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Abstract
This paper is concerned with simulation of cardiac arrhythmias and defibrillation. A model
is outlined which combines the bidomain model for the electrical activity with a non-linear
elasticity equation for the mechanical properties of the tissue. The result is a highly complex
mathematical model, for which it is hard to construct efficient solution techniques. The difficulty
of performing accurate numerical simulations is further increased by the fast dynamics of the
electrophysiology equations, which lead to strict resolution requirements in space and time.
Applying the defibrillation shock to the heart tissue further increases these problems. We present
an efficient numerical algorithm for the electrophysiology model, which is a coupled system
of non-linear PDEs and ODEs. An operator splitting method is combined with implicit time
discretization and a standard Galerkin finite element solver, leading to a block structured linear
system to be solved for each time step. The system is solved with a conjugate gradient and a
block preconditioner based on multigrid.

INTRODUCTION
Ventricular fibrillation is the main cause of sudden cardiac death, which is the most frequent

cause of death in the developed world. Fibrillation, a severe form of cardiac arrhythmia, is
seen as a disorganized pattern of electrical activation in the heart, taking the form of a spiral
wave, tiny wavelets, or a mix of the two, see e.g. Chen et al (2003). The disturbance of the
normal rhythmic electrical activity causes inadequate contraction, and in the ultimate stage the
contraction is completely stalled. Ventricular fibrillation is lethal if not treated within a few
minutes.

The most common cause of ventricular fibrillation is a heart attack (infarction). This con-
dition, caused by insufficient blood supply to parts of the heart muscle, leads to abnormal het-
erogeneities in the heart muscle. Both electrophysiological and mechanical properties of the
tissue are affected by the reduced supply of blood. In particular, the muscle cells in the affected
region will stop contracting almost immediately, leading to a reduced pumping function of the
heart and a changed deformation pattern of the muscle. Characteristic electrical changes in-
clude reduced tissue conductivity and a disturbed balance between various ions, which affects
the electrical potentials in the tissue. Arrhythmic activity may be a direct effect of the changes
in the electrical properties, but it may also be caused by altered mechanical activity, through
a process known as mechano-electric feedback, see e.g. Kohl and Ravens (2003) and Ravens
(2003). Arrhythmia and fibrillation following a heart attack may therefore be caused by either
electrical or mechanical changes in the tissue, or a combination of the two.

A striking example of the coupling between electrophysiology and mechanics is a phe-
nomenon known as commotio cordis. As described in e.g. Nesbitt et al (2001), this term de-
scribes severe disturbance of the heart rhythm resulting from a relatively minor impact to the
chest. Although rare, deaths caused by this phenomenon have occurred for instance in athletic
activities such as baseball and soccer. A low-strength impact to the chest, causing no tissue
damage, may result in electrical disturbances in the heart through mechano-electric feedback. If
this occurs during a vulnerable period of the heart cycle, the result may be arrhythmic activity
that rapidly evolve into fibrillation.

The acute treatment for ventricular fibrillation is the delivery of a large electric shock to the
heart, a process known as defibrillation. If the shock is delivered within a few minutes after the
onset of fibrillation, defibrillation has a remarkably high success rate, see e.g. Mckenzie (2004).



However, although it has been extensively studied over the last decades, the underlying mecha-
nisms are not fully understood. Numerical simulations are seen as a promising tool to uncover
some of the mechanisms underlying both cardiac arrhythmias and defibrillation. Although still
in an early stage, mathematical models and simulations have already given researchers impor-
tant new insight into these phenomena, see e.g. Keener (2004), Xie et al (2001) and Hillebrenner
et al (2003).

Realistic simulations of heart activity are challenging, even if only considering a single cycle
of normal heart activity. The electrical activity is characterized by rapid dynamics and steep
spatial gradients, requiring high resolution in space and time to obtain satisfactory numerical
solutions, see Lines et al (2003). The requirements are less severe for the equations describing
the mechanical activity, but these models introduce other difficulties, in the form of severe non-
linearities and complicated constitutive relations, see Holzapfel (2001) and Hunter et al (1998).

The challenges related to solving the electrophysiology equations become more serious
when applying the models to study arrhythmia and defibrillation. To gain insight into the mech-
anisms of arrhythmias, it will often be necessary to run the simulations for a fairly long time
interval, typically from a few seconds to several minutes. This substantially increases the com-
putational load compared to simulating a single heart cycle, which only lasts about one second.
Simulating the defibrillation shock leads to challenges of a different kind. The shock is nor-
mally applied for a very short time, typically from one to ten milliseconds, but during this time
interval the electrical potentials reach values far beyond the normal physiological range. This
is known to cause considerable numerical problems when solving the model equations. Time
step restrictions in the order of microseconds have been reported, by Skoubine et al (2000)
and Trayanova and Eason (2002). This leads to very time consuming simulations even if these
restrictions apply only during the application of the shock.

The purpose of the present paper is to present an efficient algorithm for simulating arrhyth-
mia and defibrillation. We mostly restrict the discussion to pure electrophysiology simulations,
only briefly discussing models for mechano-electric coupling. The model considered is the
bidomain model coupled to the Beeler-Reuter model for cellular kinetics. Although being rel-
atively simple, the Beeler-Reuter model is suitable for many applications, and it can easily be
coupled to contraction models in order to simulate the complete electro-mechanical process.
The model is a non-linear system of PDEs and ODEs, for which we apply an operator split-
ting technique to separate the system into a system of linear PDEs and systems of non-linear
ODEs. The PDE system is then discretized fully implicit in time with a backward Euler method,
combined with a finite element space discretization. This leads to a block structured linear sys-
tem, which is solved with a multigrid preconditioned conjugate gradient method. For solving
the ODE systems resulting from the operator splitting process, we apply a singly diagonally
implicit Runge-Kutta (SDIRK) method.

MODEL DESCRIPTION

The electrical activity in the heart is described by the bidomain model, derived by Tung (1978).
This is a system of two PDEs coupled to systems of ODEs describing electro-chemical reactions
in the cardiac cells. The models for cellular activity can be extended to include models for
the active force generation in the muscle cells, which in turn may be coupled to a non-linear
elasticity equation describing the movement of the heart muscle. The complete model can be
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Fig. 1: A sketch of the heart embedded in a torso. Stapled lines indicate the location in which
essential boundary conditions are set.
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Eqs. (1)-(4) describe the electrical activity in the heart and the surrounding torso. The main
variables are the transmembrane potential � , the extracellular potential * + , and the vector

�
describing the state of the heart cells. Depending on the complexity of the cell model applied,

�
may contain from one to more than fifty elements. When the Beeler-Reuter model is used,

�
is

a vector of seven variables, describing membrane gates and ionic concentrations. Furthermore
*�7 is the electrical potential in the torso surrounding the heart, which is described by a passive
volume conductor model. The tensors " $ and " + describe the intracellular and extracellular
conductivities in the heart tissue, while "H7 is the conductivity in the tissue surrounding the
heart. For notational convenience the conductivities have been scaled, so that for I �KJ�MLN2< we
have

"1OP�
Q
RTSPU "5VO 

where " VO is the physical conductivity,
RWS

is the capacitance of the cell membrane, and
U

is
the ratio of cell membrane area to tissue volume. A more detailed description of the bidomain
model is given in Keener and Sneyd (1998) and in Lines et al (2003).

The heart moves, and (1)-(4) must therefore be formulated in time dependent domains �H	 � �
and <�	 � � . A sketch of the domains is given in Figure 1. We have only formulated the mechanics
equations for the heart tissue, and it is therefore natural to assume that the boundary

� � on the
figure moves, while the outer boundary

� < is fixed during the simulation. The electrophysiol-
ogy equations are formulated relative to the deformed (current) configuration of the domain, and
the computational grid must therefore be updated continuously to incorporate the movement of
the muscle. Other formulations exist which enable computations on a fixed grid.

The mechanics of the heart muscle are described by (5)-(7). Eq. (5) describes the equilib-
rium of a material undergoing large deformations, where @ is the second Piola-Kirchoff stress
and > is the deformation gradient tensor, see e.g. Holzapfel (2001) for details. The active
contraction of the muscle cells is included by splitting the stress tensor into an active and a
passive part, as given by (6). The active part, being triggered by the electrical activation of the



tissue, is a function of the state vector
�
. Well known models for this part include for instance

the HMT model, described in Hunter et al (1998). The passive stress is normally determined
by treating the heart tissue as a hyper-elastic material, where the components of the stress ten-
sor are computed as partial derivatives of a given strain energy function

G
with respect to the

Green-Lagrange strain � , see (7). The strain energy function defines a constitutive law for the
material, see e.g. Hunter et al (1998) and Usyk et al (2002) for examples. Inserting the constitu-
tive relation in (5), along with the expression for the Green-Lagrange strain, leads to a non-linear
equation system which may be solved for the tissue displacements, see e.g. Holzapfel (2001)
for details.

The model described above is suitable for describing the two-way coupling between elec-
trical activity and mechanics. As described above the active part of the stress is a function of�
, which provides one direction of the coupling. The mechano-electric feedback, which is typi-

cally mediated by so-called stretch activated channels, is included through the occurrence of the
strain tensor � in the right hand side of (1).

The way they are formulated above, the mechanics equations are referred to the original
(reference) configuration of the heart muscle. These equations may there fore be solved for a
fixed domain, and the solution may be used to update the time dependent domains �H	 � � and
<�	 � � for the electrophysiology computations. In the numerical experiments presented below we
will only consider the electrophysiology equations. The mechanics and movement of the heart
muscle will not be considered, and all computations are therefore performed on static domains.

Boundary conditions
The model described above must be completed with boundary conditions. For the electro-

physiology equations we need boundary conditions on the heart-torso interface and on the outer
surface of the body, while the mechanics equations require boundary conditions on the heart
surface.

On the boundary of � , we apply the original boundary conditions proposed by Tung (1978).
The intracellular space is assumed to be completely insulated from the surrounding tissue,
implying that the normal component of the intracellular current is zero on

� � . Using that
* $ � * +8� � , see e.g. Keener and Sneyd (1998), this yields

	#" $ �'� � " $ �'* + �8� ��� � :�� (8)

Furthermore, the extracellular tissue is assumed to be directly connected to the tissue surround-
ing the heart. This implies that both the electrical potential and the current in these domains
must be continuous across

� � . We have

* + � *�7� (9)

and
	#" + �'* + �9� ��� � 3 	#"%79�'*�78�9� � 7
 (10)

on
� � . Note that the unit normal � 7 occurring on the right hand side is the outward unit normal

of < on
� � , which points into the heart domain � .

For normal simulations of cardiac electrical activity it is common to assume that the body
is completely insulated from its surroundings, which yields the no-flux condition

	#"%78�'*�7 �D� � 7 �K:�� (11)

However, in order to simulate defibrillation shock this condition has to be modified, since the
defibrillation electrodes will typically be applied to

� < . These are incorporated by dividing the
outer boundary in three parts, see Figure 1, and applying essential boundary conditions on the
parts

� < � and
� <�� . We have

*�7 �
	 � * C E�E in

� < �
3W* C E�E in

� < � (12)



so that
� < � becomes the anode, and

� < � the cathode, see Figure 1 for an illustration. We will
investigate the outcome of several shock strengths in our simulations.

The boundary conditions for the mechanics equations are intended to mimic the way the
heart is attached inside the torso, as well as the effect of the blood flow in the heart cavities.
The characteristics of the blood flow change during the heart cycle. As described in Usyk et al
(2002) this can be incorporated through time dependent boundary conditions, which are adjusted
to emulate the various phases of the heart cycle. The result is a fairly complicated system of
boundary conditions for the elasticity equations. The main focus of the present work is on the
electrophysiology equations, and we refer to Usyk et al (2002) for the boundary conditions for
the mechanics problem.

The Beeler-Reuter cell model
The kinetics of the cell membrane are described here by a modified Beeler-Reuter model, see

Beeler and Reuter (1977). We will in the following only consider electrophysiology simulations,
not including mechano-electric effects such as stretch activated channels in the model. The
model is a system of ODEs which includes update of the intracellular calcium concentration
and six gating variables in addition to the transmembrane potential. We denote the gates by� ������ �� �� M�� I , and these all obey ODEs on the form

I �
I � ��	�
 	 Q 3 � �83��
 � 

with 	�
 	��4� and ��
4	��4� being respectively the opening and closing rates of the membrane channel.
For convenience, the calcium concentration is scaled like � � Q :���� R���� $ , such that � satisfies

I��
I ���K:�� :��4	 Q 3 � �D3 ���&$ 	��� � M�� I �-

where ��� $ is an outward current, mainly consisting of calcium ions, and reads

� �&$0	��� � M�� I �T�����&$#� I 	�� ���! �#" � Q " � :  !� �%$'&8	 Q : �(� � �0� �
Flow of sodium (Na) ions is described by a second outward current, and is given by

��) C 	����� �� ��&� �/	*� ) C �,+-�.� � � ) C0/ � 	���3 � ) C �-
where � ) C is the conductivity of the cell membrane related to sodium, and � ) C is the equilib-
rium potential of that current. The potassium flow is modeled by an inward two component
current; one time dependent and one independent of time, respectively given by

�21 	������� �;:�� � � L�304 365-798 � ����:D3 QL 304 365-798 � +�; : 
and

��< 	��4�T� Q �>= L?304 365-798 � ����:D3 Q
L 304 3�@0798 � ;�+ : � L 304 365-7A8 � ;�+ : �

In order to handle strong electric fields, the cell model needs to be modified. We do this in a
fashion similar to that of Skouibine et al (2000), and introduce B as the electroporation function
obeying

ICB
I � ��	9L�D 7A8 ��8�EF:*G 	 Q 3)L ��H!7A8 ��8�E�:'G �-

where 	 , � and I are constants, and the potential at rest is set to �CJ � 3 � = �#"!K . Then the total
ionic current reads

� ion 	��� � ��� ��� $ 	���M�� I  � � ����) C 	����� �� ��&� �H��< 	��4� �H�21 	������� � B � �



The electroporation function models the effect of the shock on the pores of the cell membrane,
see e.g. Krassowska (1995) for details. The adjustments are well described in Skouibine et al
(2000). In that paper, the update of the intracellular calcium concentration � , is turned off for
���  :N: mV to prevent � from becoming negative. This is a limitation due to numerical insta-
bility, since the term describing flow of

R���� �
-ions includes a logarithmic function. However,

our simulation results show that the Ca-concentration becomes negative for ��� Q � : mV when�'� �K:�� Q ms, and thus the numerical method diverges. However, we have observed convergence
for
�'��� :�� :�� ms, even with the calcium change turned off for � above  :N: mV.

NUMERICAL METHOD
The complete model (1)-(7) is a highly complex system of ODEs and PDEs, and operator split-
ting techniques stand out as attractive methods for splitting this system into more manageable
parts. We here present such a technique for solving the electrophysiology equations (1)-(4),
with boundary conditions (8)-(12). We only give a brief outline of the procedure, whereas for a
detailed description, we refer to Sundnes et al (2005) and the references therein.

A Godunov splitting technique is used to split the non-linear system into linear PDEs and
non-linear ODEs. Assuming that the solution is known at time

�
	
, the solution at the next time

step is computed with the following steps;
Step 1. Solve the ODE system ��� � � 3 � $� 	 	��� � ���� � �K> 	��� � �
for
��	���������	 � Q , to obtain

��	 ���
and a temporary update � V for � .

Step 2 Solve the linear PDE system� 8� � � �!	#" $ ���4� � �5� 	#" $ �'* + � �;� �!	#" $ ���4� � � � 	#" $ �'* + �- ��� ��
�/�!	#" $ �'�(� � � �!	0	#" $�� " + �2�'* + � �K:4 ��� ��

� � 	#" 79�'*�78� �K:4 ���=<.
for
��	�� ��� ��	 ���

, using the value � V from Step 1 as initial condition for � . The result is a first
order approximation to � , * + and *�7 at time

� 	 ���
.

Although the systems resulting from the operator splitting technique are considerably sim-
pler than the original system, the equations in Step 1 and Step 2 must still be solved with
numerical techniques. For the ODE systems in Step 1 we apply a singly diagonally implicit
Runge-Kutta (SDIRK) method, whereas for the PDE discretization we use a backward Euler
time discretization combined with a Galerkin finite element method. This leads to a linear
system of the form ��� ���

*�� � � �"! ## 7 R � � �$�*�� � � � 	�%�  (13)

to be solved for each time steps. Here �&� is a vector containing the unknown nodal values of � ,
while the vector * contains the nodal values of both * + and *�7 . The blocks are defined by!�' 1 �)( �+* ' * 1 I � � ��� ( � " $ � * ' � � * 1 I � #�' 1 � �'� ( � " $ � * ' � �-, 1 I �9R ' 1 � �'� ( � 	#" $�� " + �2�-, ' � �-, 1 I � � ( 7 "%79�-, ' � �., 1 I � 

	 ' �)( �+* ' � 	 I � 3 �'� ( � "%$&� * ' � ��� 	 I � 
� ' �K:4

for suitable test functions * ' and , ' defined over the domains � and �0/ < , respectively.
The entries in � will only be zero if no essential boundary conditions are applied. When

incorporating the electric shock in the form of essential boundary conditions, the linear system is



adjusted so that � gets non-zero entries. A multigrid preconditioned conjugate gradient method
is applied in order to solve the system (13), see Sundnes et al (2005) for details of this procedure.

SIMULATIONS AND RESULTS
The steep gradients due to the electric shock normally require extremely small time steps.

Trayanova and Eason (2002) have used a temporal step size of K�� � . We here present exper-
iments investigating the largest time step allowed by the operator splitting method presented
above. Table 1 shows the maximum time step for which the algorithm converges during the
shock. We observe that the convergence improves as the shock strength decreases; going from
a shock strength of

Q�� � � � V/cm to
Q :�� : V/cm doubles the value of

���
that gives convergence.

Shock strength (V/cm)
���2S
C�� (ms)

16.67 0.24
16.0 0.26
15.0 0.3
12.0 0.36
10.0 0.48

Table 1: Table of maximum value of time step for different shock strength of duration
Q : � � .

The solver converges within � iterations on average.

Table 2 shows the number of iterations for different number of nodes on the square geometry
shown in Figure 2. The heart occupies the region � :4 Q ��� � :4 Q � , while the surrounding region
is the passively conducting torso. A reentrant spiral wave is introduced in the heart, and the
shock is then applied as essential boundary conditions on the boundaries � � 3  and � �
= . The convergence criterion used is based on the absolute residual of the iterative solver.
We observe, from Table 2, nearly optimal convergence, both with and without the essential
boundary conditions set. Notice from Figure 2 that the steep gradients that occur during shock
(right part) totally dominate the picture, as opposed to the situation under normal conditions
(left part).

nodes without shock during shock
16 384 7 11
65 536 9 13

262 144 10 14

Table 2: Number of iterations for different number of grid levels.

Simulations have also been run on a more realistic 2D geometry, resembling a cross section
of the heart and the torso. The cardiac tissue is initially stimulated, in order for a left-going
wave to propagate for " : ms. Then we set a shock, on the surface of the torso, of strengthQ :�� : V/cm and

Q : ms duration. Figure 3 shows the torso (left) as well as the heart (right) that are
subjuct to strong electric fields. In Table 3 we run tests on this grid for several shock strengths,
using four grid levels. We see that the number of iterations increases significantly during the
application of the shock. This is partly due to the convergence criterion used, which is based
on the absolute residual. Since the magnitude of the solution increases dramatically during the
shock, this criterion becomes very strict. A convergence criterion relating the residual to the
magnitude of the solution may be more appropriate in this case.

As a final test example we simulate a defibrillation shock applied to a heart suffering from
reentrant arrhythmia. We use the simple square geometry, and induce a reentrant spiral wave
using an S1-S2 stimulus protocol. The very right end of the cardiac tissue slice is first stimulated
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Fig. 2: Left panel: Plot of a square torso embedding a heart with a reentrant spiral wave. Right
panel: Torso during defibrillation shock.

Fig. 3: A slice of body and heart undergoing electric shock.

Shock strength (
�

�
S ) before shock onset of shock during shock

9.1 11 49 32
13.7 11 50 32
16.4 11 51 32

Table 3: Number of iterations for several shock strengths before, at onset of and during shock.

for 1 ms to produce a left-going wave. Then,
Q " : ms later, an S2 stimulus, also of

Q
ms duration,

is initiated in the right lower corner of the myocardial tissue. By now, the first wave is in its
refractory period, causing the S2 wave to propagate unevenly in the vertical direction, whereas
the horizontal propagation is blocked. The result is a sustained reentry wave that propagates in
the tissue. See Figure 4 for spiral wave birth and evolvement.
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Fig. 4: Left: Wave @ Q propagation
Q :�K ms after onset. Middle: Refractory state of S1-wave

results in one-sided block of S2 stimulus. Right: Spiral wave propagation throughout the tissue.

At
Q K : ms after the onset of s1, we set a shock of strength

Q�� � � � V/cm of
Q : ms duration, see
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Fig. 5: Top row: Plot of transmembrane potential during and after onset of shock of strengthQ�� � � � V/cm and
Q : ms duration. Bottom row: Evolvement of � during and after onset of shock

of strength K V, also
Q : ms duration.

top row of Figure 5. This corresponds to values of respectively * 7 �  :N: V and * 7 � : V
for the cathode and the anode. A large part of the tissue is depolarized, making it impossible
for new waves to propagate for several milliseconds. At time

� �  = : ms, a large part of the
tissue is repolarized, and the heart will soon be ready for normal stimulation. This simulation
hence demonstrates a successful defibrillation shock, as all reentrant activity was removed, and
no new reentrant waves were generated by the shock. The bottom row of Figure 5 shows a
similar experiment with a weaker defibrillation shock, of strength K V/cm, also lasting for

Q : ms.
It is seen at the bottom of the tissue a new rotor that will evolve and stabilize, and thus the
defibrillation attempt failed.

CONCLUSION AND FURTHER WORK
In this paper we have presented a method for solving the bidomain equations with application

to cardiac defibrillation. The solver has been adjusted to handle essential boundary conditions
which serve as external electrodes set on the surface of the body. Initial experiments indicate
that the numerical method used is fairly stable, allowing larger time steps than what is previously
reported in the literature. The results of the simulations seem to be in accordance with results
reported by other researchers in the field.

The experiments presented in this paper are fairly limited, in that we only consider 2D
geometries. More experiments must be performed, preferably on realistic 3D geometries, to
determine if the proposed numerical method is suitable for practical defibrillation simulations.
Another important step is to combine the given algorithm with a solver for the mechanics equa-
tions, to be able to perform complete electro-mechanics simulations. This will enable us to
investigate the role of different mechanisms in the the development of cardiac arrhythmias.
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