
Collecting Feedback during
Software Engineering Experiments

Amela Karahasanović (amela@simula.no)
Simula Research Laboratory

Bente Anda
Simula Research Laboratory

Erik Arisholm
Simula Research Laboratory

Siw Elisabeth Hove
Simula Research Laboratory

Magne Jørgensen
Simula Research Laboratory

Dag I.K. Sjøberg
Simula Research Laboratory

Ray Welland
Department of Computing Science, University of Glasgow

Abstract. Objective: To improve the qualitative data obtained from software

engineering experiments by gathering feedback during experiments. Rationale:

Existing techniques for collecting quantitative and qualitative data from

software engineering experiments do not provide sufficient information to

validate or explain all our results. Therefore, we would like a cost-effective and

unobtrusive method of collecting feedback from subjects during an experiment

to augment other sources of data. Design of study: We formulated a set of

qualitative questions that might be answered by collecting feedback during

software engineering experiments. We then developed a tool to collect such

feedback from experimental subjects. This feedback-collection tool was used in

four different experiments and we evaluated the usefulness of the feedback

obtained in the context of each experiment. The feedback data was triangulated

with other sources of quantitative and qualitative data collected for the

experiments. Results: We have demonstrated that the collection of feedback

during experiments provides useful additional data to: validate the data obtained

from other sources about solution times and quality of solutions; check process

conformance; understand problem solving processes; identify problems with

experiments; and understand subjects’ perception of experiments. Conclusions:

Feedback collection has proved useful in four experiments and we intend to use

the feedback-collection tool in a range of other experiments to further explore

the cost-effectiveness and limitations of this technique. It is also necessary to

carry out a systematic study to more fully understand the impact of the

feedback-collecting tool on subjects’ performance in experiments.

Keywords: Qualitative studies, data collection, tool support, software

engineering experiments, feedback, experience sampling

1. Introduction

The authors have carried out many software engineering experiments and within these

we have collected quantitative data, for example: time to complete an experiment;

number of tasks completed within a specified time; and logging of activities during

the experiment (which commands were used in an editor or tool). We have also

collected qualitative data after the experiments through interviews with subjects and

questionnaires, and by using expert opinions to assess the quality of designs and code,

for example. However, we would also like to collect qualitative feedback from

subjects during the experiment so that we can ascertain why they are doing things,

whether they are having problems, what they are thinking about, etc. We believe that

by collecting such qualitative data during the experiment we will enhance the value of

quantitative data and other qualitative data collected.

One of the initial motivations for our work was an experiment to evaluate the use

of tools and operations within a programming environment (Welland et al., 1997).

Although we had detailed logs of what the users were doing we had no explanation of

why they were doing certain sequences of operations or why there were gaps in the

sequences of events recorded. We then realised that there were a whole range of

questions that we could attempt to answer if we had more contemporaneous

qualitative data. Possible questions were:

 2

• How do we check that high level measures, such as solution times and quality

of the solutions, have not been affected by unforeseen circumstances?

• How do we ensure or check that the instructions given to the subjects actually

are followed during an experiment?

• How do we understand how and why subjects have ended up with their

solutions?

• How do we observe problems with the experiment material (tasks, programs,

documentation, etc.), and support tools and environments that may influence

the experimental conduct?

• How do we record people’s perception of the experimental situation?

Data on subjects’ cognitive processes and experience may be collected after a task or

experiment by post-task interviews and questionnaires (Yin, 1994), retrospective

think-aloud (Ericsson and Simon, 1993) and videotape reconstructions (Genest and

Turk, 1981). Nevertheless, recall accuracy decreases linearly over time (Bernard et

al., 1982; Conrath et al., 1983) (Ericsson and Simon, 1993). Furthermore, the subjects

may create their own ‘theories’ of what the problem was during the task-solving

process after they discover the solution. This post facto rationalisation may give a

false impression of the cause of the problem (Ericsson and Simon, 1993; Nielsen,

1993). Therefore, we believe that by collecting such data during an experiment we

will obtain more immediate feedback about subjects’ thoughts, problem-solving

processes and experiences.

We would like a method that would allow us to inexpensively gather data from

subjects during software engineering experiments. Hence, we developed a simple tool

to gather written feedback from subjects. At regular intervals during a study, this

feedback-collection tool provides a web-based screen on which the subjects write

down their thoughts and experience. This feedback together with timestamps is stored

for later analysis. When proposing a data collection method one should demonstrate

that it provides data consistent with data from other sources, that it provides useful

additional information and that it minimally disrupts the experiment. The feedback

collected needs to be triangulated with quantitative data collected, such as timings and

 3

activity logs, and other sources of subjective data, such as interviews, questionnaires

and expert assessment of the quality of solutions.

The feedback-collection tool was used in four experiments, with different primary

objectives, in which the number of subjects varied from one to 53. The duration of the

experiments varied from 90 minutes to 35 hours. Each experiment used a number of

data collection methods, both quantitative and qualitative, in addition to the feedback-

collection tool. Our experience showed that the feedback collected provided

validation and explanation of data from other sources, useful insights into the

cognitive processes used in solving problems and informative comments on the

experience of the participants during the experiments.

Our approach to collecting data during experiments is related to other work on

experience sampling, event-recording and concurrent think-aloud. The approach we

have used could be considered as a form of experience sampling (Larson and

Csikszentmihalyi, 1983) although the constrained experimental context and emphasis

on problem solving in our work gives a much more focussed environment for

collecting experience data. Think-aloud methods have proved useful for collecting

data concerning subjects in cognitive and usability studies (Anderson, 1987; Denning

et al., 1990; Ericsson and Simon, 1993). These methods typically involve human

observers and are expensive regarding time spent by observers in addition to that used

by the subjects. Therefore, they become prohibitive for studies with a large number of

subjects or running over an extended time period.

The remainder of this paper is organised as follows. Section 2 describes our

method for collecting feedback and the principles of our approach. We then describe

the feedback-collection tool that we have developed to gather qualitative data during

software engineering experiments in Section 3. Our experience of using the feedback

method is described in Section 4. We start by giving an overview of the four

experiments that we collected feedback from using our tool; we then describe what

kind of data we collected using the tool; and how we used this data and triangulated it

with other quantitative and qualitative sources of data. Section 5 discusses the impact

on the subjects of using the feedback-collection tool. Section 6 discusses the related

work and Section 7 concludes by considering the lessons learned and the possibilities

for future work.

 4

2. Method for Collecting Feedback

This section describes a feedback collection method (FCM). The basic principle is

that experimental subjects are asked for feedback at different times during an

experiment, each such request for feedback is called a probe. We interrupt the

subject’s work to seek immediate feedback on what they are currently doing or have

done within the time interval since the last interruption. The time for giving feedback

is limited as we want to get short focussed feedbacks frequently rather than extended

and considered feedback, which we might get from a post-task questionnaire, for

example.

Subjects may be asked general questions such as “What are you thinking now?”

and “What have you done since the last time you were asked a question?” or more

specific questions such as “How did you complete this task?” or “Why did you use

this tool?” Specific questions need to be defined for a particular experiment, based

upon the objectives of the experiment and the identification of points at which these

questions should be triggered.

In the following discussion, we discuss the timing of interruptions and the potential

impacts of different interruption strategies, describe the kinds of feedback that we

expect to collect, and finally how we envisage using the feedbacks that we have

collected.

2.1. Collecting Feedback

Whenever the subject receives a probe, requesting feedback, they are given a limited

time to type text, answering the question. Therefore, we have two parameters to

consider, the frequency of probing and the time allowed for feedback.

However, the frequency of probing can be controlled in a number of ways. There

are a variety of strategies that could be used to decide when to probe:

• At random points - subjects can be prompted at random points to find out what

they are currently doing, probes need to be generated using some suitable

distribution dependent upon number of probes per subject required within an

experiment.

 5

• At regular intervals – subjects can be prompted for input at fixed intervals, the

frequency of probes should be related to the overall length of the experiment

and the nature of the tasks.

• Subject driven – the subject provides feedback whenever they feel it is

appropriate. The problem with this approach is that we may not get any input!

• Event-driven

a. After finishing a given task – the experiment consists of a sequence

of tasks and we seek feedback about each task.

b. When given commands are executed – if we are interested in why

users are executing particular commands (or using particular tools)

then we trigger the probe whenever the command is executed or a

specified tool is invoked.

c. When an error occurs – if we detect a predictable error, such as

misuse of a technique then we can trigger a probe to ask what the

subject is trying to do.

d. Other kinds of unexpected behaviour – this is an exception handler

that probes the subject if something unexpected occurs.

Of course, these strategies are not mutually exclusive; various combinations of the

above are possible. For example, we could allow the subjects to control the frequency

of interaction but if they have not given any input for a certain time then they are

asked to give feedback. If we have a task-based approach then we might want to

combine this with asking for input after a certain time has elapsed to see why the

subject has not completed the task within a reasonable time.

Whatever strategy is used to generate probes, the subject’s current work is

interrupted and they have to switch context to answer the question. The subjects have

to comprehend the question, formulate a response and type it, before switching back

to the current task.

When subjects are asked to verbalise while performing a task, this may affect their

performance. Verbalisation may slow the subjects down (Sanderson, 1990) or

improve their performance (Berry and Broadbent, 1990; Wright and Converse, 1992).

 6

When writing is used for the externalisation of thoughts, as in FCM, then similar

effects can be expected (Ericsson and Simon, 1998; Vygotsky, 1994).

As the ability to recall a specific event with detailed information deteriorates

rapidly over time, reducing the time between probes in FCM increases the

completeness of the collected data. At the same time it may affect the subjects’

performance. Therefore, there is a trade-off between the completeness of the collected

data and the impact of interruptions on the subjects’ performance. Choice of

frequency of probing should be based on the duration of the experiments, complexity

of the given tasks and the experience from the pilot experiments.

Subjects are given a restricted amount of time to provide feedback in response to

each probe. The time allowed for feedback is restricted for two main reasons. First, to

reduce the impact on the experiment; if we restrict the time for feedback then we can

quantify the amount of time taken away from the main problem solving tasks of the

experiment. The second reason for restricting time for feedback is that we want to get

immediate feedback (first impressions) from the subjects rather than long comments

that may reflect a rationalised view of what they were doing. When the subjects are

asked to write down their thoughts, this usually takes longer than giving verbal

feedback, and their performance depends on their fluency in typing. So the time we

allow for feedback must take into account: the overhead of switching context and how

much information the subject is likely to be able to type within a given time.

2.2. Categorising Feedback

There are a number of different types of information that we could get from our

feedback collection method. We have divided these into three major categories:

experimental context, subjects’ perceptions and experimental conduct, which are

discussed below. In practice, one feedback may belong to more than one category.

2.2.1. Experimental Context

Experimental context is concerned with the envelope within which an experiment is

conducted, including: unscheduled events that occur during an experiment, the

 7

information given to the subjects and their background, the computational support

provided and the physical environment.

There are a variety of feedbacks that could give us information about the

experimental context. We have identified the following sub-categories. It should be

noted that the types of problems we are identifying are those that affect individuals. A

major problem during an experiment, such as a fire alarm or server failure, should be

identified and dealt with by the researcher conducting the experiment.

Breaks and Disruptions

Some feedbacks will give us information about unscheduled events that caused the

subject to lose time during the experiment. Some of these feedbacks provide us within

an approximate form of quantitative data, for example ‘I took a five minute break’,

but exact timings would have to be verified from other data sources.

In designing experiments we endeavour to provide suitable scheduled breaks, for

example between tasks, but feedbacks of this type will give us information about

other individual breaks and disruptions. If we are conducting a longitudinal

experiment without close supervision then this type of feedback is especially

valuable.

Background Knowledge

It is assumed that each subject has a minimal set of skills prior to starting the

experiment. For example, these assumptions might relate to a subject’s knowledge of

a particular design method or their programming ability in a given language.

Feedbacks may reveal that these assumptions are invalid for certain subjects.

Experimental Material

Feedback may identify particular problems with the materials that are subject of

investigation for example: documentation about the experiment, task descriptions,

design documents to be used in the experiment, programs to be read or modified,

tools that are being evaluated, etc.

 8

Supporting Tools

Most software engineering experiments rely on the use of supporting tools, such as

design editors or programming environments, which are not the primary focus of the

experiment. Some feedbacks will give us information about specific individual

problems with these tools.

Physical Environment

The experiment takes place within a particular environment, which can influence the

result of the experiment, and feedback may identify problems with this environment.

The conduct of the experiment may be affected by the physical location (such as

working in a multi-seat laboratory versus an individual office, the amount of working

space per subject, heating, lighting, etc.); the type of machines and their supporting

software environment; and the presence of observers and their interaction with

subjects.

2.2.2. Subjects’ Perceptions

Some feedbacks may record subjects’ perceptions of our experiment; these may range

from significant problems to simple comments. We have identified three sub-

categories.

Stress

Subjects may give feedback on their personal feelings regarding time pressure, feeling

tired or bored, having difficulty concentrating, etc.

External Disturbance

Subjects may be distracted by external events, such as the behaviour of another

subject, which are not necessarily perceived by other subjects.

General Reflections

Some feedbacks simply provide us with information that the subject is comfortable

with the experiment and do not reveal any problems.

 9

2.2.3. Experimental Conduct

Feedback related to the experimental conduct will give us more information about the

way in which subjects carried out the experiment, giving us information about

problem solving activities. We have identified three subcategories.

Task-performing Actions

Feedbacks in this subcategory give us information about the subjects’ current actions

when performing the experimental tasks. In practice, this subcategory will need to be

subdivided to pick out different groups of actions that are relevant for a given

experiment or group of experiments.

Planning and Strategy

Feedbacks in this subcategory will give information on general strategy, specific

plans or alternatives considered, or an explanation of something they have done, thus

providing insights into problem solving.

Comprehension

Some subjects may be struggling because they do not understand how to solve a

particular problem, for example, because they cannot understand a piece of code

provided, or they are not sure how to use the tool under investigation.

2.2.4. Extensions to the Categorisation

 We have identified a general categorisation of feedbacks that we expect to get from

our feedback collection method and this is summarised in Table 1. However, in

analysing any particular collection of feedbacks we may decide to further subdivide

any of the above subcategories, if the number and kind of feedbacks indicates that this

would be useful. It is quite likely that subcategory 3.1, task-performing actions, will

need to be specialised for a given experiment or group of related experiments. For

example, if the primary focus of the experiment is the use of a particular method then

we may identify sub-categories of feedback that are of interest for this specific

experiment.

 10

Table 1. Categorisation of feedbacks.

1 Experimental Context
 1.1 Breaks and Disruptions
 1.2 Background Knowledge
 1.3 Experimental Material
 1.4 Supporting Tools
 1.5 Physical Environment
2 Subjects’ Perceptions
 2.1 Stress
 2.2 External Disturbance
 2.3 General Reflections
3 Experimental Conduct
 3.1 Task-performing Actions
 3.2 Planning and Strategy
 3.3 Comprehension

2.3. Using the Feedbacks

In Section 2.2 we discussed a broad categorisation of feedbacks. We now consider

how these feedbacks might be used to improve the quality of our software engineering

experiments. Before looking at possible uses of feedbacks there are some general

observations to be made.

The most important point is that all feedbacks are subjective and the researcher

must judge the significance of any given feedback, or group of feedbacks, and

whether it can be used in any way. It should also be noted that there is not a one-to-

one mapping between categories of feedback and uses of feedback. Finally, it is worth

re-iterating that we expect feedback information to be triangulated with other sources

of data whenever possible.

We will now consider potential uses of feedback data and from what categories of

feedback relevant information is likely to be available for these uses.

2.3.1. Experimental Validity

A fundamental question concerning results from an experiment is how valid the

results are (Wohlin et al., 1999). Many of the feedbacks collected could potentially

help us identify threats to validity of our experiments. We consider how the different

categories of feedback identified above relate to important aspects of validity.

Definitions of different types of validity were introduced by Campbell (Campbell and

 11

Stanley, 1963). In this paper we use the modified definitions given by Wohlin

(Wohlin et al., 1999).

Construct Validity

The construct validity is concerned with the relationships between theory and

observation (Wohlin et al., 1999). It concerns whether the independent and dependent

variables accurately measure the concepts we intend to study. Common high level

measures in software engineering experiments are time taken to complete the tasks of

the experiment and quality of the solutions. How do we ensure or check the construct

validity of these measures? FCM can be used to explain variations due to “noise” in

the measures, which in turn can help us identify construct validity problems and

outliers in our dependent variables.

Feedbacks about breaks and disruptions could potentially allow us to adjust

solution times or even exclude subjects but, as noted earlier, these feedbacks do not

provide accurate quantitative data. However, we may be able to triangulate this type

of feedback with data from logging tools, for example. Some feedbacks on the use of

supporting tools may also indicate that subjects have lost time during the experiment.

For example, the FCM may reveal that a person spent non-productive time on some

technical problem with a PC or a development tool. In this case, the task times of that

subject can be considered an outlier or we can even somehow adjust the time spent.

Internal Validity

The internal validity is concerned with the relationship between the treatment and the

outcome. We want to make sure that there is a causal relationship between them, i.e.,

that the treatment causes the outcome (Wohlin et al., 1999). Lack of knowledge could

be a general threat to internal validity (as a confounding factor) if a significant

number of subjects identify this as a problem. However, it is more likely to identify

specific subjects who are inadequately qualified for an experiment and should be

considered for exclusion from the results. Similarly, a major error in the experimental

materials might be a ‘show stopper’ but in our experiments such significant errors

should have been eliminated by running pilot experiments. Feedback on problems

 12

with understanding the use of supporting tools is often another symptom of a subject’s

lack of background and is most likely to be an individual problem.

Some experiments are concerned with process conformance and require subjects to

adhere to certain instructions, for example to use a specified method or tool, during an

experiment (Basili et al., 1999). Failure to follow the required process is a major

threat to internal validity and can be identified by analysing sequences of task-

performing actions or using feedbacks about planning and strategy. This is an area

where formulating specific questions about the use of methods or tools is valuable,

rather than asking general questions about current activity.

Feedbacks about the physical environment may indicate effects on an individual’s

performance but as long as all subjects work in the same experimental environment it

seems unlikely to be a major threat to internal validity. Subjects’ perceptions of stress

and external disturbance are also potential threats to internal validity that can be

identified through the collected feedback. Such feedback may also reflect problems

such as poor experimental design, lack of background knowledge or problems with

the physical environment.

2.3.2. Explaining Experimental Results

Having satisfied ourselves regarding the validity of our experimental results and, if

necessary having made adjustments to our empirical data, we then analyse the results

of our experiment, typically using measures such as the time to complete a task and

the quality of the solution. Feedbacks on the experimental conduct may shed light on

significant differences in the time taken to complete tasks or the quality of solutions.

For example, we may be able to increase our understanding of such differences by

looking for specific sequences of actions that are either likely to lead to a good

solution or alternatively, indicate a poor choice of technique. Such differences in

completion times or quality of solutions may also be explained by differences in the

subjects’ general solution strategy or levels of comprehension. This type of analysis

may lead us to formulate new hypotheses that can be tested in further experiments.

 13

2.3.3. Experimental Ethics

Considering ethical issues is an important part of conducting empirical studies in

software engineering, for moral and pragmatic reasons (Singer and Vinson, 2001).

Subjects’ perceptions of an experiment may indicate that there are ethical problems

with our experiment. For example, if significant numbers of subjects complain about

the stress levels during the experiment or report feeling tired then this may indicate an

ethical problem.

2.3.4. Improving Experimental Design

Feedbacks from a number of categories may highlight problems with our

experimental design. We can use this information to improve the existing

experimental design or as input to the design of future experiments of a similar nature.

Lack of background knowledge suggests that we need to screen our subjects more

carefully or that we need to reconsider the structure of the experiment. Faults in the

experimental material need to be fixed if the experiment is likely to be re-used.

Problems with using the supporting tools might point to the need for better help

facilities or even the need for some pre-experiment training; feedbacks on such

problems may be correlated with logging information on tool usage, if available.

Negative feedback on the physical environment may potentially be used to improve

future experiments. However, providing an ideal working environment may not be

realistic. This shortcoming could affect the external validity of an experiment.

Subjects’ perceptions may also identify areas for improvement although many of

these feedbacks may be very individual in nature and therefore difficult to use.

2.3.5. Summary of the Use of Feedbacks

Table 2 summarises the relationship between the general categories of feedback

discussed in Section 2.2 and the potential uses of this feedback.

 14

Table 2. Use of categories of feedback.

Use of feedback Categories of feedback
Experimental Validity
 Construct Validity 1.1, 1.4
 Internal Validity 1.2, 1.3, 1.4, 1.5, 2.1, 2.2
 - Process Conformance 3.1, 3.2
Explaining Experimental Results 3
Experimental Ethics 2.1
Improving Experimental Design 1.2, 1.3, 1.4, 1.5

2.4. Summary of the Feedback Collection Method

In this section we have outlined the principles of our feedback collection method. To

implement the method, we need to undertake the following steps:

• Instrument the experimental context to collect feedbacks - our tool and its

supporting environment for collecting feedback is described in Section 3;

• Choose the type of questions, the timing of interrupts and the length of time

allowed for feedbacks for each experiment, four case studies are outlined in

Section 4.1;

• Collect feedback and categorise according to a coding scheme based on the

general categories described in Section 2.2. The analysis of feedbacks from

four experiments is discussed in Section 4.2;

• Consider the different ways in which the feedbacks could be used, assess

their impact on the experiment and triangulate with other sources of

empirical data, and take appropriate action if necessary. Examples of using

feedbacks are given in Section 4.3.

3. The Feedback-Collection Tool

We have developed a tool to support the feedback collection method called the

feedback-collection tool. The tool implements a regular-interval probing strategy, as

described above. More specifically, it satisfies the following requirements:

• At regular intervals, it requests feedback from subjects (a probe)

 15

• It collects the feedback from the subjects and stores it, together with

timestamps and identifications of the subjects

• It limits the time available for feedback

• For each task in the experiment, it provides the flexibility to change:

• the question or questions we use to elicit feedback

• frequency of probing

• the time allowed for feedback

To prompt subjects for feedback, a screen for entering data (the feedback-collection

screen) appears at regular intervals; time intervals restart from zero for each task, if

appropriate. This screen presents the probe to the subjects, who are asked to briefly

answer one or more questions on the screen. They answer within a limited time and

save their feedback by clicking the Save button. The screen disappears when the

feedback is saved or when the available time runs out. The time remaining to provide

a feedback is shown by a counter on the screen. The feedbacks written by the subjects

are saved in a database together with timestamps. Figure 1 gives an example of the

feedback-collection screen. The question used in this example is “What are you

thinking now?” A dialogue box for entering the feedback is placed below this

question. The time remaining for finishing the current feedback (16 seconds in this

example) is shown at the top of the screen.

Figure. 1. The feedback-collection screen.

An administrator can easily change the question, the frequency of probing and the

time allowed for feedback via a web-based interface. Several questions may be posed

 16

in the same window. Probes are associated with experimental tasks (design or

programming tasks in our experiments) and so it is possible to ask different questions,

to set different frequencies of probing and times for feedback for different tasks.

3.1. Implementation

The feedback-collection tool is implemented as a part of the web-based Simula

Experiment Support Environment (SESE) developed in our research group.1 SESE

automates some of the logistics for large-scale controlled experiments. It allows

researchers to define experiments, including all the detailed questionnaires, task

descriptions and necessary code, assign subjects to a given experiment session, run

and monitor each experiment session and collect the results from each subject for

analysis. SESE provides multi-platform support for download and upload of

experimental materials and task solutions. SESE is deployed on an n-tier client/server

architecture. The SESE application layer runs on one computer and the database on

another. The feedback-collection tool is implemented in HTML and JavaScript. The

user communicates with the tool via a web browser. A program on the server side,

implemented in Java, processes responses from the user. User feedback is stored in a

database (MS SQL-server). A former version of SESE (not including the feedback-

collection tool) and experiences of using it are described more fully in (Arisholm et

al., 2002).

A prototype of this environment, developed in a unix context, collects feedback

from users and automatically logs user operations. The following user operations are

logged together with timestamps: windows operations, keystrokes, operations on the

mouse buttons and unix commands. A more detailed description of this prototype can

be found in (Karahasanovic, 2002; Karahasanovic et al., 2001).

4. Experience of Using the Feedback Collection Method

This section describes the studies in which we used the feedback-collection tool, the

kind of data we collected by this tool and how we used this data.

 17

4.1. Experiments

The feedback-collection method was used for data collection in four studies,

summarised in Table 3. The length of these studies varied from 90 minutes to 35

hours and number of subjects from one to 53. In all these studies we wanted to gain

experience with respect to usefulness of the data collected by the FCM. In Studies I to

III, all subjects used the feedback-collection tool. However, in Study IV, we also

wanted to test potential effects of the FCM on the subjects’ performance. Half of the

subjects worked in the FCM condition and the other half of them worked in control

silent condition (without the FCM). In our experiments we used only a single question

on each feedback-collection screen.

Adequacy of frequency of probing, time for feedback and probes were tested in

pilot studies. For example, in Study III, a pilot experiment with five subjects was

conducted with 10 minute time intervals between probes. Based on the complexity of

the tasks and the experience from the pilot experiment we increased the frequency to

15 minutes.

Observers were present in these studies to provide technical support if problems

with any supporting tools or environments occurred but they had no role in the

evaluation of the FCM.

 18

Table 3. Survey of studies.

 Study I Study II Study III Study IV
Objective tool evaluation tool evaluation process evaluation method evaluation
Subjects 14 1 53 20
Duration 90 minutes 35 hours 3 to 5 hours 5 to 8 hours
Collected data -solution times

-assessment of the
solutions
-user satisfaction

-solution times
-assessment of the
solutions
-user satisfaction

-solution times
-assessment of the
solutions

-solution times
-assessment of the
solutions

Technology Java Java UML UML and Java
Supporting
environments
and tools

unix
emacs

unix
emacs

unix
Tau UML

unix
emacs
Tau UML

Other data
collection
methods

-automatic logging
of commands and
solution times
-questionnaire

-automatic logging
of commands and
solution times
-interview

-automatic logging
of solution times

-automatic logging
of solution times
-interviews
-questionnaires

Frequency of
probing

10 minutes 10 minutes 15 minutes 15 minutes

Time for
feedback

1 minute 2 minutes 2 minutes 2 minutes

 4.1.1. Study I

A controlled student experiment was conducted to evaluate how an impact analysis

tool called SEMT (Karahasanovic, 2000) supports schema changes. In this

experiment we compared two versions of this tool, which identifies the impact of

schema changes on Java applications; the first version using a fine level of granularity

and the second operating at a coarse level of granularity (Karahasanovic and Sjøberg,

2001).

The two versions were evaluated with respect to productivity of managing schema

changes and user satisfaction. The subjects conducted change tasks on a Java

application. The solution times and user commands were automatically recorded by a

logging tool. The quality of the solutions was assessed by the researcher on the basis

of a correct solution proposed by a person not involved in the research and correct

answers were counted by the unix diff tool. Information on user satisfaction was

collected by a questionnaire and by the feedback-collection method. Furthermore, the

feedback-collection method was used to identify events during the experiment that

might affect the performance of the subjects. The probe appeared every ten minutes

 19

with the text “What are you thinking and feeling now?” The subjects were instructed

to describe what they were thinking just before the probe appeared.

4.1.2. Study II

A controlled explorative study with one professional was conducted to investigate

whether a tool that presents the impacts of schema changes as a graph (SEMT)

improves the productivity of managing schema changes and increases user

satisfaction compared with tools that present impacts as text (Source Navigator from

RedHat and unix command-line tools, find, grep) (Karahasanovic and Sjøberg, 2002).

The study took place over 35 hours, divided into three phases during an 11-week

period. The subject used respectively unix, Source Navigator and SEMT to perform

tasks in Java during each of the phases.

We collected the solution times, logged the users’ commands and assessed the

solutions in the same way as in Study I. The purpose and use of the FCM, frequency

of its appearance and the question were the same as in Study I. We also conducted an

interview with the subject.

4.1.3. Study III

A controlled experiment (Anda and Sjøberg, 2003) was conducted to test whether

different ways of applying use case models in a UML design process affect:

• the completeness of the model measured by the number of functions in the

requirements specification that are implemented,

• the structure of the design model, and

• the time needed to achieve a good design.

The students were given guidelines describing the process to apply. The case tool Tau

UML from Telelogic was used to perform the tasks. The subjects spent between three

and five hours performing the tasks. The solution time was automatically recorded by

SESE and the solutions were assessed by an expert not involved in the research. The

FCM in this study was used primarily to check process conformance, that is, the

extent to which the subjects actually followed the given guidelines. The subjects were

 20

instructed to recall both their thoughts and actions. The probe “What have you done

since the last screen?” appeared every 15 minutes.

4.1.4. Study IV

A controlled experiment (Arisholm et al., 2003) was conducted to test:

• whether the presence of UML documentation (class diagrams and sequence

diagrams) improves the ease of understanding and modification of object-

oriented software,

• whether the use of the feedback-collection tool provides valuable additional

information compared with a control group not using FCM, and

• whether use of the feedback-collection tool affects subject performance (time

taken to perform tasks and the correctness of solutions) compared with the

control group.

The experiment was divided in two sessions and the students were asked to perform

six change tasks. The dependent variables of the study were solution time (in minutes

spent to perform the tasks) and quality of the solutions. The solution time was

reported by each subject using a task questionnaire. The correctness of the task

solutions was assessed by the researchers.

Table 4. Group assignment in Study IV.

 UML No UML
FCM 4 6
Control group 5 5

The subjects were divided into four groups, as shown in Table 4. All the subjects used

emacs and a Java compiler to perform the change tasks. The Java programming tasks

were identical for all four groups. However, the subjects assigned to the UML

condition used the case tool Tau UML to read and update the UML design

documentation for each Java program, whereas the subjects assigned to the No UML

group received no UML documentation. For the subjects assigned to the FCM

condition, the probe appeared every 15 minutes with the text “What have you been

 21

thinking about while solving this task?” The subjects were instructed to recall their

thoughts while performing the last task.

4.2. Collected Feedback

The feedback-collection tool was used frequently in all the four studies. Some data

was missing because nothing was written on the screen or the feedback was

unfinished, unreadable because of misspelling or contained no information.

As Study I was quite short (90 minutes), the time available for writing was limited

to one minute. Among the 90 feedbacks, 14 (16%) were missing or unfinished. We

increased the available time to two minutes in the remaining three studies. In Studies

III and IV, the feedback-collection screen was enhanced to show the subjects how

much time they had remaining for writing. The number of missing and unfinished

feedbacks for Studies II-IV decreased to three of 103 (3%), 17 of 451 (4%), and three

of 218 (1%) respectively.

The feedbacks varied in length from one or two words (“task 3”, for example) to

four or five sentence paragraphs describing what had been done or proposing

improvement of the technology being studied. There was no relation between the

length of the feedbacks and the frequency of probing.

To facilitate analysis of the collected feedbacks we used the coding process

described by Seaman (Seaman, 1999). We categorised the collected feedbacks

according to the categories described in Section 2.1. This was done by two

researchers in parallel; one researcher was not involved in the evaluation of the

feedback-collection method. Encoded files were inspected for differences and

questionable feedbacks. These were then resolved through discussion and analysis of

their context. The researchers initially agreed 87 percent of time. Table 5 shows the

frequency of the feedbacks in the four studies.

 22

Table 5. Frequency of feedbacks.

Feedback Study I Study II Study III Study IV
1 Experimental context
1.1 Breaks and disruptions 2 (2.6%) 4 (4.0%) 49 (6.6%) 15 (3.4%)
1.2 Background knowledge 2 (2.6%) 16 (2.1%) 14 (3.1%)
1.3 Experimental material 8 (10.5%) 6 (6.0%) 5 (0.7%) 3 (0.7%)
1.4 Supporting tools 54 (7.2%) 1 (0.2%)
1.5 Physical environment 8 (1.1%) 7 (1.6%)
2 Subjects’ perception
2.1 Stress 4 (5.3%) 15 (2.0%) 14 (3.1%)
2.2 External disturbance 2 (0.3%)
2.3 General reflections 1 (0.1%) 2 (0.5%)
3 Experimental conduct
3.1 Task-performing actions 53 (69.8%) 85 (85.0%) 488 (65.1%) 252 (56.2%)
3.2 Plan and strategy 5 (5.0%) 97 (12.9%) 100 (22.3%)
3.3 Comprehension 7 (9.2%) 14 (1.9%) 40 (8.9%)
Total 76 100 749 448

The majority of collected feedbacks (between 56 and 85 percent) describe the tasks-

performing actions. As the purpose of the first two studies was to evaluate the impact

analysis tool, the percentage of feedbacks on the tool being evaluated (experimental

material subcategory) is larger than in the other studies. In Study III some subjects

experienced technical problems with the Tau UML tool due to the heavy load of 26

people working simultaneously. Therefore, the percentage of feedbacks on breaks and

disruptions (6%) and feedbacks on supporting tools (7%) is larger than in the other

studies.

In analysing the feedbacks we used a more detailed breakdown for some

subcategories. In some instances, more detailed analysis was done to give more

information in case it was required, and for particular experiments it was useful to

provide a more detailed categorisation of task performing actions. For example, we

did a more detailed analysis of breaks and disruptions which is shown in Table 6.

Table 6. Detailed breakdown of the subcategory 1.1 (Breaks and disruptions).

 Study I Study II Study III Study IV
1.1 Breaks and disruptions
1.1.1 Breaks 8 (1.1%) 12 (2.7%)
1.1.2 Disruptions 2 (2.6%) 4 (4%) 38 (5.1%) 2 (0.4%)
1.1.3 Other activities 3 (0.4%) 1 (0.2%)

 23

We can see from this more detailed analysis that there was a different distribution of

breaks and disruptions between studies III and IV; this could provide some useful

additional information to the researchers conducting the experiments. By doing a

more detailed analysis of feedbacks in our initial pass though the feedback data we

avoided the problem of having to carry out re-analysis of feedbacks if an interesting

result appeared in one of the subcategories.

For Studies I and II (evaluating an impact analysis tool) and Study IV (evaluating

the use of UML documentation), it was useful to break down subcategory 3.1 (task-

performing actions) into several more detailed categories, as shown in Tables 7 and

8), indicating how the subjects’ actions were distributed over the activities of interest.

However, these detailed categorisations are only relevant for these specific

experiments.

Table 7. Detailed analysis of Task-performing actions for Studies I and II.

 Study I Study II
3.1 Task-performing actions
3.1.1 Actions with tool under study 43 (56.6%) 12 (12%)
3.1.2 Other action 10 (13.2%) 73 (73%)

Table 8. Detailed analysis of Task-performing actions for Study IV

3.1 Task-performing actions
3.1.1 Actions on code (edit. search. compile) 165 (36.8%)
3.1.2 Actions on UML diagrams
3.1.2.1 Actions on UML class diagrams 9 (2%)
3.1.2.2 Actions on UML sequence diagrams 38 (8.5%)
3.1.2.3 Actions on unspecified UML diagrams 10 (2.2%)
3.1.3 Other actions 30 (6.7%)

4.3. Use of the Feedbacks

The collected feedbacks were used together with other data sources to identify threats

to validity, to explain the results and to improve our future experiments. In Studies I

and II the principal researcher assessed the usefulness of the collected feedback. In

Studies III and IV usefulness of the feedback was independently assessed by two

researchers who were not involved in the evaluation of the feedback-collection

method.

 24

Table 9 shows how the feedback we collected was used and how it was

triangulated with other sources of data. The following data sources were used in our

experiments: automatically recorded solution times (ST), log files (LF), assessment of

the solutions (AS), interviews (I), questionnaires (Q) and collected feedbacks (FB).

These data sources were used as primary sources of information (Primary), as

supporting evidences (Supporting), to modify information provided by other data

sources (Modifying), and to give more details and explain information provided by

other data sources (Explaining).

Table 9. Use of the collected feedbacks in our studies.

Pr
im

ar
y

Su
pp

or
tin

g

M
od

ify
in

g

Ex
pl

ai
ni

ng

Experimental validity
 Validating solution times ST LF FB LF
 Process conformance FB
Explaining experimental results
 Use of the UML documentation I FB, Q FB
 Use of the time I FB FB
 Explaining the solutions AS FB
 Problems in comprehension I FB FB, Q
 Use of the tool being evaluated ST FB
Experimental Ethics FB
Improving experiment design FB

The main categories in Table 9 match those of Table 2, where “Validating solution

times” is an example of Construct Validity and “Process Conformance” is a special

case of Internal Validity. We have extended the Explaining experimental results

category to include specialised subcategories relevant to specific studies.

The rest of the section illustrates these different uses of feedback with examples

taken from the four studies. In the examples of feedbacks presented in the following

subsections, […] indicates an explanatory comment added by us. The majority of the

examples were originally written in Norwegian and have been translated for this

paper.

 25

4.3.1. Construct Validity: Validating Solution Times

Our subjects reported on different breaks and disruptions during the experiments.

Table 10 gives examples of such feedbacks.

Table 10. Feedbacks on breaks and disruptions

Feedback Study
Problems with emacs. II
Problems with SEMT [the impact analysis tool used in the experiment]; I don’t
understand the command for finding impacts on two classes

II

I have spent approximately 10 minutes on transferring some files because I was
logged on with the wrong user ID, disregard this time

III

Tau [the UML tool used in the experiment] doesn’t work. I have done nothing
since the last window.

III

Coffee break III
It can’t be that 15 minutes have already passed. I am not closer to the solution. I
think I need a break [the same subject 15 minutes later] I had a break. I see
things differently. I think I am closer now.

IV

We used some of these feedbacks to validate our conclusions about the time taken to

complete the tasks. In Study II, the subject wrote that he had problems with emacs

while performing a task with SEMT. We examined the command log files and

discovered that the subject actually had to start emacs several times. From the log

files we were able to identify the amount of wasted time. In the same study, the

subject also wrote that he did not understand the command for finding the impacts on

two classes while performing another task with SEMT. By analysing the SEMT log

file, we identified when the subject actually started to work on this task. In Study III,

some subjects experienced technical problems that affected the time these subjects

spent on task solving. We used the feedbacks reporting these problems to identify

when the subjects actually started to work on the task and adjusted the time spent for

each student (time was recorded automatically by SESE). In the same study one

subject reported that he spent about 10 minutes on transferring some unnecessary

files. We subtracted this time from the time he spent on the task solving.

When the subjects reported a break we did not adjust the solution times. We

assumed that this time was not wasted as it was easier for the subjects to work on the

tasks after a break. Furthermore, all subjects spent approximately the same time on

these breaks.

 26

4.3.2. Internal Validity: Validating Process Conformance (Study III)

In Study III, the feedbacks describing actions the subjects performed during the

experiment were used to check process conformance. At the beginning of an

experiment, the subjects were given instructions on how to conduct the experiment.

Validity of the experimental conclusions depends on whether the subjects actually

followed these instructions. An example of a sequence of feedbacks is presented in

Table 11 (timestamps are given in minutes from the start of the experiment). This

subject realised after 45 minutes that he had not followed the instructions. Although

the subject continued with the experiment and gave further feedbacks, he was

excluded from the results for the experiment. The feedbacks helped us to identify six

subjects that did not follow the given guidelines for a method under study and those

subjects were excluded from the analysis.

Table 11. A sequence of feedbacks used to identify one subject that did not follow the
guidelines.

Timestamp Feedback
50 It is a new thing to me to start with class diagrams, but ok. I am tired because I

worked a lot for another course.
65 I am trying to make class diagrams. I am working on the Borrower class.
80 I am going to make a class diagram, not a domain model.
95 I’ve read the task description again. I had to start again because I did not follow

the instructions.

4.3.3. Explaining Experimental Results

Use of the UML Documentation (Study IV)

In Study IV, the feedbacks were used to study how the UML documentation changed

the way in which the subjects understood, coded and tested the change tasks. The

feedbacks describing task-performing actions were divided into three groups: 12.7%

of total number of feedbacks addressed actions that involved using the UML

documentation (search, update), 36.8% addressed actions on program code (search,

edit, compile) and 6.7% addressed other actions like reading task descriptions. Table

12 gives examples of feedbacks addressing use of the UML documentation.

 27

Table 12. Feedbacks on task-performing actions addressing use of the UML documentation.

Feedback
By reading the sequence diagrams, I have found out that it is the Account object, which
approves deposit and withdrawal and have started to change this object in the withdraw and
deposit method. I do not think I need to change much more.
I have read the task. I have looked at the class diagram to get an overview (there are very
many classes here!) I have added a new menu choice “R”. I was going to make a new
method “return”, but it was already implemented. I am making changes in UML.
I have got an overview by reading the code. This is easier than reading the sequence
diagrams. I am about to implement the solution.

During the interviews, conducted after the experiment, the subjects explained how

they used the UML documentation. Based on this information we identified

differences in the use of UML documentation. We found that some subjects used the

UML documentation actively to identify change locations prior to performing code

modifications, whereas others ignored the UML documentation and instead used the

Java code to understand how to change the program. The feedbacks provided

supporting evidence for the differences identified by the interviews. They also

provided a more detailed task related picture of these differences.

Use of the Time (Study IV)

The feedbacks also helped us to get an impression of the time the subjects spent on a

particular activity. SESE automatically recorded time the subjects spent on a change

task. In the interviews the subjects described how they spent time on different

activities needed to perform the given change task. An example is “To update the

UML diagrams was more difficult than writing code [for the most complicated task].

Because when you make a new Java method, you have to implement it in UML and

you have to make space for the new method by moving the other methods a level

down and it takes a terrible long time.” Based on the feedbacks and their timestamps

we could approximately determine how much time they spent on this particular

activity. Two examples of useful sequences of feedbacks are shown in Table 13;

feedbacks are given together with subject id and timestamp in minutes from the start

of the experiment.

 28

Table 13. Feedbacks on task-performing actions giving an impression of time usage.

SubjectID Timestamp Feedback

ID_12 250 I have completed coding and testing. Now I need to decide what to
update in the UML diagrams. I have updated the class diagram, but
am not sure if I am going to make a new sequence diagram. The
overview is getting very complex and difficult to comprehend.

ID_12 265 I decided upon making a new sequence diagram for the change. I
do not expand the overview, even if it should be done.

ID_12 280 I am still making the sequence diagram… It becomes huge…
ID_12 295 Still making sequence diagram.
ID_17 302 I have implemented and tested the code for task 4. I am updating

the sequence diagrams.
ID_17 317 I am still updating the sequence diagrams.
ID_17 332 I am still updating the sequence diagrams.
ID_17 347 I have now updated all the sequence diagrams

Explaining the Solution

Some of the subjects explained their plans, strategies and alternatives they were

considering and some examples are given in Table 14. The first feedback in this table

 explains why some classes were left out of the solution. The other two feedbacks

show that the subjects were thinking about a strategy that would give a better quality

final solution but decided to implement an easier solution (which is the one the

researcher analysed). The feedbacks thus explained the assessed quality of the

solutions.

Table 14. Feedbacks on planning and strategy.

Feedback Study
I think I will make an array in the classes for book and film that keeps track of copies. III
I am working on the sequence diagram for UC1 [refers to Use Case 1 in the task
description]. Maybe I should model a register to get the information out.

III

I have considered a way to solve the test task. I first thought about adding the
elements in a kind of stack (since it would make it easy to print out backwards), but it
does not work this way. Consequently, I will add the elements in the normal way.

IV

Problems in Comprehension (Study IV)

In study IV, the subjects reported problems with comprehension of the program as a

whole and language specific problems such as converting an integer to a string, see

Table 15. This type of problem was reported by four subjects in interviews, by three

subjects in post-task questionnaires and by seven subjects in FCM screens. The

 29

feedbacks provided the most complete picture and explained important sources of

variation in programming effort and solution correctness. The last feedback in Table

15 is an example of using a feedback for two different purposes: to explain the

solution given and to identify a lack of background knowledge.

Table 15. Feedbacks on comprehension problems.

Feedback
I have problems with understanding the structure in the account class. There is no storage
for deposit and withdrawal as far as I can see.
I have sometimes problems with seeing the whole picture, because there are several levels
with products, ingredients and dispensers. I try to make the recipe check the ingredients if it
is possible to make coffee.
I have compiled the code and fixed errors. It is difficult to convert an int to a string. I know
that I have done this several times before, but I do not remember how I have done it.

Use of Tools in the Task Solution Process (Studies I and II)

In Studies I and II, the feedbacks shown in Table 16 helped us to identify some of the

problems with SEMT: lack of integration with a programming environment and

missing update of the graph when the Java code changed. This information was used

to improve the tool.

Table 16. Feedbacks on the tool under study (experimental material category).

Feedback Study
SEMT [impact analysis tool] was unable find the impacts of a class field (titleName)
on the class constructor.

I

I cannot see any changes in SEMT when I change the Java code. What do I have to do
in order to see the changes I have made?

II

I think that SEMT is helpful in giving the affected classes in graphical format, but it
would be more effective if it were combined with an editor.

II

We also logged user commands to validate usefulness of different commands in Study

II. The analysis of the log files showed that the subject frequently used the commands

for finding change impacts (31.3% of all commands). In the collected feedbacks the

subject explained that this functionality helped him to solve the given change tasks.

However, the collected feedbacks could not explain all findings. The analysis of

the SEMT log file showed that the redraw command was used quite often (20.3 %).

The collected feedbacks provided no explanation for this but in the interview after the

 30

study the subject explained that he often needed to hide the methods and the fields he

expanded in the previous step. As SEMT has no such command, he had to redraw the

graph.

4.3.4. Experimental Ethics

Some subjects in our experiment reported that they felt stressed, tired and frustrated

but we also received some positive feedback! Examples from different studies are

shown in Table 17. It is not possible to avoid stress during the experiments. However

we realized that we should pay more attention to informing our subjects about the

problems that may occur during the experiments. During the introduction session and

in the post-experiment interviews we should say more about the complexity of the

experiment tasks and take care to debrief the subjects properly.

Table 17. Feedbacks on subjects’ perception of the experiment.

Feedback Study
I am tired and have problems to concentrate II
I had a period with lower productivity and bad concentration, but it is better now IV
A bit frustrated!! I don’t understand the task. [the same student 10 minutes later]
I understand a bit more. I am coding right now.

I

I stuck. I cannot go either forward or back. I am at the same place as I was for
two hours ago, and I am not really motivated to try more.

IV

Doing well ☺ III
I feel time pressure I
I am disturbed by the neighbour. He talks to himself and to others. III
I really learned a lot. I think this will be useful for the exam. III

4.3.5. Improving the Experimental Context

We collected different feedbacks on the experimental context during our studies,

examples are shown in Table 18. Before each experiment we made some assumptions

about the subjects’ background knowledge of the methods, tools and languages used

in the experiment. For example, some of the subjects reported that they had

insufficient knowledge of Java. We found only one feedback reporting problem in the

experiment documentation. We believe that this low number is because we conducted

pilot experiments.

 31

The subjects also reported problems with supporting tools. They experienced

problems with emacs and lack of a help function in Study II. Subjects from the group

solving problems with pen and paper in Study III expressed their dissatisfaction.

Some subjects had problems when using Tau UML in Study IV. Furthermore, the

subjects identified problems with the experimental environment: the room, the

equipment and the interaction with other subjects or the researchers during the

experiment. All this information has been useful input to improve the organisation of

our experiments.

Table 18. Feedbacks on the experimental context.

Feedback Study
 Feedbacks on the background knowledge
I should now Java better I
I have compiled the code and fixed errors. It is difficult to convert an int to a string. I
know that I have done this several times before, but I do not remember how I have
done it.

IV

 Feedback on the experimental documentation
Should I delete isbn field or write it as a comment? II
 Feedbacks on supporting tools
Problems with emacs. II
I hate Tau UML. It is not possible to draw a straight line IV
 Feedbacks on the physical environment
I don’t have enough space to work. I’ve got a neck pain. III
I am waiting for Erik to come and help me with making an integer to an object.
[the same subject 15 minutes later] I’ve got a help. I was not aware that I could use
Java API from internet.

IV

4.4. Summary of the Results

In this section we have presented examples of feedbacks collected by our tool and

described how we used them. The feedback-collection tool was frequently used and

provided valuable information regarding all our experiments. However, the collected

feedbacks varied in length and their usefulness for the researchers. We also noticed

that different subjects provided different types of feedbacks. While some subjects

described their actions very briefly other provided long explanations for their actions.

We believe that better instructions before the experiment could help to increase the

usefulness of the feedbacks for researchers.

 32

5. Impacts on Subject’s Performance

In Study IV we measured impacts of the feedback-collection tool on the performance

of the subjects regarding the time the subjects spend on their tasks (Section 5.1) and

the quality of their solutions (Section 5.2). The subjects’ experience of the use of the

feedback-collection tool is described in Section 5.3. Analysis of impacts on subject’s

performance was conducted by researchers who were not involved in the evaluation

of the feedback-collection method.

5.1. Solution Time (Study IV)

In Study IV, we compared the time spent on understanding, coding and testing the

change tasks (i.e., solution time) for those subjects assigned to the feedback-collection

condition with those assigned to the control group. Table 19 shows the descriptive

statistics. The results suggest that the subjects assigned to the feedback-collection

condition required slightly less effort than the subjects assigned to the control group,

but only for those subjects given no UML documentation. Thus, the feedback-

collection method might introduce a bias regarding the dependent variable solution

time in experiments involving program comprehension activities. The potential bias

caused by such interaction effects should be accounted for when analyzing the main

effects of the UML documentation on solution time. This can, for example, be

achieved by using a general linear modelling (GLM) approach on the dependent

variable solution time, and including an interaction term between the experimental

conditions (i.e., UML*Feedback-collection) (Freund and Wilson, 1998). Using such

an analysis approach for the data in Table 19, the difference in time due to the

presence or absence of the feedback-collection condition is far from statistically

significant (Arisholm et al., 2003). Nevertheless, given the low number of subjects in

each group, the results should be interpreted with caution.

 33

Table 19. Solution times (in minutes) in Study IV.

 N Mean Median StDev Min Max Q1 Q3
No UML Control group 5 131 123 81 31 240 59 208
 FCM 6 119 102 50 73 193 78 172
UML Control group 5 102 105 23 67 127 81 122
 FCM 4 103 102 20 78 128 84 122

5.2. Quality of the Solution (Study IV)

Table 20 shows cross-tabulation statistics on the number of subjects achieving correct

versus faulty solutions on the change tasks for the four experimental groups in Study

IV. The results suggest that the subjects assigned to the feedback-collection condition

were slightly more likely to produce correct solutions than were the subjects assigned

to the control group, but only for those subjects given UML documentation. Thus, the

results suggest that the feedback-collection method might introduce a bias regarding

the dependent variable quality in experiments involving program comprehension

activities. As in the analysis of solution time (Section 5.1), the potential bias caused

by such interaction effects should be accounted for when analyzing the main effect of

the UML documentation on program correctness. This can be achieved by, for

example, using a logistic regression approach on the binary dependent variable

quality, and including an interaction term between the experimental conditions (i.e.,

UML*Feedback-collection) (Freund and Wilson, 1998). Using such an analysis

approach for the quality data summarized in Table 20, the difference in quality due to

the presence or absence of the feedback-collection condition is not statistically

significant (Arisholm et al., 2003). As for the analysis on time, given the low number

of subjects in each group, the results should be interpreted with caution.

 34

Table 20. Impact of the use of FCM on quality of the solutions in Study IV.

 N
(total)

N
(all correct)

N
(faults found)

%
(all correct)

No UML Control group 5 2 3 40
 FCM 6 2 4 33
UML Control group 5 3 2 60
 FCM 4 4 0 100

5.3. Effects Experienced by Subjects

To understand the effects of the feedback-collection tool, we asked the participants of

our studies to report their experience with the tool in a questionnaire (Section 5.3.1).

Some participants used the feedback-collection tool to provide feedback on the tool

itself (Section 5.3.2). Furthermore we conducted interviews with the participants of

Study IV who were assigned to the feedback-collection condition (Section 5.3.3).

5.3.1. Questionnaires

The participants in Studies I, II and IV were asked in a post-experiment questionnaire

to evaluate the feedback-collection tool. Table 21 summarises the results.

The participants in Study I claimed that they were not disturbed or influenced by

the feedback-collection tool. The subject in Study II was exposed to the feedback-

collection tool for 35 hours. He also claimed that he was not disturbed by the tool, but

the feedbacks he wrote were shorter and less diverse than the feedbacks of the

subjects in the other studies. The participants Study IV were exposed to the feedback-

collection tool for five to eight hours. They were more disturbed by the feedback-

collection tool than the participants in Study I, but still claimed that their work was

not influenced by the tool.

 35

Table 21. Median of user evaluation of the feedback-collection tool; a seven-point scale was
used, 1 means fully agree; 7 means fully disagree.

Question Study I Study II Study IV
The FCM disturbed me in my work 6 6 4
I worked differently because of the FCM 6 6 6

5.3.2. Feedbacks on the Feedback-Collection Tool

Three participants in Study I wrote explicitly on the feedback-collection screen that

they liked it; one of them wrote: “This screen is a very good idea. It helps me to keep

focussed.” Two participants in Study III wrote that they were irritated by the

feedback-collection tool.

5.3.3. Interviews (Study IV)

We interviewed the participants in Study IV who were assigned to the feedback-

collection condition (total 10 subjects). They were asked to describe their experience

with the feedback-collection tool.

The tool was experienced differently among the subjects. Several subjects felt that

the feedback-collection tool positively influenced the way they performed the tasks

because they became more conscious of their thoughts and actions. It helped them to

capture the thoughts, gain new perspectives, remember more clearly what they were

doing and become aware of flaws in the solutions. This is illustrated by the following

comments:

…particularly during the last task, it affected my solution a little bit

because I had to think … and then I discovered that something was

not optimal.

It changed my thoughts, so … I had some new thoughts. Without it

… maybe the thoughts would disappear.

One subject reported that the feedback-collection tool made her less frustrated during

the experiment:

If there were problems, I could at least write why I spent so long

time, so, you know, I became less frustrated.

The majority did not feel that the feedback-collection tool stole time from the

performing of the tasks. Two subjects reported that the small breaks in the experiment

 36

were useful. Some subjects claimed not to be influenced by the feedback-collection

tool at all. Being interrupted while working was not problematic for most subjects.

However, one subject felt that disturbance by the feedback-collection tool affected his

work significantly:

But, during the last task, I had a feeling that I had just started with

the task and it appeared, I forgot what I was working with, and I

had to start from the beginning again and … it interrupted me all

the time.

6. Related Work

A wide range of methods based on self-reporting cognitive processes during a study

have been proposed. These methods have in common that subjects are asked to

provide reports of their ongoing thoughts, feelings or experience. They fall into three

broad categories: thought and experience sampling, event recording and concurrent

think-aloud.

6.1. Thought and Experience Sampling

In thought-sampling the subjects are interrupted randomly and asked to report their

thoughts in oral or written form (Genest and Turk, 1981). In the earliest uses of

thought-sampling the subjects were interrupted by a researcher in a laboratory setting

(Aserinsky and Kleitman, 1953). In newer uses of this method the subjects were given

a portable tone generator that randomly generates tones (Hurlburt, 1979). This

allowed sampling of thoughts over a longer time period and in naturalistic settings.

Similar to this is experience-sampling (Larson and Csikszentmihalyi, 1983). The

subjects carry electronic pagers which randomly generate tones. When a tone sounds,

the subjects answer a questionnaire. A computer application of this method called

auto-ask has been developed to study web users’ internal experience (Chen and Nilan,

1998). This application randomly activates a questionnaire that pops up on the top of

users’ web browsers.

 37

Our approach can be considered as a form of experience sampling. However, the

experience-sampling method collects feedback during subjects’ daily activities in

naturalistic settings whereas our method collects feedback from subjects while they

are solving given problems in a laboratory setting. Consequently, we have to reduce

the impact of the data collection method on the subjects’ solution times. The

feedback-collection method therefore limits the time for feedback whereas in the

experience-sampling method this time is normally unlimited. Related to that is the

number of questions subjects have to answer. In our studies we used one open-ended

question per probe whereas in the experience-sampling method a questionnaire

consisting of several open-ended questions and numerical scales was used.

6.2. Event Recording

In event recording the subjects are asked to report whenever a certain kind of event

occurs (Genest and Turk, 1981). An application of this method in usability studies has

been reported by Ivory and Hearst (Ivory and Hearst, 2001). Event-driven dialog

boxes are embedded within a software prototype (Abelow, 1993). A dialog box

asking “Why did you use this command?” appears when a subject uses a particular

command or makes a mistake. The main advantage of this method is collecting

feedback on infrequent but important events (Genest and Turk, 1981). Nevertheless, a

request for specific information may change the thoughts and behaviour of the

subjects. An additional filtering process occurs between the time a thought

(information) is stored in a short-time memory (heeded) and the time this thought is

reported (Ericsson and Simon, 1993). Subjects’ reports may also be influenced by

demand characteristics and social desirability (Genest and Turk, 1981). For example,

when the subjects are asked why they used a particular command, they might

conclude that this was wrong and avoid using it in the rest of the experiment.

6.3. Concurrent Think-Aloud

Traditionally, the think-aloud protocol was used to study cognitive processes in

psychology (Anderson, 1987; Ericsson and Simon, 1993). It has also become a

 38

valuable research method in several applied disciplines. For example, it has been used

in medicine to identify strategies used by experts and to evaluate the effects of new

technologies on decision-making processes (Jungk et al., 2000; Patel et al., 2001);in

education to identify strategies and processes used in learning environments

(Davidson et al., 1996; Garner, 1988; Nathan, 1991); in software engineering for

development of a comprehension model (von Mayrhauser and Lang, 1999); and in

usability evaluation (Boren and Ramey, 2000; Denning et al., 1990; Haak and Jong,

2003).

The subjects are instructed to verbalise whatever they are saying silently to

themselves (talk-aloud) or to verbalise whatever they are thinking (think-aloud)

(Ericsson and Simon, 1993). An observer records a subject’s verbalisations and may

prompt the subject to provide feedback, for example if the subject is not verbalising or

the observer wishes to ascertain the reason for some action. Our tool could be

extended to implement subject-driven probing. A prompt could remind subjects to

provide a feedback if they have not given any feedback for a certain period of time.

This would provide a snapshot of the feedback collected by the think-aloud method.

According to the theory of verbalisation processes, continuous verbalisation during

a task provides a more complete picture of the cognitive processes than other self-

reporting methods (Ericsson and Simon, 1993). It may affect performance of the

subjects (Berry and Broadbent, 1990; Sanderson, 1990; Wright and Converse, 1992),

but it has been argued that this effect can be minimised by employing warm-up trials

and by following guidelines for the think-aloud protocol (Ericsson and Simon, 1993).

The think-aloud method involves humans (observers and subjects) and is time

consuming for both observer and subject. Costs and organisational effort therefore

increase rapidly with the number of subjects and/or the length of the tasks. If the

method is conducted in special purpose usability laboratories these costs increase

further.

Because it is based on sampling, the feedback collection method provides a less

complete picture of subjects’ thoughts and experience during an experiment than the

think-aloud method. However, it allows cost-effective data collection in experiments

with larger numbers of subjects or running over an extended time. We remove the

need for human observers to record verbalizations by using the feedback-collection

 39

screen but there is still an additional cognitive load on the subjects whenever they are

asked to provide feedback.

7. Conclusions and Future Work

This paper has focused on the usefulness of gathering feedback from subjects during

software engineering experiments. We presented a feedback-collection method and

reported our experience with it. We implemented a tool based on this method that

interrupts the subjects at regular intervals and instructs them to write down their

thoughts on a web-based screen and stores the feedback in a database. We used this

tool in four experiments. We proposed a broad categorisation of feedback that we

could get from this method, reported the kind of data we collected and described how

these data were useful in our experiments. Our results showed that the feedback-

collection tool is a valuable means for collecting qualitative data about subjects in

software engineering experiments. The collected feedback helped us to validate

solution times collected by other means, to check process conformance, to understand

sources of variation in programming effort and solution correctness. The results of the

interviews and questionnaires showed that the subjects were mostly positive about the

tool. The participants felt that they needed better instructions to write feedbacks.

The results of one of the experiments suggested that use of the feedback-collection

tool might slightly improve the performance of the participants. The participants

assigned to the feedback-collection condition spent slightly less time and were

slightly more likely to produce correct solutions than the participants assigned to the

silent condition.

The feedback-collection tool allowed us to collect qualitative data on subjects in a

relatively easy and inexpensive way. Based on our experience, we recommend the use

of the feedback-collection method in software engineering studies with many subjects

or that are long-term. We recommend also that the participants should receive training

in verbalising their thoughts on the feedback-collection screen. Furthermore, different

questions, frequencies of the screen appearance and available times for writing should

be tested for individual experiments using pilot studies. The categorization of

 40

feedbacks we proposed was useful in the context of our experiments. Nevertheless,

different categories might be needed for different type of software engineering

experiments.

Note that the feedback-collection tool provides a less complete description of the

cognitive processes than the think-aloud method with a human observer and thus is

not appropriate for studies in which completeness of mental process is essential.

Furthermore, the feedback-collection tool collects subjective information that should

be used to complement other data collection methods. Because we capture data

together with timestamps, the information collected by the feedback-collection screen

can easily be compared with objective information such as log files and solution

times.

We intend to conduct several experiments to investigate the feedback-collection

tool further. The first experiment will use the design proposed by Ericsson (Ericsson,

2003). The performance and collected protocols will be compared for four groups of

subjects who perform the same set of tasks: one group who think aloud; one group

who give immediate retrospective reports; one group who use a new verbal-report

procedure, the feedback-collection method in our case; and one silent control group.

The analysis will, we hope, help us to better understand the advantages and

disadvantages of the feedback-collection method. We also plan to further explore use

of this tool with different frequencies of probing, a range of times for feedback, with

multiple questions within one probe and with different questions for different tasks.

Because the present implementation of the tool is a part of the Simula Experiment

Support Environment (SESE) we were only able to evaluate it within Simula.

However, ideas presented here may be useful for other researchers and we also plan to

evaluate use of the feedback-collection method together with a mechanism for

capturing user actions called GRUMPS developed at University of Glasgow (Evans et

al., 2003).

 41

Acknowledgements

The authors are grateful to the students of the Department of Informatics at the

University of Oslo who participated in our experiments. We thank Samera Afsheen

Ali for contributions on the experiment on the effects of UML documentation on the

maintainability of object-oriented software. We thank Malcolm Atkinson and Anders

Ericsson for valuable information and advice; Annita Fjuk, Glen Farley, Richard

Thomas and Chris Wright for their constructive comments on this paper; and Gunnar

Carelius for his technical assistance. We are grateful to the anonymous reviewers for

their useful suggestions.

References

Abelow, D. 1993. Automating feedback on software product use. CASE Trends December. 15–

17.

Anda, B. and Sjøberg, D.I.K. 2003. Applying Use Cases to Design versus Validate Class

Diagrams - a Controlled Experiment Using a Professional Modelling Tool. IEEE

International Symposium on Empirical Software Engineering (ISESE 2003), Rome, Italy,

50–60.

Anderson, J.R. 1987. Methodologies for studying human knowledge. Behavioural and Brain

Science, 10: 467–505.

Arisholm, E., Ali, S.A. and Hove, S.E. (2003). An Initial Controlled Experiment to Evaluate

the Effect of UML Design Documentation on the Maintainability of Object-Oriented

Software in a Realistic Programming Environment. Simula Research Laboratory, Technical

Report, 2003-04.

Arisholm, E., Sjøberg, D.I.K., Carelius, G. and Lindsjørn, Y. 2002. A Web-based Support

Environment for Software Engineering Experiments. Nordic Journal of Computing, 9, No.

4: 231–247.

Aserinsky, E. and Kleitman, N. 1953. Regularly occurring periods of eye mobility and

concomitant phenomena during sleep. Science, 118: 273–374.

Basili, V.R., Shull, F. and Lanubile, F. 1999. Building Knowledge through Families of

Experiments. IEEE Transactions on Software Engineering, 25, No. 4 (July–Aug.): 456–73.

 42

Bernard, H., Killorth, P. and Sailer, L. 1982. Informant accurracy in social-network data. An

experimental attempt to predict actual communication from recall data. Social Science

Research, 11: 30–36.

Berry, D.C. and Broadbent, D.E. 1990. The role of instruction and verbalization in improving

performance on complex search tasks. Behaviour & Information Technology 9, 3 (May–

June): 175–190.

Boren, M.T. and Ramey, J. 2000. Thinking-Aloud: Reconciling Theory and Practice. IEEE

Transactions on Professional Communication, 43, No. 3 (September 2000): 261–278.

Campbell, D.T. and Stanley, J.C. 1963. Experimental and Quasi-Experimental Designs for

Research. Boston, MA, USA: Houghton Mifflin Company.

Chen, H. and Nilan, M. 1998. An Exploration of Web Users' Internal Experience: Application

of the Experience Sampling Method to the Web Environment. WebNet 98 World

Conference, Orlando, Florida.

Conrath, D.W., Higgins, C.A. and McClean, R.J. 1983. A comparison of questionnaire versus

diary data. Social Networks, 5: 315– 322.

Davidson, G.V., Shorter, L., Crum, A. and Lane, J. 1996. Children's use of learning strategies

and decision making in hypertext computer lesson. ED MEDIA 96, Conference on

Educational Multimedia and Hypermedia, Assoc. Adv. Comp. Educ., Charlottesville, VA,

USA.

Denning, S., Hoiem, D., Simpson, M. and Sullivan, K. 1990. The Value of Thinking-Aloud

Protocols in Industry: A Case Study of Microsoft. Proceedings of the Human Factors

Society – 34th Annual Meeting, Santa Monica, CA, 1285–1289.

Ericsson, K.A. 2003. Valid and Non-Reactive Verbalisation of Thoughts. in preparation.

Ericsson, K.A. and Simon, H.A. 1993. Protocol Analysis: Verbal Reports as Data. Cambridge,

Massachusetts: The MIT Press.

Ericsson, K.A. and Simon, H.A. 1998. How to study thinking in everyday life: Contrasting

think-aloud protocols with descriptions and explanations of thinking. Mind, Culture and

Activity, 5 (3): 178–186.

Evans, H., Atkinson, M., Brown, M., Cargill, J., Crease, M., Draper, S., Gray, P. and Thomas,

R. 2003. The pervasiveness of evolution in GRUMPS software. Software-Practice &

Experience, 33 (2): 99–120.

Freund, R.J. and Wilson, W.J. 1998. Regression Analysis: statistical modeling of a response

variable. Academic Press.

 43

Garner, R. (1988). Verbal-Report Data on Cognitive and Metacognitive Strategies. In: Learning

and Study Strategies: Issues in Assessment, Instruction, and Evaluation. Weinstein, C.E. et

al. (editors), Academic Press, Inc., San Diego, CA: 63–100.

Genest, M. and Turk, D.C. (1981). Think-aloud approaches to cognitive assessment. In:

Cognitive Assessment. Merluzzi, C.R. et al. (editors), Guilford Press, New York: 223–269.

Hurlburt, R.T. 1979. Random sampling of cognitions and behaviour. Journal of Research in

Personality, 13: 103–111.

Haak, M.J. and Jong, D.T.M. 2003. Exploring Two Methods of Usability Testing: Concurrent

versus Retrospective Think-Aloud Protocols. IEEE Computer Society: 285-287.

Ivory, M.I. and Hearst, M.A. 2001. The State of the Art in Automating Usability Evaluation of

User Interfaces. ACM Computing Surveys, 33, No. 4: 470–516.

Jungk, A., Thull, B., Hoeft, A. and Rau, G. 2000. Evaluation of two new ecological interface

approaches for the anesthesia workplace. Journal of Clinical Monitoring and Computing,

16(4): 243–258.

Karahasanovic, A. 2000. SEMT – A Tool for Finding Impacts of Schema Changes.

NWPER'2000 Nordic Workshop on Programming Environment Research, Lillehammer,

Norway, 60–75.

Karahasanovic, A. 2002. Supporting Application Consistency in Evolving Object-Oriented

Systems by Impacts Analysis and Visualisation, PhD Thesis. Faculty of Mathematics and

Natural Science, University of Oslo, Unipub, ISSN 1501-7710, Nr. 234.

Karahasanovic, A. and Sjøberg, D.I.K. 2001. Visualising Impacts of Database Schema Changes

– A Controlled Experiment. 2001 IEEE Symposium on Visual/Multimedia Approaches to

Programming and Software Engineering, Stresa, Italy, IEEE Computer Society: 358–365.

Karahasanovic, A. and Sjøberg, D.I.K. 2002. Visualising Impacts of Change in Evolving

Object-Oriented Systems: An Explorative Study. International Workshop on Graph-Based

Tools GraBaTs'02, Barcelona, Spain, 22–31.

Karahasanovic, A., Sjøberg, D.I.K. and Jørgensen, M. 2001. Data Collection in Software

Engineering Experiments. Information Resources Management Association International

Conference, Soft. Eng. Track, Toronto, Ontario, Canada, 1027–1028.

Larson, R. and Csikszentmihalyi, M. (1983). The Experience Sampling Method. In:

Naturalistic approaches to studying social interaction. R., H.T. (editors), Jossey-Bass, San

Francisco, 42–56.

Nathan, M.J. 1991. A simple learning environment improves mathematical reasoning.

Intelligent Tutoring Media, 2(3–4): 101–111.

Nielsen, J. 1993. Usability Engineering. AP Professional.

 44

Patel, V.L., Arocha, J.F., Diermeier, M., How, J. and Mottur-Pilson, C. 2001. Cognitive

psychological studies of representation and use of clinical practice guidelines. International

Journal of Medical Informatics, 63(3): 147–67.

Sanderson, P.M. 1990. Verbal Protocol Analysis in three experimental domains using SHAPA.

Proceedings of the Human Factors Society, 34th Annual Meeting, Santa Monica, CA, 1280–

1284.

Seaman, C. 1999. Qualitative Methods in Empirical Studies of Software Engineering. IEEE

Transactions on Software Engineering, 25, No. 4 (July/August 1999): 557–572.

Singer, J. and Vinson, N. 2001. Why and How Research Ethics Matters to You. Yes, You!

Empirical Software Engineering, 6: 287–290.

von Mayrhauser, A. and Lang, S. 1999. A Coding Scheme to Support Systematic Analysis of

Software Comprehension. IEEE Transactions on Software Engineering, 25 (4): 526–540.

Vygotsky, L.S. 1994. Thought and Language. Cambridge, MA: MIT Press.

Welland, R., Sjøberg, D. and Atkinson, M. 1997. Empirical Analysis based on Automatic Tool

Logging. Empirical Assessment & Evaluation in Software Engineering (EASE97), Keele,

UK.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., C., Regnell, B. and Wesslén, A. 1999.

Experimentation in Software Engineering – An Introduction. Boston: Kluwer Academic

Publishers.

Wright, R.B. and Converse, S.A. 1992. Method bias and concurrent verbal protocol in software

usability testing. Proc. Human Factors Society 36th Annual Meeting, Atlanta, Georgia,

1220–1224.

Yin, R.K. 1994. Case Study Research. Thousand Oaks, California: SAGE Publications.

 45

Notes

Affiliation of the authors:

Amela Karahasanović (amela@simula.no)

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Bente Anda (bentea@simula.no)

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Erik Arisholm (erika@simula.no)

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Siw Elisabeth Hove (siweh@simula.no)

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Magne Jørgensen (magnej@simula.no)

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Dag I.K. Sjøberg (dagsj@simula.no)

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Ray Welland (ray@dcs.gla.ac.uk)

Department of Computing Science, University of Glasgow17, Lilybank Gardens,

Glasgow G12 8RZ

1 SESE is not currently available commercially but Simula is willing to share

the technology with other interested researchers. Contact Dag Sjøberg

(dagsj@simula.no) for further information.

 47

Keywords: Qualitative studies, data collection, tool support, software engineering

experiments, feedback, experience sampling

 48

Figure 1. The feedback-collection screen.

 49

Biographies:

Amela Karahasanović received her MSc degree in computer science from the

University of Sarajevo in 1989 and PhD degree in computer science from the

University of Oslo in 2002. She has nine years industry experience in Bosnia and

Herzegovina and Norway as system developer and project manager. She is now a

postdoctoral fellow at Simula Research Laboratory and an associate professor in the

Department of Informatics at the University of Oslo. Her research interests include

research methods in empirical software engineering, visual languages, software

comprehension and object-oriented analysis and design.

Bente Anda received an MSc degree in informatics in 1991 and a PhD degree in

informatics in 2003, both from the University of Oslo. She has worked three years as

lecturer at The Norwegian School of Information Technology (NITH) and four years

as consultant and project manager in IBM. She now works as research scientist at

Simula Research Laboratory and associate professor in the Department of

Informatics, University of Oslo. Her research interests include empirical evaluation of

methods for object-oriented analysis and design, use case based estimation of

software development effort and software process improvement

Erik Arisholm received the MSc degree in electrical engineering from the University

of Toronto and the PhD degree in computer science from the University of Oslo. He

has seven years industry experience in Canada and Norway as a lead engineer and

design manager. He is now a researcher in the Department of Software Engineering at

the Simula Research Laboratory and an associate professor in the Department of

Informatics at the University of Oslo. His main research interests are object-oriented

design principles and methods, static and dynamic metrics for object-oriented

systems, and methods and tools for conducting controlled experiments in software

engineering. He is a member of the IEEE and IEEE Computer Society.

 50

Siw Elisabeth Hove received her MSc in computer science from the University of

Oslo in 2003. She is a research assistant at Simula Research Laboratory. Her research

interests are within analysis of qualitative data in software engineering studies.

Magne Jørgensen received the Diplom Ingeneur degree in Wirtschaftswissenschaften

from the University of Karlsruhe, Germany, in 1988 and the Dr. Scient. degree in

informatics from the University of Oslo, Norway in 1994. He has about 10 years

industry experience as software developer, project leader and manager. He is now

professor in software engineering at University of Oslo and member of the software

engineering research group of Simula Research Laboratory in Oslo, Norway.

Dag I.K. Sjøberg received the MSc degree in computer science from the University of

Oslo in 1987 and PhD degree in computing science from the University of Glasgow

in 1993. He has five years industry experience as consultant and group leader. He is

now the research manager of the Department of Software Engineering at the Simula

Research Laboratory and a professor of software engineering in the Department of

Informatics at the University of Oslo. Among his research interests are research

methods in empirical software engineering, software process improvement, software

effort estimation and object-oriented analysis and design. He is a member of the IEEE

and IEEE Computer Society.

Ray Welland is Professor of Software Engineering in the Department of Computing

Science at the University of Glasgow, Scotland. He was Head of Department

(Chairman) from 1996 to 2003. His research interests include: software engineering

environments, meta-CASE tools, empirical software engineering, web engineering

and cultural heritage computing. He has collaborated with Dag Sjøberg for more than

ten years and is a regular visitor to the Simula Laboratory in Oslo.

 51

	2.3. Using the Feedbacks
	2.3.2. Explaining Experimental Results

	2.4. Summary of the Feedback Collection Method
	4.1.4. Study IV

	Question
	Study I
	Study II
	Study IV
	The FCM disturbed me in my work
	I worked differently because of the FCM
	Acknowledgements

