect to vertices if removal of any k−1
vertices leaves the graph connected. The same applies with
respect to edges. To guarantee one fault tolerance for every
vertex, a network must be at least biconnected with respect
to vertices.

These properties have served as foundation for most
work regarding recovery. One of the most studied ap-
proaches has been algorithms for finding disjoint paths
between sources and destinations in a network. Suurballe
presents an algorithm for finding k vertex-disjoint shortest
paths [25]. The algorithmic run-time is O(|V |2 · log|V |),
where V is the number of vertices. Later on, other al-
gorithms have been proposed to minimize the complex-
ity. Some of them have assumed certain assumptions and
short-cuts like maximally disjoint paths instead of totally
disjoint paths, and edge-disjoint paths instead of vertex-
disjoint paths [30], [26], [14].

Recovery by end-to-end disjoint paths relies on notifica-
tion about failures to the ingress nodes. To avoid such no-
tification, a local variant could be implemented. Each node
should then initiate establishment of backup paths to cover
each possible failure in its neighbor links and nodes [19].

So, from each node, to each potential egress node a backup
path should be established for every possible failure in the
neighborhood. Such a strategy would provide a network
manager with a unsurmountable number of paths to over-
view. Figure 1 gives an example of how it would look for a
simple network with three nodes and three links.

Restoration serves as an alternative to such precalcula-
tions. One main parameter of optimization for restoration
schemes is the time used to calculate a new path upon detec-
tion of a failure. Afek and others propose using k+1 original
shortest paths to recover k edge failures [5]. MPLS label
stacking is used to implement this approach. No path calcu-
lation is needed after detection, only the decision on what
path to use remains. The authors demonstrate that the path
table sizes decrease, and that their method doesn’t add con-
siderable length to the backup paths compared to standard
methods. Otel presents an incremental Dijkstra algorithm
offering fast local backup path calculation for MPLS rerout-
ing [18]. The algorithm takes as input the existing outdated
shortest path three rooted at the local node. The algorithm
has a complexity close to O(|V |), while standard Dijkstra
has O(|V |2) complexity, where |V | is the number of nodes
in the network.

Network recovery management is difficult if the only
offered view of the network is a collection of unstructured
backup paths. The literature provides however some altern-
atives for more structured recovery. Such schemes are based
on building a set of subtopologies of the network, serving
as a more intuitive abstraction of the recovery paths. These
schemes can serve as input to restoration and protection,
both global and local.

Itai and Rodeh generalize and structure the disjoint path
approach to spanning trees [11]. To overcome the failure
of less than k edges, they present a communication pro-
tocol which uses k spanning trees having the property that
for every vertex v, the k paths from v to the root are edge-
disjoint. In this way one common calculation provides the
network with disjoint paths between one source and several
destinations or between several sources and one destination.
They show how their algorithmic run-time is proportional
to the number of edges. Medard and others use the multi-
tree approach to generate both edge and vertex redundant
trees for arbitrary biconnected networks [15]. These trees,
named red and blue, are such that any node is connected
to the common root of the trees by at least one of the trees
in case of a vertex or edge failure. They prove that the al-
gorithmic complexity is O(|V |3). Xue and others optimize
this algorithm for generating trees based on QoS constraints
like cost and delay [31].

Grover and Stamatelakis introduce another concept
providing fault tolerance called protection cycles [8], [9].
Their goal is to provide circuit oriented mesh networks with



the fast recovery speed normally offered in rings. Sim-
ilar approaches using Hamiltonian cycles are presented in
[10] and [21]. Their method calculates one or more cycles
visiting all nodes in the network. The method is optim-
ized to cover link failures and also to minimize the over-
provisioning ratio on any link in the network. When a link
fails, the traffic is locally switched to be routed according to
the cycle instead of the original shortest path. Following a
cycle, avoiding the a failure, will probably add considerable
path length compared to shortest path, however the authors
do not comment on that.

The three main categories of schemes presented above,
i.e., disjoint paths, redundant trees and protection cycles,
have first been introduced for recovery in circuit switched
networks. As technologies for connection-oriented packet
switched networks have evolved they have also been adop-
ted for such networks. One such technology is Multipro-
tocol label switching (MPLS) that provides a flexible frame-
work for traffic engineering in general, where recovery is an
important part [20]. IETF is standardizing a framework and
ancillary protocols for MPLS recovery [22], [19]. IETF is
not detailing algorithms on how to find backup resources,
only how to signal and represent them.

Algorithms for finding disjoint paths can be directly de-
ployed for giving input to the signaling mechanisms of
MPLS, while redundant trees and protection cycles need
some adjustments.

Barthos and Raman demonstrate the applicability of
Medards dual-tree approach [15] for MPLS recovery [3],
[4]. Their method differs from [15] in using the egress
node, i.e., destination, as root. In addition, they calculate
optimal primary paths, using the blue and red trees only for
recovery. So, in addition to a primary path for each pair of
ingress-egress nodes, they calculate red-blue trees for every
egress. The authors demonstrate that the approach requires
few labels and that the backup path lengths are not consid-
erable longer than for MPLS fast reroute.

Grover and Stamatelakis also adapt the concept of pro-
tection cycles to IP/MPLS networks [23], [24]. They op-
timize for link failures and oversubscription ratio.

In the following we will describe how RRL provides
a simple topology abstraction, i.e., routing layers, for the
network manager to administer the recovery of the net-
work. The work most closely related to our approach
is [27] which treats interconnection networks for computer
clusters. Here a layer-based approach is used to obtain
deadlock-free and fault-tolerant routing in irregular cluster
networks based on a routing strategy called Up*/Down*.
RRL is not hampered by deadlock-considerations necessary
in interconnection networks. It extends the concept of lay-
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Figure 1. All-to-all backup paths in a 3-node
cycle.

ers, and shows its applicability to general packet networks
and routing strategies.

3 Resilient Routing Layers (RRL)

3.1 Overview of RRL

RRL is based on calculating redundant subsets of the net-
work topology that we call layers. Each layer contains all
nodes but only a subset of the links in the network. We say
that a node is safe in a layer if only one of its links is con-
tained in that layer. We will use the term safe layer for a
node to denote a layer in which the node is safe.

The layers are used as input to routing or path-finding
algorithms, calculating a routing table or path table for each
layer. We assume that for each layer an algorithm is used to
find loop-free paths between all pairs of source and destin-
ation. Therefore all pairs of nodes can reach each other in
any layer.

We observe the following:

1. In a safe layer for a given node, this node will not ex-
perience transit traffic.

2. If a node fails, any safe layer for that node keeps an in-
tact path between all pairs of sources and destinations
that are distinct from the node itself.

3. If a node fails, traffic sourced by or destined for the
failed node will be lost under any circumstance.

In order to use RRL as a basis for a complete method for
recovery, we need to generate layers in such a way that all
nodes that are not articulation points are safe in at least one
layer. As we shall demonstrate later on, this can be achieved
with relatively few layers.

The concept above can be used both for global and local
recovery. In global recovery the packets that should have
traversed the failed node are made to use the node’s safe
layer from the source. In local recovery, the node upstream



of the failed node transfers the packet to the safe layer of
the failed node when the packets arrive.

RRL handles link-faults as follows. First, we define a
leaf link as the link connecting a safe node to the network.
A safe layer of a link can be defined as the safe layer of its
downstream node n as long as n is not the final destination
and its leaf link is not the failed link.

If the downstream node n is the final destination and its
leaf link is the failed link, we have two options:

1. We use the safe layer of the detecting node (upstream
node) as long as its leaf link is not the failed link.

2. If so is, the safe layer of the upstream node is still the
safe layer of the link, but the upstream node deflects
the traffic to another link. The safe layer of the detect-
ing node will route no traffic through this node, and
hence the traffic will not loop back to the failure.

Since link failures are handled using the safe layer of a
node, most of the following examples and evaluations will
focus on node failures.

3.1.1 An Example
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Figure 2. a): An example network with 8
nodes and 14 links. b): layer 1 (L1) gener-
ated based on a). c): layer 2 (L2) generated
based on a).

We demonstrate a method for generating safe layers for
all nodes by the following example, Fig. 2a being the start-
ing point. This network has no original articulation points.
The resulting layers are presented in Fig. 2b and Fig. 2c.
The first layer (L1) will be calculated starting with node 1

as a candidate safe node. Since node 1 is not an articulation
point, i.e., its removal does not disconnect the network, we
remove links and make node 1 a safe node. Node 2 is then
analyzed and found eligible as a safe node in the same layer
as node 1. The same is the case with node 3, but node 4
has become an articulation point, so node 4 is not safe i L1.
Finally, layer 1 (L1) will be the safe layer of the nodes 1,
2, 3 and 5. Note that a layer may contain cycles as seen in
layer 1.

When all remaining nodes are articulation points in L1,
layer L2 is calculated. It starts with e.g., node 4, and covers
nodes 4, 6, 7 and 8. In other words, our example network
can be covered with only two layers.

For reasonably sized networks, generation of layers
could easily be done manually by a network manager.

3.1.2 Implementation Considerations

To take advantage of the resilient routing layers, a packet
network implementation must fulfill certain requirements.
These requirements depend on whether the network oper-
ates in a connectionless or a connection-oriented manner.

For a connectionless network, e.g., IP or Ethernet, each
packet must be marked according to what layer is currently
valid. If n is the maximum number of layers, log2(n) bits in
the packet header should identify the currently valid layer.
The node that moves a packet to another layer, marks the
packet header with the global identification of the new layer.
In the case of failures, only traffic transiting the failed node
should be moved to another layer. All packets not affected
by the fault will still be routed based on the full topology.
The node moving traffic to another layer must therefore
know if a failed node is in the route of a packet. For local
recovery, this is obviously fulfilled since it is the next hop
that is failing. For global recovery, we must ensure that the
ingress node is aware of the entire route for the traffic.

For a connection-oriented network, e.g., MPLS, mark-
ing packets with a global layer identification is not neces-
sary. Path signaling is performed as normal. For each layer
a new set of paths must be signaled. As for connection-
less networks, the node moving traffic from original paths
to recovery paths must know what paths are affected by the
failure.

Fig. 3 gives an example of how traffic is switched
between layers when node 5 is failing. The dotted links
are not available in layer 1, i.e., the safe layer of node 5.
Before node 5 fails, all traffic may use the full topology,
e.g., traffic from node 6 to node 3 may follow the path 6-
4-5-3. When node 5 fails, traffic transiting node 5 must
be routed according to layer 1 (removing the dotted links.),
while other traffic can still be routed according to the full
topology. In the case of local recovery, traffic is routed
from node 6 to 4 according to the full topology. Node 4



detects the failure, and switch traffic to layer 1. The path
for traffic between node 6 and node 3 will then be 6-4-7-8-
3. If node 6 is notified about the failure (global recovery)
of node 5, the transition to layer 1 could be done by node 6.
The path would then be 6-7-8-3. Even if node 5 has failed,
our method can still handle failures of nodes 1, 2 and 3.

If a failure is defined as permanent, new layers must be
calculated based on the full topology without out the failed
component.
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Figure 3. Example of how affected traffic are
switched to layer 1 (L1) when node 5 is failing.

3.2 An Example Algorithm

There are numerous ways for choosing which nodes
should be safe in which layer. RRL can be made to be op-
timized on many different criteria, thus it displays signific-
ant flexibility. One alternative could be to have an algorithm
generating a preferred fixed number of layers. For sim-
plicity this section presents an algorithm making choices
that in a very straightforward way attempts to minimize the
number of layers1. The algorithm calculates layers in the
topology G = (V, E), where V is the set of nodes and E is
the set of links.

1An implementation of this algorithm, together with the whole
evaluation framework used in this paper can be retrieved from
http://www.simula.no

(1) S = artPoints(G);
while (S �= V )

Li = G; V ′ = V \S;
foreach n ∈ V ′

if (n /∈ artPoints(Li))
(2) E′ = links(n, Li);
(3) Li = Li\{lj ∈ E′ | 1 ≤ j < |E′|};

S = S ∪ {n};
endif

endfor
store layer Li;
i = i + 1 ;

endwhile

(4) balanceLayers();

Steps (1)-(4) deserve some comments. (1): Set S keeps
track of the processed nodes, i.e., nodes that are either artic-
ulation points or safe nodes in an already computed layer.
Initially, all articulation points in G are added to set S.
artPoints(G) finds all articulation points in G. (2): We find
all the adjacent links of the node (E ′ = links(n, Li)), and
then we (3): remove all adjacent links but one from the cur-
rent topology of the layer. (4): So far, the algorithm at-
tempts to make as many nodes as possible safe in the first
layers. The first layers will then contain a majority of safe
nodes. A typical distribution of safe nodes for a topology
with 128 nodes could be 80, 36, and 12 for the resulting
three layers. The layers with most safe nodes will contain
fewer links and therefore offer more inefficient routing than
other layers. To attain more equal routing performance in
the layers, we do some postprocessing of the layers to bal-
ance the number of safe nodes. This is done by moving
safe nodes from the layers with high degree of safe nodes to
the layers with low degree of safe nodes, with the require-
ment that they are not articulation points in the new candid-
ate layer. In addition, we must assure that we do not acci-
dentally make an unintended safe node unsafe when adding
links to the layer of high degree of safe nodes.

The authors are not aware of any algorithm running in
polynomial time that finds a guaranteed minimum number
of layers. The proposed heuristic algorithm performs well,
but does not provide any guarantees that the number of lay-
ers will indeed be minimal.

For an arbitrary node in an arbitrary graph, it can be
determined whether the node is an articulation point in
O(|V | + |E|) [29]. This articulation point test is done
within a nested while- and for-loop. In a theoretical worst
case we need one layer for each node in the network, and
hence the while-loop will iterate |V | times. The for-loop
will for each while-iteration iterate |V | − c times where c is
the number of while-iterations currently accomplished. In
worst case the total running time for these steps will then



be O(|V |2 · (|V | + |E|)), which in all graphs of practical
interest is O(|V |3). The balancing method runs with the
same complexity, and hence the total running time is bound
within O(|V |3).

4 Evaluation results

4.1 Scalability - Number of Layers

The scalability of RRL is directly dependent on the num-
ber of layers needed to provide a safe layer for each node in
the network. Fig. 4 presents the number of layers for a vari-
ety of topologies. The calculations are performed with the
algorithm from section 3.2. We have used the Brite topo-
logy tool to generate synthetic topologies [16]. Two main
categories of generation models have been used, Waxman
(wa) with default settings [28] and Generalized Linear Pref-
erence (glp) with two different settings (glp1 and glp2) [6].
In addition, we have used a set of real world topologies col-
lected from Rocketfuel (Rfuel) [1]. These are intra-provider
POP-level topologies. We have generated 100 topologies
for each synthetic topology specification, i.e., for each bar
in Fig. 4. The bar-name in the figure denotes the model
used, number of nodes and number of links (model-nodes-
links). The entries with and ’X’ denotes that the number of
links or nodes has varied within the the category of gener-
ated topologies. For glp1 networks the average nodal degree
has varied around three, and for glp2 networks the average
nodal degree has been about four. The RocketFuel networks
(31 networks) represent networks with a wide variation in
number of nodes and number of links.

Extracting results from Fig. 4 we have that five layers
seem sufficient even for very large networks. We also ob-
serve that the number of layers decreases as the average
node degree increases.

4.2 RRL Backup Path Lengths

With RRL, traffic affected by a failure will be routed ac-
cording to the safe layer of the failed component. As il-
lustrated in section 3, a layer has a reduced set of links
compared to the full topology. This will of course have
consequences for the length of the backup paths, as there
are less links to choose from. In this section we present
the distribution of RRL backup path lengths for one-fault-
tolerance in a collection of topologies. We look at node
failures and measure the backup path lengths when apply-
ing local protection switching. These are compared with
the failure-free primary path and the optimal backup path,
which is the shortest path upon removal of the failed com-
ponent only. In most cases we use the algorithm from sec-
tion 3.2 to generate layers as input to backup path calcula-
tion. The number of layers are then close to a minimum. To
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Figure 4. Number of layers for different types
of topologies (synthetic (wa, glp1, glp2) and
real world (Rfuel)).

demonstrate that there exist a trade-off between the number
of layers, and backup path lengths, we show some results
using more layers than the minimum. With more layers,
each layer will contain less safe nodes, and thus more links
will be available for routing.

For each original path in a topology we have calculated
one backup path. This backup path has been chosen as the
median length backup path from the collection of backup
paths for all component failures on the original path.

Figure 5 gives the distribution for 100 topologies based
on the waxman model with 32 nodes and 64 links. In addi-
tion, we have plotted the RRL backup path lengths for 100
GLP topologies having similar settings. We observe that
there are no major differences in the results obtained using
different models. The main observation is that RRL backup
paths are longer than the optimal backup paths, however, we
find that the differences are within acceptable bounds. The
average length for for optimal backup paths is 3.5, as RRL
gives an average of 4.3.

Figure 6 shows the same pattern for networks with higher
node degrees, hence showing shorter average lengths. It
also shows how the relative distribution is repeated for lar-
ger networks, although with longer average lengths.

RRL provides a high degree of freedom in how to build
layers and how many layers to build. Figure 7 compare
the distributions of backup path lengths for optimal backup
paths and RRL backup paths with the number of layers
varying from the original number generated with the al-
gorithm from Sec. 3.2 to a fixed number of eight. The figure
shows how increasing state, i.e., number of layers, will give
more efficient backup path routing.
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4.3 Comparisons

In this section we make a comparison between the three
main approaches offering various recovery abstractions.
These are RRL, Protection Cycles and Redundant Trees.
Table 1 gives an overview for some relevant criteria. For
RRL, the numeric values have been evaluated using 100
Waxman networks with 16 nodes and 32 links. Statistics
on backup path lengths for RRL have been extracted from
figure 8 showing the backup path distributions for two RRL
alternatives when introducing link failures. We have used
link failures due to pcycles poor node failure handling.The
RRL alternative denoted min uses the original algorithm
presented in Sec. 3.2, while the RRL alternative denoted
5 generates about two more layers than the original. Vaules
for pcycle performance have been extracted from results
in [7]. The pcycle method denoted large attempts to build
few large cycles, and the method denoted small attempts to
make many small cycles to optimize the backup path length.
Statistics on RT backup path lengths have been collected
from [4]. Note that those numbers have been obtained based
on a single chordal ring topology.

The most important observations from table 1 is that the
number of recovery abstractions, i.e., layers, is very modest
for RRL compared to pcycles with many small cycles and
RT. Pcycles with a few large cycles, also provides few ab-
straction, however that comes with the expense of very long
backup paths. The number of abstractions for RT stems
from the fact that redundant trees must be built for every
candidate egress node. If not all 16 nodes will be egress
nodes, the number of abstractions will decrease.

When it comes to the additional state information im-
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posed by the schemes, RRL requires at most fixed ad-
ditional state proportional to the number of layers, while
pcycles requires at most additional state proportional to the
number of pcycles. Redundant Trees, on the other hand,
builds subtopologies that implicitly gives the routing, and
the state increase is constantly two.

For backup path lengths we observe that RRL performs
well, and also that the lengths can be decreased if the num-
ber of layers is increased.

None of the schemes affect the routing in the failure free
situation.

When it comes to coverage of the schemes, both RT and
RRL easily cover both link failures and node failures. P-
cycles is not designed for resisting node failures, however
there exist some very inefficient ways of obtaining node
fault-tolerance [24].

From [4] and [24] we find no obvious way RT and
pcycles can be applied to global recovery as has been de-
scribed for RRL.

For completeness, we mention that practical implement-
ations may be compared using other criteria, e.g., failure
detection time and notification time. These criteria de-
pend however on implementation rather than the recovery
scheme.

To sum up we would like to point out that RRL seems
to give few simple and intuitive recovery abstractions of
the network. Coupled with acceptable backup path lengths,
flexibility on global and local recovery, modest state in-
crease, and coverage of both node and link failures, RRL
provides a good alternative for practical handling of recov-
ery in packet networks.



Table 1. Properties of the different recovery schemes
Property Pcycle small Pcycle large RT RRL min RRL 5
#Abstractions 12.8 2.2 16 3.13 5
Global recovery no no no yes yes
Local recovery yes yes yes yes yes
Alg. Complexity O(|V |2log(|V |)) O(|V |4log2(|V |)) O(|V |3) O(|V |3) O(|V |3)
Path lengths 4.1 8.7 3 3.4 3.2
Additional state 12.8 2.2 2 3.13 5
Affect normal no no no no no
Node recovery poor poor yes yes yes
Link recovery yes yes yes yes yes
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introducing one node failure in the original
path.

5 Implementation issues in MPLS

Multiprotocol label switching (MPLS) is much used as a
framework for network recovery, and traffic engineering in
general. In this section we demonstrate the applicability of
RRL for network protection within the MPLS framework.
We stress that our method is by no means bound to MPLS,
and may be applied to connectionless IP, Ethernet and other
technologies as well.

MPLS is a connection-oriented technology and adhere
therfore to the connection-oriented implemention require-
ments discussed in Sec. 3.1.2. As shown in Sec. 4, in most
cases as few as four layers suffice to cover relatively large
networks. A network with four safe layers will calculate
the LSPs for five topologies, the fifth topology being the
original, error-free one.

Another requirement imposed by RRL is that the node
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Figure 8. Distributions of path lengths when
introducing one link failure in the original
path.

carrying out the recovery action must know what LSPs are
affected by the failed node or link. Then, only the traffic
from affected LSPs will be moved to backup LSPs. For
local recovery, the node detecting the failure is obviously
aware of what LSPs are originally passing through the failed
link or node. However, for global recovery, the ingress node
is moving traffic to backup LSPs. The ingress node can
be informed about all nodes of an LSP using, e.g., Record
Route Object in RSVP ( [2]).

5.1 MPLS Algorithms

LSPs for the layers can be created in several ways. A
simple approach is, for each layer, to set up an LSP from
each node to each candidate egress node, i.e., to each node
that could possibly be used as egress for a network path.
This approach is simple and provides protection also for
later dynamically created LSPs. In addition, it allows any



node in the network to switch layer. However, it would
likely produce unnecessarily many protection LSPs.

The second alternative is to operate similarly to the
standard MPLS operation mode, and provide protection
for the existing MPLS paths. In the following we present
an algorithm for calculating both global and local protec-
tion LSPs. In a network topology G = (V, E), a set of
primary LSPs P = {p1, p2, . . . , pn}, and a set of safe lay-
ers L are given. Let each pi be represented by the ordered
set {n1

i , n
2
i , . . . , n

mi

i }, where mi is the length of LSP pi.
The algorithm below creates global backup LSPs g l

i in each
layer l ∈ L to backup a particular primary LSP p i. In addi-
tion, it creates local backup LSPs qj

i from a particular point
of repair nj

i in the primary LSP pi.

foreach pi ∈ P
foreach L ∈ L

(1) create LSP gl
i = sp(n1

i , n
mi
i , L)

endfor
for j = 2 to mi − 2

(2) create LSP qj
i = sp(nj

i , n
mi
i , L(nj+1

i ))
endfor

(3) if (link(nmi−1
i , nmi

i ) ∈ L(nmi
i ))

(4) if (link(nmi−1
i , nmi

i ) ∈ L(nmi−1
i ))

choose neighbor n′of nmi−1
i so that n′ �= nmi

i

create LSP qmi−1
i = nmi−1

i � sp(n′, nmi
i , L(nmi−1

i ))
else

(5) create LSP qmi−1
i = sp(nmi−1

i , nmi
i , L(nmi−1

i ))
endif

else

(6) create LSP qmi−1
i = sp(nmi−1

i , nmi
i , L(nmi

i )
endif

endfor

Here, L(n) is the safe layer of node n in the topology
G, and link(nj

i , n
j+1
i ) is the link connecting nodes nj

i and
nj+1

i in path pi. sp(a, b, G) calculates the shortest path
from from a to b in the topology G. Line (1) creates an
end-to-end (global) backup LSP for g i in each layer l by
finding the shortest path between the end points. Line (2)
creates backup LSPs for local recovery. We create a backup
LSP from the detecting node (nj) in the safe layer of the
upstream node (nj+1). The ingress node has been handled
in line (2), and the special case with link failure for a link
connected to an egress node is handled in lines (3) to (6).
Line (3) tests whether there exist a link to the egress node
that is included in the safe layer of the egress node. If so,
we have the two alternatives from Sec. 3. Line (4) covers
the case where the link is also included in the safe layer of
the detecting node (the upstream node). In that case we cre-
ate an LSP from the detecting node nmi−1

i , but make sure
that we use a deflection node n′ as forced next hop. Line (5)
covers the case where we are allowed to use the safe layer of
the detecting node without deflection. In line (6) we cover
the case where the link is not in the safe layer of node nmi

i .

Either the node detecting the failure or the ingress node
of the primary LSP has to move traffic from original LSPs
to backup LSPs in the case of a failure.

If two node and link disjoint paths exist, MPLS global
recovery, as specified in [19], requires one backup LSP per
primary LSP. For local MPLS recovery, each primary LSP
requires n-1 backup LSPs where n is the number of nodes
in the LSP [19].

When comparing this with the RRL MPLS specification,
we get that both methods require

∑|P|
i=1(mi − 2) backup

LSPs for local recovery. For global recovery, standard
MPLS requires |P|, while RRL MPLS requires |P| · |L|
backup LSPs.

Some MPLS applications advise the local backup path
to merge with the primary path as soon as possible after by-
passing the failure, even if its not the shortest path. That
is because the primary path is configured to fulfill all the
service requirements of the traffic, which need not be the
case for the backup path. RRL can also support such an ap-
proach. The local node detecting the failure establishes a
backup LSP according to the safe layer of the failed node or
link. This backup LSP will end in the first point in which
it merges with the primary LSP. In case of failure, the de-
tecting node then moves the traffic to the correct layer and
stacks the corresponding header to the packets. This header
will be popped at the merge point and the packet routed ac-
cording to the full topology from there.

6 Conclusion and future work

In this paper we have presented a novel method for hand-
ling recovery in packet networks that we call Resilient Rout-
ing Layers (RRL). RRL is based on building simple and in-
tuitive recovery abstractions of the network that offer many
choices of different optimization criteria.

Even though RRL is supported by algorithms, we have
demonstrated that it is sufficiently simple even for a network
engineer to implement it by hand in relatively short time for
reasonably sized networks.

Compared to other recovery schemes, RRL seems to
be a good candidate for handling recovery in packet net-
works. Even for the two parameters for which RRL argu-
ably should have the most problems in competing, namely
path lengths and additional state information, we have
shown that it performs comparably to other methods. We
have also demonstrated that RRL is scalable, even very
large networks can be covered by 5 layers. In addition, it
has been shown how RRL is a good foundation for easy
creation of MPLS backup LSPs.

Future work regarding RRL will cover optimizations for
handling link failures and optimizations for fast local pro-
tection in connectionless networks like IP and Ethernet. As
part of our future work, we will also explore network traffic



after failures, packet reordering, packet loss, load balan-
cing, and recovery differentiation.
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