
Increased Robustness with Interface Based
Permutation Routing

Hung Quoc Vo
Simula Research Laboratory

Olav Lysne
Simula Research Laboratory

Amund Kvalbein
Simula Research Laboratory

Abstract—A prime objective of fault tolerant routing methods
is the availability of multiple routing options at each hop. The
methods that are currently implemented in IP networks, such
as Equal-Cost Multi-Path (ECMP) and Loop Free Alternates
(LFA), share the following four properties: First, they work with
a hop-by-hop forwarding strategy optimized for the fault free
case. Second, they do not require information associated with
network faults included in the packet header. Third, they do
not form forwarding loops, even under multiple failures in the
network. Finally, they are compatible with standard link state
routing protocols. However, ECMP and LFA give very poor
fault coverage; in most cases fewer than 50% of primary next-
hops are protected when using typical link weight settings. This
paper presents a new routing method that combines the concept
of permutation routing with interface-specific forwarding. Our
method results in a routing strategy that strictly adheres to the
four stated design properties. Through experiments we show that
we protect more than 97% of the primary next-hops for all tested
ISP networks.

I. INTRODUCTION

IP networks are the preferred transportation medium for
time-critical services such as online trading, remote moni-
tor and control systems, telephony and video conferencing.
Fast recovery from network failures has therefore become
an important requirement when designing networks. Cur-
rently implemented solutions to the fast reroute problem in
IP networks are Equal-Cost Multi-Path (ECMP) and Loop
Free Alternate (LFA) [1], both of which share four common
properties that are critical for adoption: First, they do not
require the network operator to change the traditional hop-
by-hop forwarding strategy that is optimized for the fault free
case. Second, they do not require addition of fault-information
included in the packet header. Third, they do not suffer from
routing loops, even when there are multiple faulty components
in the network. Finally, they work with the existing standard
link state routing protocols such as OSPF or IS-IS. ECMP and
LFA are simple but give limited protection against network
failures; in most cases they protect below 50% of primary
next-hops when using typical link weight settings [2].

Maximizing failure coverage has become a common routing
objective for increased robustness in many recently proposed
routing schemes. Several solutions, specifically Tunnels [3],
Not-via [4], MRC [5] and IDAGs [6], promise full coverage
for single network component faults with the cost of altering
the traditional IP forwarding. More related to our work, Failure
Insensitive Routing (FIR) [7] introduces the interface-specific
forwarding concept, which has potential to be deployed with

low complexity on modern high-performance routers. FIR also
offers full fault coverage for single link faults but it may
cause routing loops when there exist multiple failures in the
network [8].

In this paper, we propose interface based permutation rout-
ing, which combines the concept of permutation routing [9]
with interface-specific forwarding [7]. The method aims to
maximize protection coverage for IP networks by giving
multiple loop-free next-hops towards a destination for each
incoming interface of a router. Importantly, our routing method
shares with ECMP and LFA the four listed properties.

Permutation routing [9] is a new and flexible approach
for calculating multiple loop-free next-hops in networks with
the traditional hop-by-hop forwarding. Permutation routing is
based on the fact that any routing strategy can be expressed
as a permutation (sequence) of nodes that are involved in
traffic forwarding to a destination. The routing is loop-free if
packets are forwarded in one direction towards the destination
regarding to node ordering in the permutation. Permutation
routing only takes the topology information that is collected
by link state routing protocols as the input for its construction,
and hence no new control plane signaling is needed.

The main focus of this paper is to construct permutation
routing of interfaces that approximately maximizes the number
of primary interface-destination pairs that have more than one
available next-hop. Importantly, our routing method can easily
be integrated with existing link state routing protocols, OSPF
or IS-IS, and can be used to augment shortest path routing
tables with additional forwarding entries. We show that our
interface based permutation routing can protect more than 97%
of the primary next-hops in all tested ISP topologies. This
is significantly better than LFA and ANHOR-SP [9], which
protect from 21% to 67% and from 29% to 81%, respectively,
in the topologies we study. Note that ANHOR-SP is a routing
strategy constructed by using the concept of permutation
routing, which seeks to maximize protection coverage for
traditional IP networks. In this paper we only focus on finding
a set of loop-free paths, and leave the important topic of load-
balancing across these paths for future work.

The rest of the paper is structured as follows. Section II
explains why the interface-specific forwarding is beneficial
over the traditional IP forwarding and proposes iNHOR as
our main routing objective. Section III describes in detail
a heuristic to create interface based permutation routings
that approximate iNHORs. Section IV assesses the multipath

capability of our routing method. We review related work in
Section V and conclude the paper in Section VI.

II. INTERFACE NEXT-HOP OPTIMAL ROUTING

This section first reviews the interface-specific forwarding
concept and explains by examples its ability to increase routing
robustness for IP networks. We then introduce Interface Next-
Hop Optimal Routing (iNHOR) as our main objective function
for a robust routing.

A. Link-specific forwarding

In IP networks with interface-specific forwarding, packets
are routed based on both their incoming interfaces and their
destination addresses. For that reason, each line-card of a
router will maintain its own distinct forwarding table that
maps each network destination to eligible outgoing interfaces.
Fortunately, such design is available in most modern routers,
in which forwarding engines are integrated into line cards in a
distributed mode [10]. We explain by examples how interface
based routing can help increase robustness over the traditional
IP routing.

(a) (b) (c)

(d) (e) (f)

Fig. 1: (a) A topology. (b) An SPT rooted at node 1. (c) A
DAG, which contains the SPT, rooted at node 1. Fast rerouting
under interface-specific forwarding if (d) link (1, 3) fails, (e)
link (3, 5) fails, (f) multiple links fail.

Fig. 1a illustrates a simple topology with six nodes and eight
(bidirectional) links with their corresponding link weights.
Fig. 1b is a shortest path tree (SPT) rooted at node 1. We say
that a node is protected if it has at least two next-hops, no node
in Fig. 1b is protected (gray shadowed nodes). Other routing
methods, e.g. ANHOR-SP [9], can improve the protection
coverage by adding non-shortest path branches to form a
better-connected routing graph, mandatorily a directed acyclic
graph (DAG). Fig. 1c is such an instance. Obviously, Fig. 1c
is the most robust loop-free routing graph rooted at node 1
that the traditional IP routing can provide because adding any
more directed link will cause loops. Consequently, we fail in
protecting node 3 and node 5 under single failures.

However, node 3 and node 5 of the topology can be
protected if interface-specific forwarding is used. Correspond-
ingly, node 3 (in Fig. 1d) will reroute flow I to node 2

under failure of link (1, 3). Upon receipt of rerouting packets
from incoming interface (3 → 2), node 2 will forward them
to destination 1. Likewise, node 5 (in Fig. 1e) will safely
reroute flow II to node 4 under failure of link (3, 5) where
it is then forwarded to node 2 without causing loops. To do
that, all interfaces of nodes should be installed with loop-
free forwarding tables towards destination 1. In those tables,
next-hops marked with primary are used if available. Other
next-hops are called secondaries and only used when all
primaries are not in service. If there does not exist any next-
hop (either primary or secondary) for a specific incoming
interface, packets will be discarded at that interface. As shown
in Fig. 1f, flow I is dropped at interface (3→ 2) due to failures
of both links (1, 3) and (1, 2). We will show how to construct
such a forwarding table for each interface in Section III, but
we first introduce our main routing objective.

B. Interface Next-Hop Optimal Routing

For maximizing fault tolerance and load-balancing capa-
bilities of a network with interface-specific forwarding, it
is important that the routing offers more than one available
next-hop for as many primary incoming interface-destination
pairs as possible. This leads us to the following optimization
criterion for Interface Next-hop Optimal Routing (iNHOR):

Definition 1: Given a routing for a destination, an incoming
interface on the SPT is called a primary interface (pI) and an
incoming interface not on the SPT a secondary interface. An
iNHOR is an interface based routing that contains the SPT and
maximizes the number of primary interface-destination (pI-D)
pairs with at least two next-hops.

By maximizing fault tolerance capability for primary in-
terfaces, iNHOR has a great potential to increase robustness
for IP networks under failures. In addition, the SPT inclusion
constraint of iNHOR is usually required for traffic engineering
purpose, e.g. shortest paths likely provide low transmission
latency for voice or video traffic. In the next section, we
introduce a method that helps construct a loop-free forwarding
table for each interface using permutation routing.

III. ALGORITHM DESIGN

We design a heuristic for generating interface based permu-
tation routings for a given topology that approximate iNHOR.
We call the resulting routing Approximate iNHOR (AiNHOR).
The heuristic is based on the generic framework introduced
in [9] with two modifications. First, the given topology is trans-
formed into a line graph [11] where each vertex 1 represents a
directed link of the topology. Second, a new selection strategy
is proposed to pick a node from the resulting line graph for
each position in the permutation routing which represents an
AiNHOR. We first review how to construct a permutation
routing in general.

1we use ”node” and ”link” for the connectivity of given input topologies
and ”vertex” and ”edge” for their corresponding line graphs.

A. Permutation Routing

We model the given topology as graph G = (V (G), E(G))
where V (G) is the set of nodes and E(G) is the set of directed
links of G2. Let p and q denote the cardinalities of V (G) and
E(G), respectively. Given G and the constraint function C(u),
which is defined to realize a selected routing objective, on each
node, a permutation routing for destination d is:

1) A sequence of N nodes, called a permutation which is
denoted by P , whose ordering satisfies C(u). Destination
d is at the left-most position of P .

2) A node can forward its packets to all its neighboring
nodes that occur before it in P .

We use the well-known backtracking algorithm [12] to
create such permutation P . The key procedure of the algorithm
is to assign a node to a variable that represents a position in
the permutation so that the assignment satisfies C(u). Fig. 2
illustrates the basic assignment procedure for variable pi+1

in which two key functions Update and Select work as
filters to control the assignment. Specifically, we have a set
of N variables, P = {p1, p2, . . . , pN}, in a fixed order from
p1 to pN . Function Update is designed to generate domain
Di+1 for variable pi+1. We refer to Di+1 as the candidate
set which consists of nodes that can be assigned to variable
pi+1. Then function Select will pick one node in Di+1

that fulfills C(u) and assign it to variable pi+1. In the figure,
each pair 〈pi, ui〉 represents the assignment of the node ui to
variable pi. The assignment of nodes to a subset of variables
{p1, p2, . . . , pi} ⊆ P given by {〈p1, u1〉, . . . , 〈pi, ui〉} is
called a partial permutation with i nodes. For simplicity, we
abbreviate it to ~pi.

Fig. 2: Basic assignment procedure for variable pi+1

B. Line Graphs

ANHOR (Approximate Next-Hop Optimal Routing) and
ANHOR-SP (Shortest Path compatible ANHOR) are two
routing strategies which are computed using permutation rout-
ings of nodes [9]. However, in this paper we desire to use
permutation routing to calculate next-hops for each interface
(not for each node). In other words, the permutation routing in
this case should be an ordering of all directed links (incoming
interfaces) of the given topology. Fortunately, we can achieve
such a permutation routing without modifying the described
framework by using the line graph of the topology as the input.

2each link in the topology is modeled as two directed links.

Definition 2: Given a graph G, its line graph G3 =
(V (G), E(G)) is a graph such that:

1) Each vertex of G represents a directed link of G; and
2) Two vertices u and v of G form a directed edge (u→ v)

if and only if their corresponding directed links (u1 →
u2) and (v1 → v2) of G are adjacent in G or u2 ≡ v1.

Following the definition of line graphs, we have propositions
regarding to the connectivity, subset relationship and acyclic
property of line graphs (proofs can be found in [11] or our
technical report in [12]).

Proposition 1: Let G1 and G be two directed graphs,
1) If G is connected, then G is connected.
2) If G1 ⊂ G, then G1 ⊂ G.
3) If G1 is a DAG, then G1 is also a DAG.
From the definition of line graphs, we might think that G is a

proper input for calculating permutation routing of interfaces.
It is, however, infeasible since G does not include any vertex
that corresponds to the real destination node. For the routing
computation purpose, we should modify G by adding a virtual
vertex that represents the destination and taking away vertices
and directed edges that will not contribute to routing towards
the virtual destination. For simplicity, we also use G to denote
the modified version of G. Fig. 3 illustrates the line graph G
(Fig. 3b) and its modified version with an added virtual vertex
and two added virtual directed edges in dotted lines (Fig. 3c)
of the topology G in Fig. 3a.

(a) Topology G (b) Line graph G (c) Modified line
graph G

(d) Routing R
constructed on G

(e) Modified line
graph R

(f) R ⊂ G

Fig. 3: The topology, routing graph and their line graphs. Note
that we denote [u, v] by the vertex of G, which is directed link
(u→ v) in G.

Let R be the SPT towards destination d which is constructed
on G, its line graph with virtual destination d will be R.
According to Proposition 1, R is connected, R ⊂ G and R
is a DAG towards d. Fig. 3e and 3f illustrate those properties
with a simple example of shortest path routing R in Fig. 3d.
Note that line graph G in Fig. 3f has two types of vertices.
There are vertices which are both on the line graphs G and R
such as vertices 1, [2, 1], [3, 1] and [2, 3] and one vertex, [3, 2],

3We use boldface letters to denote line graphs and their objects, e.g. vertices
and edges.

which is not on R. Since we desire that AiNHOR calculated
from G is compatible with the shortest path routing, AiNHOR
must include R.

C. Domain generation

With given line graphs G and R, we then define the domain
for each variable. Because a vertex in any valid routing must
have at least one next-hop towards the destination, the domain
Di+1 for variable pi+1 can be the set that contains all vertices
with at least one out-neighbor, which has been placed in partial
permutation ~pi, as follow:

Di+1 = Di ∪ { v ∈ Vi | (v→ u) ∈ E(G} \ {u} (1)

where u is the vertex that has been assigned to variable pi in
the i-th assignment and Vi is a set of vertices of G, excluding
all vertices in ~pi and Di.

Domain Di+1 is usually large when i increases. We will
divide Di+1 into smaller domains, on which our search would
be more efficient. We have noticed that Di+1 may contain
three types of vertices. First, they are vertices in R which
have all their next-hops in R already placed in ~pi, denoted by
Da

i+1. Second, they are vertices which are not in R, denoted
by Db

i+1. Third, they are vertices in R which do not have all
their next-hops in R already placed in ~pi, denoted by Dc

i+1.
For a vertex v, let csp[v] be the number of next-hops in R

placed in ~pi and nsp[v] be the total number of next-hops in R,
the sub-domain Da

i+1 for variable pi+1 follows the recursive
relation:

Da
i+1 = Da

i ∪ {v ∈ Di+1 | csp[v] = nsp[v]} (2)

and sub-domain Db
i+1 is calculated as follow:

Db
i+1 = Db

i ∪ {v ∈ Di+1 | v /∈ R} (3)

We then design a selection strategy to pick a vertex from
defined sub-domains for a variable in each assignment to
produce a permutation routing representing AiNHOR.

D. Selection strategy

We denote Ri = (V (~pi), E(~pi)) by the routing sub-
graph towards to destination d which is represented by partial
permutation ~pi. To achieve a robust routing from G while
containing R, the vertex selected from sub-domain D∗i+1 (e.g.
Da

i+1 or Db
i+1) for variable pi+1 to form partial permutation

~pi+1 should be the vertex with the maximum number of out-
neighbors already placed in ~pi:

|E(~pi+1)| = max
∀u∈D∗

i+1

|E(~pi, 〈pi+1,u〉)| (4)

and if Ri+1 is a subset of R after (i+ 1)-th assignment, then

Ri+1 ⊆Ri+1 (5)

We derive constraint function C(u) to realize expression (4)
and (5) as follow:

C(u) =

True if c[u] = max∀v∈D∗

i+1
c[v]

and Ri+1 ⊆Ri+1

False otherwise

where c[u] denotes the number of outgoing edges from u to
~pi if u is selected in (i+ 1)-th assignment.

We then select one vertex from one of three sub-domains
that satisfies C(u) and place it in the permutation. We have
two strategies: first choosing a vertex in Da

i+1 that satisfies
(4) if it is not empty or first choosing a vertex in Db

i+1

that satisfies (4) if it is not empty. It is easy to verify that
the resulting permutation routings in both cases will satisfy
(5). However, the latter will increase the protection coverage
because it places in the permutation all possible secondary
links, which can become next-hops for primary links, before
primary links. Fig. 4 summarizes the selection procedure for
(i+ 1)-th assignment, in which we go through Db

i+1 first.

Fig. 4: The selection procedure for variable pi+1

We apply our described algorithm to the topology in Fig. 1a
and yield the permutation of 15 vertices towards destination
1: {1, [2,1], [3,1], [3, 2], [2, 3], [4,2], [5,3], [2, 4], [5, 4], [3, 5],
[4, 5], [6, 4], [6,5], [4, 6], [5, 6]}. In the permutation, those
boldface vertices are the directed links of the topology that
are on the shortest path towards node 1 (Fig. 1b). Forwarding
tables for interfaces then are generated by allowing each vertex
in the permutation to forward packets to all its neighboring
vertices that occur before it in the permutation. Fig. 5 shows
two examples of forwarding tables for interfaces of node 2 and
node 3, extracted from the permutation routing of vertices.

Fig. 5: Forwarding tables of interfaces of node 2 and node 3.

Proposition 2: Our selection procedure in Fig. 4 gives a
backtrack-free algorithm for all connected directed graph.

Proof: We observe that whenever one of two domains
Db

i+1 and Da
i+1 is not empty, we could find a vertex that sat-

isfies (4). Therefore, our algorithm will perform backtracking
step only if both Db

i+1 and Da
i+1 are empty at the same time

in some iteration. However, that can never happen before all
vertices have been placed in the permutation. If this is the case,
there exists only candidate vertices in Dc

i+1. In other words,
we can follow R from any vertex that has not been placed
and always find a next-hop vertex that is not placed in ~pi. But
this is impossible: since R is a DAG (Proposition 1), any path
along the shortest path will eventually reach the destination,
which is the first vertex placed in the permutation.

Due to the property of backtrack-freeness, with sparse
topologies the computational complexity to construct one
permutation towards one destination would be O(|E(G)|+q×
|D|) where |D| denotes the average size of domains Di and
|E(G)| can be computed based on G that we may find in [11]
or in our technical report [12]. In dense topologies, the total
complexity of calculating permutations for all destinations can
approach O(q3).

IV. PERFORMANCE ANALYSIS

We assess routing robustness of AiNHOR in terms of
the improved number of next-hops for primary incoming
interfaces towards all destinations. Since adopting secondary
interfaces for packet transportation can lead to path inflation,
we also investigate the hop-count length distribution with
various allowed number of next-hops.

A. Evaluation Setup

We select six representative network topologies from the
Rocketfuel project [13] for our evaluations. For each topology,
we remove all nodes that will not contribute on routing
(e.g. single out-degree node). The refined topologies are bi-
connected graphs, listed in Table I in increasing order of their
average node out-degrees. In addition, Table II shows their
corresponding line graphs in increasing order of their average
vertex out-degrees.

ECMP and LFA base their path calculation on link weights.
To obtain realistic link weight settings, we implement local
search heuristic [14] to optimize link load objective function
under traffic matrix generated by the gravity model [15]. For
AS1239, we, however, use unit link weights because the local
search heuristic does not scale to a topology of this size.

TABLE I: Network topologies

AS Name Nodes Links Avg. Degree
1221 Telstra(au) 50 194 3.88
3967 Exodus(us) 72 280 3.89
1755 Ebone(eu) 75 298 4.00
3257 Tiscali(eu) 115 564 4.90
6461 Abovenet(us) 129 726 5.60
1239 Sprint(us) 284 1882 6.62

TABLE II: Line graphs

AS Name Nodes Links Avg. Degree
1755 Ebone(eu) 298 1432 4.80
3967 Exodus(us) 280 1372 4.90
1221 Telstra(au) 194 1030 5.30
6461 Abovenet(us) 726 5434 7.50
3257 Tiscali(eu) 564 4378 7.76
1239 Sprint(us) 1882 25988 13.81

B. Comparison

We compare our AiNHOR with shortest path based routings,
ECMP and LFA, and recent solution ANHOR-SP. Compar-
isons to other interface based routing methods (e.g. FIR [7],
NISR[16] and ESCAPE [17]) are less relevant because they
do not fulfill the four properties stated in our introduction.

We evaluate robustness of all mentioned routing methods
in terms of links, instead of nodes. Accordingly, for given

incoming interface (∗ → i), j is called the primary next-hop
of (∗ → i) if (i → j) is on the SPT towards d. Otherwise, j
is called secondary next-hop and (i→ j) is a secondary link
towards d.

C. Robustness Evaluation

Fig. 6 shows fractions of primary interfaces with at least
two next-hops under four methods. We observe that the
fractions of AiNHOR vary slightly across six topologies and
are above 97%. Especially, AiNHOR achieves 100% primary
interfaces with two next-hops in AS6461 and AS3257. The
good results come from properties of interface based routing
and its operation on the bi-connected graph. That is a node
with at least two outgoing interfaces may have the chance to
installed two loop-free next-hops.

Obviously, AiNHOR gives a clear improvement over LFA
and ANHOR-SP. Fig. 6 shows that LFA and ANHOR-SP
protect only from 21% to 67% and from 29% to 81% primary
interfaces, respectively, in six tested ISP topologies.

Fig. 6: Fraction of pI-D pairs with two routing options.

D. Path length distribution

AiNHOR has significantly improved the multipath capabil-
ity that allows load balancing and increased fault-tolerance.
However, adopting secondary interfaces for packet forwarding
possibly leads to high path inflation which can increase traffic
load over non-shortest paths. For that reason, we investigate
the distribution of path length for different values of the
maximum number of next-hops for each interface, denoted by
K. Note that we have measured the longest path corresponding
to K for each source-destination (S-D) pair. In other words,
we show the upper bound of the path length for each S-D pair
while packets might travel on much shorter paths in practice
(where there is not the case that all primary links from the
source node to the destination simultaneously fail).

Table III shows the distribution of path lengths in hop for
K =1, 2 and 3. For K = 1, all paths from source nodes to
destinations are shortest paths. Increasing K to 2 and 3 will
allow more longer paths and therefore shift the average upper
bounds up. Of all topologies, those upper bounds only increase
from 7.5% (AS1239) to 40% (AS6461) for K = 2 and up to
100% (AS6461) for K = 3. In practice, those path lengths are
still comparable to those of shortest path routing.

TABLE III: Path length distributions in hop

Allowed K AS1755 AS3967 AS1221
1 5.2∓ 1.9 5.1∓ 1.9 4.8∓ 1.8
2 6.3∓ 2.6 6.9∓ 3.2 5.4∓ 1.9
3 6.8∓ 3.2 7.5∓ 3.9 5.7∓ 2.2

Allowed K AS6461 AS3257 AS1239
1 4.3∓ 1.5 4.4∓ 1.6 4.4∓ 1.6
2 6.1∓ 2.6 6.1∓ 2.2 4.7∓ 1.8
3 9.1∓ 5.7 8.1∓ 4.3 5.2∓ 2.4

V. RELATED WORK

Many recent solutions proposed in literature seek to increase
the protection coverage with different approaches. We cate-
gorized those proposals into two main groups corresponding
to two forwarding methods: the traditional IP forwarding and
the interface-specific forwarding. Examples of the former are
Tunnels [3], Not-via [4], O2 [18], PR [19], ANHOR-SP [9],
MRC [5] and IDAGs [6]. The latter includes FIR [7], ESCAP
[17], NISR [16] and LFIR [8].

Tunnels [3] and Not-via [4] suggest that IP packets should
be encapsulated at the node adjacent to the failure. Those IP-
in-IP packets then are tunneled to an unaffected node where
they are forwarded to the destination. Promising 100% single
failure coverage, the tunnel technique obviously requires high
overheads in tunnel signalling.

O2 [18] and PR [19] are two routings designed for the
centralized routing system. Both O2 and PR use the concept
of ”joker” links in which both directions of a link are used
for mutual backups. O2 seeks to maximize the number of
nodes with two next-hops while PR allows nodes to adopt at
least two next-hops. In addition, PR is only suitable for small
scale networks due to its high complexity. ANHOR-SP [9]
introduces the concept of permutation routings and proposes
a generic framework, from which various routing objectives
for the traditional IP network can be realized. ANHOR-SP
is designed for the distributed routing system due to its low
complexity. ANHOR-SP, however, provides a coverage of
single link faults which is significantly lower than AiNHOR.

MRC [5] and IDAGs [6] use multiple routing tables that
cover all possible failures. Upon detecting a failure on the
connected link, the affected node selects another routing table
to avoid network interruption and marks the routing table index
in its packets. Other node will examine such index in incoming
packets and will select the same configuration.

FIR [7] first introduces the interface-specific forwarding
concept and proposes the shortest path based algorithm to
construct forwarding tables for incoming interfaces. FIR offers
100% single link fault coverage while a later version [20]
provides full coverage of single node faults. ESCAPE [17] and
NISR [16] share the same idea with FIR except that routing
options are not necessarily bound to shortest paths. Those
papers compute back-up ports for each affected router by
solving an integer linear programming problem involving sin-
gle component fault situations. Those methods, however, may
produce forwarding loops when multiple failures occur [8].

VI. CONCLUSION

We have presented the permutation routing of interfaces as a
method to increase robustness for IP networks with interface-
specific forwarding. Our routing method is loop-free and does
not introduce additional overheads for IP packets. In addition,
it can work with the standard link state routing protocols such
as OSPF or IS-IS due to its low complexity. Our method aims
to approximate the optimality of the survivability by installing
as many primary interface destination pairs with at least two
next-hops as possible.

We have evaluated permutation routing of interfaces with
simulations on six ISP topologies. The results show that
permutation routings of interfaces offer protection coverage
above 97% with realistic link weight settings.

REFERENCES

[1] P. Francois, S. Bryant, B.Decraene, and M. Horneffer, “LFA applicability
in SP networks,” RFC 6571, June 2012.

[2] X. Y. M. Gjoka, V. Ram, “Evaluation of IP fast reroute proposals,” IEEE
COMSWARE, vol. 12, Jan. 2007.

[3] S. Bryant, C. Filsfils, S. Previdi, and M. Shand, “IP fast reroute using
tunnels,” IEFT Internet Draft, May 2008.

[4] M. Shand, S. Bryant, and S. Previdi, “IP fast reroute using not-via
addresses,” Internet Draft (work in progress, expired in Dec. 2012).

[5] A. Kvalbein, A. F. Hansen, T. Čičic, S. Gjessing, and O. Lysne, “Mul-
tiple routing configurations for fast IP network recovery,” IEEE/ACM
Transaction on Networking, vol. 17, pp. 473–486, April 2009.

[6] S. Cho, T. Elhourani, and S. Ramasubramanian, “Independent directed
acyclic graphs for resilient multipath routing,” IEEE/ACM Trans. Net-
working, vol. 20, no. 1, pp. 153–162, Feb. 2012.

[7] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Transactions
on Networking, vol. 15, pp. 359–372, April 2007.

[8] G. Enyedi and G. Rétvári, “A loop-free interface-based fast reroute
technique,” Next Generation Internet Networks, pp. 39–44, April 2008.

[9] H. Q. Vo, O. Lysne, and A. Kvalbein, “Permutation routing for increased
robustness in IP networks,” Networking 2012, vol. 1, pp. 217–231, 2012.

[10] H. J. Chao, “Next generation routers,” Proc. of the IEEE, vol. 90, no. 9,
pp. 1518–1558, 2002.

[11] B. K. Druken, “Line graphs and flow nets,” SDSU Theses and Disser-
tations, November 2010.

[12] H. Q. Vo, O. Lysne, and A. Kvalbein, “Increased robustness with
interface based permutation routing,” Simula Networks and Distributed
Systems Department, Tech. Rep. 2012-18. [Online]. Available:
http://www.simula.no/publications/Simula.simula.1540

[13] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” SIGCOMM Comput. Commun. Rev., pp. 133–145,
October 2002.

[14] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” IEEE INFOCOM, pp. 519–528, 2000.

[15] A. Nucci, N. T. S. Bhattacharyya, and C. Diot, “IGP link weight
assignment for operational tier-1 backbones,” IEEE/ACM Transactions
on Networking, vol. 15, no. 4, pp. 789–802, August 2007.

[16] S. S. W. Lee, P.-K. Tseng, A. Chen, and C.-S. Wu, “Non-weighted
interface specific routing for load-balanced fast local protection in IP
networks,” IEEE ICC, pp. 1–6, Jun. 2011.

[17] K. Xi and H. J. Chao, “IP fast rerouting for single-link/node failure
recovery,” Broadnets, pp. 142–151, Sept. 2007.

[18] G. Schollmeier, J. Charzinski, and A. Kirstadter, “Improving the re-
silience in IP networks,” High Performance Switching and Routing 2003
HPSR Workshop, pp. 91–96, 2003.

[19] K.-W. Kwong, R. G. L. Gao, and Z.-L. Zhang, “On the feasibility and
efficacy of protection routing in IP networks,” IEEE INFOCOM, 2010.

[20] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,
“Failure inferencing based fast rerouting for handling transient link and
node failures,” IEEE Global Internet, Mar. 2005.

