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Abstract Several studies suggest that uncertainty assessments of software 
development costs are strongly biased towards over-confidence, i.e., that software 
cost estimates typically are believed to be more accurate than they really are. This 
over-confidence may lead to poor project planning. As a means of improving cost 
uncertainty assessments, we provide evidence-based guidelines for how to assess 
software development cost uncertainty, based on a review of relevant empirical 
studies. The general guidelines provided are: 1) Do not rely solely on unaided, 
intuition-based uncertainty assessment processes, 2) Do not replace expert judgment 
with formal models, 3) Apply structured and explicit judgment-based processes that 
improves with more effort and feedback, 4) Apply strategies based on an outside view 
of the project, 5) Combine uncertainty assessments from different sources through 
group work, not through mechanical combination, 6) Use motivational mechanisms 
with care and only if greater effort is likely to lead to improved assessments. 7) Frame 
the assessment problem to fit the structure of the relevant uncertainty information and 
the assessment process. These guidelines are preliminary and should be updated in 
response to new evidence. 
 
Keywords: Uncertainty of software development cost, uncertainty assessment 
strategies, project planning, cost estimation, evidence-based guidelines. 
 
1 Introduction 

“It [the 1976 Olympics in Montreal] can no more lose money than a man can 
have a baby.” - Montreal Mayor Jean Drapeau. The Olympics lost more than one 
billion dollars (Ross and Staw 1986, p 282). 

 
Accurate assessment of the uncertainty of software development cost 

estimates1 is important (i) when deciding whether or not to embark upon a project, to 
support the bidding process, and (ii) to support decisions about how large the project’s 
contingency budget should be (McConnel 1998). To illustrate the use of uncertainty 
assessments, consider a project concerning which the project leader believes that the 
median cost (the estimate) is about $100 000, i.e., he believes that there is a 50% 
probability of spending $100 000 or less. He wants to be reasonably sure that the 
actual cost does not exceed the budgeted cost.  That being so, he needs to decide how 
large a contingency buffer he should add to the estimated cost to have the desired 
confidence in that the actual cost does not overrun the project’s budget. As a 

                                                 
1 We use the term “cost estimate” to denote both cost and effort estimate in this paper. 



 

prerequisite for making such a decision, he must assess the probabilities of different 
levels of cost usage. If, for example, he assesses the probabilities of exceeding 
different levels of cost to be as described in Figure 1, then, to be about 70% sure of 
not exceeding the budget, the project should have a contingency buffer of $25 000, 
i.e., $125 000 - $100 000.  

 

0

10

20

30

40

50

60

70

80

90

100

$ 0 $ 50 000 $ 75 000 $ 100 000 $ 125 000 $ 150 000 $ 175 000 $ 200 000

Cost

Pr
ob

ab
ili

ty
 o

f N
ot

 E
xc

ee
di

ng
 C

os
t

 
Figure 1: Cost Uncertainty Distribution 

 
Clearly, the use of cost uncertainty assessments that reflect the underlying 

uncertainty will improve the budgeting process. Unfortunately, as documented in 
Section 3, it is easy to be over-confident about the accuracy of cost estimates. For this 
reason, we need to improve the way in which we conduct software cost estimation 
uncertainty assessments.  

The paper is organized as follows: Section 2 briefly describes the state-of-
practice of software cost uncertainty assessment strategies. Section 3 motivates the 
need for improved uncertainty assessment strategies via a review of empirical studies 
on unaided, human judgment-based cost uncertainty assessments. Section 4 
introduces categories and concepts useful for an examination of different uncertainty 
assessment strategies. Section 5 describes and evaluates several extensions to, and 
replacements of, unaided human judgment-based strategies for assessing uncertainty. 
Section 6 summarizes the evaluation in preliminary evidence-based guidelines for 
uncertainty assessments. Section 7 concludes the paper. 

 
2 State of Practice 

Our observations (Jørgensen, Teigen et al. 2004) indicate that software 
projects typically describe cost uncertainty by applying one of the following means: 
(1) Cost prediction intervals, e.g., that it is “almost certain” or that there is “90% 
probably” that the actual cost will be between $50 000 and $175 000, (2) Categories 
of cost uncertainty, e.g., that an estimate is a +/- 10% (low uncertainty) or +/-50% 



 

(high uncertainty) cost estimate2, or (3) Informal uncertainty terminology, e.g., that a 
cost estimate is a “ballpark” figure or “very rough” estimate. Of these means of 
describing cost uncertainty, only the use of statistical prediction intervals, i.e., 
minimum-maximum intervals together with a probability-based confidence level, has 
a well-defined semantic. Lack of precision of interpretation clearly limits the 
usefulness and evaluation potential of an uncertainty assessment strategy. A software 
developer may, for example, interpret “a ballpark figure” differently from a software 
manager or the customer. 

To date, our observations have not revealed any use of formal cost uncertainty 
assessment models among software companies (Jørgensen, Teigen et al. 2004). 
Instead, we have observed uncertainty assessments based on unaided, intuition-based 
human judgment (“expert judgment”), i.e., processes based on the non-explicit and 
non-recoverable mental processes of software professionals. Similar observations are 
reported in a project survey of Hihn and Habib-Agahi (1991). They found, among 
other things, that the studied organization had no explicit process for incorporating 
risk and uncertainty assessments in the cost estimation work. 

The use of unaided expert judgment to assess the uncertainty of cost estimates 
is understandable, given the alternative approaches provided by project management 
and software engineering text-books. The following two examples illustrate the 
problems of applying the techniques typically outlined in text-books on software 
project planning. 

Example 1: A frequently recommended project cost uncertainty analysis 
technique is the “PERT System of Three Time Estimates” (PERT = Project 
Evaluation and Review Technique). PERT was originally developed for schedule 
estimation, but is also applicable to cost estimation. A description and discussion of 
PERT is provided by Moder et al. (1995). PERT requires that the project planner 
provide, for each activity, a triple assessment: minimum, most likely and maximum 
cost. The triple is assumed to describe the cost uncertainty distribution of that activity. 
PERT supports the addition of these distributions into a cost uncertainty distribution 
for the whole project. There are, in our opinion, three major limitations that affect the 
usefulness of PERT: (1) PERT requires as input the uncertainty of each project 
activity estimate. This means that PERT implicitly assumes that the project planners, 
e.g., the software professionals, are able to provide proper minimum and maximum 
activity cost estimates. The validity of this assumption is debatable, as we will 
document in Section 3. (2) Some of the assumptions that enable the addition of 
uncertainty distributions, e.g., independence between activity uncertainty 
distributions, are unrealistic in software contexts. Surprisingly, there is frequently not 
much support on how to treat relationships between individual uncertainties when 
applying the PERT technique. For example, “The Guide to the Project Management 
Body of Knowledge” (2000) applies the “PERT System of Three Times Estimates” as 
part of their quantitative risk analysis, but provides no support on how to manage 
dependencies between the individual uncertainties. (3) PERT provides limited support 
on how to include cost uncertainties not related to a particular activity, e.g., 
uncertainty related to unexpected events with effect on most activities. 

Example 2: One of the most popular university text-books on software 
engineering is (Sommerville 2001). That text-book suggests that existing formal cost 
estimation models can be used to assess uncertainty: “The estimator should develop a 

                                                 
2 The exact semantic of these categories may be unclear, e.g., how likely should it be that the actual 
cost is inside +/- 10% to be assessed as a +/-10% estimate. 



 

range of estimates (worst, expected and best) rather than a single estimate. The 
costing formula should be applied to all of these.” As we understand this 
recommendation, it implies that we should use the worst, expected and best value of 
the parameters of the costing formula, e.g., the “COCOMO II” costing formula 
(Boehm, Abts et al. 2000), to achieve the worst, expected, and best case cost. 
Sommerville’s recommendation has, as far as we know, not been empirically 
evaluated, is not in common use, and may have major limitations, e.g.: (1) The size of 
the software is an important input to most formula-based estimation models. It is not 
obvious that it is easier to assess the minimum and maximum size of software more 
accurately than the minimum and maximum cost. In fact, the opposite, i.e., that size 
may be more difficult to assess than cost, was found in the study by Hihn and Habib-
Agahi (1991). (2) The costing formulae were developed to estimate the most likely 
cost, so the variables included the models are not necessarily those important for the 
uncertainty of a cost estimate, (3) Most software organizations do not use costing 
formulae (Moløkken and Jørgensen 2003; Jørgensen 2004b). 

There have been a few attempts to build other types of formal cost uncertainty 
model, e.g., (Humphrey and Singpuwally 1991; Angelis and Stamelos 2000; 
Jørgensen and Sjøberg 2003; Jørgensen 2004a), and several general statistical 
uncertainty models for estimation and planning purposes, e.g. (Dagum, Galper et al. 
1995; Chapman and Ward 2000). In addition, there are many frameworks and tools 
supporting a structured elicitation and combination of project uncertainties, e.g.,  
(Duffey and van Dorp 1999; Elkjaer 2000; Kitchenham, Pickard et al. 2003). 
Software organizations should deal with cost uncertainty at the project portfolio level, 
as well as at the individual level. Stamelos and Angelis (2001) developed a model for 
that purpose. To the best of our knowledge, none of these models, frameworks or 
tools is in common use and there seem to be strong limitations to their usefulness. For 
example, most formal uncertainty models seem to require more data, or data on other 
formats, than most software organizations are able to provide. 

 
 

3 Over-Confidence 
 
As suggested in Section 2, unaided human judgement-based cost uncertainty 

assessments may be the approach most frequently applied by software professionals. 
This would not be problematic if those uncertainty judgments were accurate. 
Unfortunately, several studies reports systematic underestimation of cost uncertainty, 
i.e., systematic over-confidence, when based on unaided human judgment: 
• Connolly and Dean (1997) report that the actual effort used by student 

programmers to solve programming tasks fell inside their 98% confidence effort 
prediction (minimum-maximum) intervals in only about 60% of the cases, i.e., the 
effort prediction intervals were much too narrow to reflect 98% confidence. 
Explicit attention to, and training in, establishing good minimum and maximum 
effort values did increase the proportion inside the prediction intervals to about 
70%, which was still far from the required 98%.  

• Jørgensen, Teigen and Moløkken (2004) studied the software development 
activity estimates of 195 student projects activities and 49 industry project 
activities. The effort prediction intervals of the activities of the student projects 
were based on a 90% confidence level, and included only 62% of the actual effort 
values. The effort prediction intervals of the activities of the industrial projects 



 

were based on the confidence level “almost certain”, and included only 35% of the 
actual effort values, i.e., a strong underestimation of uncertainty. 

• Jørgensen and Teigen (2002) conducted an experiment in which 12 software 
professional were asked to provide 90% confidence effort prediction intervals on 
30 previously completed maintenance tasks. In total, 360 effort prediction 
intervals were provided. The software professionals had access to a small 
experience database of similar projects and were informed about the actual effort 
of a task after each uncertainty assessment. Although “90% confident”, the 
professionals included, on average, only 64% of the actual effort values on the 
first 10 tasks (Task 1-10),  70% on the next 10 task (Task 11-20), and, 81% on the 
last 10 tasks (Task 21-30). In other words, even after 20 tasks with feedback after 
each task, there was a systematic bias towards over-confidence. 

• Jørgensen (2004c) studied the cost prediction intervals provided by seven 
realistically composed estimation teams. The teams assessed the uncertainty of the 
effort estimate of the same two projects, i.e., in total fourteen project effort 
prediction intervals. The projects had been completed in the same organization as 
that to which the software professionals who participated in the study belonged. 
Only 43% of the teams’ effort prediction intervals included the actual effort. 

• Studies of uncertainty estimates based on unaided human judgment have been 
conducted in other domains for many years. Most of those studies report levels of 
over-confidence similar to that in the software domain. See, for example the 
studies described in  (Tversky and Kahneman 1974; Alpert and Raiffa 1982; 
Kahnemann, Slovic et al. 1982; Yaniv and Foster 1997). Lichtenstein and 
Fischhoff (1977) report that the level of over-confidence seems to be unaffected 
by differences in intelligence and expertise, so we should not expect the level of 
over-confidence to be reduced with greater experience. Arkes (2001) provides a 
recent overview of studies from different domains on over-confidence, strongly 
supporting the over-confidence claim. 

There is, therefore, strong evidence of a systematic bias in human judgment 
towards underestimation of the uncertainty of software projects. Potential reasons for 
this over-confidence are as follows: 
• Interpretation difficulties. Software professionals have understandable problems 

interpreting the concepts “90% confident”, “90% probable” or “almost certain” 
when historical data are sparse and statistical skills are poor. In (Jørgensen, Teigen 
et al. 2004), we report results from an experiment where the estimators did not, on 
average, provide different effort minimum-maximum intervals when 70%, 90% 
and 99% confident. Clearly, if a software estimator is 99% confident to include 
the actual effort in an effort minimum-maximum interval, this interval should, on 
average, be much wider than when 90% or 70% confident. 

• Lack of feedback and evaluation. There was no evaluation of the performance of 
the prediction interval and no analysis that enabled learning from experience in 
the software companies analyzed in (Jørgensen, Teigen et al. 2004), i.e., the 
software companies were, as far as can be gleaned from our observations, not 
even aware of the degree of over-confidence of their uncertainty assessments. One 
important obstacle to the efficient evaluation of uncertainty assessment seemed to 
be that the activity structure used for estimation typically was different from that 
used for the logging of actual effort, i.e., the organizations’ own administrative 
systems did not enable such evaluations. 

• Hidden agendas. Software professionals may have goals, e.g., personal goals, 
other than accurate cost uncertainty assessments. In particular, the desire to be 



 

evaluated as a skilled software developer may contribute to overly narrow cost 
prediction intervals. In (Jørgensen, Teigen et al. 2004) we report from an 
experiment where software project managers perceived the developer providing 
the narrowest effort prediction intervals to be the most skilled software developer. 
This perception was present even in situations where the managers knew that the 
effort prediction intervals of those developers were the most over-confident. 
When cost uncertainty assessments are not evaluated with respect to accuracy, it 
may be, from an individual’s point of view, rational to emphasize alternative 
goals, such as appearing skilled by presenting overly narrow prediction intervals. 

 
The available evidence therefore suggests that software companies rely on 

unaided human judgment alone in the assessment of cost estimation uncertainty. 
These uncertainty assessments are, on average, strongly over-confident. Over-
confident uncertainty assessments may lead to poor project plans, and consequently, 
poor project performance. There is consequently a need to improve the ways in which 
we conduct uncertainty assessments in software projects. 

 
4 Uncertainty Assessments 

For the purpose of discussing strengths and weaknesses of uncertainty 
assessment strategies, as we do in Section 5, we believe it is useful to clarify 
important uncertainty concepts in terms of probability theory (Section 4.1), to 
introduce some categories of uncertainty (Section 4.2), and two broad categories of 
uncertainty assessment process (Section 4.3). To support those software professionals 
who assess cost estimation uncertainty, it is useful to understand the underlying 
mental processes of judgment-based assessments. We discuss the (limited) knowledge 
about this topic in Section 4.4. Section 4.5 introduces measures of uncertainty 
assessments. 

4.1 Uncertainty and Probability 
In this paper we define uncertainty in terms of probability, i.e., the degree of 

uncertainty of an event is described by the probability that the event will happen. For 
example, we may describe the cost uncertainty of a software project by its 90% 
confidence effort prediction interval [$20 000; $40000]. This prediction interval 
means that it believed that it is a 90% probability that the actual cost is higher than or 
equal to $20000, and lower than or equal to $40000.  

When assessing cost uncertainty the objective, i.e., the actual, probabilities are 
typically not known. The probability-based uncertainty assessments are therefore 
assessments based on subjective probabilities, e.g., what the subjects believe are the 
probabilities of including the actual costs in cost intervals. In principle, we will never 
know the objective probability of including the actual cost in a single cost prediction 
interval. This paper and, as far as we know, most other papers on judgment-based 
uncertainty, therefore introduce frequency of a class of similar events as a (fallible) 
substitute for the average objective probability of the individual events in that class. 
For example, assume that a project manager provides minimum-maximum cost 
intervals of 100 software projects. The observed frequency of including the actual 
cost in the minimum-maximum intervals is 60%, which is interpreted as the average 
objective probability of including the actual cost in the cost minimum-maximum 
interval. Now, if the subjective probabilities, i.e., the uncertainty assessments, of the 
project manager were much higher, e.g., that the project manager believed that he on 



 

average had a 90% probability of including the actual costs, we say that the project 
manager is over-confident. 

Both subjective and objective probabilities may be described as based on two 
different sources: (i) The inherent uncertainty regarding cost usage in a software 
project, and, (ii) The uncertainty caused by lack of knowledge about the project. We 
do not separate between these two sources in most of the discussions in this paper, but 
it may nevertheless be important to understand that an uncertainty assessment is a 
result of uncertainty from both sources. 

Sometimes we use the description ‘assessment of uncertainty of cost 
estimates’ and sometimes ‘assessment of uncertainty of costs’. These two descriptions 
are similar description of the same subjective distribution. They are both based on the 
same concept of probability-based uncertainty assessments and can be derived from 
the same cost uncertainty distribution, e.g., the distribution depicted in Figure 1. The 
only difference is that “assessment of uncertainty of cost estimates” relates the 
uncertainty to the estimate of most likely cost (or median cost), and the other does 
not. 
 
4.2 Categories of Uncertainty 

The suggested categories of uncertainty are based on our own observations of 
how software projects treat uncertainty and inspired by the uncertainty categories 
presented in (Pich, Loch et al. 2002; Kitchenham, Pickard et al. 2003). The categories 
are: Normal variance, Known risks, Unforeseen events, and, Flexibility of outcome 
and process. In comparison with previous frameworks the main difference is the 
introduction of the uncertainty category Flexibility of outcome and process. Our 
interpretation of the categories is as follows: 
• Normal variance: Uncertainty of known activities resulting from what is 

considered to be “normal variation”3 in a project’s software development 
performance. Normal variation is typically a result of many small 
uncertainties.  

o Example of treatment: Minimum-maximum cost intervals of project 
activities may be applied to describe the normal variation. 

• Known risks: Uncertainty that results from the potential occurrence of foreseen 
events (positive and negative) that are analyzed at the time of estimation. 
These event (if occurring) impacts on the project’s performance significantly, 
i.e., the impact is considered to be outside the “normal variance”. 

o Example of treatment: Many projects develop and maintain a list of 
risks as part of their management processes, which typically includes 
information about the risks, their probability, their potential impact on 
the project, and plans for how the risk is to be managed. 

• Unforeseen events: Uncertainty that results from the occurrence of events not 
included in the normal variation type of events and not known at time of 
estimation, i.e., “unexpected events”. According to Asher (1993) and van 
Genuchten (1991) over-optimism regarding the degree of unforeseen events 
may be the main contributor to cost over-runs in development projects. 

o Example of treatment: Project leaders may introduce a cost buffer (a 
contingency buffer) allocated to unexpected events. 

                                                 
3 This concept is similar to the “normal variance”-concept of “Statistical Process Control” within the 
Total Quality Management approach, see Montgomery, D. C. (2000). Introduction to Statistical Quality 
Control. New York, Wiley. 



 

• Flexibility of outcome and process: Uncertainty reduction that results from 
flexibility in what the customer perceives as acceptable outcome and process. 
For example, a project may be able to compensate for the occurrence of 
unforeseen events, without adding a contingency buffer, by reducing the 
project specification, e.g., by a simplification of functionality or 
documentation. This flexibility in process and product, included in many 
software projects, leads to a greater reduction in uncertainty than a situation in 
which there is only one possible outcome and only one possible process 
leading to the project’s completion (Jørgensen and Sjøberg 2001a). The 
impact of this category is similar to the impact on project management of the 
“option of corrective actions” discussed in (Huchzermeier and Loch 2001). 

o Example of treatment: The size of the project’s contingency cost buffer  
should reflect the flexibility of the process and outcome. A software 
prototyping project may, for example, not need any contingency buffer 
at all if it is accepted that the product can be completed with much less 
functionality and much lower quality than was originally planned. 

When software professionals search for relevant information about 
uncertainty, they may search for all of these types of uncertainties. However, although 
we may be able to identify and collect most of the relevant information about 
uncertainty,, by, for example, following the processes described in (Hall 1998), it is 
not obvious how to combine the information into an assessment of the total 
uncertainty of a project’s cost estimate. 

4.3 Inside vs Outside Views 
Kahneman and Lovallo (1993) separate human judgment processes into two 

categories: “inside view”-based and “outside view”-based. Applied in the context of 
cost estimation uncertainty assessment the categories can be described and evaluated 
as follows: 
• Inside View: An inside view-based uncertainty assessment process is based on a 

decomposition of the total cost estimation uncertainty into individual cost 
estimation uncertainties related to, among other things, activities and risks. An 
inside view-based process therefore requires a thorough understanding of the 
inside of the project and an ability to combine individual cost uncertainties. This 
may be problematic in many cases. For example, a correct combination of activity 
cost prediction intervals (minimum-maximum intervals) requires a formalization 
of the relations between the prediction intervals and an application of complex 
statistical theory to add the uncertainty distributions. Frequently, to support this 
process, simulation techniques are applied, e.g., (Elkjaer 2000). Unaided human 
judgment, i.e., software professionals “intuition” of the uncertainty of the project’s 
cost estimate, can hardly be based on complex statistical calculations or 
computational-intensive simulation-based techniques. It may, however, still be 
possible for software professional’s predictions to be based on an “inside view” of 
the project, provided that proper heuristics exist and are applied (Gigerenzer and 
Todd 1999; Jørgensen and Sjøberg 2001b). One advantage of inside view cost 
uncertainty assessments is that they can be based on analyses that are conducted 
as part of the project planning process, e.g., as part of the risk analysis process. As 
pointed out in (Edwards and Moores 1994), integration with the planning process 
may be an important factor for success in the use of prediction methods. 

• Outside View: The uncertainty of the software cost estimate may be determined by 
comparing outside properties of the current development project with previously 



 

completed projects, i.e., a process similar to estimation by analogy. The 
underlying assumption is that projects that have similar characteristics will, on 
average, behave similarly regarding uncertainty. An outside view-based 
uncertainty assessment may frequently be simpler than an inside view-based one. 
Instead of developing a model for connecting the internal uncertainties of a 
project, as in the inside view, the main step is to collect previously completed 
projects with similar uncertainty properties, e.g., projects of similar size, applying 
similar estimation methods, similar skill of the estimators, etc.. When a set of 
similar projects is identified, the level of uncertainty of these projects, e.g., 
measures of the estimation error, may be used to derive the uncertainty of the 
current project. A prerequisite for accurate uncertainty assessments based on an 
outside view is that project properties important for the level of uncertainties are 
known and that there is relevant information about previous projects available. 
The stored information about completed projects may, however, in many 
organizations be sparse and not easily accessible, as described in (Jørgensen 
2004c). In such a case, an informal recall of previous projects from memory, or 
the application of an inside view, may be the only alternatives. 

4.4 Judgment of Uncertainty 
For the support, as opposed to the replacement, of human judgment-based 

uncertainty assessments it is useful to understand the ways in which software 
professionals typically judge cost estimation uncertainty, i.e., the mental processes 
underlying uncertainty judgments. Unfortunately, there seems to be no commonly 
accepted theory on processes of expert judgment upon which we can base this 
understanding. According to Brown and Siegler (1993) psychological research on 
real-world quantitative expert estimation “has not culminated in any theory of 
estimation, not even in a coherent framework for thinking about the process”.  

One reason for the lack of theory is that human judgment processes may be 
unconscious (“tacit”) and difficult to access. This is illustrated in (Jørgensen 2004c). 
In that study we recorded, transcribed and analyzed the estimation discussions of 
seven professional development teams. Each team estimated most likely, minimum 
and maximum effort of two projects. In total, we analyzed 180 pages of transcribed 
text. None of the seven teams formulated processes or arguments that were even close 
to an explicit uncertainty assessment process. In fact, the most explicit uncertainty 
assessment process we found was the “rule-of-thumb” used by one of the project 
managers: “maximum effort is typically two times the minimum effort”. The other 
types of uncertainty arguments were more or less based on “gut feeling”, e.g., “I want 
to decrease the minimum and increase the maximum effort” or “the maximum [effort] 
is the most pessimistic outcome I believe in”.  

The mental processes leading to software professionals’ uncertainty 
assessments are, therefore, typically hidden and can only be analyzed indirectly, e.g., 
by the analysis of indicators that affect the assessments (Stanovich 1991, p 117-121) . 
One example of a potential indicator of cost estimation uncertainty is the development 
skill (the “know-how”) of the software professionals estimating the project: the higher 
the “know-how”, the lower the cost estimation uncertainty. Unfortunately, without 
explicit uncertainty assessment processes and systematic feedback, establishing a 
proper weighting of indicators may be problematic and some indicators may be 
strongly over-weighted. For example, in (Jørgensen 2004c) we report: “The level of 
over-confidence was higher in situations where at least one of the team members 
assessed his/her knowledge to be very high….” In other words, our results suggest 



 

that the cost uncertainty assessment was, directly or indirectly, affected by the 
perceived level of skill, and that its importance was over-weighted. 

Awareness of properties of unaided, judgment-based cost uncertainty 
assessment is important when analyzing and predicting benefits from supporting 
strategies. For example, more effort in the risk analysis process, introduction of 
financial incentives for accuracy, more experienced developers, and increased 
awareness about the over-confidence bias, do not necessarily lead to more accurate 
judgments. In fact, studies suggest that unconscious assessments may be even more 
over-confident when a greater amount of information is available (Oskamp 1965; 
Whitecotton, Sanders et al. 1998). According to (Wilson and Brekke 1994) mental 
contamination, e.g., the over-confidence bias, is difficult to avoid when the processes 
are unconscious or uncontrollable. 

4.5 Measures of Cost Uncertainty Assessments 
A proper evaluation of uncertainty assessments requires, as stated in Section 2, 

that it is clear how to interpret the measures. From that follows that it is easier to 
evaluate “90% confident of not exceeding $125 000” than it is to evaluate “almost 
sure of no high cost overruns”. The measures introduced in this section are based on 
the understanding of probability and frequency as described in Section 4.1. For the 
purpose of this paper we apply mainly the measures “Hit rate” (frequency) and 
“Relative Width” (RWidth) of cost uncertainty intervals. We provide a more 
comprehensive list of measures and discussion in (Jørgensen, Teigen et al. 2004). 

Evaluating cost uncertainty assessment is more difficult than evaluating cost 
estimation accuracy. Whereas the accuracy of individual cost estimates can be 
assessed by comparing them to actual effort, individual cost uncertainty assessments 
have no obvious corresponding actual values. In the long run, however, a K% 
confidence level should correspond to a proportion of correct assessments (“Hit rate”) 
similar to K%. For example, given a number of cost intervals with 90% confidence, 
we should expect that about 90% of these included the actual effort. A mismatch 
between the confidence level and the “Hit rate” implies that the assessments are 
inaccurate. If the “Hit rate” is lower than the confidence level, we observe 
overconfidence and if it is higher we observe under-confidence. 

The following definitions of “Hit rate” and “RWidth” are based on uncertainty 
assessments on the cost prediction interval formal, e.g., that it is believed to be “90% 
probable that the actual cost is in the interval [$ 80 000; $ 125 000]”. The “Hit rate”, 
however, may easily be adapted to include one-sided assessments, e.g., that it is 
believed to be “95% probably that the actual cost is less than $ 125 000”. 
 
Hit rate: We measure the hit rate as: 
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where mini and maxi are, respectively, the minimum and maximum values of the 
prediction interval for the cost estimate of task i, Acti is the actual cost of task i and n 
is the number of estimated tasks.  
 
RWidth: Of two sets of cost prediction intervals with the same “Hit rate”, the set with 
narrower intervals is more informative, and also indicative of a higher level of 
expertise, or more efficient use of the uncertainty information, than the wider 



 

intervals, see discussion on inherent and lack-of-knowledge based uncertainty in 
Section 4.1. For example, a person who is only guessing may end up with an adequate 
hit rate if 90% of his or her 90% prediction intervals are extremely wide. To compare 
prediction intervals for tasks of different magnitudes we apply the relative width of 
the interval: 
 
RWidthi = (Maxi – Mini) / Esti, where Esti is the estimated (most likely) cost of task i. 

 
 

5 Uncertainty Assessment Strategies 
This section reviews the following replacements of, and extensions to, 

unaided, intuition-based uncertainty assessments: Application of formal uncertainty 
models (Section 5.1), Formalization of judgment-based processes (Section 5.2), 
Mechanical combinations of uncertainty assessments (Section 5.3), Group work-based 
uncertainty assessments (Section 5.4), Improving motivation for accuracy (Section 
5.5), and, Improving framing of the uncertainty assessment problem (Section 5.6). 
There is no clear-cut boundary between the strategies and actual uncertainty 
assessment processes may include elements of many strategies. We only review 
strategies where we could find attempts of empirical evaluation. This means, for 
example, that the suggestions of Sommerville described in Section 2 and the “rules of 
thumb” suggested by NASA (1990) and others are not discussed.  

As stated earlier, the goal of this paper is to review changes in the cost 
uncertainty assessment process of software projects, potentially leading to 
improvements. This, obviously, requires an understanding of what we mean by 
improvement. For the purpose of this paper we define improvements as cost 
estimation uncertainty assessments that accord better with the actual (objective) 
uncertainty than unaided, intuition-based uncertainty assessments. As described in 
Section 2, unaided, intuition-based uncertainty assessments may be the most common 
cost uncertainty assessment strategy.  

5.1 Formal Uncertainty Models 
As reported in Section 3, several studies report systematic underestimation of 

uncertainty when the assessments are based on unaided human judgment. Formal 
models are not subject to the same biases as software professionals, e.g., they may not 
be as vulnerable to biases resulting from a desire to appear skilled or to please the 
customers. There are two main categories of formal uncertainty assessment model that 
so far have been empirically investigated in software contexts: 
• Indirect models: Indirect models derive uncertainty assessments as “by-products” 

of models of most likely effort or cost. Those models include only variables that 
are relevant for estimation of the most likely cost, i.e., if a variable is relevant for 
the uncertainty but not for the estimation of most likely cost it is not included in 
the model. The empirically evaluated indirect models are (i) use of cost prediction 
intervals of regression models of most likely cost (Angelis and Stamelos 2000; 
Jørgensen and Sjøberg 2003) and (ii) prediction intervals based on bootstrapping 
of analogy-based cost estimation models (Angelis and Stamelos 2000).  

• Direct models: Direct models derive uncertainty assessments from models of 
estimation uncertainty, i.e., models that only include variables that are important 
for the uncertainty of the estimation of most likely cost. The evaluated direct 
models are: Use of empirical and parametric distribution of previous estimation 



 

accuracy (Jørgensen and Sjøberg 2003), and regression models of the estimation 
error (Jørgensen 2004a). 

The results reported in the available empirical studies suggest that formal 
models are, as expected, able to remove the bias towards over-confidence, e.g., their 
use yields a much better correspondence between hit rate and confidence level than 
does assessment by software professionals. However, there seems to be important 
limitations related to the “efficiency” of formal uncertainty models. 

Angelis and Stamelos (2000) evaluated prediction intervals based on 
regression models and bootstrapping models. Both models were developed for the 
prediction of most likely effort, i.e., they are indirect models. They report that both 
types of formal model were able to provide unbiased prediction intervals, i.e., about 
95% of the actual effort values were included in the 95% confidence prediction 
intervals. Unfortunately, for our purposes, the authors did not compare the 
performance of formal models to that of software professionals. However, the very 
wide effort prediction intervals provided by the formal models suggest an inefficient 
use of uncertainty information. For example, the parametric bootstrap model-based 
provided 95% effort prediction intervals with maximum effort typically 10 times the 
minimum effort. In light of the variation of estimation error of actual projects reported 
in other studies, e.g., (Kitchenham, Pfleeger et al. 2002; Jørgensen 2004a), and the 
experience-based minimum-maximum cost interval span for software projects 
described in (NASA 1990), the model-based effort prediction intervals in (Angelis 
and Stamelos 2000) seems to be unrealistically wide. Much of the width may be a 
result of inaccurate models of most likely effort and lack of integration of important 
uncertainty information, i.e., most of the uncertainty is “model uncertainty” (lack of 
knowledge) and not “project uncertainty” (inherent uncertainty). 

Additional findings supporting the view of inefficient formal uncertainty 
models are provided in (Jørgensen and Sjøberg 2003). In that study we compared 
human judgment based effort prediction intervals with prediction intervals from 
regression models of most likely effort (indirect model) and empirical distribution of 
estimation error (direct model). We concluded that the choice between human 
judgment and formal models is frequently a choice between the avoidance of 
prediction intervals that are so wide as to be meaningless, and the avoidance of 
systematic bias towards intervals that are too narrow.  

Similar results were found when evaluating regression models of estimation 
error (direct model) (Jørgensen 2004a). In that paper we explain the poor efficiency as 
follows: “An analysis of the model residuals and the estimators’ own descriptions of 
reasons for low/high estimation accuracy suggest that we cannot expect formal 
models to explain most of the estimation accuracy and bias variation, unless the 
amount of observations and variables is unrealistically high. For example, many 
important reasons for low estimation accuracy are connected to seldom-occurring 
events and cost management issues.” That problem of integrating some types of 
information in formal estimation models is not confined to software studies. 
Whitecotton et al. (1998), for example, found in a study of accounting students that: 
“Human intuition was useful for incorporating relevant information outside the scope 
of the model..” 

 
A potential use of formal uncertainty models not evaluated in this paper is 

sensitivity analysis, i.e., to use the model as tools to better understand how different 
project properties and events are interconnected. Then an inside view-based model 
may be useful, as applied in the system dynamic models described in (Abdel-Hamid 



 

and Madnik 1986; Abdel-Hamid 1990; Sengupta and Abdel-Hamid 1996). However, 
system dynamics tools and notations have been available for years, without much use 
in the software industry. A potential reason for that is that inside view-based 
uncertainty relationships of software projects are too complex to formalize. 

Whether or not formal uncertainty assessment models will be able to replace 
uncertainty assessments based on software professionals’ judgment depends on many 
factors, e.g., the availability of historical data and uncertainty relevant information, 
and the skills of the software professionals. The currently available evidence suggests 
that use of human judgment-based cost uncertainty assessment is a reasonable choice, 
given the poor efficiency of the formal models. In particular, human judgment may be 
necessary in situations where there are so-called “broken-leg” indicators that are 
important for the assessment of uncertainty, i.e., seldom-occurring events that cannot 
easily be included in a formal model. 

5.2 Formalization of the Uncertainty Assessment Processes 
In some professional domains, e.g., the management of nuclear reactors, there 

is, according to (Otway and von Winterfeldt 1992), a trend towards more 
formalization of human judgment-based uncertainty assessment processes. An 
important reason for that trend may be that formalization of the process enables 
review of the process by others. It is frequently not satisfactory to base important 
management or investment decision on one group’s or one individual’s “gut feelings” 
about the uncertainty, i.e., on uncertainty assessments that are impossible to review. 

One example of formalization of the judgment process is to instruct software 
professionals to follow these steps: 

1) Identify previously completed projects with similar uncertainty 
characteristics to the one to be assessed, e.g., with similar size, 
technology, etc. Identify at least 10 completed projects, if 
necessary through lowering the requirements to the similarity of 
the included projects. 

2) Recall, by using historical data or memory, the estimation errors, 
i.e., as substitutes of the estimation uncertainty, of these projects. 

3) Draw up a distribution of estimation errors based on the estimation 
error of similar, previously completed, projects.  

4) Apply the distribution to assess the uncertainty of the current 
project, on the assumption that the accuracy of future cost 
estimates will follow closely the pattern of the historical estimates. 
For example, if 2 out of 10 projects had more than 40% cost over-
run, assume that there is a 20% probability of not exceeding the 
most likely effort by more than 40%. 

5) Adjust the uncertainty assessment. However, only allow 
adjustments if it is possible to provide an explicit and valid 
argument, based on differences from the set of previously 
completed projects.  

These steps are an implementation of the simplest variant of the formal 
uncertainty models described in (Jørgensen and Sjøberg 2003). The main differences 
to the application of the formal uncertainty model are that that the selection of similar 
projects is based on human judgment, not on a formal algorithm, e.g., a clustering 
algorithm, and that there is an element of adjustment of the final values. The benefit 
of the model is based on, among other things, the finding that people seem to be better 
assessors when asking “how frequently X happens” instead of “how probable is X” 



 

(Gigerenzer 1994; Sloman, Over et al. 2003). While providing frequencies imposes an 
outside view, examining historical data, providing subjective probabilities frequently 
implies an inside view, where the individual uncertainties are analyzed and combined. 
As reported in (Kahneman and Tversky 1982), the inside view easily lead to over-
confidence.  

The above process was evaluated in a medium-large Norwegian company 
(Jørgensen and Moløkken 2004). Nineteen realistically composed estimation teams of 
three or four software professionals estimated the most likely cost and provided effort 
prediction intervals of the same software project. Ten of the teams, Group A teams, 
received no instructions, i.e., there was no formalization of their unaided, intuition-
based uncertainty assessment process. The remaining nine teams, Group B teams, 
followed a process similar to that above, with one important difference. We made no 
restrictions on the adjustments, i.e., step 5. We found that the Group B teams provided 
much wider cost prediction intervals when evaluated after step 4) (mean RWidth of 
1.1 versus 0.65), but not after step 5)! Allowing unrestricted adjustment of the cost 
prediction intervals had as a consequence that the Group B team reduced their 
estimated maximum costs to the same levels as the Group A teams. Interestingly, the 
Group B teams retained the history-based minimum cost values, which were 
systematically higher than those of the Group A teams. In other words, the Group B 
teams accepted that the historical fact that they had hardly ever used less than 75% of 
the estimated cost on similar projects should have an impact on the minimum cost 
value. They did, however, not interpret the historical error distribution in the same 
way when determining the maximum value, i.e., they thought their estimate was much 
better than the estimation error of similar projects indicated that it would be. Based on 
the earlier findings on systematic over-confidence when assessing cost uncertainty, 
we interpret this finding as a warning against unlimited adjustments of the outcome of 
formalized uncertainty assessment processes. This may easily introduce the strong 
bias towards over-confidence. Overall, however, we believe that the suggested 
formalized five-step approach is promising way to combine the benefits of models 
and experts. 

There have been several attempts to formalize the cost uncertainty process 
based on an inside view of project cost uncertainties, e.g., the frameworks described 
in (Elkjaer 2000; Kitchenham, Pickard et al. 2003). Typically, these frameworks 
apply simulation techniques, e.g., the Monte Carlo simulation, to implement the 
complex adding of inter-connected uncertainty distributions. Unfortunately, the 
frameworks seem to provide limited support on how to provide individual cost 
uncertainty distributions and the relationships between the uncertainty distributions. 
To the best of our knowledge, formalizations based on the inside view have not been 
evaluated with respect to accuracy and practicability, e.g., it is not clear whether 
software professionals in general are able to use these frameworks or not.  

5.3 Mechanical Combinations of Uncertainty Assessments 
The benefits of combining predictions from different sources are well 

documented. For example, Armstrong (2001) reports, based on 30 empirical studies, 
that predictions based on the mean value of individual predictions were on average 
12.5% more accurate than the individual predictions themselves. Similarly, empirical 
studies report promising results from combining software estimates of the most likely 
cost from different sources, e.g., (Höst and Wohlin 1998; Myrtveit and Stensrud 1999; 
MacDonell and Shepperd 2003).  



 

Strategies for, and benefits of, the mechanical combination of software 
development cost uncertainty assessments have, as far as we know, only been studied 
in (Jørgensen and Moløkken 2002). According to (Taylor and Bunn 1999) there are 
not many studies at all, i.e., regardless of domain, on the topic of combining 
uncertainty assessments. The study described in (Jørgensen and Moløkken 2002) 
evaluated three combination strategies: (1) Average of the individual minimum and 
maximum values, and (2) Maximum and minimum of the individual maximum and 
minimum values, and (3) Group process (discussion) based prediction intervals. (1) 
and (2) are examples of the mechanical combination of uncertainty assessments. 
Strategy (3) is based on group work (and will be discussed in greater detail in Section 
5.4). The empirical study reported in that paper, with software professionals, 
suggested that Strategy (1) led to little improvement in correspondence, compared 
with the individual cost prediction intervals, mainly because of a strong individual 
bias towards too narrow prediction intervals that could not be removed by averaging 
the values. Strategies (2) and (3) both improved the correspondence. However, 
Strategy (3) used the uncertainty information more efficiently, in that it yielded 
narrower prediction intervals for the same degree of correspondence between hit rate 
and confidence. 

We have not found any study on the benefits of combining human judgment 
and model-based software development cost uncertainty assessments. A lack of 
research on this topic is unfortunate, since combinations of model and expert 
judgment have been shown to frequently outperform both models alone and experts 
alone in other domains; see, for example, (Blattberg and Hoch 1990). Models and 
experts have complementary strengths and a combination of the strengths of each 
approach may lead to significant benefits. 

5.4 Group Work-Based Combinations of Uncertainty Assessments 
As far as we have observed, software organizations’ work on estimation and 

uncertainty assessments is typically conducted in groups and follows one of the 
following two variants: (1) The project leader collects and integrates estimates and 
uncertainty assessments from the project members, without any group discussion. (2) 
The estimates and uncertainty assessments are derived from group discussion 
facilitated by the project leader. The structure imposed on the group work may vary a 
lot, from formal Delphi-based processes (Rowe and Wright 2001), to more 
unstructured processes (Moløkken and Jørgensen 2004). 

There has been some scepticism regarding the use of groups to assess risk or 
uncertainty. Many of them are based on the awareness of the “group-think”-effect 
(Janis 1972), i.e., that group members feel a pressure to have the same opinions as, 
and think similarly to, the other members of the group. The social pressure from 
groups may even operate at an unconscious level, according to (Epley and Gilovich 
1999). Studies show that there may be a “risky shift” in groups, i.e., that the group as 
a whole is much more willing to make risky (over-confident) decisions than each 
individual member (Kogan and Wallach 1964). More recent studies suggest that the 
more general effect of group-work is the “polarization effect” (Davis, Kameda et al. 
1992), i.e., groups with a majority of members who are prone to making risky 
judgments become more prone to making such judgments, while groups with a 
majority of members who are averse to making risky judgments become more risk 
averse. The effects of group-work may be difficult to predict. For example, the study 
reported in (Maines 1996) found that groups’ estimates became more conservative 



 

(risk averse), because the groups’ members believed that the other groups’ members’ 
estimates were too optimistic.  

Not all studies report unwanted effects from group work. There are, for 
example, several studies that report good results from the use of groups to estimate 
and plan projects, e.g.,  (Kernaghan and Cooke 1986; Taff, Borchering et al. 1991).  It 
is therefore not possible to provide a general conclusion on the effect of group work 
with respect to the accuracy of uncertainty assessment, based on a general review of 
previous related studies. The effect obviously depends on the composition of the 
group, the group-work processes, and the assessment context. The following 
empirical study-based relationships should therefore be interpreted carefully: 
• Group-work may typically lead to the identification of more activities of software 

projects (Moløkken 2002) and, as a consequence, to more realistic estimates of 
most likely cost than individual estimates. Greater realism in estimates of most 
likely cost may contribute to greater realism in cost uncertainty assessments. 

• Discussion between people with different types of work may lead to the 
identification of project work in the interface between these types of work 
(Moløkken 2002), i.e., group-work may lead to a consideration of more 
information relevant to uncertainty . This does not necessarily have much impact 
on the realism of cost uncertainty assessment if an inside view-based strategy is 
applied, because of the combinatory complexity. More information has been 
found to increase the over-confidence when the additional information is 
irrelevant or only slightly relevant (Oskamp 1965; Whitecotton, Sanders et al. 
1998). 

• Group work may lead to the identification of a higher number of previously 
completed similar projects, contributing to a larger database of project analogies 
relevant to uncertainty assessments. This may lead to improved cost uncertainty 
assessments if the uncertainty assessment is based on, for example, the uncertainty 
assessment process described in Section 5.2. 

• Group work may lead to a higher degree of over-confidence if the group members 
assess the cost uncertainty of their own development work (Newby-Clark, Ross et 
al. 2000). Then, the desire of appearing skilled by exhibiting high confidence may 
hinder accuracy in cost uncertainty assessments (Jørgensen, Teigen et al. 2004). 

• Group work may lead to a higher degree of evaluation. This can lead to more, no 
change in, or less over-confidence in uncertainty assessments, dependent on the 
strategy applied, see Section 5.5. 

• Group work may benefit from the use of a “devil’s advocate”, i.e., a person 
allocated to the role of arguing for alternative views (Schwenk and Cosier 1980). 
The use of a “devil’s advocate” may force the group to defend its position and 
consider arguments that do not support the current uncertainty assessment, e.g., 
the group may have to face questions like “Most other similar project have had 
large unexpected problems. Is it likely that our project will be different?” 

 
An example of a proper group work-based uncertainty assessment process, 

developed for dam building purposes, which implements many of the relationships 
reported in empirical studies, is described in (Baecher). Adapted to our purposes the 
main steps of that process may be described as follows: 

1) Identify the cost uncertainties to be assessed. 
2) Select a panel of experts displaying a balanced spectrum of 

expertise. The experts should be able to argue their point of view 
and be open to other points of view. 



 

3) Refine assessment issues in discussions with the panel. 
4) Expose the experts to a short training and motivation session on 

concepts, objectives, methods, and, common errors made. 
5) Elicit the uncertainty assessment of individual experts on issues 

pertinent to their individual expertise. 
6) Allow the group members to interact, supported by a facilitator, to 

explore hypotheses, points of view, etc., with the goal of 
aggregating the assessments and resolving the breadth of opinion. 

7) Document the process well and communicate the results back to 
the panel of experts. 

This process may be useful for deriving the benefits of using groups, while 
avoiding most of the pitfalls. However, work should be conducted to evaluate the 
process. 

5.5 Improved Motivation 
There are a variety of motivation-based uncertainty assessment strategies, e.g., 

“identification of individual performance”, “evaluation and feedback”, “provision of 
arguments for the uncertainty assessment calculations”, and, “monetary incentives for 
accuracy”. All of them are based on the belief that the use of motivation-based 
strategies lead to greater concern about performance, and, hence, better performance. 
The effect of motivational mechanisms is, however, complex. For example, several 
studies suggest that higher motivation may result in a fall in performance on difficult 
tasks, e.g., (Sieber 1974; Armstrong, Denniston Jr. et al. 1975; Cosier and Rose 
1977). The common explanation for decreased performance is that higher motivation 
may lead to greater use of dominant responses, i.e., less reflection and more “instinct” 
(Pelham and Neter 1995). This means that a possible effect of increased motivation is 
even more overconfident software cost uncertainty assessments, e.g., that the urge to 
provide narrow prediction intervals so as to be evaluated as skilled increases with 
increased accountability. However, other studies, e.g., (Grether and Plott 1979), show 
no effect, or a positive effect, from increased motivation on performance. Lerner and 
Tetlock (1999) summarize the findings in a review of accountability-studies: “Two 
decades of research now reveal that (a) only highly specialized subtypes of 
accountability lead to increased cognitive effort; (b) more cognitive effort is not 
inherently beneficial; it sometimes makes matters even worse; …”  The pessimistic 
view regarding motivational mechanisms is not undisputed. A comprehensive review 
on financial incentives (Camerer and Hogarth 1999), suggest that incentives, in 
general, have positive effects. The complexity of identifying the conditions for 
benefits from motivational mechanisms to evaluate performance in job situations is 
well illustrated in (Lindsay and Ehrenberg 1993). 

We were unable to find any published software study on the effect of 
motivational strategies on accuracy of software cost uncertainty assessment, and only 
one study (Lederer and Prasad 2000) on the effect of higher motivation on cost 
estimation accuracy. That study, (Lederer and Prasad 2000), found positive effects of 
increased accountability through performance evaluation. In fact, they found that 
performance evaluation was the only means of improving estimation accuracy: “Only 
one managerial practice, the use of the estimate in performance evaluations of 
software managers and professionals, presages greater accuracy. By implication, the 
research suggests somewhat ironically that the most effective approach to improve 
estimating accuracy may be to make estimators, developers, and managers more 
accountable for the estimate even though it may be impossible to direct them 



 

explicitly on how to produce a more accurate one.” There are important differences 
between the estimation of most likely cost and the assessment of the uncertainty of a 
cost estimate. One issue is however similar, the “self-fulfilling prophecy” effect. That 
effect suggests that an initially overconfident cost estimate or uncertainty assessment 
may actually become realistic if the project members perceive it as a goal. For 
example, a high motivation for not exceeding the estimated maximum cost may imply 
that the project simplifies the functionality of the software and work smarter to avoid 
a very large cost overrun. Case-studies and experiments illustrating this “self-
fulfilling prophecy” are described in (Jørgensen and Sjøberg 2001a). In our opinion, a 
likely explanation for the benefits of higher accountability in (Lederer and Prasad 
2000) is the “self-fulfilling prophecy” effect. 

Our preliminary summary of the motivation-effect studies is that there seem, 
in the main, to be two conditions that enable benefit to be derived from improved 
motivation towards uncertainty assessment: 1) There must be an explicit uncertainty 
assessment process where the accuracy improves with more effort, or, 2) There must 
be flexibility in the software development process or product, to enable the effect of 
the “self-fulfilling prophecy”.  

How we design motivational mechanisms is obviously important. Below we 
present several empirically validated findings that are useful for the design and 
tailoring of motivational mechanisms: 
• The motivational mechanisms should be directed towards the process more than 

the outcome (Siegel-Jacobs and Yates 1996). There may be many reasons for a 
poor uncertainty assessment and not all of them can be attributed to poor 
assessment work. Consequently, rewarding the outcome may easily lead to the 
reward of poor and punishment of good uncertainty assessment work. 

• The viewpoints of the audience, e.g., the software managers or customers, should 
not be known at the time of assessment (Tetlock 1993a). Otherwise, the assessor 
may easily be even more biased to confirm with the audience with increased 
motivation. If the audience’s viewpoint is not known, increased motivation seems 
to increase the assessors’ preemptive self-criticism, which typically lead to better 
performance. 

• There should be no unfortunate mixture of motivational mechanisms leading to 
conflicting goals, see the discussion in (Jørgensen 2004b). Optimally, the only 
goal of the uncertainty assessment should be accuracy and realism.  

• There should be no use of external incentives, e.g., financial rewards, if people 
have a strong intrinsic motivation, i.e., they perform activities for their own sake. 
In this case, the use of external incentives may destroy the intrinsic motivation and 
lead to poorer performance (Lepper, Greene et al. 1973). 

• It may be beneficial to instruct software professionals to explain and defend their 
cost uncertainty assessments. This motivational mechanism may be particularly 
useful if no (or strongly delayed) feedback related to outcome will be provided 
(Hagafors and Brehmer 1983), as the case is in many software project uncertainty 
assessments. For example, if there are no organizational mechanisms for 
providing feedback on the minimum-maximum interval provided by a software 
developer, it is even more important to require explicit and valid argumentation 
for the uncertainty assessment. 



 

5.6 Improved Framing of the Uncertainty Assessment Problem 
Several studies on human judgment, e.g., the study by Hora et al. (1992), 

report that over-confidence is robust to differences in framing. Other studies, 
however, report that the framing can be essential in stochastic problems, e.g. 
(Sedlmeier 1999). Hence, there is considerable variation in the results of studies on 
human judgment. 

The only study on human judgment in the context of software development is, 
as far as we know, (Jørgensen and Teigen 2002). In that study we showed that the 
framing did, indeed, have an important impact in situations with immediate feedback 
and many similar cost uncertainty assessment tasks. The experiment involved 29 
software professionals who estimated the most likely cost and the uncertainty of that 
cost estimate. Each participant estimated 30 tasks, applying an experience base of 
previously completed tasks. Feedback about actual cost was provided after each task 
estimate. Two different uncertainty assessment framings were compared. Following 
an estimation of the most likely effort half of the participants (Group A) were asked 
to: (1) Provide a minimum-maximum effort interval that include the actual effort with 
a probability of 90% (traditional framing), and half of the participants (Group B) were 
asked to (2) Assess the probability that the actual effort is inside the interval 50% of 
most likely effort - 200% of most likely effort (alternative framing). The alternative 
framing is similar to that proposed by (Seaver, Winterfeldt von et al. 1978). The 
groups performed surprisingly differently. Those who received the traditional framing 
(Group A) showed the usual pattern of over-confidence, e.g., the average “hit rate” 
was 58% on the first 10 tasks when it should have been about 90%. Those who 
received the alternative framing (Group B), however, achieved a very close 
correspondence between probabilities of including the actual effort (confidence level) 
and the “hit rate”, e.g., average “hit rate” for the first 10 tasks was 83%, which was 
exactly the same as their average “confidence level”.  

We should not be led to believe that changes in the framing solve all the 
inherent problem of uncertainty assessment. The experimental design may, to some 
extent, have been unrealistic and biased in favor of the alternative framing. For 
example, it is not common that a software organization has an experience database 
with many previous projects, and provides immediate feedback. It is, nevertheless, 
interesting to analyze how easily those who received the alternative framing used the 
historical data and the feedback to provide accurate confidence levels of a pre-set 
minimum-maximum interval compared to those who received the traditional framing 
and provided minimum-maximum values of a pre-set confidence level. At least, we 
can interpret the results as suggesting that a match between the format of the available 
information and the presentation of the uncertainty assessment problem simplifies the 
mental work and improves the quality. 

 
6 Preliminary Guidelines 

This section condenses what we believe are the major uncertainty assessment 
results into seven guidelines. Although the guidelines reflect the results of the studies 
discussed in this paper, it is difficult to avoid subjectivity in their selection and 
formulation. In addition, it is highly likely that, in the near future, uncertainty 
assessment results will be published that should prompt changes in the guidelines. It is 
therefore important to emphasize that the guidelines should be considered preliminary 
and need to be revised regularly in the light of new evidence. 

 



 

Guidelines: 
1. Do not Rely Solely on Unaided, Intuition-Based Processes: There is strong 

evidence suggesting that unaided, intuition-based software cost estimation 
uncertainty assessments are inaccurate and systematically biased towards 
over-confidence. Evidence and argumentation: Section 3. 

2. Do not Replace Expert Judgment With Formal Models: Judgments made 
as a result of using formal models may have a better correspondence between 
confidence level and accuracy of uncertainty assessments than the unaided 
judgments of software professionals. However, formal models may not apply 
uncertainty assessments as efficiently as software professionals. For example, 
formal cost prediction interval models seem to yield intervals that are so wide 
as to be meaningless, to compensate for lack of uncertainty information 
specific for a single project. It may be beneficial to combine uncertainty 
assessments from formal models and human judgment, but this approach has 
so far not been evaluated properly. Evidence and argumentation: Section 
5.1. 

3. Apply Structured and Explicit Judgment-Based Processes that Improves 
with More Effort and Feedback: The process should be structured and 
explicit to enable review of the quality of assessment process. In addition, a 
process should be selected in such a way that the accuracy improves with 
more assessment effort and feedback. The process described in Section 5.2 is, 
we believe, an example of an explicit process that improves with more effort, 
e.g., with the collection of more historical data. Inside view-based strategies, 
e.g., identification and assessment of a project’s activity based uncertainties, 
seem to be vulnerable to higher over-confidence with the collection of more 
information. Evidence and argumentation: Sections 4, 5.2 and 5.3. 

4. Apply Strategies Based on an Outside View of the Project: Apply 
uncertainty assessment strategies based on an outside view of the project, e.g., 
strategies that compare uncertainty properties of the current project with the 
estimation accuracy of previously completed projects. Inside view-based 
uncertainty assessment strategies seem to require formalizations of uncertainty 
relationships that are too complex to be useful in most software projects, and 
should only be used if there are no relevant historical data. Notice that this 
does not mean that it is unimportant to assess the inside uncertainties, e.g., the 
project risks and the minimum-maximum effort intervals of individual 
activities. That type of information about uncertainty may be very important 
for project planning and management. What we suggest is that assessments of 
the total cost estimation uncertainty are based on an outside view of the 
project. Evidence and argumentation: Section 4. 

5. Combine Uncertainty Assessments From Different Sources Through 
Group Work, Not Through Mechanical Combination: Group work where 
the participants have different types of background seems to be a useful 
combination strategy for cost uncertainty assessment. Be aware of “group-
think” in coherent groups where goals other than accuracy become important. 
Mechanical combination of uncertainty assessment, i.e., not through group 
work, may be more problematic. For example, while the strategy “take the 
average of individual estimates” is an obvious, and well-documented, strategy 
for combining most likely estimates, there may not be any obvious strategy 
when combining uncertainty assessments. Evidence and argumentation: 
Sections 5.3 and 5.4. 



 

6. Use Motivational Mechanisms With Care and Only If It Is Likely That 
More Effort Lead to Improved Assessments. Studies suggest that increased 
motivation may have a negative impact, or no impact at all, on accuracy. For 
example, higher motivation may have a negative effect if the increased 
motivation leads to use of “more instinct and less reflection”, and no effect if 
the underlying assessment processes is unconscious. Positive effects from 
motivational mechanisms are more likely if the uncertainty assessment process 
improves with greater effort, the mechanisms are mainly directed towards the 
process not the outcome, the evaluators’ viewpoints are not known, there are 
no conflicting evaluation goals, and the intrinsic motivation for accuracy is 
low. Evidence and argumentation: Section 5.5. 

7. Frame the Assessment Problem to Fit the Structure of the Uncertainty 
Relevant Information and the Assessment Process. Information may be of 
little use in cases where the information structure does not fit the assessment 
problem framing and process. For example, a traditional method of assessing 
uncertainty is to ask a software developer to provide a 90% confidence effort 
prediction interval, i.e., a minimum-maximum interval where the estimator 
believe that there is a 90% probability of including the actual effort, of a 
development tasks. Then, it can be demonstrated that the information about 
the previous estimation error of similar projects is difficult to apply. If, on the 
other hand, the software developer is asked to assess the probability of not 
exceeding the budget with more than P%, he or she may investigate the 
previous projects and find that, for example, 20% of the projects exceeded the 
budget by more than P%, i.e., the historical information together with the 
assessment process fit the framing of the assessment problem. Evidence and 
argumentation: Section 5.6. 

 
7 Conclusions 

Software project cost estimation uncertainty assessment may frequently be 
based on expert judgment, i.e., unaided, intuition-based processes. Unfortunately, 
such uncertainty assessments have been shown to be systematically over-confident, 
i.e., they underestimate the uncertainty. Over-confident cost estimation uncertainty 
assessment may lead to poor project management. There have been several studies on 
how to improve uncertainty assessments, both in the software domain and other 
domains. The review presented in this paper synthesizes the findings of empirical 
uncertainty assessment studies into seven practical, evidence-based guidelines. The 
guidelines suggest, among other things, that the most promising strategies are not 
based on formal models, but on supporting the expert processes, and that there are 
several important prerequisites for deriving benefits from motivational mechanisms. 
The guidelines are preliminary and there is a strong need to evaluate them in different 
software development contexts. There is also a need to investigate other strategies that 
have the potential for improving cost estimation uncertainty assessments, e.g., the role 
of training and the use of cognitive de-biasing techniques. 

In spite of the preliminary state of the guidelines, it is our belief that the 
current version constitutes a practical and useful guide for software organizations 
when designing their own cost uncertainty assessment process. In addition, we believe 
that future research on software cost estimation uncertainty assessment may benefit 
from the categories we introduced as preparation to the review, e.g., the distinction 
between inside and outside view-based strategies for cost uncertainty assessment. 
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